
lpPSO - New optimization strategy inspired by PSO

Waldo Hasperué1,2 and Leonardo Corbalan1

1 III-LIDI. School of Computer Science – UNLP. Argentina.
2 CONICET Scholarship.

{whasperue, corbalan}@lidi.info.unlp.edu.ar

Abstract. Given the large number of optimization problems that mankind faces,
metaheuristics are very important strategies for the resolution of these
problems. These strategies assess the suitability of the individuals, which
represent solutions to the problem, a large number of times throughout the
search for an optimal solution. When the assessment of an individual takes
significant time or resources, the assessment of hundreds or thousands of
individuals is a problem to be taken into consideration. In this paper, a strategy
based on PSO that considerably reduces the number of individual assessments
is presented, which is of great help for complex problems. The method
proposed was compared with the classical version of PSO using classic
functions in the space and a real case with a simulation model, and satisfactory
results were obtained.

Keywords: metaheuristics, optimization problems, PSO.

1 Introduction

Optimization, in the sense of finding a solution that is acceptable for a given problem,
is a very important task in various disciplines. From tasks such as finding the shortest
path or organizing tasks to take as little time as possible, to problems such as finding
the maximum of a function, the number of optimal clusters in a database or adjusting
parameters in simulation models, human beings are constantly looking for ways to
solve optimization problems. When the problem is very complex, this is no simple
task, and tools to help solving them become necessary.

Various techniques have been developed that solve optimization problems in an
exact or approximate fashion. When exact methods are difficult or non-existent,
metaheuristics become the alternative to solve them by way of approximation. These
are based on the integration of efficient strategies in calculation time and memory use
capable of finding an acceptable solution (close to the optimum) by examining only a
subset of the search space.

In particular, Particle Swarm Optimization (PSO) [1] is a metaheuristic widely
used in the resolution of this type of problems [2] [3] [4] [5] [6]. This technique works
with various particles, each representing a solution to the problem and travelling the
space in search for the best solutions. To decide in which direction to move, they are

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 131

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301039127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

based on the best solution found by the particle itself and on the best solution found
either by the entire swarm (global PSO) or a subset of the swarm (local PSO).

One of the problems of PSO is that in multimodal functions, a large part of the
swarm conglomerates in a reduced area of the search space, leaving others
unexplored. In this paper, we present lpPSO (long path PSO), which is a strategy
based on PSO that works with particles that, in their travel, cover a larger area of the
search space by changing direction only when they reach a limit of the space. Thus,
the technique proposed makes sure to cover a large part of the search space, avoiding
local minima or maxima. An area with a possible optimal solution will be “visited”
simultaneously from various directions by all particles.

The rest of this paper is organized as follows: Section 2 briefly describes the PSO
strategy. In Section 3, the strategy proposed is presented. In Section 4, the results
obtained are shown, and finally, in Section 5, some possible improvements that can be
introduced as future work are discussed.

2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [1] is a populational metaheuristic technique
where each particle represents a possible solution to the problem and adapts during
the algorithm taking three elements into account: its knowledge of the environment
(fitness value), its previous experience (memory) and the previous experience of its
neighbors. The objective of each particle is to move constantly within the search
space to find a good solution for the problem. That is, trying to improve itself by
constantly looking for better solutions.

There are two PSO versions that are most widely used. gBest PSO uses the
criterion that the entire swarm belongs to a single neighborhood, which means that the
entire swarm will go in the direction of the best particle, whereas lBest PSO uses part
of the swarm as the neighborhood for any given particle, so that each particle has its
own neighborhood and will move in the direction of the best particle within its own
neighborhood. The size of the neighborhood directly affects populational diversity –
the larger the neighborhood, the less diverse its members are, but the algorithm
converges faster.

Each particle is formed by the following elements:
- A vector x that stores its current position within the search space.
- A vector pBest that stores the position of the best solution found by the particle

itself
- A velocity vector v that stores the speed and direction in which the particle

moves.
- The fitness value of the current position.
- The fitness value of the best solution found.
The position of the particle i is updated as follows

xi(t+1) = xi(t) + vi(t) . (1)

The velocity vector is updated taking into account its own experience and that of
the environment

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 132

vi(t+1) = w.vi(t) + δ1.rand1.(pBesti - xi(t)) + δ2.rand2.(gi - xi(t)) . (2)

Where w is an inertia factor, δ1 and δ2 are acceleration constants, rand1 and rand2
are random distribution values U(0,1) and gi represents the best solution of the
individual's environment, either with gBest or lBest. w, δ1 and δ2 are algorithm
parameters and are essential for the convergence of the algorithm [7] [8] [9].

3 lpPSO

In search metaheuristics, most of the computation requirements fall on the assessment
of particle fitness. This assessment may be a single calculation of a function or, in
more complex tasks such as the assessment of simulation models, testing of neural
networks, assessment of graphs, etc.

