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ABSTRACT

It is observed that conventional techniques to
analyse the steady state analysis of Self-Excited
Induction Generator (SEIG) involve cumbersome
mathematical procedures. In this paper an Artificial
Intelligence (AI) technique has been used to
analyse the behaviour of Self-Excited Induction
Generator, which does not require rigorous
modelling as required in conventional techniques.
Proposed Artificial Neural Network (ANN) model
has been implemented to predict the effect of speed,
capacitance and load on generated voltage and
frequency of SEIG. Experimental data is used for
the training of ANN. Results obtained from the
trained ANN are found to be in close agreement
with the experimental results.

Keywords: Self-Excited Induction Generator,
Artificial Neural Networks.

1. INTRODUCTION

Among renewable energy sources, wind energy
conversion scheme is most promising and cost
effective. Due to zero fuel cost and environmentally
clean, electric power generation from wind farms is
increasing in an amazing way. Wind powered
systems have been widely used since tenth century
for water pumping, grinding grains and other low
power applications. In 1931, the Russians built a
large windmill with a 100 ft diameter blade, but it
had very low conversion efficiency [1].

Due to number of advantages of induction
generators such as simple & rugged construction,
low cost, absence of DC exciter etc., these have
been found most suitable for wind energy
conversion schemes. Induction generators can
operate in two modes i.e. Grid Connected
Operation and Isolated Induction Generator
Operation. Grid connected operation is feasible
when normal AC supply grid is available near the
site. Induction machine connected to the grid
operates as externally excited induction generator,
while taking the excitation current from the grid,
for which the operating speed of the machine must
be greater than the synchronous speed. The output
voltage and frequency does not change with loading

conditions but active power generated by the
machine is a function of slip. Induction machine
connected across the capacitor bank when driven by
the prime mover within the limits of lower and
higher cut-off speeds operates as self excited
induction generator. Under these conditions the
capacitor bank meets the total reactive power
requirements of the machine and load. Active
power generated by the rotor is delivered to the
load through stator.

This concept of self-excitation of induction
machine emerged, for the first time in 1935, when
Basset and Potter reported that the induction
machine can be operated as an induction generator
in isolated mode by using external capacitor [2].
Wagner (1939) gave an approximate method of
analysis of self-excited induction generator by
separating the real and reactive parts of the circuit
[3]. The use of series capacitor for the analysis was
also reported by Wagner (1941) to improve voltage
across the load and presented systematic analysis of
SEIG [4].

Recent advancements in Power Electronics have
made it possible to regulate the SEIG in many
ways, which has resulted in an increased interest in
the use of induction generators for small scale
power generation with wind power and low hydro
heads [5]. Various researchers have used
conventional techniques, which involve
cumbersome mathematical procedures for steady
state performance evaluation of self-excited
induction generator [6-8]. Bhim studied the effect
of variable speed operation employed in case of an
isolated induction generator operation to feed
frequency insensitive loads [9]. Sandhu and Jain
suggested new equivalent circuit model for the
analysis, which resulted in only quadratic equation
for slip instead of fourth or higher order polynomial
solutions to predict the behaviour of SEIG [10].

At present application of Artificial Intelligence
techniques are gaining importance in the field of
engineering. Artificial Neural Networks are one of
the computational tools, which try to mimic the
method of computation adopted by human brain
and are bestowed with the features of human like
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Figure1. Per Phase Equivalent Circuit of SEIG

Figure 2. Per Phase Simplified Equivalent Circuit of SEIG

intelligence. Analysis using Artificial Neural
Networks (ANNs) technique does not require
rigorous modelling as required in conventional
methods. The most commonly used neural network
is the Multilayer Perceptron (MLP), a feed-forward
network. The neural networks are trainable but
these black-box models are able to identify a
system through its input-output data, without
having any knowledge of the physical insights of
the system. From the literature survey carried out, it
is clear that Artificial Neural Networks are being
applied to study and analyze the behaviour of
Electrical machines. Siva et al. used Artificial
Neural Networks for estimation of System Bus
Voltage in power system [11].

Goel and Bhanot developed Successive Over-
Relaxation Resilient Back propagation (SOR-
RPROP) algorithm, which is extremely fast in
comparison to conventional backpropagation
algorithm for training of ANNs [12]. Chaturvedi et
al. used Error Backpropagation gradient descent
learning algorithm for training the Neural Network
Models for electric machines to map complicated
functions [13]. Here, an attempt has been made to
introduce ANNs for performance prediction of
induction generators. Artificial Neural Networks
have been used to evaluate the generated voltage
and frequency of SEIG running at different

speeds with different values of exciting capacitance
and load.

