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Abstract

This paper delivers an accurate approximation for adaptive threshold and optimal frame detection algorithms based on the robust multi-
taper method aiming at an efficient spectrum sensing in cognitive radio systems. An appropriate adaptive thresholding allows for seamless
vacation of unlicensed secondary users from certain bands upon primary users’ requests, while arbitrary optimal frame detection contributes
to the computational and throughput demands. Simulation exercises corroborate the given analysis over Rayleigh channel and multiple-input
multiple-output configuration and emphasize the critical role of adopting applicable adaptive threshold and optimal frame detection policies.
c⃝ 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The trend of modern life at present has witnessed un-
precedented online services and applications offered through
wireless communication systems. A challenging situation has
thus been created due to the scarcity of sufficient frequency
spectrum that is capable of accommodating all of the intended
demands. The Federal Communication Commission (FCC)
agency has publicized the IEEE 802.22 standard in response
to this problem [1]. To avail this standard, opportunistic unli-
censed secondary users (SUs) can cohabit the same sub-bands
of licensed primary users (PUs) given the restriction of causing
no harm or disturbance. The use of cognitive radio (CR) has
gained considerable attention as a highly competent approach
that can support spectrum solutions. CR systems are responsive
to their environment, process the knowledge and adequately
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adjust their internal parameters [2]. SUs equipped with CR sys-
tems continuously monitor the presence of PUs with a limited
number of noisy readings. The existence of underutilized sub-
bands is adherent to the PUs’ dynamic activities of random
pattern behavior. The SUs are to perform spectrum sensing (SS)
either successively or sporadically so that they can instantly
stop their broadcast upon PUs reappearance.

Proliferated surveys aspiring the SS in wireless CR systems
are widely accessible in the literature; only two notable reviews
are quoted here [3,4]. The SS algorithm comprises spectrum
estimation (SE) and decision making. The term SE will be
given preference here since major SS algorithms commonly
share the same decision policy, while mostly differ in the
quantification of spectrum entries. Without loss of generality,
the SE techniques can be segregated into three main divisions.
The first division is called as “guided SS”, where both sig-
nal and noise information is provided, and under which the
likelihood ratio test (LRT), the matched filter (MF), and the
cyclostationary detection (CSD) techniques can be branded.
The second division is called “semi-guided” or “semi-blind”
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SE, where only the noise information is known, and the energy
detection (ED) and wavelet-based sensing can be put under
this division. While the third division is called “unguided” or
“blind” SS, where no prior information is provided and the
emerging maximum to minimum eigenvalue (MME), covari-
ance (COV), and blindly combined ED detections are identified.
Each of these SE methods has certain drawbacks [3,4] and
therefore none of them progressed any further herein.

An alternative SE scheme based on the non-parametric
multi-taper method (MTM) was the focus of several stud-
ies [2,5,6]. The MTM has a particular ingredient called Slepian
tapers that are orthonormal and have maximal energy concen-
trated in their main lobes. Thereby, they employ orthogonal data
sets to achieve balanced tradeoffs in the bias–variance dilemma
to enhance the SE resolution. The SE based on MTM, which
will simply be called as MTSE, has an outstanding performance
unlike any other in the same family. This is chiefly due to the ro-
bust spectrum leakage control governed by the tapering process.

On the other hand, the issue of adaptive threshold (AT)
and optimal frame detection (OFD) is a challenging task in
the decision making of SS in CR systems [7,8]. The SS
performance at any point in time is highly determined by
the values of performance metric probabilities, which in turn
are reliant on the threshold and frame duration settings. A
suitably selected detection threshold and frame length can
minimize SS error, furnish PUs with proper protection, and
improve spectrum utilization efficiency. Aiming at the targeted
probability and threshold metrics, a subtle OFD necessary for
SS in CRNs needs to be closely examined, as emphasized
in earlier studies [9,10]. Such AT and OFD alterations may
constitute a strategic role in the cooperative transmitter and
receiver association [11].

