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Abstract 

Flame retardant poly(butylene succinate) (PBS) composites were prepared by melt 

blending PBS with melamine phosphate (MP), using graphene or polyhedral 

oligomeric silsesquioxanes (POSS) as synergists. The comparative study on the effect 

of POSS and graphene on the mechanical, thermal properties and flammability of 

flame retardant PBS was investigated. The addition of POSS or graphene further 

improved the LOI values of the flame retardant PBS, and V0 rating was obtained for 

the formulation containing 18 wt % MP and 2 wt% graphene. The incorporation of 

POSS and graphene reduced the crystallization of PBS, but improved the tensile 

strength. The presence of graphene exhibited superior thermal-oxidative resistance of 

the char layer compared to POSS, which effectively retarded the mass and heat 

transfer between the flame and the burning substrate, thus the heat release rate and 

total heat release of the flame retardant PBS composites containing graphene was 

significantly reduced during combustion.  

Keywords: Poly(butylene succinate); POSS; Graphene; Thermal properties; Flame 

retardance 

1. Introduction 

The disposal problem of waste petroleum-derived plastics and increasing 

environmental concerns has motivated the development, production and application of 

biodegradable polymers [1]. Over the past few decades, considerable interest has been 

attracted on the poly(butylene succinate) (PBS) [2-5], one of the most promising and 

important biodegradable polymers produced from renewable resources at relatively 
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low cost and large production volume. Due to its superior mechanical and thermal 

properties, PBS has been widely used in biomedical materials, packaging, bags, films 

and fibers [6, 7]. However, like other aliphatic polyesters, PBS is highly combustible, 

which limits its application in automotive components, electronic or electrical industry. 

It is therefore necessary to provide fire resistance to PBS materials. 

In recent years, incorporating nanoscale fillers into polymer composites has been 

extensively investigated to enhance not only their mechanical properties but also to 

improve thermal properties and to reduce flammability [8-10]. Among these nanoscale 

fillers, polyhedral oligomeric silsesquioxanes (POSS) has received great attention as 

one kind of effective flame retardant synergist with phosphorus-based compounds [11, 

12]. The incorporation of POSS has obviously reduced the heat release rate, resulting 

from the formation of heat-resistant char layer. Very recently, some studies implied 

that graphene is another promising flame retardant nano-additive due to its unique 

two-dimensional (2D) atomic carbon sheet structure [13]. Because graphene has high 

aspect ratio in combination with its high intrinsic stiffness, it will reinforce polymers 

far more efficiently than conventional fillers. As is well known, the addition of 

nano-additives is to improve the flame retardant efficiency of polymer composites. It 

is reported that these two nano-additives, POSS and graphene, play a role of “barrier 

effect” in the condensed phase [11-13]. It is interesting to undertake a comparative 

study on the flame retardant efficiency between these two nano-additives.  

The objective of this research is to compare the flame retardant effectiveness 

between POSS and graphene, using at a low concentrations (≤ 2wt%) in poly(butylene 
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succinate) containing melamine phosphate as a environmentally friendly flame 

retardant additive. The flammability and thermal properties of  flame retardant PBS 

composites were evaluated by limiting oxygen index, UL-94, cone calorimetry and 

thermogravimetric analysis. Based on the observed performance of these two 

nano-additives in the composites, selective samples have been used to further study 

their flame retardant mechanism using thermogravimetric analysis-infrared 

spectrometry technique. 

2. Experimental 

2.1. Materials 

Poly(butylene succinate) (PBS, weight-average molecular weight: 190000, 

hydroxyl end-capped) was purchased from Anqing Hexing Chemicals Co., Ltd. 

(Anhui, China). Melamine polyphosphate was provided by Shanghai Chemical 

Reagent Corp. (Shanghai, China). OctaAminophenyl polyhedral oligomeric 

silsesquioxanes (OpPOSS) was supplied by Shenyang Amwest Technology Company 

(Liaoning, China). Graphene powder was obtained from Hefei Keyan Chemicals 

Company (Anhui, China).  

