
Parallel ACO algorithms for 2D Strip Packing

Carolina Salto1, Guillermo Leguizamón2, and Enrique Alba3

1 LISI - Universidad Nacional de La Pampa, Calle 110 esq. 9, Gral Pico, La Pampa, Argentina
saltoc@ing.unlpam.edu.ar

2 LIDIC - Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, Argentina.
legui@unsl.edu.ar

3 GISUM - Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.
eat@lcc.uma.es

Abstract. In this paper we present a study of a parallel Ant Colony System
(ACS) for the two-dimensional strip packing problem. In our computational study,
we emphasize the influence of the incorporation of the received information in the
target subcolony. Colonies send their best solutions instead of sending informa-
tion from the matrix of pheromones, as happens in traditional parallel ACS. The
solution arriving to a colony can provide further exploitation around promising
solutions as this arrived solution can be used in both, the local update of the
pheromone trail and the construction solution process of an ant. The aim of the
paper is to report experimental results on the behavior of different types of paral-
lel ACS algorithms, regarding solution qualities and parallel performance.

1 Introduction
All parallel ACO options studied so far in the literature have a common characteristic:
the construction of a single solution by an ant is not split between multiple processors
[8, 13]. The reason is that the solution construction process in ACO is typically a se-
quential process which is difficult to split in several independent parts. Consequently,
the minimum grain size of parallel ACO is the construction of a single solution.

The majority of the parallel ACO algorithms assign more than one ant on each pro-
cessor [2, 12]. When several ants are placed on a single processor and these ants work
more closely than those ants in other processors, this group of ants are often called
a colony. Those ACO algorithms that have several colonies of ants using their own
pheromone matrix and where the pheromone matrices of different colonies are not nec-
essarily equal are called multicolony ACO algorithms. This type of ACO algorithms are
used in this work [8, 12]. Multicolony ACO algorithms are well suited for paralleliza-
tion because a processor can host a colony of ants [1].

In this work we evaluate the application of three parallel ACO algorithms to solve
a strip packing problem. We considered three parallel strategies to implement a par-
allel ant colony. In one of them, no communication is required between subcolonies.
The other two strategies exchange information between the subcolonies. Traditional
implementations exchange information of the pheromone matrix, but in this work the
subcolonies send the best solution found-so-far to their neighbors [10]. The difference
in these last two strategies is the way in which the information arriving to the target

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301039308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

subcolonies is used. All algorithms are studied from the numerical point of view but
also from the parallel performance.

The article is organized as follows. Section 2 contains an explanation of the 2SPP.
Section 3 describes the multicolony ACS used to solve the 2SPP. In Section 4, we ex-
plain the parameter settings of the algorithms used in the experimentation. Section 5
reports on the algorithm performances, and finally, in Section 6 we give some conclu-
sions and analyze future lines of research.

2 The 2D Strip Packing Problem
Packing problems involve the construction of an arrangement of pieces that minimize
the total space required for that arrangement. In this paper, we specifically consider the
two-dimensional Strip Packing Problem (2SPP), which consists of a set of M rectangu-
lar pieces, each one defined by a width wi ≤W and a height hi, (i = 1...M). The goal
is to pack the pieces in a larger rectangle, the strip, with a fixed width W and unlimited
length, minimizing the required strip length; an important restriction is that the pieces
have to be packed with their sides parallel to the sides of the strip, without overlapping.

In the present study some additional constrains are imposed: pieces must not be
rotated and they have to be packed into three-stage level packing patterns. In these
patterns, pieces are packed by horizontal levels (parallel to the bottom of the strip).
Inside each level, pieces are packed bottom left justified and, when there is enough room
in the level, pieces with the same width are stacked one above the other. Three-stage
level patterns are used in many real applications in the glass, wood, and metal industries,
and this is the reason for incorporating this restriction in the problem. The 2SPP is
representative of a wide class of combinatorial problems, being a NP-hard [9] one.

3 Parallel Ant Colony System to the 2SPP
Ant Colony System (ACS) [7, 6] is one of the most representative algorithms derived
from the Ant Colony Optimization (ACO) metaheuristic to deal with combinatorial
optimization and other problems. It uses a colony of artificial ants which stochasti-
cally build new solutions using a combination of heuristic information and artificial
pheromone trail. This pheromone trail is reinforced according to the quality of the so-
lutions built by the ants.

