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Abstract
In several applications, the trajectory of an entity, a feature or an object has to be tracked over a
sequence of image frames. When the processing is to be performed in real time, there are important
constraints leading to the parallelization of tracking algorithms.
This paper presents the results of a concrete implementation, which deals with the particular case of
simple objects moving in an context reachable by the vision element (video camera). The steps involved
in the solution development are detailed, specially in relation to their parallelization by using a
computer heterogeneous network and MPI (Message Passing Interface) support.
Finally, an analysis of the different algorithms behavior is carried out together with the obtained results
assessment, which allows knowing the performed parallelization efficiency, and determining under
which conditions this solution turns out to be the best one.
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Introduction

There exists a growing interest in the processes automation based in the visual perception of the world around
us, all of which requires images acquisition and processing. This is related to the field of Computer Vision
[Har92][Jai95]; such systems intend to copy human vision processes into tasks of high complexity regarding
exactness and time, or of excessively routine.

The objective of a computer vision system is to create a model of the real world from images, recovering
useful information about a scene from its 2D projection. There exist developed techniques in other fields used
for recovering data from images. Some of them are Image Processing (generally in the first stages in order to
upgrade particular data and suppress noise) [Gon92][Bax94] [Jai89], Computer Graphics (where images are
generated from geometric primitives), Pattern Recognition (classifying numeric and symbolic data) [Sch92],
etc.

Computer vision systems encompass different applications, among which we can mention medical diagnosis
by computed tomography images or product quality control, from food to industrial pieces [Law92]. Another
type is related to an environment three-dimensional structure recovery, i.e. scene movements recognition and
interpretation; these applications are useful in cars, planes or robots navigation. A third group includes the
analysis and management of large data volumes obtained by satellites used for weather forecast,  the study of
the planet behavior, agriculture, etc.

Object tracking in an sequence of image frames is particularly associated to:
- Objects recognition and classification.
- Tracking of the same objects through that sequence.
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It is also necessary to operate in real time, implying the use of specialized hardware and robust algorithms in
order to reduce failure possibilities; the systems must be flexible enough in order to rapidly adapt themselves
to changes in the process. The temporal constraint naturally leads to the idea of a problem solution based on
parallelism in order to fulfill the requirements [Akl97][Bri95][Tin98][Zom96].

In this paper, the stages related to computing vision systems are analyzed, such as the tracking mechanism and
object recognition in the image sequence obtained with a video camera. A first sequential solution is
developed, consisting in an algorithm set that allows capturing objects data and their movement from the
sequence. In the second stage, algorithms are parallelized both in the recognition process and in the tracking
process. This is implemented over an heterogeneous network with a MPI programming support. The found
solutions allow making a comparison and assessment of the performance, whose results are shown at the end
of the article.

Tracking in Computer Vision

The objective of a computer vision system is to create a model of the real world from images. For this
purpose, a closely related field is that of digital image processing including subject matters such as
enhancement, compression and correction of blurred or out of focus images. Computer vision algorithms take
images as inputs and produce outputs as a representation of the object contour found in an image.

Image processing algorithms are useful in the first stages of a vision system, usually to emphasized data and
suppress noise. The objective of the enhancement is to emphasize the features for further analysis or for a
display in an output device. Segmentation identifies the semantically significant components in an image, and
groups the points belonging to the same; the proceeding is simplified if the images are sharp, reason why the
enhancement generally constitutes an important previous step. The segmentation result is a set of regions or
objects which can be identified by a location or a set of features.

An object recognition system finds real world items from an image captured using already known models.
The recognition is related to the segmentation, and implies the consideration of the object representation
manner, the important features to be detected, the way of comparing the features with those of the models, etc.
Recognition complexity depends on several factors, such as for example whether the conditions in which the
image was taken (illumination, background, point of view) are not similar to those under which the model was
defined. Another factor is the occlusion: if there is only one object, it can be entirely visible; but as the
quantity increases, the possibility of occlusion increases as well, and the recognition process may be hindered.

Dynamic Vision

Although the first computer vision systems were principally related to static scenes, solutions that analyzed
dynamic scenes have been designed for several applications. The input of the same is a sequence of frames
taken from a real moving scene. Each frame represents an image of the scene in a time instant; the changes
occurring in the same may be due to the movement of the camera, of the objects, or to modifications in the
illumination or in the objects shape or size. The system must detect the changes, determine the movements
characteristics, recover objects structure and recognize them.

