
Using Business Process Reengineering to obtain a RAISE Specification
Daniel E. RIESCO, Germán A. MONTEJANO, Roberto UZAL

Universidad Nacional de San Luis
Departamento de Informática

Ejército de los Andes 950
5700 San Luis - Argentina

{driesco| gmonte| ruzal}@unsl.edu.ar

ABSTRACT

We have proposed a technique which can

be employed within the methodology known
as business process reengineering. This
technique has been applied in a government
project, which included an Information
System and Geographical Information System,
developed with financial support from The
World Bank.

One model used in process reengineering is
the process model diagram, which helps to
find the tasks, to be completed in each area of
the organisation. To understand the domain is
crucial to be able to specify each one of these
tasks.

We show in this work how to use process
modelling to find the tasks and to formalise
their description using RAISE formal method.
In this way, using a model of process as input,
an engineer employs a systematic technique to
create –as a starting point– the main functions
(tasks) of the domain using the RAISE formal
method.

Furthermore, we show how a structured
architecture in layers can be used for reuse
during the development in the large.

Keywords: Process Reengineering, Process
Modelling, Formal Method, RAISE Method,
RSL Language

1. INTRODUCTION

Business Process Reengineering (BPR) is a
method to radically redesign the way in which
an organisation performs its tasks [1,2]. BPR
is not a method for system development, but a
method which helps in developing a new
system from an old one, which changes the
way to do business.

There are two tendencies in the proposed
approaches for Process Reengineering [3]. The
first of them has been called “white page”. It
proposes to ignore the past as a conditioning
element and emphasises that nowadays the

outstanding quality of a manager is to forget
(probably what he has “learnt” will serve for
nothing).

Another tendency is the one that includes
“Reverse Engineering”, that is, the study of
the previous situation to the Process re-
planning.

BPR leads to the following changes in:
• Process, the way that the people do the

business.
• The software, upgrades of a new

system, and how it supports the
Process’s Tasks.

• Interface, radical changes in the
applied technology.

• Hardware, upgrades to client/server
architecture.

• Data, transition to a Relational/Object
Oriented Data Base.

• People, change the way the people
work, which is affected by the process
reengineering.

In the implementation of a new system,
there are different degrees of changes [4],
which show the consequences of process
reengineering:

• Reaffirm: explicit decision to change
nothing.

• Repack: change of the user interface
(i.e.: move from character interface to
GUI).

• Rehost: change of hardware platform
(i.e.: migration from centralised
environment with mainframe to
client/server environment).

• Re-architecture: change of technology
kernel without explicitly affecting the
way to do the business.

• Reengineering: change the way to do
business including all points above.

Therefore, applying process reengineering
implies a big change, which affects the way to
do business. One of the basic tools applied to
process reengineering is process modelling
(described in section 2).

JCS&T Vol. 2 No. 7 October 2002

-21-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301030597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The main advantage of process modelling is
to be able to visualise the way the organisation
works, showing the information flow and its
different transformations, among different
organisation areas.

One of the disadvantages is that the method
is informal. Hence, the proposal presented
here is to combine it with RAISE and obtain
all the advantages of a formal method. Section
3 gives a brief description of RAISE formal
method, and the following sections explain the
proposed technique.

2. PROCESS MODELLING

Process modelling [5] is one of the tools

used in process reengineering. This tool allows
visualising the processes and flows as well as
the organisation areas affected by the
processes. It is used conceptually to show
what actually happens with the organisation
(domain engineering), as well as to be able to
visualise what will happen to the new
managerial restructuring.

A diagram [6] is created, which represents
the areas, departments or sections of the
company, showing the processes, data flows
and data storages, which belong to each
section (or what will happen in the new
reorganisation). The tool allows decomposing
the diagram of a high level process into other
sub processes. The diagram gives a visual
representation of the new business activities or
those that already exist.

