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Abstract

Q-Learning is a Reinforcement Learning method for solving sequential decision problems,
where the utility of actions depends on a sequence of decisions and there exists uncertainty
about the dynamics of the environment the agent is situated on. This general framework has
allowed that Q-Learning and other Reinforcement Learning methods to be applied to a broad
spectrum of complex real world problems  such as robotics, industrial manufacturing, games
and others.
Despite its interesting properties, Q-learning is a very slow method that requires a long period of
training for learning an acceptable policy.
In order to solve or at least reduce this problem, we propose a parallel implementation model of
Q-learning using a tabular representation and via a communication scheme based on cache.
This model is applied to a particular problem and the results obtained with different processor
configurations are reported. A brief discussion about the properties and current limitations of
our approach is finally presented.
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1. Introduction

This work proposes a parallel implementation of the Q-Learning algorithm on a massively
parallel machine using the Parallel Virtual Machine (PVM) message passage library with an
efficient communication scheme based on cache.
Q-learning [21, 22]  is a Reinforcement Learning (RL) method[4, 7, 8, 11, 15, 16] that deals
with the problem of learning to control autonomous agents. The learning process works  based
in  interactions by trial and error with a dynamic environment which provides reward signals for
each action the agent executes.
Q-Learning is well adapted for solving sequential decision problems, where the utility of actions
depends on a sequence of decisions and there exists uncertainty about the dynamics of the
environment in which the agent is situated on. This general framework has allowed that Q-
Learning and other Reinforcement Learning methods to be applied to a broad spectrum of
complex real world problems such as robot navigation, , industrial manufacturing, games and
others.
Q-learning and other RL methods are attractive because they are based on a formal
mathematical model (Markov Decision Processes) and therefore a precise definition of the task
to solve and its solution is possible. It  is probably the easiest method  to understand and
implement among all the RL methods. It does not assume any previous knowledge about the
environmental dynamics and by this reason it turns very attractive to be used in partial or fully
unknown domains to the system designer. Besides this, convergence to an optimal policy is
guaranted if a tabular representation of the function to learn is used.
In spite of all  previous properties presented above,  Q-learning suffers the problem of requiring
a long period of training for learning an acceptable policy and it is considered very slow fotr
practical ends.
In order to solve or at least reduce this problem, this work proposes a parallel implementation
model of Q-Learning keeping the standard tabular representation in order to maintain
convergence conditions. This model is applied to a particular problem and results obtained with
different configurations of processors are reported. A brief discussion about the properties and
current limitations of our approach are finally presented.
This paper is organized as follows: section 2 (Mathematical Model) presents a formal model
(MDP’s) normally  used as the underlying theoretical framework for the kind of problems
Q-Learning is applied on. Section 3, overviews the main methods for solving MDP’s paying
special attention on Q-Learning. Both sections have a tutorial and can be skipped by
experienced  people in these topics. Section 4 shows general issues and implementation details
about our parallel model of Q-Learning. Section 5 describes a particular problem and empirical
results, concluding this work with some conclusions in section 6.

2. Mathematical Model

Q-Learning is a machine learning algorithm for solving tasks modeled after Markov Decision
Processes (MDP).
In this framework, the decision maker (also called the agent) is connected via perception and
action to something usually named the environment, comprising everything outside the agent.
At each time step t the agent receives as input from its environment some representation of the
environment’s state s and selects one of its available actions a in state s. When the agent realizes
this action the environment’s state changes and one time step later, the agent receives the
representation of the new environment’s state and a signal of immediate reward r, as a
consequence of the previous action.



Figure 1 diagrams this agent-environment interaction:

If the agent’s goals are defined by this immediate reward function, the agent’s task is reduced to
find out a behavior in which the agent can decide (in each state) which action should be selected
in order to maximize the total amount of reward it receives over the long run.
When the environment’s responses are based only on the current state where the agent is
situated on and the particular action executed, without influences of previous  states and actions,
the environment and the task as a whole, are said to satisfy the Markov property and can be
formally defined as a MDP consisting of:

§ A set of possible states S.
§ A set of possible actions A
§ The one-step dynamics of the environment given by:

∗  The transition probabilities  P(s,a,s')
P(s,a,s') = Pr { st+1 = s' | st  = s, at = a}

∗  The expected immediate rewards R(s,a,s')
R(s,a,s') = E{rt+1 | st  = s, at = a, st+1 = s'}2

For all s,  s' ∈ S  and  a ∈ A(s), where A(s)  denotes the set of valid actions in s .