2. STEADY STATE ANALYSIS OF SEIG

Equivalent circuit model has been used for steady
state analysis of Self-Excited Induction Generator
[10]. Figure 1 gives per phase equivalent circuit of
SEIG, showing voltage generated by rotor as an
active source.
Where;
R1, X1 = stator resistance and reactance.
R2, X2 = rotor resistance and reactance referred to

stator.
R, Xc = load resistance and capacitive reactance.
Xm = saturated reactance of induction generator.
a = ratio of generated to rated frequency.
b = ratio of actual rotor speed to synchronous

speed corresponding to rated frequency.
s = slip of machine.
E1 = air gap voltage per phase at rated

frequency.
Ea = aE1, air gap voltage per phase at generated

frequency.
Ea(1+s) is the source voltage corresponding to
mechanical power transformed to electrical power
through rotor and V is the output voltage.

All quantities referred above are in per unit values.
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Parallel combination of load resistance R and
capacitive reactance Xc results into per phase series
resistance RL and reactance XL. The values of RL

and XL in terms of load resistance R and capacitive
reactance XC are given below:

2 2 2 2
L C CR = RX / (a R + X )

2 2 2 2
L C CX = aR X / ( a R + X )

From Figure 2 net impedance ZL across EF
becomes:

L L LZ = R - j X

(-ve sign indicates capacitive effect)
Combining rotor impedance, net impedance across
CF can be written as:

(XL > aX1)
          

Nodal analysis of the circuit in figure 2, seen from
node C gives two equations by separating the real
and imaginary components:

Real part:

         …(1)

Imaginary part:

…(2)

Simplifying equation (1), the following quadratic
equation in terms of slip is developed:

2 0As Bs C+ + =      …(3)
where;

2 2
2 1LA a X R=

2 2
2 1 1( )L LB R R X= − +

2
2 1LC R R=

Equation (1) & (2) result into evaluation of Xm.

     …(4)

The relation between a & b can be written as:
/(1 )a b s= +   …(5)

Now, unknown values of magnetizing reactance
‘Xm’ and p.u frequency ‘a’ are obtained by solving
equations 1 to 5. Further, computed value of Xm can
be used to determine the air gap voltage ‘Ea’ using
magnetizing characteristics of the machine
[Appendix-I]. Computation of Ea for given value of
operating speed ‘b’, exciting capacitance ‘C’ and
load resistance ‘R’ lead to complete solution of
equivalent circuit.

2. ARTIFICIAL NEURAL NETWORKS -
THE BASICS

ANNs incorporate the two fundamental
components of biological neural nets i.e. Neurons
(nodes) and Synapses (weights). Neurons are
arranged in different layers. The input layer,

contains neurons equal to number of input variables
and output layer contains the neurons equal to the
number of output variables. The number of neurons
in the hidden layer forms different structures and
have different mapping capabilities. There is a need
to choose an appropriate number of neurons in
hidden layer so as to get the optimal performance
from the neural network. Figure 3 (a) represents the
arrangement of neurons and their inter-connections
in different layers. Data is presented to input layer
and then passed on to hidden layer. After
processing, the data is passed on to output layer. In
Feed-Forward Neural Networks (FFNNs) the
information processing is unidirectional, parallel
and distributed. The input to any neuron is
processed through squashing function to give
output between the limits 0 and 1 that is depicted
from figures 3 (b) & (c). Output of any neuron is
given as:

g(a) = 1/ ( 1+ e –a ) , where ‘a’ is the sum of
weighted output of the previous layer.

4. SIMULATION DETAILS

The ANN model of SEIG was implemented using
Multilayer Perceptron (MLP) network. It is known
that ANNs with only one hidden layer can

1 2
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Table 1. Range of Input Variables for Experimental Data.

Speed RPMSr.
No.

