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Abstract 

Fabrics from commingled natural (flax) –thermoplastic (polypropylene (PP) / poly lactic acid 

(PLA) polymeric fibres were fire retarded with an oragnophosphonate flame retardant (FR). The 

fire retarded flax/PP and flax/PLA fabrics were melt pressed to prepare respective thermoplastic 

composites. The effect of FR concentration on the fire and mechanical properties of composites 

were studied and the results analysed in terms of concentration of FR elements in the composites. 

While the UL-94 test was used as a benchmark to achieve a V-0 rating, cone calorimetric 

parameters were used for in-depth analysis of fire performance. The results show that flax/PP and 

flax/PLA composites require a minimum 0.9 and 0.6 % phosphorus (P), respectively to achieve a 

V-0 rating in the UL-94 test. Mechanical properties, evaluated in tensile and flexural modes are 

however slightly impaired, most probably due to the acidity of the FR solution (pH = 3.2).  In 

order to improve the mechanical properties, a buffer solution was used to change the pH to 6.0, 

which while having a minimal effect on mechanical properties of flax/PP, significantly reduced 

those of flax/PLA, and increased flammability of both composites and hence overall showed no 

benefit.    
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Introduction 

 

Flax fibre owing to its widespread growth in Europe and North America, and high stiffness (27.6-

85 GPa) and strength (800-2000 MPa,1 is one of the most widely used lignocellulosic fibres for 

composites.1,2 Flax fibre’s most use is in thermoplastic composites, particularly in the automotive 

industry3 though its use with thermoset resins such as epoxy and unsaturated polyester has also 

been reported2 and is on the increase. From the manufacturing point of view, there is a 

considerable pressure from industry to develop easy composite fabrication processing with a 

reduced number of steps. In that context NetComposites in the recent past developed commingled, 

twistless and aligned flax/polypropylene (flax/PP) and flax/polylactic acid (flax/PLA) yarns, and 

woven fabrics from these yarns. Composites from such fabrics can be prepared just by melt 

pressing the required number of stacked layers of such fabrics. Commingling is a technique used 

to intimately mix different fibres/yarns, typically using compressed air. The alignment gives 50% 

better fibre efficiency over conventional twisted yarns.4 Since the two fibre types are in intimate 

contact, during melt pressing the fibres wet easily, giving improved fibre/matrix interaction and 

better performance of the derived composites. Moreover, these fabrics can be easily impregnated 

with fire retardants using a conventional textile processing ‘pad-dry’ technique, which is focus of 

this work. 

 

Natural fibres are flammable and hence, add to the flammability of the composites in which the 

matrix being organic in nature is also flammable.2,5 Hence, as applications of natural fibre 

composites are becoming more widespread, their fire performance is becoming more important. 

Most often fire retardants are added to the thermoplastic matrix by melt blending prior to making 

composites 6,7,8.  Alternative method is to apply fire retardant treatments on the fibres9,10,11 Fire 

retardant treatments for natural fibres, typically cellulosic fibres such as cotton, have been well 

established for many years. Fire retardants can be simply applied using aqueous solutions of 

phosphorus-nitrogen (P-N), sulfur or halogen containing fire retardants.12,13 In principle, whatever 

is suitable for cotton, should also be effective on other cellulosic fibres such as flax, jute etc. The 

use of different fire retardants on woven fabrics from commingled flax/polypropylene (flax/PP) 

and flax/polylactic acid (flax/PLA) prior to melt pressing stacked layers of such fabrics in order to 

make fire resistant composites has been previously reported.14 Four commercially available fire 

retardant formulations commonly used for cellulosic textiles were: (i) ammonium sulfamate (ii) 

ammonium bromide, (iii) guanidine dihydrogen phosphate, an oganophosphate, and (iv) 



guanylurea methyl phosphonate, an organophosphonate. While all of these formulations were 

effective in flax/PLA in terms of achieving a V-0 rating in a UL-94 test, only the 

organophosphonate FR was capable of imparting a V-0 rating for flax/PP. However all fire 

retardants reduced the mechanical properties of composites, and the reduction seemed to be 

related to the pH of the fire retardant formulation used, being maximum for the 

organophosphonate FR (PH 3.3). The reduction in mechanical properties was more pronounced in 

flax/PLA than in flax/PP.  The purpose of this work is to establish the factors affecting the 

mechanical properties of both flax/PP and flax/PLA composites by using the most effective FR, 

the organophosphonate, and to develop  composites with optimised FR and mechanical properties,  

i.e. achieving V-0 rating, with a minimal effect on mechanical properties. 