2.2. Preparation of samples 

PBS, MP, POSS and graphene were dried in a vacuum oven at 80 °C overnight 

before compounding. The sample formulations are presented in Table 1. As an 

example, the fabrication of the sample PBS-6 is illustrated as follows: 40 g of PBS, 

0.5 g of graphene and 9.5 g of MP were melt-blended in a twin-roller mill for 15 min; 

the temperature of the mill was maintained at 120 °C, and the roller speed was 30 
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rpm.The blended sample was hot-pressed at 120 °C under 10 MPa for 10 min into 

sheet with the thickness of 3.0 ± 0.1 mm. Other samples were fabricated using the 

same procedure. The formulations of all the samples are listed in Table 1. 

2.3. Instruments and characterization 

LOI was measured according to ASTM D2863. The apparatus used was an HC-2 

oxygen index meter (Jiangning Analysis Instrument Co., China). The specimens used 

for the test were of dimensions 100 × 6.5 × 3 mm3. The vertical burning test was 

carried out on a CFZ-2 type instrument (Jiangning Analysis Instrument Co., China) 

according to the UL 94 test standard. The specimens used were of dimensions 130 × 

13 × 3 mm3. Flammability of the samples was characterized by cone calorimeter (Fire 

Testing Technology, UK) according to ISO 5660. Samples were irradiated 

horizontally at a heat flux of 50 kW m-2. All measurements were repeated three times 

and the results averaged. 

Transmission electron microscopy analysis was conducted using a JEOL 

JEM-2100 instrument with an acceleration voltage of 100 kV. Scanning electron 

microscopy (SEM) was performed on the cross-sections of the samples using a 

Hitachi X650 scanning electron microscope. The specimens were previously coated 

with a conductive layer of gold. Tensile properties of the samples were tested with a 

WSM-20KB universal testing machine (Changchun, China) according to 

GB/T1040-92. At least five samples were tested to obtain average values. DSC 

analysis was carried out on a Q2000 analyzer (TA Co., USA). Each sample was 

heated from -40 oC to 200 oC at a heating rate of 10 oC/min. The nitrogen flow rate 
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was 50 ml/min. The crystallinity (χc) in all samples is calculated as follows:  
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0

c 
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


H

Hm  

where ΔHm is the measured melting enthalpy (from DSC) and ΔH0 is the enthalpy of 

pure PBS crystal (200 J/g) [14].  

Thermogravimetric analysis (TGA) was performed on a SDT 2960 simultaneous 

DTA-TGA instrument from room temperature to 600 oC using about 10.0 mg of 

samples heated at constant heating rate of 10 °C/min. The samples were run in 

triplicate; the temperature reproducibility of the instrument is ± 1 °C while the mass 

reproducibility is ±0.2%. The theoretical TG curve was computed by linear 

combination between the TG curves of neat PBS, MP and nanofillers. The formula is 

as follows: 

.1,)()()()(W expexpexpomposite  zyxTWzTWyTWxT NanofillerMPPBSCth  

where Wexp(T)PBS: experimental TG curve of the pure PBS; Wexp(T)MP: experimental 

TG curve of MP; Wexp(T)nanofiller: experimental TG curve of graphene or POSS; x, y, 

and z are the weight percentages of the PBS, MP, and nanofiller in the composites, 

respectively. 

TG-IR was performed using the SDT 2960 simultaneous thermogravimetric 

analyzer that was linked to the Nicolet Smart iTR iS10 FTIR spectrophotometer. 

About 10.0 mg of the sample was put in an alumina pans and heated from 30 to 

600 °C. The heating rate was 10 °C/min (nitrogen atmosphere, flow rate of 100 

ml/min). 

3. Results and discussion 
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3.1. Morphology 

Fig. 1 shows the TEM image of the sample PBS-1, PBS-4 and PBS-7. In Fig. 1(a) 

melamine phosphate particles of about 0.2 μm size can be clearly seen. Fig. 1(b) 

clearly shows many POSS particles (indicated by the white circles) with a wide size 

distribution in the range of 10-100 nm, suggesting that the POSS does not disperse at 

a molecular level in the matrix but still at a nanoscale level. As can be observed from 

Fig. 1(c), graphene sheets are uniformly dispersed with a average size of 0.25 um in 

the PBS.  