Like many other metaheuristic approaches, the ACO metaheuristic admits direct
parallelization schemes. Randall and Lewis [15] proposed an interesting classifica-
tion of the parallelization strategies for ACO metaheuristic: parallel independent ant
colonies, parallel interacting ant colonies, parallel ants, parallel evaluation of solution
elements, and a combination of two of the mentioned strategies. In this work, we con-
sidered a version of the first and second strategies, which are described in the following
paragraphs. The reason for this election is based on the good performance observed in
the solution of other problems [2], and they performed similarly regarding the qualities
of the results obtained.

In the case of parallel independent ant colony, there is a number of sequential ACSs
which are put on different processors. This method, called dACSni, has the particu-
larity that colonies do not send information. This alternative has a positive effect over

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 32

Algorithm 1 Algorithm dACSi

init pheromoneValues(τ); {Initialize the pheromone trails}
sbs=build solution(τ, η);
while not(stop condition) do

for k ← 1 to µ do
antk=build solution(τ, η);{Ant antk builds their solution}
localUpdate(τ ,antk); {Local update of pheromone trials (ACS)}
apply localSearch(antk);

end for
if exchange iteration then

send\receive solution(ant,dACSj); {interaction with the neighborhood}
end if
feromone evaporation(τ) {evaporation}
for k ← 1 to µ do

if f (antk) < f (sbs) then
sbs=antk {actualize the best solution, daemon activity}

end if
end for
globalUpdate(τ ,ant,sbs) {intensification of pheromone trails}

end while
return best solution found antbs

the behavior since each colony, which is running in a different processor, can specialize
in different regions of the search space. The parallel interacting ant colonies strate-
gies is similar to the previous one, except that an exchange of information between
subcolonies occurs at a prefix iterations. The exchange of information is frequently as-
sociated to share the pheromone trail structure of the best performing colony among all
the subcolonies. Also it is possible to send the best solutions found in each colony.

The distributed ACS algorithm that we use in this work is shown in Algorithm 1.
The algorithm begins with the initialization of the pheromone trail associated with each
transition. The principal loop of the algorithm consists of the following steps. A colony
of µ ants incrementally build solutions (packing patterns) to the 2SPP applying a a
stochastic local decision policy that makes use of pheromone trails and heuristic in-
formation. While the solution is being built, the ant deposits pheromone trails on the
components or connections it used (local updating rule). This pheromone information
will direct the search of future ants. Once the solution is created a local search pro-
cedure is activated. At preset iterations, the subcolony exchange information with the
neighborhood (the communication structure used in this work corresponds to an uni-
directional ring topology). After this communication step, a pheromone evaporation is
triggered, which is the process by means of which the pheromone deposited by previous
ants decreases over time. The best solution sbs should be updated if an ant at the current
iteration found a better packing pattern. Finally, a global pheromone update is carried
out in order to deposit extra pheromone to good packing pattern. The algorithm returns
the best solution found-so-far.

One of the aspects to consider in the moment of designing a dACS is the information
exchanged between the colonies. One choice is to send solutions that have been found
in a colony to its neighbor. Another choice is to send information from the matrix of
pheromone. As the results of [10] indicate that the exchange of pheromone matrices is
not desirable, in this work we have chosen to send the best solution found by the colony.

According to the unidirectional ring topology adopted in this work to communicate
the different subcolonies, subcolony i influences the levels of pheromone trails of sub-

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 33

colony (i+1) mod n (where n is the number of subcolonies) by sending their best-so-far
solution. In this work, the incoming solution is used in two different moments:

– for local updating. The solution arriving to a target subcolony is used in the local
updating process together with the local set of solutions. Therefore, when only
the best solution in a subcolony is allowed to update the pheromone values, the
incoming solution influences the pheromone levels only when it is better than all
the solutions found by ants in that iteration. This update made a very indirect use
of the received information. This algorithm is referred as dACS in the following.

– for a more direct use of the information. One way to complement the use of the re-
ceived information from the neighboring colony is to use the information of the ar-
rangement of the pieces of that solution in a more direct way. Therefore, we choose
another alternative which consists in to extract the good levels of the incoming so-
lution (those levels with a less waste) and to copy them to a pseudo-solution. This
pseudo-solution is incomplete: some pieces are missed. The incoming solution is
used in the local updating process as explained in previous paragraph and the pro-
cess continues traditionally. In the next iteration of the algorithm, the ants begin the
process of building their solution by copying the levels from the pseudo-solution
and then they repeatedly apply a state transition rule to complete the packing pat-
tern, using the pheromone trail and heuristic information. This combination allows
a mix of exploitation (for the incoming solution) and exploration (for the experi-
ence of the target colony) through the respective pheromone matrix. The algorithm
implementing this ideas is called dACSmem.