       

Experimental 

 

Materials 

Fabrics: Woven fabrics from flax and commingled flax/PP and flax/PLA fibres (50/50 wt-%) 

were supplied by Composites Evolution (UK). These woven fabrics were of 4x4 plain weave 

structure with the following area densities: flax = 467 g/m2, flax/PP = 465 g/m2 and flax/PLA = 

493 g/m2. 

 

Fire retardant: A commercially available organophosphonate (guanylurea methylphosphonate) 

fire retardant formulation with a pH of 3.3 was used. Due to commercial sensitivity details of the 

fire retardant formulation and source have not been identified and the fire retardant is hereinafter 

referred to simply as “FR”.   

 

Sodium acetate (NaOAc), 98% purity supplied by Fisher Scientific UK Ltd was used as a 

buffering agent to reduce the acidity of the FR solution.  

 

Sample preparation 

Flax/PP and flax/PLA fabrics were treated with aqueous FR solutions using a pad-dry technique 

to obtain specified fire retardant element concentrations, determined by the formulation used, in 

the composites as given in Table 1. 

 

For samples where pH had to be changed, the required amount of sodium acetate (NaOAc) was 

added to the solution to work as a buffering agent. Flax fabrics were treated with different 



solutions of pH 3 to 7. Based on the results flax/PP and flax/PLA fabrics were treated with FR 

solutions of pH 3.3 and 6.0.   

 

Table 1. The FR contents of fire retarded flax/PP and flax/PLA fabrics. 

Sample pH of FR solution FR Cont. P Cont. N Cont. 

 (%) (%) (%) 

Flax/PP - - - - 

FR-Flax/PP _0.6P  3.36 7.0 ±0.7  0.6 ±0.1  1.0 ±0.1 

FR-Flax/PP _0.8P 3.34 9.6 ±0.8  0.8 ±0.1 1.4 ±0.1 

FR -Flax/PP _0.9P 3.33 10.8 ±0.5  0.9 ±0.1 1.5 ±0.1 

FR -Flax/PP _1.0P 3.30 11.2 ±2.1 1.0 ±0.2 1.6 ±0.3 

Flax/PLA - - - - 

FR -Flax/PLA_0.4P 3.36 5.4 ±0.8 0.4 ±0.1 0.7 ±0.1 

FR -Flax/PLA_0.5P 3.35 6.4 ±0.7 0.5 ±0.1 0.8 ±0.1 

FR -Flax/PLA_0.6P 3.34 7.2 ±0.3 0.6 ±0.1 1.0 ±0.1 

FR-Flax/PLA_0.8P 3.30 9.9 ±1.4 0.8 ±0.1 1.4 ±0.2 

 

 

Composite samples from control and FR treated flax/PP and flax/PLA fabrics were prepared by 

melt-pressing eight layers of each fabric at 180oC and 40 kg/cm2 pressure for 3 min, and then 

transferring them to a cold press to cool down under pressure (20 kg/cm2) to ambient temperature. 

The thickness of each composite was ~3 mm.  

 

 

 Fire performance evaluation 

The fire performance of the composites was evaluated using the UL-94 burn test and cone 

calorimetry. The UL-94 test was conducted according to ISO 1210 in both horizontal and vertical 

orientations, from which the rate of burning for each sample was also recorded. For cone 

calorimetry, three specimens of each sample were tested using a Fire Testing Technology Ltd, UK 

instrument at 35 kW/m2 according to ISO 5660. 

 

Mechanical performance evaluation 

The mechanical performance of composites was evaluated in tensile and flexural modes. Tensile 

and flexural tests were conducted using an Instron 3369. Three specimens of 150 mm x 20 mm x 

3 mm sizes were tested for each sample. Tensile tests were performed using a 50 kN load cell 



with the crosshead speed at 1 mm/min. The gauge length of each specimen was 100 mm. 

Polymeric tabs were bonded at the end of specimens to improve the gripping and to ensure failure 

within the gauge region. In flexural mode three point bending tests were carried out using a 100 N 

load cell at 0.5 mm/min crosshead speed. 

 

Tensile properties of FR treated flax fabrics were determined using a 100 N load cell with the 

crosshead speed at 100 mm/min on fabric strips 50 mm wide. The gauge length was 100 mm. 

 

Results and Discussion 

    

The effect of FR content on fire and mechanical performance of FR flax/PP and flax/PLA 

composites 

 

A number of composite samples with different FR contents were prepared (Table 1) in order to 

determine the minimum amount of FR element required to achieve an acceptable level of fire 

retardancy. The primary FR element in the organophosphonate FR (guanylurea 

methylphosphonate) used in this work is phosphorus (P), followed by phosphorus-nitrogen (P-N) 

ratio for a synergistic action. The results in the following sections are analysed in terms of 

concentration of P in the composites.  