1.1. Contributions

The novel contributions of this paper can be mainly summa-
rized as given below

• Systematically approach the multiple-input multiple-
output (MIMO) channel modeling and employ singular
value decomposition (SVD) in the design of the proposed
MTSE algorithm.

• Apply the quadrature form approximation to derive the
MTSE based on MIMO that aims at improving the SE
performance under low SNR regime.

• Adopt the framework of Neyman–Pearson (NP) hypoth-
esis test to develop the close-form expressions for the
MTSE–MIMO statistical measures.

• Derive the optimum AT and OFD algorithms necessary
for efficient PUs protection and spectrum reuse policies
by applying arbitrary utilization factors.

• Assess the variations between the above AT and OFD
algorithms based on MTSE with respect to other methods
employing traditional ED schemes [7–11].

1.2. Paper organization

This paper is organized as follows. Section 2 covers MIMO
signal modeling and Section 3 presents MTSE structure. Sec-

tion 4 presents the hypothesis test, while Section 5 discusses AT
and OFD policies. Simulation results are provided in Section 6
followed by concluding remarks.

1.3. Mathematical annotations

The following annotations are used throughout this work:
boldface uppercase letters for matrices; non-boldface uppercase
letters for scalars; boldface lowercase letters for vectors, and;
non-boldface lowercase letters denote scalar variables. The
operators (.)T, (.)∗, (.)H, and ∥.∥F are for transpose, complex
conjugate, Hermitian and Frobenius norm, respectively, while
𝒿 =

√
−1 stands for the imaginary prefix.

2. MIMO signal model

MIMO is employed to enhance the signal power and
throughput and, eventually, the quality of service (QoS). The
space–time block code (STBC) slightly deviates from MIMO
by having the coding matrix formed instead of channel matrix.
The analysis given here applies equally for both configurations
with minor exceptions under particular conditions. Assume a
wireless channel is of block flat-fading Rayleigh effect, the
sensing time is considered shorter than the channel coherence
time so that the channel gain hi, j is time-invariant upon sensing.
A complex constellation of K sequence length is applied to
this channel using Nt transmit and Nr receive antennas. The
normalized baseband signal at the i th receive antenna is denoted
by [5]

yi (k) =

Nt∑
j=1

hi, j x j (k)+ wi (k) ,∇i ∈ [1, Nr ] , k ∈ [1, K ] (1)

and the Nr × Nt quasi-static channel matrix is given by

H =

⎡⎢⎢⎢⎣
h1,1 h1,2 . . . h1,Nt

h2,1 h2,2 . . . h2,Nt
...

...
. . .

...

hNr ,1 hi, j . . . hNr ,Nt

⎤⎥⎥⎥⎦ . (2)

Ignoring the time index briefly for simplicity, the model in
(1) can take the following linear matrix form

Y = HX + W (3)

where Y is the received components from all Nr antennas,
X is the Nt × 1 complexed valued constellation with single
symbol variance σ 2

x and the additive noise W of size Nt ×

1 is an independent and identically distributed (i.i.d.) zero-
mean circularly symmetrical complex Gaussian (ZMCSCG)
denoted by CN ∼ (0, σ 2

wINr ), where I is the square identity
matrix of order Nr . All these random variables are considered
uncorrelated and independent of each other.

The MIMO signal model can be retrieved using a space–
time matched filter (STMF) of the form H∗. The SVD can
also be used to simplify the channel into single-input single-
output (SISO) components [2,5]. Applying the maximum ratio
combining (MRC) for signal enhancement over a Hermitian
channel reveals

y (k) = H∗Y = ∥H∥
2
F x (k)+ w(k). (4)
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Therefore, the linear MIMO model is reduced to a set of
R = min(Nt , Nr ) equivalent and independent parallel channels
with coefficients ∥H∥

2
F , while the noise remains intact. The

λ = ∥H∥
2
F = diag[λ1, λ2, . . . , λR] are channel eigenvalues

where λr ≥ 0 is sorted in descending order (λr ≥ λr+1). The
model in (4) is revised for all virtual parsed channels, yielding

y (k) =

R∑
r=1

λr x (k)+ w(k). (5)

3. MTSE structure

The MTSE employs robust Slepian tapers of varying length
to control the bias–variance tradeoffs and maximize the spectral
concentration within a desirable bandwidth B. The first few
L ≈ 2K B of these tapers are more powerful than the rest. Also,
L represents the degree of freedom (DoF) to control the SE
variance and the range of integers between 3-to-6 for its value
is realistically sufficient for the design.