The following paragraphs detail how the ACS can be applied to the 2SPP [16].
This description includes the most important elements of the ACS, namely the use of
heuristic information, the pheromone trail definition, the state transition rule, and the
local search procedure used in order to improve the solution quality.

We maintain solutions in the form of permutations of the set of pieces [5], which
will be directly translated into the corresponding packing pattern by a layout algorithm.
In order to generate a 3-stage level pattern, i.e., the pieces layout, we adopt a modified
next-fit decreasing height heuristic (NFDH) —in the following referred as modified
next-fit, or MNF— which was proven to be very efficient in [14, 18]. A more in-depth
explanation of the MNF procedure can be found in [18].

The objective value of a solution s of ants is defined as the strip length needed to
build the corresponding packing pattern. An important consideration is that two packing
patterns could have the same length —so their objective values will be equal— however,
from the point of view of reusing the trim loss, one of them can be actually better
because the trim loss in the last level (which still connects with the remainder of the
strip) is greater than the one present in the last level in the other layout. Therefore we
use the following objective function:

f(s) = strip.length− l.waste

strip.length ∗W (1)

where strip.length is the length of the packing pattern corresponding to the permu-
tation s and l.waste is the area of reusable trim loss in the last level l of the packing
pattern. Hence, function f is both simple and accurate.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 34

Heuristic definition. For the 2SPP, the problem-dependent heuristic information used
is the height of piece j, i.e., the heuristic value for a piece j is ηj = hj .

Pheromone definition. Trail τij encodes the desirability of having a piece i and j in the
same level [11]. The pheromone matrix has M rows and M columns (in a first stage,
each piece is assigned to a different level, in that way initially we have M different
levels).

Pheromone update. Once all ants have completed their packing patterns, a global
pheromone updating rule is applied. In this case, only the best ant (which the respective
solution is sbs) is allowed to place pheromone after each iteration. This is done accord-
ing to τij = ρ × τij + 1/f(sbs), where 0 < ρ < 1 is the pheromone decay parameter,
and f(sbs) is the objective value of sbs. Using only the best ant for updating makes the
search much more aggressive. Global updating is intended to provide a greater amount
of pheromone to good packing patterns. Moreover, while ants construct a solution, a lo-
cal pheromone updating rule is applied, which effect is to make the desirability of edges
change dynamically. The local updating is made according to the following expression:
τij = (1− ξ)× τij + ξ ×∆τij , where 0 < ξ < 1 is a parameter and ∆τij is set as
τmin. Dorigo and Gambardella [7] used this expression to run their experiments with
good results.

Another way to promote exploration is by defining a lower limit (τmin) for the
pheromone values. The following formula sets the value of τmin [11] as:

τmin =
(1/(1− ρ))(1− M

√
pbest)

(avg − 1) M
√
pbest

(2)

where pbest is the approximation of the real probability to construct the best solution,
avg is the average number of pieces to choose from at every decision point when build-
ing a solution, defined as M/2. Also an evaporation phase occurs at each iteration by
updating the pheromone trail by τij = γ × τij ,

State transition rule definition. It gives the probability with which ant k will choose
a piece j as the next piece for its current level l in the partial solution s,which is given
by [11]:

j =

{

maxj∈Jk(s,l) [τl(j)]× [ηj]
β if q ≤ q0

S otherwise (3)

where τl(j) is the pheromone value for piece j in level l, ηj is the heuristic infor-
mation guiding the ant, β is a parameter which determines the relative importance of
pheromone information versus heuristic information, q is a random number uniformly
distributed in [0..1], q0 is a constant parameter (0 < q0 < 1) which determines the rela-
tive importance of exploitation versus exploration, and S is a random variable selected
according to the probability distribution given in Equation 4.

pk(s, l, j) =

{

[τl(j)]×[ηj]
β

∑

g∈Jk(s,l)[τl(g)]×[ηg]β
if j ∈ Jk(s, l)

0 otherwise
(4)

In Equations 3 and 4, Jk(s, l) is the set of pieces that qualify for inclusion in the
current level by ant k. The set includes those pieces that are still left after partial solution

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 35

s is formed, and are light enough to fit in level l. The pheromone value τl(j) for a piece
j in a level l is given by:

τl(j) =

{ ∑

i∈Al
τij

|Al|
if Al 6= ∅

1 otherwise
(5)

where Al is the set of current pieces allocated in level l. In other words, τl(j) is the sum
of all the pheromone values of pieces already in level l, divided by the number of pieces
in that level. This approach is similar to the one followed by Levine and Ducatelle [11].
The local search procedure. It starts from a solution created by the ACS towards to
the nearest local optimum for that solution, with the aim of improving the trim loss
of all levels. After this improvement phase, the pheromone trail is updated. The local
search procedure used in this work consists of the application of a modified version of
first-fit decreasing heuristic (FFDH), called MFF. A more in-depth explanation of the
MFF procedure can be found in [18].