 

a) Fire performance  

The results for control and FR treated flax/PP and flax/PLA composites are reported in terms of 

UL-94 rating and rates of burning (vertical and horizontal orientations) in Table 2. The UL-94 is a 

plastics flammability standard to determine the material’s tendency to either extinguish (V-0 

rating when tested in vertical orientation; V-1 or V2 if it burns for <30 s without or with flaming 

drips, respectively) or spread the fire once the specimen has been ignited (determined in a 

horizontal orientation). In this section the focus is to find the critical P concentration in flax/PP 

and flax/PLA samples that could lead to the achievement of a UL-94 V-0 rating. 

 

The control flax/PP composite failed the UL-94 rating test; the specimen completely burnt up to 

the sample holder. In horizontal mode also it burnt up to the sample holder with a burning rate of 

21.4 mm/min. On addition of fire retardant, the flammability of flax/PP composites was 

significantly reduced. As expected, the effectiveness of the FR was greater the higher the FR 

content in FR treated flax/PP composites. As seen from Table 2, the addition of FR to flax/PP 



composites at 0.6 and 0.8% P contents significantly decreases the burning rates of the composites 

by about 40 and 60%, respectively, but still does not change the UL-94 rating of the composites. 

When the FR content of flax/PP composites is further increased to at least 0.9% P, the composites 

then achieve a V-0 rating. 

Table 2. UL-94 results of control and FR treated flax/PP and flax/PLA composites 

Sample 

 

Horizontal  UL-94 Rating 

 
B.Length 

(mm) 

B.Rate 

(mm/min) 

 

Flax/PP 100 ±1 21.4 ±0.9  Fail 

FR-Flax/PP _0.6P  100 ±1 13.0 ±0.8  Fail 

FR-Flax/PP _0.8P 100 ±1   9.3 ±0.5  Fail 

FR -Flax/PP _0.9P 11 ±3   2.4 ±0.3   V-0 

FR -Flax/PP _1.0P -   -**   V-0 

Flax/PLA 100 ±1 20.0 ±1.2  Fail 

FR -Flax/PLA_0.4P -   -**  Fail 

FR -Flax/PLA_0.5P -   -**  V-1 

FR -Flax/PLA_0.6P -   -**  V-0 

FR -Flax/PLA_0.8P -   -**  V-0 

Note: B.Length = burnt length; B.Rate = burning rate 
* The fire went out before reaching the timing mark after removal of the burner 
** Sample did not ignite, and hence the burning rate could not be calculated 

 

The control flax/PLA composites have slightly lower flammability compared to the control 

flax/PP as shown by the slightly lower burning rate (20.0 mm/min, Table 2), but fail the vertical 

rating test and burn completely. The burning rate of flax/PLA composites is significantly reduced 

with the addition of FR at 0.4 and 0.5% P contents, in the horizontal test the rates of burning could 

not be calculated as the fire went out before reaching the timing mark. Moreover, to achieve V-0 

rating, flax/PLA composites require only a FR content of 0.6% P. 

 

The cone calorimetric results for fire retarded flax/PP and flax/PLA composites with different FR 

contents tested at 35 kW/m2 are graphically presented in Figure 1. The derived results from the 

curves are given in Table 3. Both flax/PP and flax/PLA ignited and burned showing two peaks of 

heat release, PHRR (Figure 1). This behaviour is typical of a cellulosic fibre – composite, where 

the ignition of the thermoplastic polymer present on the surface leads to the first peak of heat 

release. In the meantime, the flax fibres start charring. When the charred layer is thick enough to 

act as a thermal barrier for the underlying polymer, the burning slows down until the charred layer 

cracks and then the second peak appears.7 The lower flammability of flax/PLA than flax/PP is 



indicated by the slightly greater time-to-ignition (TTI); lower peak heat release rate (PHRR) and 

total heat release (THR); and much lower smoke production (61 L compared to 704 L in flax/PP). 

The lower smoke production in flax/PLA may be due to the presence of oxygen in the structure of 

PLA (absent in that of polypropylene), which may assist the complete combustion of polyesters at 

lower oxygen concentrations than are required for complete combustion of polypropylene.  

 

Table 3. Cone calorimetric results of FR containing flax/PP and flax/PLA composites at 35 W/m2. 