3.2. Mechanical properties 

The data for the tensile strength and elongation at break of the PBS and flame 

retardant PBS composites were obtained from the computer controlled universal 

tensile testing machine. The data for the mechanical properties are summarized in 

Table 2. It can be seen that the tensile strength is reduced after the addition of 20.0 wt% 

MP. As is well known, the additives at high loading usually cause a negative impact 

on the mechanical properties of the polymer matrix, which is also reported in earlier 

literature [15, 16]. However, the incorporation of nano-additives exhibits 

reinforcement on the PBS, which could be attributed to the strong interfacial 

interaction between the nanofillers and PBS matrix. Moreover, the flame retardant 

PBS composites with nano-additives exhibit smaller elongation at break compared to 

the virgin ones.  

To evaluate the effect of POSS and graphene on the mechanical properties of the 

PBS matrix, SEM is employed to investigate the fracture surfaces of the samples. Fig. 
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2 shows SEM images of the fractured surface of PBS, PBS-1, PBS-4 and PBS-7. As 

can be observed from Fig. 2(a), pure PBS displays a very smooth surface due to the 

brittleness of semicrystalline PBS. Fig. 2(b) shows a rough fracture surface of PBS-1, 

but there is no clear agglomeration of melamine phosphate. After adding POSS and 

graphene, much rougher fracture surface is observed from Fig. 2(c) and (d), indicating 

that the nano-additives have stronger interfacial interactions with PBS matrix. 

3.3. Effect of nano-additives on the crystallinity of PBS 

Since PBS is a semicrystalline polymer [17], its mechanical properties should strongly 

depend on its crystallinity. Therefore, DSC is employed to investigate the influence of 

incorporating fillers on the crystallinity behaviors of pure PBS and its composites. Fig. 

3 gives DSC thermograms during the second heating cycle, and the relevant data are 

summarized in Table 3. The melting temperature (Tm) of pure PBS is 109.7 oC, and no 

significant change of Tm for flame retardant PBS is observed, indicating that the 

incorporation of flame retardant additives exhibits little influence on the Tm of PBS. 

The crystallinity of flame retardant PBS composites is reduced after adding the 

nanofillers. Generally, the reduction of crystallinity has a negative impact on the 

mechanical properties of the composites. However, the increased tensile strength of 

PBS composites is observed after adding the nanofillers, which can be probably 

attributed to the nano-reinforced effect of graphene and POSS in the polymer matrix 

and strong interfacial interactions between both components [18].  

3.4. Thermal-oxidative properties of flame retardant PBS samples 

The typical TG and DTG traces for pure PBS and flame retardant PBS 
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composites with POSS and graphene under air atmosphere are presented in Fig. 4 and 

Fig. 5, respectively. The onset decomposition temperature (Td) can be defined as the 

temperature at which the weight loss is 5%. The relative thermal stability of the 

samples was evaluated by the temperature of 5% weight loss, the temperature of 

maximum rate of weight loss (Tmax) and the percent char yield at 550 oC. These data 

are listed in Table 4.  

The onset decomposition temperature for virgin PBS is 354 oC, and its TGA trace 

shows only one weight-loss stage. The stage is in the temperature range of 330-430 oC 

corresponding to a single DTG peak at 410 oC (Tmax) and the weight loss is about 

99.6 % leaving no char residue. For the flame retardant PBS sample containing MP 

only, the Td is lower than PBS, due to the early decomposition of melamine phosphate 

(Td = 264 oC) [19], which then interacts with PBS and helps in improving the char 

yield. 

In the case of the flame retardant PBS composites with POSS and graphene, their 

thermal degradation process presents two mass loss steps in the temperature range of 

300-350 oC and 350-400 oC. The first mass loss step is ascribed to the decomposition 

of MP (~15wt% loss) while the second is attributed to the decomposition of PBS 

matrix. The Td of PBS composites is around 330 oC, which is lower than that of PBS, 

indicating the presence of MP could catalyze the decomposition of PBS before 350 oC. 