And the solution for this MDP, consists in obtaining a policy 

π* : S → A

that in each time step t, selects the action at so that the sum of the discounted rewards that the
agent  receives over the future is maximized. In particular, it chooses to maximize the expected
discounted return, Rt:

Rt = rt+1 + γrt+2 + γ2rt+3 + ......= 
k =

∞

∑
0

γkrt+k+1

where 0 <= γ <= 1, is called the discount rate.

                                       
2 The terminology used is the suggested in [16].  Others authors consider to R such a 2- variable function:
R(s,a) = Σs' P(s,a,s') R(s,a,s')
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3. Resolution techniques for MDP’s. Q-Learning

Previous to the presentation Q-Learning algorithm and its parallel version, it is necessary to
understand some general concepts that apply to all  techniques usually used for MDP’s
resolution.
Solving MDP’s is normally based on  the estimation of  optimal value functions, defined over
either the set of states or the set of actions. Basically, a value function calculates how good it is
for the agent to be in a given particular state or perform an action in a particular state.
Obviously, the how good notion will depend on the policy π used by the agent.
Because the goal is to find out a optimal policy π*, methods trying to solve a MDP deal with the
way of learning the optimal value-state function (denoted V*) or the optimal value-action
function  (denoted Q*). They are formally defined as:

V*(s) = maxπ Eπ { Rt | st = s} = maxπ Eπ { 
k =

∞

∑
0

  γk rt+k+1  | st = s}

Q*(s,a) = maxπ Eπ { Rt | st = s, a t = a } = maxπ Eπ {
k =

∞

∑
0

 γk rt+k+1  | st = s, a t = a }

In essence, V*  determines for each state which is the maximum expected return that can be
obtained from this state, on every possible policy. Policies reaching this maximum are named
optimal policies.
Q*  on the other hand, measures the expected return for taking action a in state s and thereafter
following an optimal policy.
Although more than one optimal policy can exist (we denote all of them by π*) they share the
same value functions.
Usually, once one has V* or Q* it is easy to determine an optimal policy:

π*(s) = maxa ∈ A(s) ∑́
s

P(s,a,s') [R(s,a,s') + γV*( s')]

Or

π*(s) = maxa ∈ A(s) Q
*(s,a)

However, it is often more convenient to learn Q* than V* because the optimal action-value
function allows optimal actions to be selected without having to know anything about possible
successor states and their values.
There are several methods for solving MDP’s through value function estimations differing
essentially on some of the following issues below:

• Learn V* or Q*

• Information about one-step dynamics of the environment is available or not
• The optimal policy is obtained in advance to be used by the agent (off-line methods) or it is

learned during the execution phase, using information obtained as the agent interacts with
the environment (on-line methods).

• Updating of value function estimations proceed in systematic exhaustive sweeps of the
whole problem’s state set (synchronous version) or it is focused onto parts of the state set
that are most relevant to the agent in possibly different instants of time (asynchronous
version).

The main contribution for solving MDP´s came from the  optimal control theory area, through



what is known as dynamic programming methods.
The term dynamic programming (DP) refers to a collection of algorithms that can be used to
compute optimal policies. These methods successively approximate optimal evaluation
functions making use of recurrence relations in these functions.
DP methods have historically worked off-line, focusing on approximations of V*. They assume
knowledge of a complete and accurate  model of the environment (one-step dynamics) and
normally work in a synchronous way on the whole set of states and this reason turn them
inadequate for solving big problems.

Asynchronous dynamic programming (ADP) attempted to solve this limitation focusing value
function updates on subsets of the set of states. ADP principles are important for our work
because its asynchronous features turns these methods as serious candidates for parallel
processing[2,3].
Although ADP works in an off-line way, recently an on-line version has been proposed in [1]
called Real Time Dynamic Programming (RTDP).