4 Implementation
Now we will comment on the actual implementation of the multicolony algorithms
to solve the 2SPP: i) dACS with independent non-interacting colonies (dACSni) and
two dACSs with colonies exchanging information: ii) dACS, which add the received
solution to the solution set of the colony and iii) dACSmem, which adds the received
solution to the solution set as well as selects the best levels of the incoming solution
with the objective that those levels will be used for ants in the next iterations.

The number of ants is set to 64, each subcolony has 64/n ants, where n represents
the number of subcolonies. Each ant begins the building process of their solution with
a piece randomly selected. The parameter values are the following: β= 2, q0 = 0.9, ρ =
0.8, γ=0.96, and ξ=0.1. The initial pheromone value is set to τmin. These parameters
were used with success in [17]. For the models involving communication between sub-
colonies, solutions were sent every 100 iterations following an asynchronous approach.
Local search is applied to all solutions generated by the ants.

The algorithms were implemented inside MALLBA [3], a C++ software library
fostering rapid prototyping of hybrid and parallel algorithms. The platform was a cluster
of 16 PCs with Intel Pentium 4 at 2.4 GHz and 1GB RAM under SuSE Linux with
2.4.19-4 kernel version, and interconnected by a Fast-Ethernet at 100 Mbps.

We have considered five randomly generated problem instances with M equal to
100, 150, 200, 250, and 300 pieces and a known global optimum equal to 200 (the mini-
mum length of the strip). These instances belong to the subtype of level packing patterns
but the optimum value does not correspond to a 3-stage guillotine pattern. They were
obtained by an own implementation of a data set generator, following the ideas proposed
in [19] with the length-to-width ratio of all M rectangles in the range 1/3 ≤ l/w ≤ 3.
These instances are publicly available at http://mdk.ing.unlpam.edu.ar/˜lisi/
documentos/datos2spp.zip.

5 Computational Analysis
In this section we summarize the results of applying the multicolony algorithms solve
the 2SPP with restrictions, using different strategies to incorporate the information of

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 36

Table 1. Best fitness values for ACSseq and the proposed dACS

Inst ACSseq dACSni dACS dACSmem

best avg±σ best avg±σ best avg±σ best avg±σ
100 215.78 218.29 ± 0.88 215.64 218.29 ± 0.86 214.73 217.93 ± 1.08 215.64 218.18 ± 0.98

150 216.38 217.82 ± 0.79 215.64 218.29 ± 0.86 215.69 217.82 ± 0.70 214.79 217.69 ± 0.88

200 211.61 214.37 ± 1.12 215.64 218.29 ± 0.86 210.77 213.29 ± 1.28 210.68 213.68 ± 1.18

250 207.68 209.20 ± 0.76 215.64 218.29 ± 0.86 207.70 209.28 ± 0.74 207.54 209.20 ± 0.62

300 213.66 214.74 ± 0.57 215.64 218.29 ± 0.86 211.27 213.98 ± 0.96 211.79 213.92 ± 0.68

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 150 200 250 300
instance

t
[s

e
c
]

PSfrag replacements

ACSseq dACS dACSmemdACSni

Fig. 1. Execution time for seqACS and each dACS

the received solution. In a first place, a comparison of the multicolony algorithms is
presented by establishing the same effort, a prefixed number of iterations. After that,
the view point is changed in order to review the parallel performance. Our aim is to
offer meaningful results and check them from a statistical point of view. For each algo-
rithm we have performed 30 independent runs per instance using the parameter values
described in the previous section.

In order to obtain meaningful conclusions, we have performed an analysis of vari-
ance of the results. When the results followed a normal distribution, we used the t-test
for the two-group case, and the ANOVA test to compare differences among three or
more groups (multiple comparison test). We have considered a level of significance of
α = 0.05, in order to indicate a 95% confidence level in the results. When the results
did not follow a normal distribution, we used the non-parametric Kruskal Wallis test
(multiple comparison test), to distinguish meaningful differences among the means of
the results for each algorithm.