In problems where assessing the fitness of a particle demands a large amount of
computation, the assessment of the entire swarm of particles throughout the search
process is the most expensive part and the one that most resources consumes. Thus,
total algorithm time can be reduced by minimizing the number of fitness assessments.

lpPSO reduces the number of fitness assessments in relation to PSO.

3.1 Exploration Strategy

The same as PSO, this strategy uses particles that represent solutions to the base
problem. Particles have vectors x, v and pBest (position, velocity, and best solution
found, respectively) and the fitness values for the current position and the best
solution.

In the strategy proposed, a constant number of particles explore the limited d-
dimensional search space, covering extensively from one end to another. The limits of
the search space are usually clear in most optimization problems. Thus, the search
space B is defined and limited by values al and bl for each dimension

B = {(x1, x2, … , xd) ∈ Rd / al <= xl <= bl ∀ l=1..d} . (3)

For lpPSO to achieve its objective, the search space B must be associated to a
continuous error surface, so that the optimal solutions will be characterized by having
some slope getting to them.

Each of the particles starts with a random position and direction. They travel in that
direction until they reach the limit of the search space. The movement of a particle i is
similar to that of PSO, and the vector x is updated as follows

xi(t + 1) = xi(t) + vi(t) ki . (4)

Where ki is an acceleration factor of particle i.
Let pi be the ith particle of the swarm. When pi reaches the limit of the space, it

changes its direction towards the best solution found by particle pi+1. It will continue
to move in that direction until a new limit is reached, changing then its direction
towards the best solution of particle pi+2. This process is repeated selecting the next

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 133

particle in the swarm in a circular queue order. Once all particles changed their
trajectory n-1 times, all of them have moved in the direction of the best solution found
by each of the other particles.

The purpose of this series of trajectory changes is that a particle, while crossing the
search space, goes in the direction of the area where another particle found a possible
optimal solution; thus particle i can “observe” that area by approaching it from a
different direction. Figure 1 shows an example of four particles that start from a
random position and change their trajectories until finding an optimal solution.

Fig. 1. Particle direction change procedure. The example shows a mostly flat surface that rises
in an elliptical fashion until reaching a maximum that is at the center of the smallest ellipse. a)
initial position of the particles (circles) and the best solution found (square) bye each of them
in their trajectory (arrow). b) all particles pi change their direction towards the best solution of
particle pi+1. c) the change is done towards the best solution of particle pi+2. At this point, all
particles but # 3 find a better solution. d) the change is done towards the best solution of
particle pi+3.

In lpPSO, particles not only reach the area where a possible best solution is found,
but they also explore other areas of the space. Figure 2 shows an example where one
particle moving towards the best solution of another particle, finds a solution that is
even better. This is possible because the strategy never stops exploring new areas of
the space even when all particles are intensifying their search in a promising area.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 134

Fig. 2. The example shows the case of a particle that, when going through the area of a good
solution, finds an even better one. The error surface, mostly flat, rises in an elliptical fashion
until reaching two maxima that are at the centers of each group of the concentric ellipses.
Group B has a higher fitness value than group A. a) initial position of the particles (circles) and
the best solution found (square) bye each of them in their trajectory (arrow). b) and c) change
in direction towards the best solution of particles pi+1 and pi+2, respectively. d) particle 3 reaches
a better solution in its trajectory beyond A. From that point on, all particles will progressively
move in the direction of the solution found by particle 3, and in a few iterations they will find
the highest fitness value.

3.2 Decrease in Particle Velocity

The velocity at which a particle crosses the search space is a critical parameter of the
lpPSO algorithm. A particle that moves at a fast speed will have difficulty finding the
good regions if these are small. On the other hand, if it moves at a very slow pace, the
probability of examining the good regions increases at the cost of performing a large
number of fitness assessments, which is precisely what the strategy proposed in this
paper attempts to reduce.

To increase the exploratory capacity of the good regions, the particles reduce their
velocity as they approach the region surrounding the best solution found by another
particle, progressively until reaching a minimum velocity. As they move away from
that region, the particles increase their velocity until reaching maximum speed. This
allows achieving a good ratio between space exploration and promising region
exploitation.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 135

3.3 Algorithm

The lpPSO algorithm works with three parameters:
- n: number of swarm particles
- velMax: maximum velocity at which a particle can move.
- velMin: minimum velocity at which a particle can move.
The algorithm starts by placing n particles at different random positions within the

search space, each with a direction that is also random.
The next step of the algorithm is an iterative process that consists in moving the

particles, updating their velocities and changing their direction every time they reach
a limit of the search space. This iterative process ends after a fixed number of
iterations or when a satisfactory optimum is reached.