Normalizing some weighting factors, the Fast Fourier Trans-
form (FFT) of the received data sequence for particular Slepian
tapers {υl}

K−1
k=0 and the corresponding eigen spectrum (power

spectral density (PSD)) estimate are denoted by [2,5,6]

Yl ( f ) =
1
K

K−1∑
k=0

y(k)υl(k)e−𝒿2π f k (6)

Ŝy( f ) =
1

L K

L−1∑
l=1

K−1∑
k=0

ψl
⏐⏐y(k)υl(k)e−𝒿2π f k

⏐⏐2
(7)

where ψl is the weighting eigenvectors of eigenspectrum. The
following variable vectors can be defined [5,6]

υl = [υl (1) , υl (2) , . . . , υl (K )]T

y = [y (1) , y (2) , . . . , y (K )]T

a =
[
e𝒿2π f , e𝒿2π f 2, . . . , e𝒿2π f K ]T

(8)

where bl = υl ⊙ a and ⊙ refers to the Hadamard product.
Substituting (8) in (6) reveals Yl ( f ) = bH

l y, which when used
together with the Slepian tapers will alter (7) to have the PSD
estimate reinstated using quadrature form representation

Ŝy( f ) =

R∑
r=1

λr yHΩy (9)

where Ω is L × L idempotent matrix defined as Ω =∑L−1
l=0 ψlblbH

l . The above scalar PSD estimate can be viewed as
the sum of individual PSD estimates computed over dominant
tapers.

4. Hypothesis test

The binary hypothesis test (BHT) is adopted to decide
between two observations, H0 and H1. The H0 is valid in case
of a PU is actually absent, otherwise the H1 is valid when
a PU is actually present. The statistics associated with these
observations are the probabilities of false alarm PF A and correct
detection PD , respectively. Given a sufficient test cost function

signified by Ŝy( f ), the framework of Neyman–Pearson (NP)
optimal criterion defines the following decision rule

PF A = Pr
{

Ŝy( f ) > η |H0

}
PD = Pr

{
Ŝy( f ) > η |H1

} (10)

where η is a threshold calculated against the required constant
false alarm rate (CFAR). The CFAR method is commonly used
in practice when the test statistic and optimal threshold are un-
affected by scaling the received sequence and noise of unknown
power. The central limit theory (CLT) is valid for large data
extents, hence the BHT takes the following form, noting that all
constants either cancel each other or are normalized

Decide: H0 if Ŝy ( f )≈dσ 2
wχ

2
RL K

Decide: H1 if Ŝy ( f )≈d (
σ 2

s + σ 2
w

)
χ2

RL K

(11)

where ≈
d stands for “equal in distribution” by definition and

χ2
RL K is the Chi-square distribution with RL K degrees of

freedom. That is normal variables naturally converge into Chi-
square statistics while passing through Rayleigh channels. The
asymptotes of [7,8] can be directly worked out to consider the
new characteristics of MTSE–MIMO combination and produce

PF A = Q
{
η − RL Kσ 2

w

2σ 2
w

√
RL K/2

}
PD = Q

{
η − RL K (σ 2

x + σ 2
w)

2(σ 2
x + σ 2

w)
√

RL K/2

} (12)

where Q(.) is the right tail cumulative distribution function

and is given by Q (z) =
1

2π

∫
∞

z e−
t2
2 dt . Let the SNR equal

to γ = σ 2
x /σ

2
w and with simple rearrangement of these two

probabilities yields

PF A = Q
{
ή − RL K

2
√

RL K/2

}
PD = Q

{
ή − RL K (γ + 1)

2(γ + 1)
√

RL K/2

} (13)

where the revised threshold ή = η/σ 2
w and the noise is of

wide sense stationary (WSS) type. The results depicted in
(12) and (13) signify the new probability measures attributed
to the MTSE–MIMO interaction. These results slightly differ
from those merely relying on the ED schemes under the same
signaling environment [7–11].