Results with predefined effort. In this section, a sequential ACS, so-called ACSseq,
is also included in the study, in order to show that the multicolony ACSs present not
only lower runtimes but also better solutions to the problem. In order to make a fair
comparison, all proposals stop after 65,536 evaluations (232). Table 1 shows the results
of the different ACSs for each instance. The columns in this Table stand respectively
for the best objective value obtained (best) and the average objective values of the best
found feasible solutions along with their standard deviations (avg±σ). The minimum
best values are printed in bold.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 37

Table 2. Quality of the target solutions to stop the algorithms

M 100 150 200 250 300
target 217.99 216.23 213.12 213.59 213.90

0

20

40

60

80

100

100 150 200 250 300

instance

h
it

ra
te

[%
]

PSfrag replacements

dACS dACSmem

0

20

40

60

80

100

100 150 200 250 300

instance

h
it

ra
te

[%
]

PSfrag replacements

dACS dACSmem

(a) (b)

Fig. 2. Hit rates (in percentage) for each dACS algorithm: (a) 1 processor and (b) 8 processors

From this table we can observe that multicolony approaches are the algorithms that
reach the best packing patterns for the whole set of instances; but there are no significant
differences in the statistics analysis performed for instances with M=100, M=150 and
M=250, i.e., the statistical tests indicate that all algorithms have presented similar mean
values. The more important difference between the multicolony approaches and the
sequential ACS is the run time, as to be expected (see Figura 1).

There are no differences between the multicolony approaches regarding the quality
of the solution found, although a small advantage in favor of dACSmem is observed,
since it solves more effectively three of the five instances. Regarding run times, dACS
and dACSmem present significant statistical differences only for instances with M=100
and M=250. From the examination of the mean run times values for those instances, it
is observed that the differences are negligible, for example, dACS took about 58.94 seg
in the search meanwhile dACSmem, 59.76 sec. in the instance with M=100, meaning
a difference of 0.82 sec.; similar situation is present in the instance with M=250. This
means that the additional processing incurred in saving the received solution and in
extracting their good leves do not substantially affect the run time, which transforms
this option in a viable alternative to obtain good solutions to 2SPP.

Results with predefined quality of solutions. Now we change the kind of analysis
performed. We want to measure the time to find equivalent solutions with the dACSs
proposed, in order to show their parallel characteristics. Thus we define our goal as
reaching the fitness values which are shown in Table 2 . To carry out this experimen-
tation, the eight subcolonies of each dACS are put on a same processor and then every
subcolony is put in a dedicated processor.

Up to now, we have presented the average results over 30 independent runs. This
time, we show the hit rate of the distributed ACSs, which is presented in Figure 2. This
measure is the relation between the number of execution that reached the target fitness
and the total number of performed tests. It is important to highlight that both dACS and
dACSmem reach the target value in all runs in instance with M=250, independently of
the number of processors used. The eight sub-colonies running in sequence, i.e., using
only one processor, obtain a similar hit rate that the parallel approaches, in instances
with M=150 and M=300. Instance with M=150 has been difficult for any of the dACS

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 38

linear speedup

0

2

4

6

8

10

12

100 150 200 250 300

instances

sp
e
e
d

u
p

PSfrag replacements

dACS dACSmem

Fig. 3. Speedup values

algorithms, since the hit rate is equal to 3.3%, meaning that in only one run from the 30
the solution obtained was better than the target.

From the point of view of the parallel performance of the algorithms, Figure 3 shows
the speedup values, which are obtained following the orthodox definition of speedup
[4]. We can see high speedup values in the majority of the dACS approaches, except
for dACS and the instance with M=150, where the speedup value is lower than two.
In particular, superlinear speedups are observed in both algorithms in instance with
M=250. These results suggest that we are using good parallel implementations of the
algorithms.

6 Conclusions
In this paper we have presented different parallel ACSs to solve the 2SPP with addi-
tional constrains. The parallelization strategy consisted in a multicolony model, where
sporadic exchange of solutions between subcolonies occurs. Therefore, the exchange of
solutions between subcolonies can be considered as a class of interaction among par-
allel ant colonies. The characteristics of the distributed models have proven to be good
techniques to obtain good packing patterns, which represents a great step forward in
this field.