Sample TTI 
PHRR (kW/m2) 

THR TSR 

Char 

residue 

(s) Peak 1 Peak 2 (MJ/m2) (L) (%) 

Flax/PP 36 ±1 391 ±2 364 ±23 76 ±2 704 ±131 5.1 ±0.9 

FR-Flax/PP _0.6P  54 ±8 319 ±15 220 ±1 70 ±6 1146 ±41 12.3 ±1.0 

FR-Flax/PP _0.8P 79 ±4 286 ±3 247 ±5 65 ±1 1350 ±132 12.0 ±0.5 

FR -Flax/PP _0.9P 74 ±2 279 ±1 201 ±7 71 ±1 1509 ±334 15.7 ±3.9 

FR -Flax/PP _1.0P 90 ±8 247 ±24 211 ±16 80 ±5 1625 ±261 16.6 ±1.3 

Flax/PLA 66 ±2 283 ±4 293 ±10 49 ±2 61 ±20 5.2 ±1.7 

FR -Flax/PLA_0.4P 71 ±5 236 ±9 232 ±2 41 ±1 194 ±26 12.4 ±0.1 

FR -Flax/PLA_0.5P 148 ±7 223 ±49 - 19 ±5 1210 ±364 16.0 ±2.1 

FR -Flax/PLA_0.6P -     31 ±2 - 8 ±1 1629 ±43 24.4 ±6.6 

FR -Flax/PLA_0.8P -     39 ±7 - 10 ±1 1591 ±96 25.1 ±6.5 

Note: TTI = time-to-ignition; PHRR = peak heat release rate; THR = total heat release; TSR = total smoke released
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Figure 1. Cone calorimetric results of control and FR treated (a-c) flax/PP and (d-f) flax/PLA  at 35 kW/m2: (a,d) HRR, (b,e) rate of smoke release, 

RSR and (c,f) mass loss curves as a function of time 

 



The cone calorimetric results in Table 3 show that at 0.6% P content of FR in flax/PP 

composites, the TTI increases from 36 s of the control to 54 s, and the PHRR and THR are 

reduced by about 18% and 10% respectively compared to those of the control. With the 

increase in amount of FR, the TTI of flax/PP further increases, reaching 90 s in FR-

Flax/PP_1.0P. The change in each parameter as a function of phosphorus content is shown in 

Figure 2(a). A similar trend is also seen in the reduction in PHRR and the increase in char 

residue, indicating that the higher FR content in the composites is more effective than the 

lower ones, Figure 2 (b and c).  
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Figure 2. The change in TTI, 1st PHRR, and charred residue of FR treated flax/PP and 

flax/PLA samples compared to those of the control at 35 kW/m2 as a function of phosphorus 

content. 

 

 

The fire retardant significantly enhances the fire performance of flax/PLA composites, and 

the effect is more pronounced than of when used in flax/PP, as seen from Figures 1 and 2. 

The results in Table 3 show that the addition of FR at 0.4% P content has a marginal effect on 



the TTI of flax/PLA, and decreases PHRR by about 20% in both peaks. On increasing the FR 

content to the 0.5% P level, the fire performance of flax/PLA is further enhanced as seen by 

the significant increase in TTI (148 s), and also the change in burning behaviour from double 

peaks of HRR to a single peak, Figure 1(a), which is due to early formation of increased 

amounts of char in FR-Flax/PLA_0.5P (16.0% compared to 5.2% in the control), and which 

may more efficiently protect the remaining material from further combustion. With further 

increases of FR content to 0.6 and 0.8% P, the efficiency of the FR is enough to prevent 

ignition, Figure 1(d).  

 

b) Mechanical performance  

The mechanical performances of control and FR treated flax/PP and flax/PLA composites are 

reported in tensile and flexural modes in Table 4. The tensile and flexural moduli of these 

composites were calculated from the elastic region of the stress-strain curves. Since the 

mechanical properties are affected by the FR content of the fabric/composite composites, the 

results here are discussed in this context as opposed to in terms of P contents (although they 

are related) as in the previous section.    

Table 4. Mechanical properties of control and FR containing flax/PP and flax/PLA 

composites 

Sample FR cont 

(wt-%) 

 

Tensile properties 
Flexural Modulus  

(GPa) Modulus 

(GPa) 

Strength 

(MPa) 

Flax/PP - 6.0 ±0.3  44 ±12 6.3 ±0.5 

FR-Flax/PP _0.6P  7.0 ±0.7  6.4 ±0.5 53 ±4 7.9 ±0.2 

FR-Flax/PP _0.8P 9.6 ±0.8  5.8 ±0.4 44 ±3 6.7 ±1.0 

FR -Flax/PP _0.9P 10.8 ±0.5  5.7 ±0.5 40 ±5 6.5 ±0.2 

FR -Flax/PP _1.0P 11.2 ±2.1 3.4 ±0.1 35 ±1 3.3 ±0.5 

Flax/PLA - 8.5 ±0.3 92 ±3 11.3 ±0.5 

FR -Flax/PLA_0.4P 5.4 ±0.8 8.8 ±1.1 40 ±1 12.0 ±0.4 

FR -Flax/PLA_0.5P 6.4 ±0.7 8.8 ±0.1 42 ±2 12.0 ±1.1 

FR -Flax/PLA_0.6P 7.2 ±0.3 7.4 ±0.3 39 ±1 8.3 ±1.1 

FR -Flax/PLA_0.8P 9.9 ±1.4 5.0 ±0.4 29 ±1 5.2 ±0.5 

Note: Fibre volume fractions in all flax/PP samples are ~40%, and all flax/PLA are ~60%. 