There are four possibilities for analyzing a dynamic scene: stationary camera and stationary objects (SCSO),
stationary camera and moving objects (SCMO), moving camera and stationary objects (MCSO), moving
camera and moving objects (MCMO). Depending on the case, different techniques will be needed. SCMO has
received the greatest attention; the objective usually consists in detecting the movement, recognizing the
moving objects and computing the characteristics of those movements.

The correspondence process tries to identify the same object in two or more frames and determine changes in
its location (i.e., its movement). An image point pi = (xi, yi)  is meant to be coupled with a point pj = (xj, yj) of
the following one in a temporarily ordered sequence. The disparity between these two points is given by the
displacement vector dij = (xi – xj, yi – yj). The result of the correspondence between two consecutive frame
points is a set of conjugated pairs.



In order to solve the correspondence problem we should consider: which criterion is used to determine
whether two points correspond to each other; which the characteristics to be compared are; which constraints,
if any, are imposed to the displacement vectors. As parameters for answering these questions, it is essential to
bear in mind the following properties:
- Similarity: it is a measure for determining the likelihood of two pixels. It is given by a similarity between the
objects, determined from the features found during the segmentation.
- Movement Consistency: due to inertia, a physical entity movement cannot change instantaneously. If the
sequence is obtained with such a frequency that there are not decisive changes in two consecutive frames, the
images reflect the movement smoothness for most of the objects.

Tracking

Given an image sequence over which one or more trajectories are tracked. If there is only one object, the
tracking problem can be easily solved. In the presence of several entities moving independently, the use of
constraints based in the nature of the objects and their movements will be required. Considering the
consistence property in the movement, the path coherence can be formulated: it implies that an object
movement in any point of a frame sequence will not change abruptly. Thus, the formulation of a solution to
the correspondence problem is simplified since it can be implied that (a) a given point location, (b) a point
scalar speed, and (c) a point moving direction remain relatively without change from one frame to another
one.

The deviation function, or trajectory function, is used in order to assess the movement properties in a
sequence.  Its input is a route and the return value must be inversely proportional to the route smoothness (or
directly proportional to the path deviation degree).
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Then, the correspondence problem is solve by minimizing the total deviation D (or, what would be the same,
maximizing the movement smoothness), in order to find the right trajectory set.

If the camera sampled frequency is high enough, the change in the direction and the speed of any moving
point in temporarily consecutive frames is smooth. This is described with the deviation function
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The first term is the vectorial product of the displacement vectors and represents the direction coherence (the
vectorial product is the angle between two imaginary segments between two points k-1,k and k+1): the
smaller the angle, the greater the deviation. The second term considers the geometrical and arithmetical mean
of the magnitude, and represents the speed coherence. ω1 and ω2 are weights chosen to assign different
importance to direction and speed changes. They can be chosen from a range from 0.00 to 1.00, only if their
sum is 1.

One of the major difficulties with the sequences is the occlusion, i.e., the total or partial disappearance of
objects, or the appearance of others. The changes in data due to movements and scene illumination variations
can lead to incorrect correspondences. Trajectories can nevertheless be obtained even in the presence of
occlusion by forcing them to fulfill some of the local constraints, and allowing them to remain incomplete
where necessary.

One path coherence algorithm limitation is that it assumes that in all of the frames, the same points set is
available. When searching for a trajectory set, it should be permitted to obtain incomplete trajectories
indicating occlusion, objects appearance, or temporal objects disappearance due to bad quality data.
Furthermore, certain constraints should be imposed to the possible maximum displacement and the maximum
local deviation.

Given a Pj set of mj points for each of the n frames, it can be found the maximum set of complete or partially
complete trajectories that minimizes the sum of local deviations for all of the obtained trajectories, provided
that the maximum deviation for any of the trajectories does not surpass φmax , and that the displacement
between any pair of successive frames for any trajectory is always inferior than dmax. In order to justify the
points left due to occlusion, ghost points are used (hypothetical points used as a filler to extend all the routes
over a given frame set). In order to make use of the notion of ghost points, the displacement and local
deviation values must be defined for a route containing such points.