The pseudo-code of the algorithm is the following:
program bounces (n, velMax, velMin)
 begin
 algorithm initialization
 repeat
 for i = 1..n do
 begin
 Adjust_velocity_magnitude (pi)
 Yield (pi);
 if pi reached_limit then
 Determine_new_direction (pi)
 else
 assess_Fitness (pi);
 end;
 until reaching end condition;
end.

When the algorithm starts, initial position and velocity vectors are randomly
assigned for all swarm particles with a uniform distribution in the interval defined by
the limited space.

Initially, all particles move at the maximum velocity set by parameter velMax. The
change in velocity magnitude is first applied when the particle reaches a limit of the
space for the first time, and its new direction and magnitude are determined based on
the best solution found by another particle. The change in magnitude of the velocity
vector is established by a factor ki that is calculated as a function of the Euclidean
distance between the current position xi and the position of the best solution towards
which the particle is moving (pBestj).

ki(t) = D(xi(t), pBestj(t)) + velMin. (5)

Once ki is calculated, the particle moves as follows

xi(t + 1) = xi(t) + vi(t) ki(t). (6)

The factor ki calculated in Equation 5 determines the deceleration of the particle as
it approaches pBestj. The function of parameter velMin is to prevent the particle from
stopping on pBestj, allowing exploration beyond that solution. After going beyond
pBestj, and as the distance to it increases, the particle accelerates once again. This
allows analyzing the regions that are near a good solution to be thoroughly analyzed.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 136

When a particle reaches the limit of the space, it calculates j as the index of the
next particle within a circular queue by means of Equation 7. This allows determining
pBestj, which will guide the new trajectory by calculating the velocity vector v as
shown in Equation 8.

j = (j mod n) + 1 . (7)

vi(t + 1) = (xi(t) - pBestj(t)) velMax . (8)

4 Results

lpPSO was tested versus PSO, and satisfactory results were obtained. Two different
tests were carried out. The first test consists in the assessment of five classical
functions in a two-dimensional space, and the second test is resolution of a real case
of parameterization of a biological simulation model.

4.1 Two-Dimensional Functions

Table 1 shows the five functions used for the first test. Each of the functions presents
a minimum at some point within the space in which they are defined. Each function
tries to measure a different aspect of the algorithm proposed. Function F1 allows
analyzing the accuracy of the solution found. F2 and F3 allow observing the behavior
of the algorithm when there is a large number of local minima and maxima. F4 and F5
measure the exploratory capacity of the algorithm, since they represent a completely
flat surface with one “hole” in the case of F4 and three “holes” of different depths in
the case of F5.

In this test, one particle represents a point in the space, and its corresponding
fitness is the value of the function assessed at that point. Since the concept of fitness
in metaheuristics is directly proportional to the magnitude, i.e., the higher the value of
the function, the better the fitness, and these functions attempt to reach a minimum,
PSO and lpPSO algorithms were modified to consider that fitness values are better
when their value is smaller.

The results obtained were averaged from the data obtained from 30 independent
runs. For the PSO tests, the gBest PSO version was used, since it has shown to yield
better results in this type of functions [10]. In PSO, trials were done with 5, 10, 20,
30, 40, 50, 60 and 70 particles; the best result obtained is shown in Table 1. Each trial
was run with a maximum of 500 iterations, adding to the results of the run the number
of fitness assessments done until finding a better solution.

In lpPSO, eight particles were used for all tests and a maximum of 200 trajectory
changes per particle. Table 2 shows the results obtained in these tests.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 137

Table 1. The five functions used for the first test.
Function Interval

22
1),(yxyxF += x, and ∈ [-1, 5]

222

222

2))(001.01(
5.0))4(sin(

5.0),(
yx

yx
yxF

++
−++

+= x, and ∈ [-50, 50]

∑ ∑=

=
−+

+
=

25

1 2

1

6

213

)(50

1002.0

1),(

j

i iji axj

xxF
x1, x2 ∈ [-50, 50]

1212

4

)1()1(1
1002.0

1),(

++++
+

=

yx

yxF
x1, x2 ∈ [-200, 200]

∑ ∑=

=
−+

+
=

3

1 2

1

122

215

)(50

1002.0

1),(

j

i iji bxj

xxF
x1, x2 ∈ [-50, 50]

Table 2. Results of the first test. For the five tested functions, the number of particles (n) used
in each strategy is shown, as well as the best fitness found (fb) and the total number of
assessments (te) that were needed to reach the best solution.

 PSO lpPSO
Function n fb te n fb te
F1 20 4.69E-04 1032 10 4.65E-04 932
F2 70 0.0515 5786 20 0.0487 4806
F3 60 79.1778 5654 20 65.8941 4705
F4 70 34.7161 11268 20 30.1567 9478
F5 60 112.9385 3774 20 103.7195 3105

4.2 Real Case

The performance of lpPSO was tested in a real case of an optimization problem. This
is a mathematical model designed to simulate the growth of a guanaco population
during 30 years. Starting with an initial population of guanacos, by means of different
calculations, the size of the population one year later is calculated; then, the same
procedure is applied and the population for the second year is obtained, and so on
until obtaining the population of guanacos during a period of 30 years.