 

In tensile mode, the control flax/PP composite has a modulus of 6.0 GPa and a tensile 

strength of 44 MPa. On addition of fire retardant, the tensile modulus of flax/PP composites 



gradually decreases with increasing FR content, Table 4. However, the extent of reduction of 

the tensile modulus is not linear with respect to the increase of FR content. In Figure 3(a), it 

can be seen that the tensile modulus of flax/PP gradually reduces from 6.0 GPa for the 

control to 5.7 GPa in FR-Flax/PP_0.9P with 10.8 wt-% of FR content, and then significantly 

drops to 3.4 GPa when the FR content reaches 11.2 wt-% in FR-Flax/PP_1.0P composites. 

Addition of the FR also decreases the tensile strength of flax/PP composites, and the 

reduction increases further with an increase in the amount of FR in the composites, (See 

Table 4). As the tensile properties of composites are reinforcing fibre dependent, the 

reduction in tensile properties of flax/PP could be due to a change in flax properties after 

treatment with FR solution. Since a strong acid can cause damage to cellulose in flax fibre 

and leads to a loss of fibre properties, the pH of FR solutions is an important parameter in 

explaining the reduction of tensile properties of FR treated composites.15 As seen from Table 

1, the pH values of FR solutions decrease with an increase of FR concentration, indicating 

that the solution becomes more acidic. Therefore, at higher concentrations of FR solution, the 

damage to flax fibre could be more severe, and hence result in a larger reduction of tensile 

properties in the FR treated flax/PP composites.   
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Figure 3. The change in (a) tensile and (b) flexural moduli of FR treated flax/PP and 

flax/PLA composites at different FR contents compared to the control samples (calculated by 

E of FR composites – E of control). 

 

The flexural modulus of control flax/PP composites is 6.3 GPa. The addition of FR at 7.0 wt-

% content slightly increases the flexural modulus from 6.3 GPa to 7.9 GPa for the FR-



Flax/PP_0.6P. However, once the FR content is further increased, the flexural modulus of 

flax/PP starts to decrease gradually to 6.7 and 6.5 GPa with the presence of FR at 9.6 and 

10.8 wt-% respectively, and then when the FR content reaches 11.2 wt-%, the flexural 

modulus further decreases significantly to 3.3 GPa. This can be explained by the fact that 

although the flexural properties of composites are generally polymer matrix dependent, the 

fibre-matrix interfacial adhesion could also affect the properties as the low adhesion can lead 

to a delamination failure, and hence cause a reduction in the flexural properties.16,17 Since PP 

has high chemical resistance, the reduction in flexural properties of FR treated flax/PP could 

be due to a decrease in the fibre/matrix interfacial adhesion of the composites, evidence for 

which was seen in the SEM images of the fractured surfaces reported in reference.14   

 

The addition of FR to flax/PLA composites at low content, 5.4 and 6.4 wt-%, has a minimal 

effect on the tensile modulus (8.5 – 8.8 GPa), which  then gradually decreases to 7.4 and 5.0 

GPa when the FR content is increased to 7.2 and 9.9 wt-% respectively. The FR significantly 

decreases the tensile strength by more than 50% in all samples. The results in Table 3 also 

show that the tensile properties of flax/PLA composites are more severely affected by the 

presence of FR compared to those of flax/PP composites, as it can seen that at the same FR 

content, the reduction in tensile properties, in particular tensile strength, of FR treated 

flax/PLA composites is larger than those of FR treated flax/PP composites. As explained 

before, this is due to reaction of the FR with PLA as could be seen in the SEM images 

reported in our previous publication.14 In Table 4, the results show that FR also causes a 

reduction in flexural properties of FR treated flax/PLA, and that the reduction is more severe 

at higher FR content, especially at FR contents above 7.2 wt-% at which the flexural modulus 

of flax/PLA was reduced by more than 50%, Figure 3(b).  

 

From these results it can be concluded that for flax/PP, FR contents up to ~10.5 wt-% (0.9% 

P) and for flax/PLA,  FR contents up to ~6.5 wt-% (0.5% P) are the critical levels below 

which mechanical properties remain unaffected.  As seen from the flammability results in 

Table 2, flax/PP achieves a UL-94 V-0 rating, whereas flax/PLA has a borderline V-1 rating.  