When the one-step dynamics of the environment is unknown, the problem to solve is referred as
incomplete information MDP  and methods for its resolution are named in optimal control
terminology as adaptive  control methods. When these methods learn V*,  they have furthermore
estimate a model of the environment in order to build optimal policies and are called indirect
adaptive methods. An example of such methods is the on-line method named Adaptive Real
time dynamic programming [1].

When the adaptive method builds the optimal policy without using an explicit system model, it
is called a direct or model free method.
These methods usually approximate Q*, and by this reason they can build an optimal policy in a
direct way because the one-step dynamics of the environment are not required.

3.1. Q-Learning

Q-Learning is a method proposed by Watkins [21, 22]  for solving incomplete information
MDP’s. From a control theory point of view it is an adaptive direct method and as its name
indicates, it is based on learning Q*, using the following algorithm [16]:

1 Initialize (with  0's or random values) Q(s,a ) for all s ∈ S  and for all a  ∈ A(s)
2 Repeat (for each episode)
3              Initialize s
4              Repeat (for each step episode):
5                           Choose a  from s using a policy derived from Q (e.g., ∈-greedy)
6                           Take action a, observe  resultant state s' and the reward  r.
7                           Q(s,a ) ← Q(s,a ) + α[r + γ max

a'
Q(s',a') - Q(s,a )]

8                           s ← s';
9             until s is terminal

Figure 2

When the agent moves forward from a old state to a new one, Q-learning propagates the Q
estimations backward  from the new state to the old.

In spite of in theory Q-learning cycles forever, in practice the learning task is split in episodes
(or  trials) where each episode starts in a initial state given and ends when the agent reaches
some condition defined by the learning system designer (e.g., to arrive to a goal  or absorbing



state, to exceed a maximum number of iterations).
The α parameter, is named step-size parameter, and usually take values from 0 to 1. This
parameter is usually decreased step by step.
Under the assumption that all pairs continue to be updated and α is properly decreased, this
algorithm guarantees  that Q estimates converge with probability 1 to Q*.
A special remark of Q-learning algorithm deserves the step where the agent chooses an action a
in state s (see Figure 2 – line 5). If Q* estimations (Q table) were the true values of Q*, the best
option for the agent would be obviously to select the action  with maximum Q value (greedy
policy). In this case we say that the agent is exploiting its current knowledge of the values of the
actions. Unfortunately, this is not a realistic scenario because the Q-table is just an estimation of
Q* and this estimation will be accurate if the agent explores new states and actions and not just
the suggested by the current values of  Q.
Because it is impossible for the agent to simultaneously explore and explode it with a single
selection of  action this conflict is often named as the exploration/exploitation dilemma.

The stochastic or changing nature of the environment with possible locally optimal actions,
requires a minimum of exploration selecting actions  not suggested by the greedy strategy.
A lot of approaches have been suggested to face this problem[19, 20]. We selected in our
experiments a simple but effective strategy named ∈-greedy. This strategy works in a greedy
way by default but with probability ∈ chooses  a random action.

4. Parallel Q-Learning

The main problem of Q-learning algorithm is that the agent requires a great number of trainig
episodes to learn an acceptable value function [4]. Today, there exist two principal approaches
for speeding up of the learning process:

1) To allow the input of information provided by external observer [9, 10, 13] and
2) To integrate learning with planning processes [9, 12, 13, 17, 18].

The first one, consists in allowing an external observer to be able to incorporate pieces of
advices in order to  help the agents to learn complex aspects of the environment in an efficient
way.
In the second case, the agent learns a model of the environment simultaneously with the
learning of the policies to make a more intensive  use of the limited amount of the experience.

In this work, an alternativer approach  is proposed, which is based upon a parallel
implementation of the Q-learning algorithm. The tasks will be distributed among processors that
have the capacity to work in a parallel way. The principal motivation on the development of this
implementation has been to increase the processing speed.  But, in some cases, the parallel
processing introduces an extra motivation. This motivation suggests that the parallel processing
betters the quality of the learning process  output because it allows to discover internal
relationships of the problem that a conventional sequential approach is not able to explore.
The parallel programming is based on some partitioning strategy which divides the problems in
different parts. Once this parts are completed,  their partial results must be combined to obtain
the desired result. The partitioning techniques can be applied to the function of the program
(called functional decomposition). In this approach, to divide the original sequential program in
parallel, independent and synchronic  units, implies to identify  inter-module relation to
determine where the parallel implementation is safe [6].
Another techniques can be applied to data (called domain decomposition). This partition
strategy was the one used to obtain a parallel version of the Q-learning algorithm. This
implementation keeps two or more identical process operating over different fractions of the Q-
table. This means that each process will be focused on the learning process over only one



subgroup of states and their associated actions. Nevertheless, some interactions will be needed;
at some point of this learning,  the process may require non local states information that belong
to a subgroup of neighboring states.