Some key concepts are defined below:
• A Process may be defined as a set of

activities that are interlaced or
chained. The Process transforms a
stimulus born in an external entity to
the organisation, into an answer to that
external entity. The Process rules the
relation of the boundary studied with
its environment. In principle, each
Process must satisfy one of the
components of the demand of the
external medium (stimulus generated
out of the studied area) that arrive to
the organisation area of study.

• Task or Activity is every action
conveniently related that constitutes a
Process. When a Process is studied, its
separation in Tasks constitutes an
essential step.
The enchainment of Tasks transforms
a stimulus of the environment in the

answer to it. It is important to do the
analysis of the value added by each
Task to the Process it is part of. The
same Task may form part of different
Processes. Each Task and may be
associated to a job description.

• Separation of Tasks or Activities in
Steps. In case of very complex
Processes, the simple separation in
Tasks is not sufficient to permit an
adequate study; each Task should be
separated in Steps. A Step can not be
separated.

• Formalisation of Steps. Steps are
specified using RAISE. They
determine the subtasks, which have to
be clearly specified to understand the
domain.

3. RAISE FORMAL METHOD

RAISE [7] is an acronym for “Rigorous

Approach to Industrial Software Engineering”.
RAISE takes seriously the word “industrial”.
The method is intended for use on real
development, not just toy examples.

The method is based on a number of
principles: separate development, step-wise
development, invent and verify, and rigour.

The main point, used in this work, is the
concept of separate development. If we want
to develop systems of any size, then we must
be able to decompose their description into
components and compose the system from the
components. Each component can be specified
and developed by different engineers. The
problem is that an engineer writes a function
that others want to use (reuse). It is simple to
check the name of the function, which
parameters it has and what its result type is.
But it is not so easy to be exact about the
semantics of the function.

To specify formally the semantic of a
function RAISE is used. RAISE´s scheme
construct is used to specify each component.
RAISE uses a language called RSL (RAISE
Specification Language) [8]. In RSL, a
scheme (module) is basically a named
collection of declarations. A module is a class
expression. A class expression represents a
class (essentially a set) of models. An object is
a named model of a class of models
represented by some class expression (the
instance of a class).

In a class, we can specify types: build-in

JCS&T Vol. 2 No. 7 October 2002

-22-

types, abstract type (sorts), and compound
types (× for Cartesian Product, –set for Set, *
for List, m→ for Maps, Records, Variants).

One of the main aspect of a RAISE
specification is the definition of functions
(type_expr → type_expr). The specification
can be written in a variety of styles: abstract
property oriented style (algebraic), model
oriented style and concrete algorithm oriented
style as an extreme of the spectrum. The
properties can be specified as axioms in the
class.

4. FORMAL SPECIFICATION OF THE
STEPS SPECIFIED IN THE PROCESS
MODELLING.

The technique proposes to write a formal

specification in RSL for each step of each task
specified in each Process Model.

For that the following points should be kept
in mind:

• A Step is specified by a RSL function.
• The functionalities specified in a step

have to be absorbed in a RSL scheme.
• As a heuristic, there will be a scheme

for each process model data store.
This scheme will contain all functions
belonging to the step that access this
data store.

• The properties needed to execute the
step are specified with function
preconditions.

• It is possible to specify other auxiliary
functions within the scheme. This
helps to understand the step
formalisation.

• If it is needed to use functions of other
classes (reuse), the scheme will
contain a declaration of this class
(object declaration).

The steps appear from a model applied to
the Process Reengineering of a State
(Province) Land Register environment, where
a GIS (Geographical Information System)
maintain information about all parcels (lots) of
the state.

The step “Unification of Parcels” is very
complex to describe unambiguously in natural
language; therefore we specify it using RSL
formal language. Unification means to create a
new parcel with the following properties:

• The unified parcel area is the sum of
the area of the parcels, which are

unified.
• The building area in the new parcel is

the sum of the building area of each
unified parcel.

• The adjacent parcels are the same that
the adjacent parcels of each unified
parcel. The parcels located to the
north of the new parcel correspond to
the parcels located to north of each
unified parcel. The same will occur
with the parcels located to the south,
east and west.