5. Adaptive threshold & optimum duration

Generally, conventional SS designs are either based on the
CFAR or constant detection rate (CDR) performance metrics.
The CFAR sustains better spectrum reuse, while the CDR
retains better protection for PUs against prohibited interfer-
ences from SUs. Both methods, however, produce constant
performance indicators regardless of the SNR or noise power
variations. In order to make it more rewarding for both PUs and
SUs, an adequate AT policy needs to be devised to achieve the
best trade-off between PD and PF A under various operational
conditions.

Recent studies have suggested the weighted tradeoff prin-
ciple (WTP) for minimizing the decision error probability of
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SS [7,8], which is adopted in this work. The optimum threshold
value has to be chosen to minimize the following convex
function of total error decision probability, or occasionally
called “utility function”

PE = αPF A + (1 − α)PM D (14)

where the miss-detection probability is PM D = 1 − PD . A
predefined preference weighting factor (spectrum utilization)
0 < α < 1 attains trade-off between the two probabilities
(PM D, PF A). Substituting (13) in (14) yields

PE = αQ
{
ή − RL K

2
√

RL K/2

}
+ (1 − α)

× (1 − Q
{
ή − RL K (γ + 1)

2 (γ + 1)
√

RL K/2

}
).

(15)

Applying the first partial derivative with respect to ή and
equating it to zero achieves the minimization of (15), subject to
the second derivative being greater than zero. The new MTSE–
MIMO and utilization factor definitions aspire the following
quadrature expression(
(γ + 1)2

− 1
)
ή2

− 2RL Kγ (γ + 1)ή

− 4RL K (γ + 1)2ln
{

α

(1 − α)

}
= 0 (16)

and solving for the positive threshold to obtain the below

ή = RL K
1 +

√
1 +

4
RL K

(
γ+2
γ

)
ln

(
α

(1−α)

)
(γ + 2)/(γ + 1)

. (17)

For large sequence length approaching infinity RL K → ∞,
the asymptote below can easily be conceived, which is a revised
replica compared to that given in [7]

ή ≈ 2RL K (γ + 1)/(γ + 2). (18)

A fair value of RL K ≈ 100 and higher is considered
sufficient for the above asymptote to be valid. As can be seen
from the last two expressions that the threshold value is largely
administered by the SNR alternations and hence an adequate
adaptation policy needs to be further explored. The above
derivations are based on setting one threshold value only. This
is commonly known as a one-stage AT, which differs than that
of multiple-stage threshold schemes.

The proposed AT policy can be attained by knowing in
advance the values of spectrum utilization factor α, SNR and
the sequence length K . Hence, for arbitrary values of such
parameters, the varying effect of different spectrum utilization
α on the performance of the error decision probability can be
analyzed by substituting (17) into (14) and the adaptation can
be inferred accordingly.

On the other hand, it is also of primary objective to optimize
the minimum sensing duration to facilitate maximum achiev-
able throughputs of CR network (CRN) without blocking PUs.
This is a crucial task to allow SUs to smoothly vacate their
sub-bands upon PUs detection in overlay CRNs. Subsequent to
the derivations approach of collision duration ratio (CDR) pro-
posed in [9,10], this task can be computed for any priori given

pair of (PM D, PF A) and complex signaling in the perspective
of MTSE–MIMO. The minimum number of sensing samples
can be obtained by canceling out the threshold parameter from
both probability expressions [9,10]. Therefore, after canceling
the threshold parameter from (13) and solving for the minimum
number of sequence points needed for the detection frame, this
obtains

Kmin =
2

RLγ 2

[
Q−1 (PF A)− (γ + 1) Q−1 (PD)

]2
. (19)

It is therefore apparent that the minimum sensing interval, or
OFD, is inversely related to the parameters of MTSE–MIMO
structure. That means increasing the number of antennas, ta-
pers and second exponent of the SNR value will reduce the
number of sequence samples required to achieve successful
detection and higher throughputs. The inverse proportionality
with respect to SNR exponent is of great impact and would be
highly desirable if it can be straightly done, but due to various
constraints this option is not always feasible in reality.

