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Abstract. Given the large number of optimization problems that mankind faces, 
metaheuristics are very important strategies for the resolution of these 
problems. These strategies assess the suitability of the individuals, which 
represent solutions to the problem, a large number of times throughout the 
search for an optimal solution. When the assessment of an individual takes 
significant time or resources, the assessment of hundreds or thousands of 
individuals is a problem to be taken into consideration. In this paper, a strategy 
based on PSO that considerably reduces the number of individual assessments 
is presented, which is of great help for complex problems. The method 
proposed was compared with the classical version of PSO using classic 
functions in the space and a real case with a simulation model, and satisfactory 
results were obtained. 
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1 Introduction 

Optimization, in the sense of finding a solution that is acceptable for a given problem, 
is a very important task in various disciplines. From tasks such as finding the shortest 
path or organizing tasks to take as little time as possible, to problems such as finding 
the maximum of a function, the number of optimal clusters in a database or adjusting 
parameters in simulation models, human beings are constantly looking for ways to 
solve optimization problems. When the problem is very complex, this is no simple 
task, and tools to help solving them become necessary. 

Various techniques have been developed that solve optimization problems in an 
exact or approximate fashion. When exact methods are difficult or non-existent, 
metaheuristics become the alternative to solve them by way of approximation. These 
are based on the integration of efficient strategies in calculation time and memory use 
capable of finding an acceptable solution (close to the optimum) by examining only a 
subset of the search space.  

In particular, Particle Swarm Optimization (PSO) [1] is a metaheuristic widely 
used in the resolution of this type of problems [2] [3] [4] [5] [6]. This technique works 
with various particles, each representing a solution to the problem and travelling the 
space in search for the best solutions. To decide in which direction to move, they are 
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based on the best solution found by the particle itself and on the best solution found 
either by the entire swarm (global PSO) or a subset of the swarm (local PSO). 

One of the problems of PSO is that in multimodal functions, a large part of the 
swarm conglomerates in a reduced area of the search space, leaving others 
unexplored. In this paper, we present lpPSO (long path PSO), which is a strategy 
based on PSO that works with particles that, in their travel, cover a larger area of the 
search space by changing direction only when they reach a limit of the space. Thus, 
the technique proposed makes sure to cover a large part of the search space, avoiding 
local minima or maxima. An area with a possible optimal solution will be “visited” 
simultaneously from various directions by all particles.  

The rest of this paper is organized as follows: Section 2 briefly describes the PSO 
strategy. In Section 3, the strategy proposed is presented. In Section 4, the results 
obtained are shown, and finally, in Section 5, some possible improvements that can be 
introduced as future work are discussed. 

2   Particle Swarm Optimization 

Particle Swarm Optimization (PSO) [1] is a populational metaheuristic technique 
where each particle represents a possible solution to the problem and adapts during 
the algorithm taking three elements into account: its knowledge of the environment 
(fitness value), its previous experience (memory) and the previous experience of its 
neighbors. The objective of each particle is to move constantly within the search 
space to find a good solution for the problem. That is, trying to improve itself by 
constantly looking for better solutions. 

There are two PSO versions that are most widely used. gBest PSO uses the 
criterion that the entire swarm belongs to a single neighborhood, which means that the 
entire swarm will go in the direction of the best particle, whereas lBest PSO uses part 
of the swarm as the neighborhood for any given particle, so that each particle has its 
own neighborhood and will move in the direction of the best particle within its own 
neighborhood. The size of the neighborhood directly affects populational diversity – 
the larger the neighborhood, the less diverse its members are, but the algorithm 
converges faster. 

Each particle is formed by the following elements: 
- A vector x that stores its current position within the search space. 
- A vector pBest that stores the position of the best solution found by the particle 

itself 
- A velocity vector v that stores the speed and direction in which the particle 

moves. 
- The fitness value of the current position. 
- The fitness value of the best solution found. 
The position of the particle i is updated as follows 

xi(t+1) = xi(t) + vi(t) . (1) 

The velocity vector is updated taking into account its own experience and that of 
the environment 
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vi(t+1) = w.vi(t) + δ1.rand1.(pBesti - xi(t)) + δ2.rand2.(gi - xi(t)) . (2) 

Where w is an inertia factor, δ1 and δ2 are acceleration constants, rand1 and rand2 
are random distribution values U(0,1) and gi represents the best solution of the 
individual's environment, either with gBest or lBest. w, δ1 and δ2 are algorithm 
parameters and are essential for the convergence of the algorithm [7] [8] [9]. 