• Any other properties are also specified
using RSL formal language.

Since RSL is used in the steps specification,
the RSLTC (RAISE Specification Language
Type Checker) tool is employed to check it.
The use of this tool has the advantage of
formally checking a specification that has
been applied in one model of process
reengineering.

Each scheme surged from the model is
structured to conform the architecture of
business domain.

In the next sections, we present the formal
specification based on layer architecture.

5. ARCHITECTURE

After we describe the process model and

specify each step, we build the architecture.
The architecture is composed of three layers:
specific layer, general layer and middleware
layer [9].

A layer is a set of schemes that share the
same degree of generality. Lower layers are
general to several domain specifications, while
higher layers are more specific to a concrete
domain. A specific scheme, which is located
in the specific layer, can use general layer or
middleware layer schemes. The scheme,
which is located in general layer, can use
schemes of middleware layer. The layers are
hierarchical.

The schemes defined in the general layer,
are general at this kind of business, therefore
they are only useful in this domain and they
can not be used in others domains. The
schemes defined in the middleware layer are
so general that they can be used in any
domain. Examples of middleware layer are
standard specifications as bags, stacks, queues,
etc. in different abstract specification
(applicative sequential, imperative sequential,
imperative concurrent).

JCS&T Vol. 2 No. 7 October 2002

-23-

Figure 1: Scheme layers of the Process "Unify
Parcels"

Figure 1 shows some schemes of the "Unify

Parcels" process and the architecture layers.
This architecture helps to understand the

formalization of the process model. If it is
needed to use functions of other schemes in
the same or in different layer, the scheme will
contain a declaration of these schemes
(factoring step).

6. FORMALIZING THE "UNIFY
PARCELS" PROCESS

The main steps of the "Unify Parcels"

Process were formalized. They are "Register
the Unification of Parcels", “Calculate land
tax” and “Calculate build tax”.

In the following sections, the formalization
of main steps of the Process Model is
presented. First, the general layer schemes are
showed: PARCEL and PARCEL TAX, and
then the specific layer schemes:
PARCEL_UNIFICATION, LAND_TAX and
BUILDING_TAX.

6.1 Parcel

This scheme is generic for the domain. It is

in the general layer. All common functions
among all steps are factorized in one scheme
called PARCEL.

scheme PARCEL = class
type
 Pid, /* Parcel Identification */
 P, /* Parcel (Abstract Type) */
 PState, /* Parcels of State/Province */
 PP = P × P,

 /*North-South Adjacent Parcel */
 AdjacentNS = PP-set,

 /* West-East Adjacent Parcel */
 AdjacentWE = PP-set,

 Adjacents = AdjacentNS × AdjacentWE

value
 /* All adjacent parcels of the state */
 adjacents : PState → Adjacents,

 /* All parcels of the state */
 parcels : PState → P-set,

 /* All adjacents North-South of the parcel */
 adjacentsNS : P × Adjacents → AdjacentNS
 adjacentsNS(p, (AdjacentNS,
AdjacentWE)) ≡
 {(p, s) | s : P • (p, s) ∈ adjacentNS}
 ∪
 {(n, p) | n : P • (n, p) ∈ adjacentNS},

/* All adjacent West-East of the parcel */
adjacentsWE : P × Adjacents →

AdjacentWE
 adjacentsWE(p, (AdjacentNS,

AdjacentWE)) ≡
 {(p, e) | e : P • (p, e) ∈ adjacentWE}
 ∪
 {(w, p) | w : P • (w, p) ∈ adjacentWE},

 /* A parcel set is applied a function(formal
parameter) generic and sum this result */
 sum : (P → Real) × P-set → Real
 sum(f, ps) as result post
 ps = {} ⇒
 result = 0.0 ∧ ps ≠ {} ⇒
 let p : P • p ∈ ps in
 result = sum(f, ps \ {p}) + f(p)
 end,

 /* Functions about Parcel attributes */
 id : P → Pid,
 groundArea : P → Real,
 buildingArea : P → Real

end

6.2 Parcel Tax

This scheme factorizes the common

functions of calculation of land tax and build
tax. These functions are generic for different
concrete applications but are common for the
same domain.