6. Simulation results

The above theoretical analysis is numerically evaluated
after using the following common simulation settings. It is
assumed a binary-shift keying (BPSK) sequence of K = 1024
samples applied to MTSE with L = 3 Slepian tapers and
equipped with 2 × 2 MIMO configuration and through flat-
fading Rayleigh channel. The total number of effective points
within the processing frame is equal to 6144 in this case, which
surely rises as the complexity of MTSE–MIMO increases
while maintaining the signal sequence intact. Therefore, the
asymptotic approximation of (18) is evidently met.

The performance of detection threshold is firstly assessed
with reference to SNR variations from −25 dB to 0 dB,
and arbitrary utilization factors α = 0.1, 0.5 and 0.9. The
value α = 0.5 symbolizes the separation line unraveling two
preferences maintaining; better spectrum reuse (larger α) or
additional PU protection (smaller α). Three threshold trends are
thus generated as per expression (17), while the fourth trend
represents the asymptotic threshold behavior described in (18)
and all plotted in Fig. 1.

Fig. 1 infers several observations that are worth looking
at. (1) The asymptotic threshold trend is in exact alignment
with the threshold trend of α = 0.5. (2) All threshold trends
are concentrated and sharply climbing with respect to the
incremental SNR beyond 0 dB and irrespective of α. This
means the received SNR value is relatively large enough to
readily bring the requirement of appropriate spectrum reuse and
PUs protection correspondingly applicable. (3) The threshold
trends for α >< 0.5 exhibit a symmetrical distribution centered
at the asymptotic and α = 0.5 threshold trends. (4) The
threshold trends for α > 0.5 are also mounting for SNR less
than 0 dB. This seems logical to set for larger threshold values
in order to secure better PUs protection designated by larger
values of α. Keep in mind that the utilization factor of (14) and
(17) in this paper is allocated different to what was given in
(Eqs. (6) and (11) of [7]). However, the compilation of (14)
and (17) is consistent with that given in (Eqs. (9) and (12)
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Fig. 1. Detection threshold against variations in SNR γ : Asymptote and
selected values of utilization factor α.

Fig. 2. PE against variations in utilization factor α.

of [8]). Therefore, the outcomes illustrated in this paper are
intuitively assumed to be more persuasive compared to other
findings given elsewhere. Whatever the case is, an AT policy
consequently needs to be appropriately developed to address
SNR variations. Such a task can be administered by having
the results of (17) substituted in (15) for predefined probability
metrics and the active spectrum reuse can be attained as in (14)
accordingly.

The second simulation exercise is on examining the total
error decision probability PE against variations of α values
in the range 0 to 1, and for wider range of arbitrary SNR
values −20 dB, −10 dB, 0 dB, 10 dB and 20 dB, as depicted
in Fig. 2. The noise variance is σ 2

w = 1 and the prefixed
threshold value fixed to have CFAR or PF A of 0.01. This value
is commonly used in line with the maximum acceptable figure
of 0.1 for both the PF A and PM D defined in the IEEE 802.22
regulation [3]. A higher PE means lower spectrum efficiency
for both the PUs and SUs and vice versa is true. Therefore,
PE needs to be minimized to the best extent as possible to

Fig. 3. PE against variations in SNR γ .

have enhanced spectrum performance. Fig. 2 shows that the
worst case scenario for PE occurs around α = 0.5, especially
for lower SNR values. That means there is no preference of
distinguishing between SUs or PUs while accessing and using
particular bands. On the other hand, the best PE performance,
and thus the spectrum utilization, can be achieved on either
side of the depicted convex curves. That is lower α values can
be assigned for either function of having better SUs’ spectrum
utilization or higher α values for PUs to enjoy better protection
against opportunistic bands access. The shifting of such convex
shapes towards the left side of Fig. 2 for higher SNR is also
obvious. This is attributed to the enhanced signal and channel
condition that allows for better PUs detection under almost a
very wide range of α values much below 0.5. Therefore under
such higher SNR range above 0 dB, a better spectrum utilization
and PUs protection is always achievable.