Furthermore, the Tmax of PBS composites is also lower than pure PBS. However, the 

residual char is increased in all samples compared to PBS-1 (melamine phosphate 

containing sample). The best result is shown by flame retardant PBS sample 
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containing 2wt% graphene with 14% char yield. The well dispersed and special 

structure of graphene in the polymer matrix is expected to be an effective barrier to 

the permeation of flammable gases. Similar result was also found in previous 

graphene-based nanocomposites [20, 21]. Hence, it can be deduced that the 

incorporation of graphene into the PBS matrix is beneficial to promote the formation 

of char layer and improve the thermal-oxidative stability of the char. 

To further investigate the MP-nanofiller synergism, the weight difference 

between the experimental and theoretical TG curves for PBS-4 and PBS-7 are 

presented in Fig. 6. As can be seen, Td in the experimental curves is higher than that in 

the calculated ones, suggesting the improvement of thermal-oxidative stability. 

However, at the temperature range of 380~500 oC, the experimental curves show 

faster thermal degradation process than the calculated ones. Because the calculated 

curves are obtained by linear combination among the noninteracting individual 

components in the system [22], actually, the catalyzing effect of MP on the 

depolymerization of PBS indeed occurs.  

3.5. Flammablity 

The effect of POSS and graphene on the LOI values and UL-94 results of the 

flame retardant PBS composites is presented in Table 1. Pure PBS exhibits an LOI 

value of 23.0% and is highly combustible, showing no classification in the UL-94 test. 

When 20 wt% of MP is added, the LOI value of PBS-1 goes up to 31.5%, but it still 

does not pass the UL-94 V0 rating. Adding POSS shows a slight increase in LOI 

value compared to that of PBS-1. When 0.5-2.0 wt% of MP is substituted by graphene, 
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LOI value is higher than that with melamine phosphate alone. An optimum is 

observed at 2.0 wt% of graphene and 18.0 wt% of MP, which can pass the UL-94 V0 

rating in vertical burning test. In the presence of melamine phosphate, each 

nano-additive produces a higher relative increases in LOI values. At the high loadings 

of the nano-additive (≥1.0 wt%), the flame retardant effect of graphene is superior to 

that of POSS. 

Cone calorimeter tests provide abundant information on the combustion 

properties of the investigated materials, including the time-to-ignition (TTI); the heat 

release rate, and in particular the peak value (PHRR); the time-to-PHRR (tPHRR); the 

total heat release (THR); the mass loss; and the amount of smoke produced during 

combustion. These data and some derived parameters such as the Fire Growth Rate 

Index (FIGRA) are presented in Table 5. Fig. 7 illustrates the HRR, the THR and the 

mass loss as functions of time for formulations filled with POSS (a, b and c) and 

graphene (d, e and f).  

After ignition, PBS shows one single well-defined peak in the HRR curve with 

the peak value of 1144 kW/m2. Presence of MP in PBS-1 decreases the PHRR value 

of PBS by 40% and increases the time-to-PHRR. Prior to the PHRR, there is a 

shoulder peak in HRR curves. In the formulation containing 0.5wt% POSS (PBS-2), 

there is no significant change in PHRR compared to PBS-1 and also adding more 

POSS results n no further decrease in PHRR. Combining graphene and MP in PBS 

results in a significant decrease in PHRR and THR values. For the sample PBS-7, the 

PHRR and THR are significantly reduced, by 63% and 23%, respectively, compared 
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to those of pure PBS.  

Fig. 8 presents the digital photos of the residue char for all samples after the cone 

calorimeter tests. Apparently, pure PBS leaves no residue char after burning and 

flame retarded PBS with MP alone gives the cracked char residue. With the addition 

of POSS, flame retardant PBS composites produce more char residue relative to the 

former systems, but the central part of this char layer still burns, indicating the poor 

thermal-oxidative resistance. While for flame retardant PBS containing 2wt% 

graphene, a continual and swelling char forms, which can prevent the heat and mass 

transfer between the flame and the polymer substrate, and thus protect the underlying 

materials from further burning and retard the pyrolysis of polymers. As a result, 

PHRR and THR values are significantly reduced. 