- In order to compute the displacement for Ti in the k-th frame, the displacement function is defined:

This implies that a  ghost point always moves in a fixed quantity dmax.

- In order to compute the local deviation for Ti in the k-th frame, the deviation function is defined:

This local deviation function definition is equivalent to the path coherence function if the three points are real.
It introduces a penalty of maxφ  in case there is no real point for iT in the current frame or the following one,
and does not penalize if the trajectory begins in the frame under consideration.

The following set of steps roughly shows the trajectory building process.

Initialization:

1. For each point km in kP , k=1, ..., n-1 ( kP set of points of the frame k), determine the closest

neighbor in 1+kP  within distance dmax. Solve arbitrarily in case of multiple alternatives.
2. Form initial trajectories chaining the closest neighbors found in the successive frames. Extend all the
incomplete trajectories using ghost points in order to lead them through n frames.
3. For each trajectory in step 2, form an additional route only with ghost points.
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Interchange cycle:
For each frame from k = 2 to n-1
   For i = 1 up to m-1
      For j = i+1 up to m

  If  dmax constraints are fulfilled, compute
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Take pair ij with maximum gain  (Gij)
   If the gain is superior to zero then
      Interchange the points of the frame k+1 , Pi

k+1 with Pj
k+1.

Termination:
Repeat the interchange cycle until there is no more frames left.

The number of trajectories built in initialization step 2 depends on the data quality. Only m routes will be
formed and none of them will have ghost points in the ideal case –where the same m number of points is
consistently present in all the frames. In the worst of the cases, when the points of some of the frames do not
have any correlation to the points of any other frame, the number of routes formed can be as large as the total
sum of all the points of all the frames. In general, the route number will be at least mmax where mmax = max(m1,
m2,... ,mn) and the different routes will have different quantities of ghost points.

A case with several objects is always implied. In the particular case in which a known object must be tracked,
the solution for economizing the process time is to check in each image only the part where the object location
is estimated, in function of its location in the previous frames, and considering the estimated object
movement. On the other hand, in this route monitoring algorithm, the objects are considered as a set of
indivisible entities. A more interesting situation is that in which the searched object/s model is known, and as
the image is checked, the segments that do not fit with any of these models can be discarded.

Problem presentation and Sequential Solution

Considering the system as applicable to reality, the data source must come directly from a device capturing
images in real time. With the purpose of development and assessment, data was completely available before
the application execution. Images were taken with a camcoder. The obtained analogical video was digitalized
and converted into a sequence of images. In order to generate a code in which the management of images was
simple and clear, pgm format images were used, codified in the grey scale form 0 to 255.

The following algorithm gives a first idea about the principal system running cycle:

While (there are frames)
Take a frame
Identify the objects of the frame

Identify and build up the found objects trajectories

What does “while there are frames” mean? In the case of images coming from a real time capturing device, it
is equivalent to “while the images are being captured”. For already available images, it means “while there
still are unprocessed images”.

Since sample images were captured specifically with this end, they had no damage or bad quality.  However,
they did not show a clear difference between objects and background (due to the lack of illumination during
the capturing), and besides, before an increasing movement of the objects, some frames of the sequence were
blurred. This raised the need of enhancing images in order to facilitate recognition. This was carried out first
by calculating an spatial average in order to upgrade the definition, and then by highlighting the points
belonging to the objects by means of a contrast enhancement function.

For the object recognition, the images were run from left to right and from top to bottom. Since the
implementation was focused in the tracking rather than in objects recognition, it was implied that these were
distinguishable enough in the background, and that the interest features were minimum: location, area,



average intensity (grey or color level). These features were enough to characterize them, since any scene
objects were searched and not objects with specific characteristics. The technique used for the identification of
the objects within an image combines thresholding with labeling.

Once the routing of all the images was finished, data was debugged, discarding all segments small enough or
weak in color that they do not require much consideration - since they may be just stains or shadows. One
constraint imposed to images was that the objects could not be in touch with each other. When the process
was finished, a list of the objects found in the scene with the features identifying them was obtained as a
result.