 

The effect of pH of FR solution on fire and mechanical performance of FR flax/PP and 

flax/PLA composites 



Since the FR solution used in the above section was very acidic (pH 3.2), it is suggested that 

one of the reasons for the reduction in mechanical properties of the FR treated flax/PP and 

flax/PLA composites is damage to the flax fibres caused by the acidic solution. The first step 

to test this hypothesis was to study the effect of pH of FR solution on the tensile strength of 

flax fabric. Flax fabric was treated with 20 wt-% FR solution. To adjust the pH of the 

solution, sodium acetate (NaOAc) was added to the solution as a buffering agent to reduce 

the acidity of the FR solution. The results in Figure 4 show that the tensile strength of FR 

treated flax fabric gradually increases with the increase in pH value of the FR solution (i.e. 

less acidic), and that this increase then ceases when the pH value increases above 6.0. From 

this, the optimal pH of the FR solution capable of maintaining the mechanical properties of 

the flax fabric was established as 6.0.  

 

 

 

 

 

 

 

 

 

Figure 4. Tensile strength (N) of flax fabrics treated with FR solution at different pH values. 

 

In order to study the effect of pH on the fire and mechanical performance of FR treated 

flax/PP and flax/PLA composites, composites were prepared from the fabrics treated with FR 

solutions of pH 3.2 (i.e. without pH modification as in the earlier section) and pH 6.0. Based 

on the results in Section 3.1, the FR contents of the treated flax/PP and flax/PLA fabrics were 

adjusted to give levels of 0.9 and 0.6% P, respectively, as these are the minimum levels of the 

FR that are required if the composites are to give a V-0 pass rating in UL-94 tests. The details 

of the FR solutions and the actual FR contents of the fabrics are given in Table 5. 
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Table 5. Details of flax/PP and flax/PLA fabrics treated with FR solutions at different pH  

Sample 
 

FR solution 
 

 FR treated fabrics 

 

FR Conc. 

(wt-%) 

NaOAc 

(g/100g sol.) 

pH of 

solution 

 Solid Cont. 

(%) 

FR Cont 

(%) 

P Cont 

(%) 

FR-Flax/PP (pH3.2) 18 - 3.2  11.3 ±1.0 11.3 ±1.0 0.95 ±0.06 

FR-Flax/PP (pH6.0) 20 18 6.0  20.6 ±0.7 10.8 ±0.4 0.93 ±0.03 

FR-Flax/PLA (pH3.2) 13 - 3.2  8.3 ±0.5 8.3 ±0.5 0.71 ±0.04 

FR-Flax/PLA (pH6.0) 15 18 6.0  17.5 ±0.6 8.0 ±0.3 0.68 ±0.02 

 

 

Composites from these treated fabrics were prepared by melt-pressing eight layers of the 

fabrics into 3 mm thick composites, and tested for fire and mechanical properties. 

 

a) Fire performance of FR flax/PP and flax/PLA composites 

The UL-94 results in Table 6 show that while the flax/PP sample treated with a FR solution 

of pH 3.2 (without the use of buffering agent, sodium acetate) could achieve a V-0 rating, the 

one treated with a pH 6.0 solution (with the addition of NaOAc to adjust the pH of the FR 

solution), fails the UL-94 test.  The cone colorimetric results at 35 kW/m2 in Table 7 show a 

similar distinction, although the difference is not as dramatic as in the UL-94 test.  With the 

addition of NaOAc, FR-Flax/PP (pH 6.0) ignites slightly earlier (46 s as opposed to 60s with 

pH 3.2), and while the first PHRR was unaffected, the second increases from 262 to 292 

kW/m2 and THR increases from 91 to 112 MJ/m2. This could be due to the phosphoric acid 

produced from the FR on heating not only reacting with the composite’s components through 

phosphorylation, but also reacting with NaoAc to form sodium phosphate and acetic acid,18,19 

hence leading to a reduction in the FR performance of FR in FR-Flax/PP (pH 6.0) compared 

to that of FR-Flax/PP (pH 3.2). 

 

In the case of flax/PLA composites, the use of NaOAc in the FR solution results in a similar 

trend as that observed in flax/PP samples, namely that the presence of NaOAc increases the 

flammability of FR-Flax/PLA from V-0 in FR-Flax/PLA (pH 3.2) to ‘fail’ in FR-Flax/PLA 

(pH 6.0).  

 

 



Table 6. UL-94 results of control and FR treated flax/PP and flax/PLA composites. 