The third exercise is devoted to examining the proposed
adaptive and the classical fixed PE performances against SNR
variations and with respect to arbitrary utilization factors, as
shown in Fig. 3. It shows that worst case performance, or higher
PE , occurs at α = 0.1 or far below 0.5 and particularly at
smaller SNR ranges. At such ranges, the only way to improve
the PE performance is by making the utilization factor much
higher than 0.5 such as α = 0.9 or above. The PE for α = 0.9
shows a much improved performance as shown in the same
figure. The first scenario means no solid protection for PUs,
while the second indicates exactly the opposite. As for α = 0.5,
the PE is obviously exhibiting poor performance and the trend
of which just lies in the center between other trends for α = 0.1
and 0.9.

As that is said on the fixed threshold, the AT on the other
hand enhances the overall PE performance to significant levels.
This is true in as much as α takes on values either smaller than
or larger than 0.5. Again, the PE performance for α = 0.5 is
modest; however, it is still much better than the fixed threshold
situation, as shown in Fig. 3. A precaution needs always be
considered whether to make further PUs protection or allow
SUs to flexibly access and use vacant spectrum without paying
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Fig. 4. Minimum sensing duration against variations in (PM D, PF A) and
selected SNR γ values.

full attention to PUs’ activities in the same or adjacent bands.
This can only be decided by allocating a proper utilization
factor α, either much greater or less than 0.5 for any of the
above situations, respectively.

The fourth and last exercise is around demonstrating the
minimum sequence samples required for SS to meet the
permissible optimum frame duration. Fig. 4 shows that the
minimum samples condition constitutes nonlinear hyperplanes
of two arguments, namely the pair (PM D, PF A). Multiple non-
overlapping hyperplanes are also obvious for different SNR
values. Three arbitrary SNR values of −20 dB, −18 dB and
−16 dB, typical in SS environment are assumed. The IEEE
802.22 mandated ranges for CFAR and CDR values are con-
formed in this example. As predictably exhibited in Fig. 4, the
hyperplanes foci are greatly reduced relevant to the increase
in SNR values and hence less sample points can realize the
minimum of optimum detection frames. On the other hand,
larger sample extents are entailed for utterly deteriorated SNR
conditions. The minimum sample points are displayed on the
Kmin axis of Fig. 4, which signify the peaks of hyperplanes
computed for the targeted lesser values of (PM D, PF A) pair.

As for the design pair (PM D, PF A), smaller setting values
entail fairly larger number of sample points to accommodate
efficient SS application, especially under inferior SNR cir-
cumstances. Recall from the experimental settings of L = 3
Slepian tapers and equipped with 2 × 2 MIMO stated earlier
in this section, it becomes well discerned that the value of
K = 1024 can easily achieve any targeted pair (PM D, PF A)
shown in Fig. 4. Hence, it is always advisable to engage an
acceptable range of sample points that can attain the minimum
OFD demand without further complexity overheads.

7. Conclusion

A systematic paradigm of augmenting the non-parametric
MTM with MIMO structures, where the resulting algorithm
is named MTSE–MIMO, is thoroughly studied in this paper.
The prime intention of such amalgamation ingredients is to
enhance the SE performance in CR systems. The related an-
alytical expressions and closed-form performance indicators
are developed under flat-fading Rayleigh and AWGN channels.
The approach of predefined CFAR and CDR settings is adopted
to derive the statistical asymptotes essential for detection AT.
The minimum number of sequence points required for the OFD
interval is compiled as well. An arbitrary utilization factor
ranging from 0 to 1 is engaged into the total decision error prob-
ability expression. The simulation exercises corroborated the
given analysis and signified on the criticality of implementing
particular AT and OFD policies aiming at better PUs and SUs
protection and hence spectrum utilization and throughput. This
can be attended by assigning an appropriate utilization factor to
achieve tradeoff between one of the aforesaid targets.
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