As can be observed from Fig. 7 and Table 5, the TTI of the flame retardant PBS 

decreases compared to pure PBS, while the tPHRR increases. The decrease of the TTI 

for the flame retardant PBS in comparison with the PBS matrix is probably due to the 

presence of MP and nanoparticles might catalyse the PBS decomposition. The 

increase of the tPHRR can be attributed to the formation of a more stable char barrier, 

which efficiently retards the heat and mass transfer in fire. Moreover, the combustion 

time increases from 115 s for pure PBS to 134 s and 149 s for the PBS-4 and PBS-7, 

respectively, implying the improved flame resistance. 

The fire growth rate index (FIGRA), which indicates the burning propensity of a 

material, has been calculated from the ratio of PHRR and time to PHRR for all 

samples in Table 5. It can be clearly seen that graphene is more effective in reducing 
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the fire growth compared to POSS. The FIGRA value further decreases with higher 

loading of graphene. With regard to smoke production, all the samples containing 

flame retardant show higher total smoke production compared to pure PBS. The 

increase in smoke formation in flame retarded samples is due to incomplete 

combustion of the resin formulation.  

The overall fire performance from cone calorimetry of different samples is 

evaluated by plotting the THR versus the ratio of PHRR to TTI as shown in Fig. 9. 

The THR represents the propensity for fire to burn over a prolonged time period while 

PHRR/TTI represents the rate of fire growth [23]. With the direction that the arrow 

points to, the flame retarded samples have better fire performance. It can be seen that 

PBS-7 has best flame resistance. 

Based on the results discussed, it could be concluded that graphene shows more 

effective fire retardance than POSS in combination with MP. Combining MP and 

graphene significantly decreases the PHRR, the THR, the mass loss rate and FIGRA, 

which is attributed to the barrier effect of graphene on the formation of char residue.  

3.6. Volatilized products of PBS and flame retardant PBS analyzed by TG-FTIR 

The TG-FTIR technique can give information about the pyrolysis products, 

which provides insight into the thermal degradation mechanisms. In this study, the 

PBS, PBS-4 and PBS-7 samples are chosen to perform TG-FTIR tests to identify its 

gas products during the thermal degradation, with pure PBS as the control sample. 

The FTIR spectra obtained at the maximum evolution rate for the PBS, PBS-4 

and PBS-7 are shown in Fig. 10. Some of the gaseous decomposition products of the 
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PBS are unambiguously identified by characteristic strong FTIR signals, such as 

-CH2- groups of succinic acid and butanediol (2820-2980 cm-1), CO2 (2360 cm-1), 

succinic anhydride (1810 and 1760 cm-1), and aliphatic ethers (1100-1250 cm-1) [24, 

25]. Moreover, it can be seen that the peak at around 1810 cm-1 splits into two bands. 

This is mainly caused by different products containing carbonyl group being formed 

during the degradation of PBS, including carboxylic acid and anhydride (1750 and 

1820 cm-1) [25]. It is well-known that depolymerization is the main process associated 

with the thermal degradation of polyesters. In the process of depolymerization, the 

main decomposition products of PBS are succinic acid and butanediol, CO2, succinic 

anhydride, and aliphatic ethers.  