 PARCEL_UNI
FICATION LAND_TAX BUILDING_TAX

Specific
Layer

General
Layer PARCEL PARCEL_TAX

A_BAG A_STACK

Middleware
Layer

JCS&T Vol. 2 No. 7 October 2002

-24-

PARCEL /* Reference to use this scheme */

scheme PARCEL_TAX =
extend PARCEL with class

type
/* Basic Value by block and by square meter*/
 BV

value
 front : P → Real, /* Parcel Front */
 bottom : P → Real, /* Parcel Bottom */
 /* Basic Value by block and by square meter
 according to the location */
 bVal : P × PState → Real

end

6.3 Step Register Parcels Unification

Unification means to create a new parcel

with the following properties: the unified
parcel area is the sum of the area of the unified
parcels and the new building area is the sum of
the unified parcels building areas.

The adjacent parcels are the union of the
adjacent parcels of each unified parcel. The
parcels located to the north of the new parcel
correspond to the parcels located to north of
each unified parcel. The same will occur with
the parcels located to the south, east and west.

Any other property is also specified using
RSL formal language.

The formal specification of Activity
“Register Parcels Unification” is presented.

PARCEL /* Reference to use this scheme */

scheme PARCEL_UNIFICATION =

extend PARCEL with class

value
 /* Step Specification */
 unification : P-set × Pid × PState → PState

 axiom
 ∀ ps : P-set, pid : Pid, pState : PState •
 unification(ps, pid, pState) as pStateR post
 let p' : P in
 id(p') = pid
 ∧ groundArea(p') = sum(groundArea, ps)
 ∧ buildingArea(p') = sum(buildingArea,
ps)
 ∧

/* Adjacent Parcels locate to North-South of
the new parcel */
 adjacentsNS(p', adjacents(pState)) =
 {(n, p) | n : P, p : P • p ∈ ps

∧ (n, p) ∈ adjacentsNS(p,
adjacents(pState))
 ∧ n ∉ ps}
 ∪
 {(p, s) | s : P, p : P • p ∈ ps

∧ (p, s) ∈ adjacentsNS(p,
adjacents(pState)) ∧ s ∉ ps}

 ∧
/* Adjacent Parcels locate to West-East of the
new parcel */
 adjacentsWE(p', adjacents(pState)) =
 {(w, p) | w : P, p : P • p ∈ ps
 ∧ (w, p) ∈ adjacentsWE(p, adjacents(pState))
 ∧ w ∉ ps}
 ∪
 {(p, e) | e : P, p : P • p ∈ ps
 ∧ (p, e) ∈ adjacentsWE(p, adjacents(pState))
 ∧ e ∉ ps}
 ∧
/* Rest of parcels keep the same adjacents */
 let p : P in
 p ≠ p' ∧
 p ∈ parcels(pState) ∧
 p ∉ ps ⇒
 adjacentsNS(p, adjacents(pState)) =
 adjacentsNS(p, adjacents(pState))
 end
 end
end

6.4 Land Tax

Here, we formalize the step "Calculate land
tax". It is an extension of the PARCEL_TAX,
which is in turn an extension of PARCEL.