3   lpPSO 

In search metaheuristics, most of the computation requirements fall on the assessment 
of particle fitness. This assessment may be a single calculation of a function or, in 
more complex tasks such as the assessment of simulation models, testing of neural 
networks, assessment of graphs, etc.  

In problems where assessing the fitness of a particle demands a large amount of 
computation, the assessment of the entire swarm of particles throughout the search 
process is the most expensive part and the one that most resources consumes. Thus, 
total algorithm time can be reduced by minimizing the number of fitness assessments. 

lpPSO reduces the number of fitness assessments in relation to PSO. 

3.1   Exploration Strategy 

The same as PSO, this strategy uses particles that represent solutions to the base 
problem. Particles have vectors x, v and pBest (position, velocity, and best solution 
found, respectively) and the fitness values for the current position and the best 
solution. 

In the strategy proposed, a constant number of particles explore the limited d-
dimensional search space, covering extensively from one end to another. The limits of 
the search space are usually clear in most optimization problems. Thus, the search 
space B is defined and limited by values al and bl for each dimension 

B = {(x1, x2, … , xd) ∈ Rd / al <= xl <= bl ∀ l=1..d} . (3) 

For lpPSO to achieve its objective, the search space B must be associated to a 
continuous error surface, so that the optimal solutions will be characterized by having 
some slope getting to them. 

Each of the particles starts with a random position and direction. They travel in that 
direction until they reach the limit of the search space. The movement of a particle i is 
similar to that of PSO, and the vector x is updated as follows 

xi(t + 1) = xi(t) + vi(t) ki . (4) 

Where ki is an acceleration factor of particle i. 
Let pi be the ith particle of the swarm. When pi reaches the limit of the space, it 

changes its direction towards the best solution found by particle pi+1. It will continue 
to move in that direction until a new limit is reached, changing then its direction 
towards the best solution of particle pi+2. This process is repeated selecting the next 
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particle in the swarm in a circular queue order. Once all particles changed their 
trajectory n-1 times, all of them have moved in the direction of the best solution found 
by each of the other particles. 

The purpose of this series of trajectory changes is that a particle, while crossing the 
search space, goes in the direction of the area where another particle found a possible 
optimal solution; thus particle i can “observe” that area by approaching it from a 
different direction. Figure 1 shows an example of four particles that start from a 
random position and change their trajectories until finding an optimal solution. 

 

Fig. 1. Particle direction change procedure. The example shows a mostly flat surface that rises 
in an elliptical fashion until reaching a maximum that is at the center of the smallest ellipse. a) 
initial position of the particles (circles) and the best solution found (square) bye each of them 
in their trajectory (arrow). b) all particles pi change their direction towards the best solution of 
particle pi+1. c) the change is done towards the best solution of particle pi+2. At this point, all 
particles but # 3 find a better solution. d) the change is done towards the best solution of 
particle pi+3. 

In lpPSO, particles not only reach the area where a possible best solution is found, 
but they also explore other areas of the space. Figure 2 shows an example where one 
particle moving towards the best solution of another particle, finds a solution that is 
even better. This is possible because the strategy never stops exploring new areas of 
the space even when all particles are intensifying their search in a promising area. 
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Fig. 2. The example shows the case of a particle that, when going through the area of a good 
solution, finds an even better one. The error surface, mostly flat, rises in an elliptical fashion 
until reaching two maxima that are at the centers of each group of the concentric ellipses. 
Group B has a higher fitness value than group A.  a) initial position of the particles (circles) and 
the best solution found (square) bye each of them in their trajectory (arrow). b) and c) change 
in direction towards the best solution of particles pi+1 and pi+2, respectively. d) particle 3 reaches 
a better solution in its trajectory beyond A. From that point on, all particles will progressively 
move in the direction of the solution found by particle 3, and in a few iterations they will find 
the highest fitness value. 

3.2   Decrease in Particle Velocity 

The velocity at which a particle crosses the search space is a critical parameter of the 
lpPSO algorithm. A particle that moves at a fast speed will have difficulty finding the 
good regions if these are small. On the other hand, if it moves at a very slow pace, the 
probability of examining the good regions increases at the cost of performing a large 
number of fitness assessments, which is precisely what the strategy proposed in this 
paper attempts to reduce. 