Experiment
Set No. From To

Capacitance
C (µF)

Load Resistance
� ���

No. of
samples

01 Set #1 1430 1600 36 160 12
02 Set #2 1270 1450 51 160 12
03 Set #3 1400 1570 36 220 12
04 Set #4 1280 1420 51 220 12

approximate any function to any degree of accuracy
provided it has sufficient number of neurons in the
hidden layer. Therefore only one hidden layer has
been used in the MLP network. The input layer has
three neurons accounting for three inputs namely:
speed of prime mover; b, load resistance; R and
capacitance; C. The output layer has two neurons
that account for the two outputs namely: terminal
voltage; V and frequency; f. The hidden layer was
chosen to have seven neurons, hence MLP
architecture for ANN used is 3-7-2.

Test machine [Appendix-I] has been used to obtain
experimental data for training purpose as well as
for experimental verification of computed results
obtained from trained ANN. The performance of
SEIG at variable speed, exciting capacitance and
with different loads was first evaluated
experimentally to obtain four sets of input-output
data required for training of ANN. Table 1 gives
the details of each data set taken on test machine.
The range of speed and value of terminal
capacitance have been chosen to enable the

machine to supply power to the connected load at
rated voltage. The resistive load is not sensitive to
change in frequency. Therefore, the two values of
load resistance were chosen arbitrarily. Twelve
experimental input-output observations have been
taken for each set. Out of these, six samples from
each set (i.e. a total of 24 samples) have been used
for training the neural network. 24 samples (other
than training samples), six from each set have been
used to verify the results from the trained ANN
model.

Successive Over-Relaxation Back Propagation
(SORRPROP) training algorithm is used for
training the ANN [12]. SORRPROP is modified
version of RPROP [14] and makes use of
successive over-relaxation principle to increase
convergence speed of the network. The Sum
Squared Error (SSE) goal has been set at 0.000075.
The initial learning rate for training of the network
is kept as 0.01 for both the hidden and the output
layer.

Table 2 Set # 1 Comparison of Results

����������� � 	 
� �
 ���� ���������� � 	 ��� �

Voltage (V) Frequency (f)Speed
RPM Analytical Expt. ANN Analytical Expt. ANN

1433 134.1368 134 134.46 47.1745 47.19 47.19
1467 158.3876 158 157.48 48.2894 48.30 48.30
1498 178.4280 176 177.81 49.3056 49.35 49.31
1516 188.0909 189 188.86 49.8955 49.92 49.89
1543 202.4747 203 203.87 50.7802 50.74 50.78
1596 230.3602 228 228.20 52.5161 52.54 52.54
SSE* 12.7368 ----- 4.6131 0.0051 ----- 0.0041

Table 3. Set # 2 Comparison of Results

����������� � 	 �� �
 ���� ���������� � 	 ��� �

Voltage (V) Frequency (f)Speed
RPM Analytical Expt. ANN Analytical Expt. ANN

1280 163.8196 166 166.24 42.1136 42.17 42.15
1321 185.4419 187 186.66 43.4553 43.50 43.54
1353 199.2042 201 200.80 44.5020 44.67 44.64
1390 212.0390 215 215.16 45.7116 45.91 45.87
1440 229.2695 232 232.50 47.3451 47.40 47.43
1445 230.9866 234 233.88 47.5084 47.55 47.55
SSE* 49.0072 ---- 0.5058 0.1177 ----- 0.0054

*SSE : Sum -Square Error with reference to experimental results
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Table 4 Set # 3 Comparison of Results

����������� � 	 
� �
 ���� ���������� � 	 ��� �

Voltage (V) Frequency (f)Speed
RPM Analytical Expt. ANN Analytical Expt. ANN

1403 129.7862 123 122.97 46.3343 47.04 47.04
1442 157.9313 154 153.71 47.6181 47.64 47.90
1467 174.5763 171 171.13 48.4409 48.28 48.37
1496 190.3046 188 186.79 49.3951 49.24 49.40
1540 213.8753 210 211.45 50.8424 50.78 50.80
1563 227.1258 224 223.79 51.6644 51.13 51.12
SSE* 104.3967 ------ 3.7234 0.8379 ----- 0.1018

Table 5. Set # 4 Comparison of Results

Capacitance C = 51 µF Load Resistance � 	 ��� �

Voltage (V) Frequency (f)Speed
RPM Analytical Expt. ANN Analytical Expt. ANN

1285 175.9696 174 173.9 42.4105 42.43 42.43
1315 191.8326 187 187.36 43.3960 43.41 43.44
1350 204.1371 202 202.37 44.5452 44.50 44.59
1386 216.7150 216 216.93 45.7268 45.70 45.80
1406 223.6741 223 224.77 46.3829 46.41 46.49
1430 232.0025 237 236.92 47.1701 47.62 47.62
SSE* 57.7408 ----- 4.3024 0.2065 ----- 0.0254

*SSE : Sum -Square Error with reference to experimental results

Figure 4 Voltage v/s Speed for Different Value of
Capacitance & Load Resistance

5. RESULTS AND DISCUSSION

Four sets of experiments were conducted on the test
machine to obtain experimental data for verification
of proposed ANN performance with given values of
excitation capacitance, operating speed and load
resistance.