Depending on the specific data partitioning strategy and  the number of partitions is that this
interaction could considerably speed up the communication between neighboring processes.
This process includes strong synchronization requirements  in order to prevent that  the
processors remain waiting for each others. So, this suggests that an unique process of specific
purpose executes this operation and therefore only one synchronization operation will be
necessary for exchanging information about Q-table with the global master processor. Due to
the later, the resultant structure of the algorithm is Master/Slaves[5, 23].
The master will be responsible of:

Ø Deciding over which portion of the Q-table will each slave work,
Ø Distributing the information among the slaves processes and later,
Ø Maintaining an update version of the Q-table.

On the other hand, this table will be accessed and updated by the slaves through the following
requirements to the master:

Ø req_msg:  each slave executes the process shown in fig.2. A process slave will establish
communication  with the master when it requires the maximum value of an foreign state
(see line 7, in fig.2). After a req_msg was sent, the slave process receives from the
master the required information. In the Q-learning parallel version this situation is
considered as an other condition of the end of episodes, besides the two used in the
sequential algorithms (to reach an goal state or overcome a maximum number of steps).
In the original implementation of Parallel Q-learning, a req_msg was sent for any
information requirement which resulted in a high communication overhead. To lessen
this problem, it was implemented a cache that keeps the last value provided by the
master, which is only updated if the maximum value of requirement reaches a specified
value by the cache_size  parameter.
If  too high values were chosen for cache_size then the processors would execute with
very little communication among themselves, but the performance of the learning
algorithm would be relatively low, because most of the time the process would be
working with outdated values of their neighboring states.
If, on the other hand, too low values were chosen, the performance of the algorithm,
regarding the quality of results, would be close to a sequential Q-learning. In this case,
the communication overhead would be considerably high because the amount of
messages exchange among slaves for working with updated information .

Ø inf_msg: each slave processes sequentially over its local groups of states. To keep the
global Q-table updated in the master, the slave processors would periodically send their
Q-table partition. To reduce the number of inf_msg, this approach was better
conditioning the sending if inf_msg to the existence of some change of the local Q-table
of each slave.

The program was executed on a  Power Mouse Parallel Machine. It is a “host-based” system.
Its Operating System is Solaris with the PARIX environment[14]. PARIX (PARallel extension
to unIX) is the operating system of Parsytec parallel computer, which gives an environment for
message passing programming and SPMD (Simple Program - Multiples Data) programming by
means of its PowerPVM  systems. In this system the communication is based in threads.



5. Experimental results

This section presents a comparative analysis of results obtained using the traditional sequential
approach of Q-Learning and our parallel implementation.
The test for optimality was performed by comparison with the control law obtained from full
dynamic programming (Value Iteration method) using the true simulation.

5.1. Problem description

The selected problem for performance comparisons is a two-dimensional maze similar to the
kind of problems commonly used in this area.
In this case, we used a maze consisting of 135 cells (states) (see Figure 3). Each state has four
possible actions: RIGHT, LEFT, UP, DOWN, which results in the agent deterministically moving to
the corresponding neighbor cell. Blocked actions (by a barrier or a maze border) do not move
the agent which stays in the same state. Each transition produces a reward of  0 from the
environment, except when the agent reaches one of both terminal states (named G in Figure 3).
In this case the agent receives 100 units of reward.  The discount factor  γ is 0.95. The episodes
always start in a random non terminal state. This process is repeated at the end of each episode .