To increase the exploratory capacity of the good regions, the particles reduce their 
velocity as they approach the region surrounding the best solution found by another 
particle, progressively until reaching a minimum velocity. As they move away from 
that region, the particles increase their velocity until reaching maximum speed. This 
allows achieving a good ratio between space exploration and promising region 
exploitation. 
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3.3   Algorithm 

The lpPSO algorithm works with three parameters: 
- n: number of swarm particles 
- velMax: maximum velocity at which a particle can move. 
- velMin: minimum velocity at which a particle can move. 
The algorithm starts by placing n particles at different random positions within the 

search space, each with a direction that is also random. 
The next step of the algorithm is an iterative process that consists in moving the 

particles, updating their velocities and changing their direction every time they reach 
a limit of the search space. This iterative process ends after a fixed number of 
iterations or when a satisfactory optimum is reached. 

The pseudo-code of the algorithm is the following: 
program  bounces  (n,  velMax,  velMin) 
  begin 
  algorithm initialization 
  repeat 
    for  i  =  1..n  do 
      begin 
        Adjust_velocity_magnitude (pi) 
        Yield (pi); 
        if  pi  reached_limit then 
          Determine_new_direction  (pi) 
        else 
          assess_Fitness (pi); 
      end; 
  until reaching end condition; 
end. 

When the algorithm starts, initial position and velocity vectors are randomly 
assigned for all swarm particles with a uniform distribution in the interval defined by 
the limited space. 

Initially, all particles move at the maximum velocity set by parameter velMax. The 
change in velocity magnitude is first applied when the particle reaches a limit of the 
space for the first time, and its new direction and magnitude are determined based on 
the best solution found by another particle. The change in magnitude of the velocity 
vector is established by a factor ki that is calculated as a function of the Euclidean 
distance between the current position xi and the position of the best solution towards 
which the particle is moving (pBestj). 

ki(t) = D(xi(t), pBestj(t)) + velMin. (5) 

Once ki is calculated, the particle moves as follows 

xi(t + 1) = xi(t) + vi(t) ki(t). (6) 

The factor ki calculated in Equation 5 determines the deceleration of the particle as 
it approaches pBestj. The function of parameter velMin is to prevent the particle from 
stopping on pBestj, allowing exploration beyond that solution. After going beyond 
pBestj, and as the distance to it increases, the particle accelerates once again. This 
allows analyzing the regions that are near a good solution to be thoroughly analyzed. 
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When a particle reaches the limit of the space, it calculates j as the index of the 
next particle within a circular queue by means of Equation 7. This allows determining 
pBestj, which will guide the new trajectory by calculating the velocity vector v as 
shown in Equation 8. 

j = (j mod n) + 1 . (7) 

vi(t + 1) = (xi(t) - pBestj(t)) velMax . (8) 

4 Results 

lpPSO was tested versus PSO, and satisfactory results were obtained. Two different 
tests were carried out. The first test consists in the assessment of five classical 
functions in a two-dimensional space, and the second test is resolution of a real case 
of parameterization of a biological simulation model. 

4.1   Two-Dimensional Functions 

Table 1 shows the five functions used for the first test. Each of the functions presents 
a minimum at some point within the space in which they are defined. Each function 
tries to measure a different aspect of the algorithm proposed. Function F1 allows 
analyzing the accuracy of the solution found. F2 and F3 allow observing the behavior 
of the algorithm when there is a large number of local minima and maxima. F4 and F5 
measure the exploratory capacity of the algorithm, since they represent a completely 
flat surface with one “hole” in the case of F4 and three “holes” of different depths in 
the case of F5. 

In this test, one particle represents a point in the space, and its corresponding 
fitness is the value of the function assessed at that point. Since the concept of fitness 
in metaheuristics is directly proportional to the magnitude, i.e., the higher the value of 
the function, the better the fitness, and these functions attempt to reach a minimum, 
PSO and lpPSO algorithms were modified to consider that fitness values are better 
when their value is smaller. 