The FTIR spectra of pyrolysis products of PBS-4 and PBS-7 at the maximum 

evolution rate exhibit characteristic bands of CO2 (2360 cm-1), succinic acid and 

butanediol (-OH groups: 3400-3700 cm-1 and -CH2- groups: 2980-2850 and 

1200-1300 cm-1), succinic anhydride (1750 and 1820 cm-1), which is similar to those 

of pure PBS. Additionally, the appearance of the new absorption band at 927 cm-1 is 

attributed to the the release of NH3 derived from MP, which is overlapped by the 

bands of C-H deformation vibration of gaseous alkene [25]. Ammonia is effective for 

depolymerization of polyesters, such as poly(ethylene terephthalate) and polylactide 

[26, 27]. As is also well-known, polyesters are sensitive to acidic species, which 

catalyses the depolymerization of macromolecular chain, especially at higher 

temperature, as shown schematically below: 
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The absorbance of pyrolysis products for PBS, PBS-4 and PBS-7 vs time is 

revealed in Fig. 11. It can be seen that the maximum evolution rate of pyrolysis 

products for PBS-4 and PBS-7 occurs at 36.0 min and 34.0 min, respectively, which is 

earlier than that of pure PBS (39.0 min). This can be interpreted that the presence of 

MP catalyzes the thermal decomposition of PBS. The acidic species and ammonia 

degraded from MP promote the formation of a protective char layer, which could 

prevent the combustible gases from transferring to the surface of the materials and 

feed the flame. Meanwhile, the release of nonflammable gases (such as CO2 and NH3) 

can dilute the combustible gas, thus reduce the HRR and THR values.  

4. Conclusion 

POSS and graphene were used as nanofillers to produce flame retardant 

poly(butylene succinate) composites by melt blending. The addition of graphene 

exhibited superior flame retardance to POSS. With 18wt% MP and 2w% graphene, 

PBS can achieve the LOI value of 34.0% and UL-94 V0 grade. Though the presence 

of nanofillers reduced the crystallization of PBS, the tensile strength of flame 

retardant PBS composites showed insignificant reduction compared with that of pure 

PBS due to the strong interfacial interactions between nanofillers and PBS matrix. 

The results from TGA and cone calorimeter indicated that the addition of both POSS 

and graphene improved the char yield, but incorporating graphene into PBS displayed 

better thermal-oxidative resistance in char layer. TG-FTIR results showed that the 
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main decomposition products of PBS-7 were hydrocarbons, CO2, acid anhydride and 

aliphatic ethers, which was similar to those of PBS, however, much less flammable 

gas products were released relative to pure PBS. Compared with POSS, graphene 

exhibited better combined properties of mechanical, thermal and flame retardant 

behaviors due to the nano-reinforcement and barrier effect of its unique structure, 

which was more suitable to manufacture flame retardant PBS composites. 
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Captions 

Table 1. Formulations and flame retardancy of PBS and flame retardant PBS.  

Table 2. Mechanical properties of PBS and flame retardant PBS composites. 

Table 3. DSC data of PBS and flame retardant PBS composites.  

Table 4. TG data of PBS and flame retardant PBS composites in air atmosphere. 

Table 5. Cone calorimeter results for flame retardant PBS composites at 50 kWm-2 

heat flux. 

Figure 1. TEM images of (a) PBS-1; (b) PBS-4; (c) PBS-7. 

Figure 2. SEM images of the fractured surface of (a) PBS, (b) PBS-1, (c) PBS-4 and 

(d) PBS-7: (1) × 500 and (2) × 2000. 

Figure 3. Melting peaks of pure PBS and flame retardant PBS composites obtained 

from DSC curves. 

Figure 4. TG and DTG profiles of PBS and flame retardant PBS containing POSS 

composites under air atmosphere. 

Figure 5. TG and DTG profiles of PBS and flame retardant PBS containing graphene 

composites under air atmosphere. 

Figure 6. Weight difference between the experimental and theoretical TG curves for (a) 

PBS-4 and (b) PBS-7. 

Figure 7. Heat release rate, total heat release, and mass loss versus time curves for 

PBS and flame retardant PBS/POSS (a, b, c) and flame retardant PBS/graphene 

(d, e, f). 

Figure 8. Digital photos of cone burnt samples of PBS and flame retardant PBS 

composites after 300 sec of cone calorimeter test. 

Figure 9. Fire performance evaluation of different samples in accordance to a plot of 

total heat release (fire duration) and PHRR/TTI (propensity to cause a rapidly 
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growing fire) on exposure to a 50 kW/m2 heat flux. 