The implementation is general, in the sense that in the scene there are several objects and that they are not
indivisible one from the other. For more specific cases, the solution can be improved by checking only the
part in which the object may be located in function of its location in the previous frames. Having in mind that
the images come from reality, it makes no sense searching an object far from where it appeared in the
preceding frame.

Objects Correspondence and Tracking

It is implied that the sequence corresponds to a filming where the camera is fixed, and that the objects
movement is parallel to the image plane. For the trajectories building, the initial algorithm was modified
(which supposed that all the sequence was available from the beginning) for the case in which images are
incorporated in real time.

While  (there are frames)
Take a frame
Identify the objects of the frame
Update the found objects trajectories

Lets suppose that the current sequence frame is k and that in each of the previous ones, P1, P2 . . .Pk-1 objects
were identified. Up to the moment there are built n routes that go from 1 frame to k-1. The process must
associate frame objects one-to-one with one of the trajectories under construction. The algorithm that solves
the problem is the following:

For each existent object in the frame k+1, create a ghost trajectory
// Compute the maximum global deviation
For i=1 up to m-1

For j=i+1 up to m
If dmax, constraints are fulfilled in the interchange, compute
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Take pair ij as maximum gain (Gij)

If the gain Gij is greater than zero then
Interchange the points of the frame k+1, Pi

k+1 with Pj
k+1.

Save the result of this step in the trajectory file

In order to implement the deviation function, some decisions should be taken:
- The method to be used for the distance between two points. In this case, city-block : d = | i1 – i2 | + | j1 – j2 |
was used.
- The weights to be used for the direction coherence and the speed coherence in the formula, ω1 and ω2. In this
case, there was no preference for any of the measures, thus ω1 = ω2 = 0,5.



Trajectory-related data is maintained in a trajectory file. In order to simplify the interchange algorithm and to
save computing time, route data related to the last three frames is kept in memory. The order in which the
objects are saved is that resulting from the tracking algorithm application. In the case of the ghost points as
part of a trajectory, they are also saved with an invalid row and column value (-1,-1), distinguishing them
from a common point.

The implementation also allows plain data (with text format) – which constitutes the found trajectories – to be
represented graphically. An image is generated that, for each identified object, displays with a trace the
trajectory performed by it all throughout the images sequence. The following algorithm shows the building of
the routes images:

Let MAX be the object quantity of the first frame.
For each of these objects, generate an image associated to its trajectory.
For each frame
For I=1 up to MAX

If the point exists in the frame
Generate an line from the object point in the previous image, up to

the object point in the current image
If the point does not exist in the frame (ghost)

Project the position and draw in another color or leave it in white
For each new object appearing in the frame

Increase MAX in 1
Create a new trajectory image.

Parallel Solution

The Parallelization was performed over an heterogeneous computer network and support MPI [GDB95]
[Mil98] [Mor94] [MPI1] [MPI2] [MPI3] [PBM] [Sim97] [Sni96] [Ste96] [Wel96]. The operation dealt with
was the contrast enhancement by means of a spatial average. For the parallel code, a root or master process
distributes per columns the image among all the processes, and compiles the results building the final image.

Object recognition process combines thresholding with labeling. The parallelization is based in the same idea
but introduces some details. The root distributes the columns equitably among the processes and performs
part of  the general operation. Each process runs over the subimage extracting the candidate objects data.
Then, each of them send data to the root  in such a way that the result of the object recognition process in the
image is focused in a single node. In order to solve the case of objects belonging to more than one subimage,
each process identifies the candidates “stick” to the left edge of its subimage, and then it “forgets” that it has
found that object; it is delegated to the left process and discarded from its own set of objects. When receiving
the process data of the right neighbor, it verifies if it coincides with the edge of some of the right-edge
adjacent objects. If this is so, the process unifies data, adding the received object data with that of the own
object. Finally, each process sends the found object data to the master, finishing with the process.

Once image objects are identified, the trajectories are to be built. Remember that in the sequential solution -
being P1, P2, ..., Pk the objects sets found in an k  image sequence – for each image Pi objects were taken and
“hooked” in the trajectories built for the previous images following the algorithm. Data related to the different
routes is saved in a file as the process advances. In main memory, there is always information about the last
three frames by performance and easiness of processing. Reviewing the given solution, the sequential process
for performing the object tracking can be summarized as follows: it is a repetitive cycle in which, as new
sequence frames are available, the trajectories built for the previous frames are updated with the identified
objects in the new frame. That is, let the instance be one where frame i has to be processed. There are N
incomplete trajectories identified in the i-1 of the previous frames. The following step consists in “hooking”
the x objects identified in the frame i in the previous routes. In order to do this, it is necessary to perform
several comparing operations for determining which object display rendering the best trajectories set is.