The results obtained were averaged from the data obtained from 30 independent 
runs. For the PSO tests, the gBest PSO version was used, since it has shown to yield 
better results in this type of functions [10]. In PSO, trials were done with 5, 10, 20, 
30, 40, 50, 60 and 70 particles; the best result obtained is shown in Table 1. Each trial 
was run with a maximum of 500 iterations, adding to the results of the run the number 
of fitness assessments done until finding a better solution. 

In lpPSO, eight particles were used for all tests and a maximum of 200 trajectory 
changes per particle. Table 2 shows the results obtained in these tests. 
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Table 1.  The five functions used for the first test.  
Function Interval 
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Table 2.  Results of the first test. For the five tested functions, the number of particles (n) used 
in each strategy is shown, as well as the best fitness found (fb) and the total number of 
assessments (te) that were needed to reach the best solution. 

 PSO  lpPSO 
Function n fb te n fb te 
F1 20 4.69E-04 1032 10 4.65E-04 932 
F2 70 0.0515 5786 20 0.0487 4806 
F3 60 79.1778 5654 20 65.8941 4705 
F4 70 34.7161 11268 20 30.1567 9478 
F5 60 112.9385 3774 20 103.7195 3105 

4.2   Real Case 

The performance of lpPSO was tested in a real case of an optimization problem. This 
is a mathematical model designed to simulate the growth of a guanaco population 
during 30 years. Starting with an initial population of guanacos, by means of different 
calculations, the size of the population one year later is calculated; then, the same 
procedure is applied and the population for the second year is obtained, and so on 
until obtaining the population of guanacos during a period of 30 years. 

This model has different parameters whose values result in different scenarios. The 
parameters include female fertility, i.e., how many calves per year a female produces, 
the probability of surviving until the following year of the guanacos based on their 
age or sex (survival probability for a calf, an adult male, an adult female, among 
others). There are also parameters that affect harvesting, i.e., how many guanaco 
specimens can be removed from the population in a year. 
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On the other hand, there is information of a census of the guanaco population. 
These data, called field data, were obtained by census (individual count) in a ranch in 
the province of Chubut for a period of 30 years. Harvesting data at different periods 
are also available for this censed population. The purpose of the simulation model is 
finding parameter values that reflect as best as possible the information offered by 
field data. 

Thus, we have an optimization problem in an eight-dimensional space, since that is 
the number of parameters in the model. The space is limited, since for each parameter, 
the minimum and maximum value that can be used are known. Thus, a particle 
represents a combination of values for those eight parameters of the model. The sum 
of the square errors was used as fitness value for each particle. Since the model 
produces a series of values in time as output, and for that same series of values there 
are field data against which to compare them, the sum of the square errors (S) is as 
follows: 

S = Σ (i=1..30) (yi – mi)2 . (9) 

Where yi is the ith field data and mi is the ith value produced by the model. The same 
as in the previous test with the functions in the space, PSO and lpPSO algorithms 
were modified to consider the lowest values as having the best fitness. For PSO, tests 
were carried out using 50 and 100 particles, and a maximum of 500 iterations. For 
lpPSO, 50 and 100 particles were used and a maximum of 500 trajectory changes. 
Table 3 shows the results obtained. 

Table 3.  Results of the second test. For the two test cases, the number of particles (n) used in 
each strategy is shown, as well as the best fitness found (fb) and the total number of 
assessments (te) that were needed to reach the best solution. 

 PSO  lpPSO 
Test n fb te n fb te 
T1 50 6.91E08 9756 50 6.87E08 4820 
T2 100 6.53E08 18230 100 6.38E08 12762 

5   Conclusions and Future Works 

A new search strategy inspired in PSO, called lpPSO, has been presented. This 
strategy considerably reduces the number of fitness assessments required. lpPSO was 
compared with the classical version of PSO by means of classical, two-dimensional 
function optimization problems and a real case applied to a biological simulation 
mathematical model. As it was observed in the results, lpPSO was better than PSO, 
with equal or better fitness values found as best solution and considerably reducing 
the total number of fitness assessments used by the algorithm. 

Various swarm sizes have been tested, and no significant differences were 
observed in the results. As future work, the utilization of a variable-size swarm is 
proposed, as well as the dynamic reduction of the search space by excluding the least 
promising regions. This would result in an even greater reduction in the number of 
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fitness assessments needed to find an optimal solution without degrading the current 
performance of the strategy. 
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