Tables 2 to 5 give the comparison of results
obtained from the trained ANN model, analytical
method described in section II with experimental
data. The experimental data for testing of trained
ANN is different than the training data. The Sum-
Square- Error obtained for analytical and ANN

Figure 5 Voltage v/s Speed for Different Value of
Capacitance & Load Resistance.

solutions with reference to experimental data is also
included in the tables.

For first set of results (Table 2), it is observed that
although the SSE value for frequency in case of
analytical and ANN solutions do not differ much.
But, SSE value with reference to experimental
results for voltage obtained from conventional
technique is very large (12.7368) compared to that
for ANN solution (4.6131). For the 2nd set of test
samples (Table 3), SSE of analytical analysis in
case of voltage with reference to experimental
results is about 50 times and that of frequency is 20
times as compared with the SSE of ANN solutions.
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Figure 6. Sum-Square Error in Output Voltage
with Reference to Experimental Results.

For 3rd set of test samples (Table 4), the SSE values
obtained from analytical solution are observed to be
25 times & 8 times higher than that of ANN results
for voltage and frequency respectively. Similar
trends (Table 5) have been observed in the 4th set of
testing samples.

A close agreement between experimental and ANN
simulation results prove the validity of ANN
modelling. Moreover, ANN model results are found
to be far superior in comparison with conventional
computational techniques. Further, ANN model of
SEIG does not require any assumptions and
complex mathematical computations unlike in
conventional analytical techniques. It only needs
experimental data for training. Nowadays, with the
use of precision measuring instruments, large
amount of experimental data can be obtained and
therefore, accuracy of ANN model can be improved
further by increasing the number of training
samples.

Effect of speed on output voltage of SEIG with
different values of capacitance and load resistance
is shown in figures 4 and 5. It is established that
higher value of capacitance lowers the speed
requirements to generate rated voltage at particular
load. But at lower speeds the output frequency
decreases, thus capacitance and operating speed
have interdependence to generate rated voltage and
frequency. Further from figure 6, it is clear that
SSE of ANN model with reference to experimental
results is very small as compared to the SSE of
analytical results. This establishes the superiority of
ANN model over conventional analytical
techniques.

6. CONCLUSIONS

Self–excited induction generators are found to be
very useful for remote and windy areas in case
terminal voltage and frequency are controllable.
This can be achieved with prior estimation of
performance of induction machine as generator. In

this paper, ANN model has been implemented to
predict the effect of speed, capacitance and load
resistance on generated voltage and frequency of
Self-Excited Induction Generator (SEIG). It is seen
that the analysis carried out using ANN model is
more accurate in comparison to conventional
computational techniques. From the difference in
SSE values of the ANN solution and the analytical
method, it is concluded that ANN technique is
superior in comparison to conventional analytical
method. Further, ANN model of SEIG does not
require any assumptions and complex mathematical
computations. By increasing the number of training
samples, the accuracy of ANN model can be further
improved.
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Appendix - I

Machine Specifications:

3-Phase, 50 Hz, 2.2 KW/3.0 HP, 4-pole, 230 Volts,
8.6 Amp. Delta connected squirrel cage induction
machine.

Machine Parameters:

R1 = 3.35 � R2 � ���� � X1 � ���� �

X2 � ���� �

Magnetization characteristics of machine for
determination of air gap voltage:

E1 = 344.411 - 1.610 Xm Xm < 82.292

E1 = 465.120 - 3.077 Xm 95.569>Xm	 �
�
�


E1 = 579.897 - 4.278 Xm 108.00>Xm	 ������

E1 = 0 Xm>108.00

Received: Jan. 2006. Accepted: Jun. 2006.

JCS&T Vol. 6 No. 2                                                                                                                                   October 2006

79