Sample Horizontal  Rating 

  B.Length 

(mm) 
B.Time (s) 

B.Rate 

(mm/min) 

  

Flax/PP 100 ±1 258 ±1 24 ±2  Failed 

FR-Flax/PP (pH3.2) - - -  V-0* 

FR-Flax/PP (pH6.0) 100 ±1 503 ±1 12 ±1  Failed 

Flax/PLA 100 274 ±5 22 ±2  Failed 

FR-Flax/PLA (pH3.2)* - - -  V-0 

FR-Flax/PLA (pH6.0)     -** - -  Failed 
* The fire went out before reaching the timing mark after removal of the burner 
** Sample did not ignite, and hence the burning rate could not be calculated 

 

The cone calorimetric results in Figure 5 and Table 7 also show that while at pH 3.2, the FR 

helps in prevention of ignition in flax/PLA, with the addition of NaOAc to the FR solution, 

FR-Flax/PLA (pH 6.0) ignited at 162 s, and burned with 72 kW/m2 PHRR, producing 9 

MJ/m2 THR. This reduction in the fire retardancy can be explained in a similar way to that 

proposed for FR-Flax/PP, i.e. that the presence of NaOAc causes a decrease in the reaction 

between phosphoric acid, produced from the FR, and the composite components, as 

phosphoric acid also reacts with sodium ions from NaOAc through an ion-exchange reaction 

to form sodium phosphate.   

 

Table 7. Cone calorimetric results of control and FR treated flax/PP and flax/PLA 

composites at 35 kW/m2. 

Sample 

 

TTI PHRR (kW/m2)  THR TSR Char residue 

(s) Peak 1 Peak 2 (MJ/m2) (litre) (%) 

Flax/PP 35 ±1 498 ±21 455 ±6 90 ±1 755 ±82 2.1 ±0.1 

FR-Flax/PP (pH3.2) 60 ±4 297 ±11 262 ±4 91 ±3 1470 ±41 14.8 ±1.2 

FR-Flax/PP (pH6.0) 46 ±4    300 ±1 292 ±7 112 ±5 1370 ±80 15.1 ±0.8 

Flax/PLA 42 ±1 302 ±2 345 ±15 57 ±6 40 ±1 2.9 ±0.4 

FR-Flax/PLA (pH3.2)* - - - 7 ±1 1540 ±121 16.8 ±0.2 

FR-Flax/PLA (pH6.0) 162 ±1 72 ±3 - 9 ±1 1380 ±70 17.1 ±1.5 

* Sample did not ignite 
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Figure 5. (a) HRR, (b) RSR and (c) mass loss curves of control and FR treated flax/PP 

composites at 35 kW/m2. 

 

b) Mechanical performance of FR flax/PP and flax/PLA composites 

The mechanical properties of composites prepared from the flax/PP and flax/PLA fabrics 

treated with FR solutions of pH 3.2 and 6.0, evaluated in tensile and flexural modes are 

reported in Table 8. The control sample was also prepared and tested again to eliminate any 

differences due to using different batches of raw materials.  

Table 8: Mechanical properties of control and FR treated flax/PP and flax/PLA composites 

Sample Tensile properties  Flexural properties 

  Modulus 

(GPa) 

Strength 

(MPa) 

 Modulus 

(GPa) 

Strength 

(MPa) 

Flax/PP 7.1 ±0.4 79 ±6  7.8 ±0.5 71 ±1 

FR-Flax/PP (pH3.2) 5.5 ±0.7 56 ±6  7.8 ±0.5 67 ±1 

FR-Flax/PP (pH6.0) 5.8 ±0.1 49 ±3  7.8 ±0.1 77 ±2 

Flax/PLA 10.2 ±0.1 141 ±2  14.1 ±0.7 159 ±1 

FR-Flax/PLA (pH3.2) 9.7 ±0.1 98 ±5  13.0 ±0.2 132 ±2 

FR-Flax/PLA (pH6.0) 9.9 ±0.2 66 ±4  5.4 ±0.3 54 ±2 

Note: Fibre volume fractions in all flax/PP samples are ~40%, and all flax/PLA are ~60%. 