Computational results of the three considered multicolony strategies are similar
than those obtained with a sequential ACS, but dACSmem and dACS obtained the
best packing patterns. The most important difference between the sequential ACS and
the multicolony ACSs was observed in the run times: the last ones reduced the time
involved in the search. The results suggest that the exchange of information in the pro-
posed dACSs do not help the search, similar conclusion are reported in [2].

There are several issues which seem to be worth for further investigation. One issue
deals with the effects of different uses of the information of solution arriving to promote
a more direct use of the information in the algorithm. Another issue can be the investi-
gation of search space characteristics and their relation to the algorithm performance.

Acknowledgments
This work has been partially funded by the Spanish Ministry of Science and Technol-
ogy and the European FEDER under contract TIN2005-08818-C04-01 (the OPLINK
project) and the proyect DIRICOM (P07-TIC-03044). We acknowledge the Universi-
dad Nacional de La Pampa, Universidad Nacional de San Luis, and the ANPCYT in
Argentina from which the first and second authors receive continuous support.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 39

References

1. E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley, 2005.
2. E. Alba, G. Leguizamon, and G. Ordoez. Two models of parallel ACO for the minimum

tardy task problem. Int. Journal High Performance Systems Architecture, 1:50–59, 2007.
3. E. Alba, J. Luna, L.M. Moreno, C. Pablos, J. Petit, A. Rojas, F. Xhafa, F. Almeida, M.J.

Blesa, J. Cabeza, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró, and C. León. MALLBA: A Library of
Skeletons for Combinatorial Optimisation, volume 2400 of LNCS, pages 927–932. Springer,
2002.

4. E. Alba and J. M. Troya. Analyzing synchronous and asynchronous parallel distributed
genetic algorithms. Future Generation Comput. Systems, 17:451465, 2001.

5. M. Boschetti and V. Maniezzo. An ant system heuristic for the two-dimensional finite bin
packing problem: preliminary results. Chapter 7 of book Multidisciplinary Methods for
Analysis Optimization and Control of Complex Systems, pages 233–247, 2005.

6. M. Dorigo and L.M. Gambardella. Ant colonies for the traveling salesman problem. BioSys-
tems, 43(2):73–81, 1997.

7. M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66,
1997.

8. L.M. Gambardella, E. Taillard, and M. Dorigo. New Ideas in Optimization, chapter MACS-
VRPTW: A multiple ant colony system for vehicle routing problems with time windows,
pages 63–76. McGraw-Hill, 1999.

9. E. Hopper and B. Turton. A review of the application of meta-heuristic algorithms to 2D
strip packing problems. Artificial Intelligence Review, 16:257–300, 2001.

10. F. Kruger, D. Merkle, and M. Middendorf. Studies on a parallel ant system for the BSP
model. 1998.

11. J. Levine and F. Ducatelle. Ant colony optimization and local search for bin packing and
cutting stock problems. Journal of the Operational Research Society, (55):705–716, 2004.

12. R. Michels and M. Middendorf. New Ideas in Optimization, chapter An ant system for the
shortest common supersequence problem, pages 51–61. McGraw-Hill, 1999.

13. M. Middendorf, F. Reischle, and H. Schmeck. Multicolony ant system algorithms. Journal
of Heuristics (Special issue on Parallel Metaheuristics, 8(3):305–320, 2002.

14. J. Puchinger and G. Raidl. An evolutionary algorithm for column generation in integer
programming: An effective approach for 2D bin packing. In X. Yao et al, editor, PPSN,
volume 3242 of LNCS, pages 642–651. Springer, 2004.

15. M. Randall and A. Lewis. A parallel implementation of ant colony optimization. Journal of
Parallel and Distributed Computing, 62:1421–1432, 2002.

16. C. Salto, E. Alba, and J. M. Molina. Hybrid ant colony system to solve a 2-dimensional strip
packing problem. International Conference on Hybrid Intelligent Systems, pages 708–713,
2008.

17. C. Salto, E. Alba, and J. M. Molina. Optimization Techniques for Solving Complex Prob-
lems, chapter Greedy Seeding and Problem-Specific Operators for GAs Solving Strip Pack-
ing Problems, pages 361–378. John Wiley & Sons, Inc., 2009.

18. C. Salto, J.M. Molina, and E. Alba. Evolutionary algorithms for the level strip packing
problem. Proceedings of NICSO, pages 137–148, 2006.

19. P.Y. Wang and C.L. Valenzuela. Data set generation for rectangular placement problems.
EJOR, 134:378–391, 2001.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 40