As a result of these operations, it is probable that the order of some of the found objects has to be
interchanged. If this is so, the cycle is repeated until there are no more interchanges. If n is the maximum
between the built trajectory quantity and the number of objects found in the new frame, the quantity of
comparing or verification operations to be performed in each cycle is (n-1) + (n-2) + ... + 1. It can be proved
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Remember that each mentioned operation is a function that, given two triads of points or objects (where each
corresponds to one to three consecutive images), determines a possible trajectory verifying which combination
renders the best total deviation (whether both of the given routes, or those resulting from interchanging the
third point of the triads). When the result is favorable for the triads with the interchanged point, the mentioned
interchange must be carried out. The quantity of interchanges and necessary cycles obviously depends on the
sample data set.

A parallelization consists in distributing equitably that quantity of operations among the processes. If the
number of operations is not an exact multiple of the number of processes, the remaining operations will be
distributed one for each of the first process. As for the rest, all of them would perform the same functions,
with a local copy of the most recent image data. Here are some examples of the quantity of operations
according to the number of processes: for a small number of objects, the distribution of the operations would
be an insignificant quantity of processes to be performed for each one, adding up to the communication times.
Before this, the best is to discard this possibility and search a more appropriate alternative.

For it, the solution is considered from a lower refinement level. The problem in its general expression consists
in identifying the objects in a sequence in order to track their route. Trajectory updating can be carried out
only if the object identification is completed in at least three images of the sequence. When there is more than
one process, instead of parallelizing the internal algorithm of the route monitoring, the two central tasks are
separated from the different processes. That is, on the one hand, there is a set of processes that carry out the
identification, whereas a separated process is in charge of updating the different routes. With this, the
trajectories updating can be superimposed with the object identification phase in the following image. If that
time is short and keeps the idle responsible process for a long time, this part of the process can be carried out
by one of the first group processes.

Results Assessment

One of the original objectives was to obtain acceptable results for real time problems. The speedup and
efficiency of the parallel solution were analyzed using different quantity of processors and processes, and
different image sizes.

Ideally, efficiency is meant to be 1. If the ideal is taken as parameter, it can be measured how far the
implementation of that ideal is. In the best of the cases, the time for executing a solution decreases
proportionally to the number of processes. This is, if  N  = number of processes and TN = time for using the
problem employing N processes, then as N increases, TN should increase as well. In the ideal case: TN = T1 / N
o N = T1 / TN. This last formula gives a speedup marker. In general,  T1 / TN ≤ N. The quotient between the
real speedup in N processes and the ideal gives a measure for the efficiency. Formally speaking, efficiency =
real / ideal = real speedup in N processes / N. Low efficiency values represent a waste of the processing
power [Hwa93] [Kum94][Lei92].

In general, for each part of the parallel solution, the total runtime can be divided in two components. On the
one hand, the part of the problem parallelized, where the addition of processors actually reduces the times,
even really close to the ideal. Given Tp as the time used for executing this part of the problem in the sequential
solution. On the other, the part of the problem inherently sequential or non-parallelizable, which is not going
to be more rapid by adding processors. Naming TS the time that takes to execute this part of the problem, T1 =
TS + Tp



TS is an inferior limit for the processing time, thus in the best of the cases, TN = TS + (Tp / N). The fraction of
the total runtime corresponding to the non-parallelizable part, TS / T1, imposes a constraint in the reduction of
the times independently of the number of processes. The greater this fraction, the less efficient the parallel
solution would be. It is important to bear in mind that this factor is not a constant, but it varies with the
problem size: as it changes, TS / T1 factor changes as well. Typically, Tp increases much faster than TS. As a
consequence, a complete assessment should be extended over at least two parameters: the problem size and
the processors number. To this, it may be added the fact that the performance can be seriously affected both
by input/output operations and by the communication quantity among the processes.