Figure 10. FTIR spectra of PBS, PBS-4 and PBS-7 at the maximum evolution rate. 

Figure 11. Absorbance of pyrolysis products for PBS, PBS-4 and PBS-7 vs time: 

hydrocarbons; CO2; carbonyl compounds and ethers.  
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Table 1. Formulations and flame retardancy of PBS and flame retardant PBS.  

Samples 

Composition (wt%) Flame retardancy 

PBS MP POSS Graphene 
LOI ± 0.5 

(%) 

ΔLOI a 

(%) 

UL-94 

rating 

PBS 100 0 0 0 23.0 -- NR 

PBS-1 80 20 0 0 31.5 8.5 V1 

PBS-2 80 19.5 0.5 0 32.5 9.5 V1 

PBS-3 80 19 1.0 0 32.0 9.0 V1 

PBS-4 80 18 2.0 0 33.0 10.0 V1 

PBS-5 80 19.5 0 0.5 32.0 9.0 V1 

PBS-6 80 19 0 1.0 33.5 10.5 V1 

PBS-7 80 18 0 2.0 34.0 11.0 V0 

aΔLOI = LOI of sample - LOI of PBS. 

 

 

Table 2. Mechanical properties of PBS and flame retardant PBS composites. 

Samples Tensile strength (MPa) Elongation at break (%) 

PBS 30.8 ± 0.4 17.9 ± 1.2 

PBS-1 23.7 ± 0.3 10.5 ± 0.6 

PBS-2 24.5 ± 0.5 12.2 ± 1.1 

PBS-3 26.3 ± 0.3 10.6 ± 0.8 

PBS-4 29.6 ± 0.6 8.3 ± 0.7 

PBS-5 25.4 ± 0.8 11.4 ± 1.3 

PBS-6 28.9 ± 0.3 12.2 ± 1.5 

PBS-7 30.2 ± 0.6 9.5 ± 0.4 
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Table 3. DSC data of PBS and flame retardant PBS composites. 

Samples Tm (oC) ΔHm (J/g) Xc (%) 

PBS 109.7 55.1 27.5 

PBS-1 107.6 38.1 19.1 

PBS-2 108.9 37.7 18.9 

PBS-3 109.8 33.1 16.6 

PBS-4 110.3 26.6 13.3 

PBS-5 108.8 51.6 25.8 

PBS-6 107.9 50.2 25.1 

PBS-7 107.8 43.4 21.7 

 

 

 

Table 4. TG data of PBS and flame retardant PBS composites in air atmosphere. 

Samples Td ± 0.5 

(oC) 

Tmax ± 1.0 

(oC) 

Char residue at 550 oC ± 0.5 

(%) 

PBS 354 410 0.4 

PBS-1 333 378 7.8 

PBS-2 331 376 10.4 

PBS-3 332 374 11.5 

PBS-4 332 380 9.4 

PBS-5 334 378 13.1 

PBS-6 331 379 11.5 

PBS-7 329 379 14.0 

 

 

 

 

 

 

 

 

 



 31 

 

 

Table 5. Cone calorimeter results for flame retardant PBS composites at 50 kWm-2 

heat flux. 

Samples 

TTI  

(s) ± 

2 

Flameout  

(s) ± 2 

Peak HRR  

(kW m-2) 

± 30 

FIGRA 

(kW m-2 

s-1)  

THR 

 (MJ m-2) 

± 0.5 

Smoke (m2 m-2) 

± 10 

at 60s at 180s 

PBS 34 149 1144 8.2 63.8 34 470 

PBS-1 35 192 691 3.8 63.2 92 619 

PBS-2 24 171 650 3.9 63.0 106 596 

PBS-3 24 162 682 4.0 63.8 102 687 

PBS-4 23 157 689 4.4 62.1 142 743 

PBS-5 27 198 632 3.5 63.7 46 490 

PBS-6 24 191 550 3.1 63.4 73 596 

PBS-7 30 181 425 2.6 49.5 98 578 

 

 

 

 

 

 