In our experiments the end of the episode are determined when the agent reaches a goal state or
overcomes a maximum number of steps per episode (we will refer this value as MSE)
The agent´s task is maximize the sum of the discounted rewards received over the future. For
this problem that is equivalent to reach the nearest terminal state G (with reward 100) starting
from a arbitrary state of the maze and using the minimal possible number of steps.
For this problem, the values corresponding to the optimal policy (obtained with the Value
Iteration method) are:

- Average of V* values over all non-terminal states = 58.3419.
- Average of minimal number of steps required by the agent to reach the nearest G state,
starting from every non terminal state = 12.2556.

5.2. Results Analysis

The parameters used in the sequential and parallel Q-learning algorithms were α=1 (step size)
and MSE = 10000 (maximum steps per episode), ∈ = 0,1 (∈-greedy method as exploration
policy) and for testing the convergence to an optimal policy was chosen ME = 32000
(maximum episodes number ). All of these parameters were selected from the best results
obtained in the sequential version of Q-learning algorithm.
The parallel versions  include another condition for the end of episode needed when a slave

G

G

Figure 3



process requires   information about one foreign state (this state belongs to another processor).

Sometime, the works related with Q-learning algorithms use as a reference the results obtained
in each episode. But, this kind of measures  was not possible in the parallel version because it
has multiples conditions of end of episode. In order to test the results, we used a time period of
8 microseconds called  epoch. The algorithm begins in the initial state (the non terminal states),
then the agent  processes  in a greedy way  and for each epoch  the current state of learning  is
registered for the optimal policy.

The parallel Q-Learning version, was executed with np= 2,4 and 8 processors. The whole set of
states was equality partitioned among current  processors following the numeration of states.
The result was a horizontal partition of the maze.
In the experiment the influence of cahe_size parameters whose values were 1,2,4 and 8 was
studied.
Tigure 4 shows the average times taken for the parallel and sequential algorithms where they
converged  to the optimal policy. Those times correspond with the best results on different
cache_size values:  cache_size =8 for np=2; cache_size =4 for np =4 and  cache_size =8 for np
=8.

np 1 2 4 8

time 4.326607 3.40059 1.85736 2.659
Speedup ----------- 1.27 2.32 1.62

The parallel algorithm exhibits  a speedup up to  np=4. However, increasing np (8, 16, ...) does
not  produce an increment in the speedup because the overhead of communication is greater
than the load assigned to each processor.

The performance of  the parallel version is very satisfactory. Nevertheless, the figure 5  give us
a more detailed idea about of the learning process. The figure shows the percentage of optimal
states learned in different time stamps (every 50 epochs).

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0

TIme (50 EPOCHS)

%
 le

ar
ne

d 
st

at
es

 
   

   
   

   
   

 

1P

2P

4P

8P

Figure 4

Figure 5



Figure 5 shows the global percentage of learning  that consists in to take the percentage of states
in which the action suggested for Q-table agrees with the optimal policy.
This percentage is inversely proportional to np in the firsts epochs, because the slaves processes
that work on the intermediate states of the maze have no relevant information from the
neighboring states. However,  when the information is available on the whole set of processors,
the convergence to the optimal policies is faster than the sequential one and consequently the
parallel time will be lesser  than the sequential time.

The last thing to be considered is about the confidence level of convergence to the optimal
value.
The result on figure 4 does not tell anything in relation to the percentage of running in which
they converged exactly to the optimal policy.

We believe  that an  analysis more realist should take into account  this aspect. Then, the figure
6 shows the convergence time to the optimal policy and  the percentage on running (multiplied
for 10) in which they converged exactly to the optimal policy.

It can observe that the parallel version with np=4  reaches good times and its convergence
percentage is near to 90% (for 32000 episodes). However for np=8  the time is greater than the
last one, but the  percentage is 100%. This indicates that an increment in the number of
processors cannot improve its time but can reach a better convergence percentage when the
number of episodes is restricted.

6. Conclusions

In this paper, we have presented a parallel implementation of Q-learning algorithm based on an
communication system with cache. The results obtained show the feasibility of  the approach
related to the convergence percentage and also related to the speedup. Even the problem
developed was small (only 135 states ) reaches goods speedups. It is important to note that
current results  will have a fully   impact when the approach be applied to a real sequential
decision problem with thousand or million states.

Finally, we have also shown how one domain partitioning strategy did easy the task and in spite
of that it will be possible to scale to larger problems.
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