This model has different parameters whose values result in different scenarios. The
parameters include female fertility, i.e., how many calves per year a female produces,
the probability of surviving until the following year of the guanacos based on their
age or sex (survival probability for a calf, an adult male, an adult female, among
others). There are also parameters that affect harvesting, i.e., how many guanaco
specimens can be removed from the population in a year.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 138

On the other hand, there is information of a census of the guanaco population.
These data, called field data, were obtained by census (individual count) in a ranch in
the province of Chubut for a period of 30 years. Harvesting data at different periods
are also available for this censed population. The purpose of the simulation model is
finding parameter values that reflect as best as possible the information offered by
field data.

Thus, we have an optimization problem in an eight-dimensional space, since that is
the number of parameters in the model. The space is limited, since for each parameter,
the minimum and maximum value that can be used are known. Thus, a particle
represents a combination of values for those eight parameters of the model. The sum
of the square errors was used as fitness value for each particle. Since the model
produces a series of values in time as output, and for that same series of values there
are field data against which to compare them, the sum of the square errors (S) is as
follows:

S = Σ (i=1..30) (yi – mi)2 . (9)

Where yi is the ith field data and mi is the ith value produced by the model. The same
as in the previous test with the functions in the space, PSO and lpPSO algorithms
were modified to consider the lowest values as having the best fitness. For PSO, tests
were carried out using 50 and 100 particles, and a maximum of 500 iterations. For
lpPSO, 50 and 100 particles were used and a maximum of 500 trajectory changes.
Table 3 shows the results obtained.

Table 3. Results of the second test. For the two test cases, the number of particles (n) used in
each strategy is shown, as well as the best fitness found (fb) and the total number of
assessments (te) that were needed to reach the best solution.

 PSO lpPSO
Test n fb te n fb te
T1 50 6.91E08 9756 50 6.87E08 4820
T2 100 6.53E08 18230 100 6.38E08 12762

5 Conclusions and Future Works

A new search strategy inspired in PSO, called lpPSO, has been presented. This
strategy considerably reduces the number of fitness assessments required. lpPSO was
compared with the classical version of PSO by means of classical, two-dimensional
function optimization problems and a real case applied to a biological simulation
mathematical model. As it was observed in the results, lpPSO was better than PSO,
with equal or better fitness values found as best solution and considerably reducing
the total number of fitness assessments used by the algorithm.

Various swarm sizes have been tested, and no significant differences were
observed in the results. As future work, the utilization of a variable-size swarm is
proposed, as well as the dynamic reduction of the search space by excluding the least
promising regions. This would result in an even greater reduction in the number of

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 139

fitness assessments needed to find an optimal solution without degrading the current
performance of the strategy.

References

1. Kenedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE
International Conference on Neural Networks, Australia, vol. IV, pp. 1942–1948 (1995)

2. Cui, X., Potok, T.E., Palathingal, P.: Document Clustering Using Particle Swarm
Optimization. In: IEEE Proceedings Swarm Intelligence Symposium, pp.185--191 (2005)

3. Omran, M.G.H., Salman A., Engelbrecht A.P.: Dynamic Clustering Using Particle Swarm
Optimization with Application in Image Segmentation. Pattern Analysis & Applications.
8, 332--344 (2005)

4. Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt, R.J.: Gene Clustering Using Self-
Organizing Maps and Particle Swarm Optimization. In: International Proceedings Parallel
and Distributed Processing Symposium, pp. 1--10 (2003)

5. van der Merwe, D.W., Engelbrecht, A.P.: Data Clustering Using Particle Swarm
Optimization. In: Congress on Evolutionary Computation, pp. 215--220 (2003)

6. Hung, C., Huang, L.: Extracting Rules from Optimal Clusters of Self-Organizing Maps. In:
Second International Conference on Computer Modeling and Simulation, pp. 382--386
(2010)

7. Van den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. dissertation. Department
Computer Science. University Pretoria. South Africa (2002)

8. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability and convergence in a
multidimensional complex space. IEEE Transactions on Evolutionary Computation
6(1), 58--73 (2002)

9. Shi, Y., Eberhart, R.: Parameter Selection in Particle Swarm Optimization. In: Proceedings
of the 7th International Conference on Evolutionary Programming, pp. 591–600. Springer,
Heidelberg (1998)

10. Lanzarini, L., Leza, V. De Giusti A.: Particle Swarm Optimization with Variable Population
Size. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008
Proceedings 9th International Conference on Artificial Intelligence and Soft Computing,
pp. 438--449. Zakopane, Poland (2008)

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 140