In order to determine the characteristics that the image sequences should contain, in a way that the assessment
could contemplate all the possible situations, the algorithms of each part of the system were analyzed in first
place. From there, different testing cases were defined and the necessary images sequences were generated.
Then the algorithms were assessed over each of these cases varying the quantity of processes and the
machines involved.

In the enhancement, TS includes images obtaining, opening and closing of files and format recognition (e.g.,
find out its dimensions). Tp includes computing the value for each point of the new image. In the case of more
than one process, this time is no purely processing time, but it carries the sending and reception times of data
among the processes. With a temporal graphic:

In this case, the size of the problem is directly proportional to the image size which is being processed. If we
consider that each process receives, apart from the data columns to be processed, both adjacent columns, it
can be noticed that as there are more processes, more data traffic is generated. But at the same time, the
addition of processes implies a decrease in the processing time per process. Thus, it is necessary to search an
equilibrium between these two points.

In order to measure the solution performance for the enhancement, testing cases were generated with different
image sizes (problem size) and different number of processes. The results showed that, independently of the
type of images, the times used up by the enhancement tasks were similar. What it could be first observed was
that a small size image sequence is not the best candidate for being enhanced in parallel. In this case, the times
used up by a single process to enhance the operation were better than those resulting form the parallelization.
On the other hand, for a larger size of image, the speedup was of 22% over the base time when incorporating a
second process; it is not an optimal result, but is nevertheless positive. The same did not happen when a third
process was added, with which the processing times were again increased.

Secondly, the recognition process was assessed. Here, TS includes the image obtaining and the format
recognition, and Tp is the time used up by the objects identification; it can be observed - in the case of the
parallel solution - that this time carries itself data sending among the processes, plus the eventual “assembly”
of objects which have remained divided in the distribution. In a temporal graphic :
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In this case, the size of the problem depends on two main factors:
- the image size. The more rows and columns are, the more points or pixels have to be checked in order to find
the objects data.
- the particular “data set”. The quantity, size and display of the objects directly influence in the processing
time, and the data quantity which will have to “travel” between the processes.

For example, a large problem is characterized by high resolution images, or with several objects, or with
objects whose shape is enlarged in such a way that when dividing the image, they can be “partitioned”. With
respect to the processes quantity, as with the previous case, when two more columns are distributed per
process, the traffic increases with the number of processes, but each of them has less number of data to be
checked. The disadvantage is that when the image is more partitioned, there exists the possibility of
partitioning the objects even more, all of which adds time of “assembly” of objects in the end.

In order to measure the solutions performance suggested for the recognition, testing cases were generated with
images resulting in different problem sizes and with different quantity of processes. The different tests were
grouped according to the mentioned characteristics, in a way to make the assessment more interesting. In this
way, results were obtained for tests grouped according objects quantity and for tests grouped by the size of
them. Objects display was not considered as a grouping criterion since we are dealing with sequences in
which objects move, and thus within a same test this characteristic is not fixed – objects are moving in a sector
which may be very different from their location at the end of the sequence.

The tests regarding the recognition algorithm reveal better results than the previous case, though always in the
case of larger sized images. For smaller images sequences, in most of the cases, the times increase with the
process quantity (except when the images contain large objects, but the gain is relatively small and the
efficiency is so reduced that the final results are actually poor). Instead, for larger size images, the
incorporation of processes upgrades the times, principally in the cases in which the images contain large
objects. Also, the speedup attained when incorporating a third process is even better that the one obtained
when going from one process to two processes.

Finally, it remains assessing the object tracking process. The given solution, represented temporarily, renders
the following situation:

This is similar to the recognition case. The difference is given by the processing which must perform the
master or root after each image is analyzed. For this, in order to deal with the problem dimension, the same
concepts posed for that case are valid: object quantity, display, etc. Also, since the quantity of operations to be
performed (as regards the trajectories updating) depends on the objects movement characteristics, speed and
disparity with which they move will also influence in the total runtime of both sequential and parallel
solutions.