PARCEL_TAX /* Reference to use this
scheme */

scheme LAND_TAX =

extend PARCEL_TAX with class

type
/* Coefficient of adjustment of basic value
according the relationship between the parcel
front and bottom or between area and bottom
*/
 Co = Real × Real m→ Real,
 Shape == /* The ground shape is */

JCS&T Vol. 2 No. 7 October 2002

-25-

/* Regular with less than 2000 square meters
and it is not in corner of block */
 RG_l2k_NCrn |
/* Irregular with less than 2000 square meters
and it is no in corner of block */
 IRG_l2k_NCrn

value
/* Coefficient of adjustment of basic value
according to the relationship between the
parcel front and bottom, when the parcel has
the front on only street and the area is less
than 2000 square meters */
 co1 : Co,

/* Coefficient of adjustment of basic value
according to relationship between the front
size and the parcel area */
 co2 : Co,

/* and so on with all relationships co3, co4, */

/* Co return the coefficient of adjustment */
 co : P × Co × Real × Real → Real,
 shape : P → Shape,

 pVal : P × PState → Real
 pVal(p, pSt) ≡
 case shape(p) of
 RG_l2k_NCrn → bVal(p, pSt) *

co(p, co1, front(p), bottom(p)) *
 groundArea(p),
 IRG_l2k_NCrn → (groundArea(p) /
front(p)) *
 bVal(p, pSt) * groundArea(p)

/* SO ON ... (to be completed with 24 cases)*/

 end
end

6.5 Build Tax

This scheme formalizes the step "Register

build tax". This scheme is an extension of the
PARCEL_TAX.

PARCEL_TAX /* Reference to use this
scheme */

scheme BUILDING_TAX =

extend PARCEL_TAX with class

type
/* Categories of the Building */
 BCo = Age × State × Ct m→ Real,
 Ct, /* Category */
 Age, /* Building Age */
 State /* State of the Building */

value
 bCo : BCo,
 ct : P → Ct, /* Parcel Category */
 state : P → State,
 bCo : P → Real,
 pBVal : P × PState → Real
 pBVal(p, pSt) ≡
 bVal(p, pSt) * bCo(p) * buildingArea(p)

/* SO ON ... */

end

7. CONCLUSIONS

The technique presented here has all the

advantages of the use of formal methods in the
first step of the process reengineering. We
apply the process modelling and specify each
task of it using a formal specification, in this
case using the RAISE formal method.

The technique was applied in a government
project using the Process Modelling of Oracle
Designer 2000, and the RSLTC (RAISE
Specification Language Type Checker) to
specify each task described with the Oracle
tool.

This technique allows the engineers group,
who will do the forward engineering, to have a
clear, unambiguous specification of each task
done by the organisation. In this way the
problem of vagueness inherent in an informal
description is avoided which helps to construct
a more reliable system. It also facilitates the
rigorous specification and analysis of complex
software systems.

The RAISE specification can be used as a
contract between the developers and the users.
It can be used between developers who specify
the process model and the developers who do
the forward engineering as well.

In this work we show the use of an
architecture divided in three layers. The power
of this proposal resides in the reuse of scheme
specifications inside the same domain for
different developments.

JCS&T Vol. 2 No. 7 October 2002

-26-

8. REFERENCES

[1] Hammer, M. and Champy, J.
“Reengineering the Corporation: A Manifesto
for Business Revolution”, Harper Collins
Publishing, Inc., 1993
[2] Jacobson, I. “Objectifying Business
Process Reengineering”, Addison Wesley,
1996
[3] Manganelli, R. and Klein, M. “The
Reengineering Handbook”, AMACON, 1994
[4] Champy, J. “Reengineering
Management”, HarperBusiness, 1995
[5] Jacobson, I. and others “Object Oriented
Software Engineering. A use Case Driven

Approach”, Reading MA Addison Wesley,
1992
[6] M. Aguilar, T. Rautert, and A. Pater,
"Business Process Simulation: A Fundamental
Step Supporting Process Centered
Management", Proc. IEEE, Winter Simulation
Conference, 1999, pp.1383-1392.
[7] The RAISE Method Group, "The RAISE
Development Method", Prentice Hall, 1995.
[8] The RAISE Language Group, "The
RAISE Specification Language", Prentice
Hall, 1992.
[9] Jacobson, I., Booch, G., and Rumbaugh,
J., "RUP (Rational Unified Process) 2002",
www.rational.com/rup.

JCS&T Vol. 2 No. 7 October 2002

-27-