 



The results show that the addition of NaOAc to the FR solution to give a pH of 6.0 had only a 

minimal effect on the tensile properties of FR-Flax/PP composites prepared from solution 

with a pH of 3.2, considering the error range. Within the error range, however there seems to 

be slight increase in tensile modulus, but decrease in tensile strength. This is surprising, since 

the tensile properties of composites are fibre dependent, and the reduction in the acidity of the 

FR solution used for treating flax/PP fabrics should have increased the tensile strength. As 

flax fibre can be hydrolysed and lose its mechanical strength under acidic conditions, the 

reduction in acidity of the FR+NaOAc solution should have helped to minimise the damage 

to the flax fibre, and so to the impairment in the tensile properties of the derived composites,  

thus resulting in improved tensile properties of FR-Flax/PP (pH 6.0) compared to those of the 

FR-Flax/PP (pH 3.2). In flexural mode, the addition of FR with and without NaOAc did not 

affect the properties of flax/PP composites as can be seen from the fact that the control and 

FR-Flax/PP samples have similar flexural moduli of 7.8 GPa and flexural strength of ~70 

MPa. These similarities arise from the flexural properties of composites being matrix 

dependent, and polypropylene being non-reactive towards acids, and therefore not affected by 

the change in pH.   

 

In case of flax/PLA composites, the addition of NaOAc to the FR solution to give a pH of 

6.0, does not affect the tensile modulus, considering the error range (9.7 GPa with pH 3.2 to 

9.9 GPa with pH 6.0). The tensile strength however shows significant decrease from 98 MPa 

to 66 MPa in samples made with FR solutions of pH 3.2 and 6.0, respectively. The reduction 

in the tensile strength of FR-Flax/PLA (pH6.0)  even though the NaOAc helps to reduce the 

damage on FR treated flax fibres, may be due to the alkaline NaOAc catalysing hydrolysis of 

ester groups (-COO-) in the PLA, hence resulting in the reduction in the mechanical strength 

of PLA and its composites. The flexural properties of control and FR treated flax/PLA 

composites show that the presence of only FR did not show significant effect on the flexural 

properties of flax/PLA as can be seen from the only slight reductions in flexural modulus 

(13.0 GPa) and strength (132 MPa) in FR-Flax/PLA (pH 3.2) compared to those of the 

control, Table 8. However, with the addition of NaOAc to adjust the pH of the FR solution, 

the reduction in flexural properties of FR-Flax/PLA sample becomes significant as FR-

Flax/PLA (pH 6.0) shows much lower flexural modulus (5.4 GPa) and strength (54 MPa) 

than those observed for FR-Flax/PLA (pH 3.2). Once again, this may be due to alkaline 



catalysed hydrolysis of PLA caused by NaOAc, leading to the reduction in mechanical 

properties of PLA, and therefore of the matrix dependent flexural properties. 

 

Conclusions 

 

The organophosphonate FR significantly improves the fire performance of flax/PP and 

flax/PLA composites and its efficiency is higher in PLA composites, which require a lower 

amount of FR than those with a PP matrix to achieve the same level of fire performance. It is 

also seen that the efficiency of the FR is not in a linear relationship with the fire performance. 

The fire performance of composites improves with increasing FR content up to 0.9% P of FR 

content for flax/PP and up to 0.6% P for flax/PLA; further increases in FR content do not 

provide any further significant improvement in fire performance. On the other hand, the 

increase of FR content causes a significant reduction in mechanical properties of the 

composites, especially at high FR contents. Based on these results, the optimum FR contents 

for producing fire retardant flax/PP and flax/PLA composites were found to be 0.9% P and 

0.6% P respectively.  

 

The flammability and mechanical properties of FR-flax/PP composites prepared from the 

flax/PP fabrics treated with FR solution at different pH values (i.e. 3.2 and 6.0), show that the 

use of sodium acetate (NaOAc) to reduce the acidity of the FR solution (pH 6.0) helps in 

maintaining the mechanical properties of FR treated flax/PP composites, particularly tensile 

properties. The effect however was marginal. The addition of NaOAc to the FR solution has a 

negative impact on the flammability as NaOAc increased the flammability of FR-Flax/PP 

composites, especially in the UL-94 test, where a previous V-0 rating in FR-Flax/PP (pH 3.2) 

was reduced to ‘fail’ in FR-Flax/PP (pH 6.0). In the case of FR-Flax/PLA, the results show 

that the addition of NaOAc to the FR solution decreases the mechanical properties, especially 

in flexural mode. This is due to the NaOAc, an alkali agent, catalysing hydrolysis of PLA, 

hence resulting in the reduction in mechanical properties of PLA and of the derived 

composites. NaOAc also increases flammability of FR-Flax/PLA similar to that observed in 

flax/PP samples, particularly giving rise to a ‘fail’ in a UL94 test compared with the 

previously achieved V-0 rating in the absence of NaOAc. Hence, it can be concluded that 



there is no benefit in using NaOAc to reduce the acidity of the FR solution for preparing FR 

treated flax/PP and flax/PLA composites. 
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Figure 5. (a) HRR, (b) RSR and (c) mass loss curves of control and FR treated flax/PP 

composites at 35 kW/m2. 