The task of trajectory updating, as it was already assessed, represents a very small fraction of all the involved
tasks. Because of this, it would make no sense dedicate a process exclusively for it. It could be done in the
presented case as an upgrading: generated images showing graphically the trajectories drawn by the moving
objects. In that case, a separated process would update the routes and would also generate those images,
obtaining the following graphic:
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In order to measure the tracking process performance, images sequences that vary the problem dimension
were generated: two or three objects sequences, sequences with more than three objects, sequences with slow
and even moving objects, sequences with rapid and uneven moving objects.

As in the recognition case, the tests were grouped according to the mentioned characteristics. On the one side,
tests grouped by movements speed and coherence (slow and even movement, moderated and even speed, high
speed and even movement, uneven speed and coherence), and on the other, tests grouped by objects quantity.

It is important to bear in mind that tracking algorithm tests refer to the integral test which goes from the
enhancement of each individual frame to the final result. It is not the monitoring exclusive algorithm test.

These tests encompass all the images processing cycle. As the route maintenance exclusive portion is a very
small part of the algorithm, and it is a task of a single process, it is probable that the result will not be reverted
in respect to the previous tests about objects enhancement and recognition over the images. Actually, this is
what happened.

Summarizing,

- For small images (in particular, 320 x 240) it is not suitable parallelizing the algorithms since, in proportion,
the communication time is greater than the one used up by each of them in order to perform the different
tasks. Working with more than one process lower the times only when the images objects were large, but the
speedup resulted so low that, even these cases, does not deserve consideration.
- For larger images (in particular 720 x 540), the results were acceptable, not so much in the initial algorithm
of images enhancement, but in particular in that of object recognition and, of course, in the joint test of all the
system. Specially, the results were better in the cases in which the images had large objects in relation to the
frame size. Finally, when analyzing the algorithms according to the types of the movements of the objects, the
results were better though not by a great difference in relation to the others.

Conclusions

After having completed the implementation and the assessments of the described algorithms, the result
obtained fulfilled the presented expectations,  namely:
- A solution for identifying objects in an images sequence and identifying the trajectories of their movements
was fully developed.
- The cases in which the parallel solution is good were identified as well as those cases in which is preferable
adopting the traditional solution.

On the other hand, all throughout the project, upgradings or alternatives to the implemented solution were
presented. They are here summed up together with some additional suggestions:

a) As regards the project:
- Generate additional images reflecting the scene objects movement.
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- Identify the objects based in those features distinguishing them. In this paper, the objects were indivisible.
This upgrading is completed with a modification in the tracking algorithm appearing in the objects not only
due to its position in the consecutive frames but also to the features individualizing them.

- In the case that a single object has to be tracked, modify the recognition algorithm in order to check only one
part of the image depending on where the object has been found in the previous frames. This upgrades the
solution, without wasting the processing time.

- Modify or upgrade the presented algorithms in order to render a better response according to the different
sequences to be assessed. The project is implemented in a such way that it is easy to change any of its parts by
another one, responding better to the requirements (e.g. it may be desired to change the image recognition
algorithm, or to work with another image format).

b) As regards performance
- Assess how often it is necessary to perform a selection of the threshold for the segmentation. Given the
natural smoothness in the images movements, it is no necessary to recompute that value for each frame since
significant changes will not be obtained from one image to the following one. However, the necessary
frequency can depend on the speed of the objects movements.

- Implement an alternative in order to handle the auxiliary data (labels and objects) in memory instead of
objects. This option would be better in time, but it would require the availability of machines with enough
memory.

- Assess the possibility of skipping frames in the cases where it is beforehand known that the objects in the
scene move really slow; this allows obtaining the same data with better times.

- For the case where it is known that the objects are of considerable size, implement a variant that does not
check every pixel but takes one every two or more so as to reduce the processing. It is expected that the results
do not change, but the times probably do.

- Vary the distribution of the tasks among the different processes; for example, that the enhancement is carried
out by two processes, while the recognition task is performed by three. This distribution has to do with taking
advantage of the conclusions obtained from the performed tasks. On the other hand, if more machines are
available, other possibility is to distribute the task in a way that a group performs the enhancement and
another group of processes in the other machines performs the recognition.

Also, the implementation can be migrated towards an homogeneous multiprocessor (for example, the
transputers hypercube available in the Laboratory of Parallel Processing of the Faculty of Computer Sciences
UNLP), with the objective of comparing the performance on both platforms.
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