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Abstact 

Detection of water content in hydraulic oil is critical to identify abnormal wear 

conditions for purpose of predicting possible machinery failure in hydraulic systems. The 

paper reports a feasibility study of measuring the water content in the hydraulic oil using a 

ZnO thin film surface acoustic wave (SAW) device combined with the standard distillation 

method. The shift of resonant frequency of the SAW device increases with the increase of 

water content in hydraulic oil, and reaches 919 kHz for 0.80 wt.% water content in oil 

samples. The results indicate that the ZnO SAW sensor can detect water content in hydraulic 

oil with high sensitivity.   
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1. Introduction 

Water content in hydraulic oil is potentially harmful to the hydraulic systems and may 

even cause catastrophic damage to the machines. Water molecules can speed up oxidation 

and reduce life span of the systems by ways of rusting, corroding, etching and depositing. 

Therefore, measurement of the water content in hydraulic oil is extremely crucial. But 

quantitative water detection in oils is difficult because of perturbation of other impurity 

substances including dirt, soot, alkanes and synthetic compounds. So far, several qualitative 
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and quantitative techniques such as electrostatic extraction [1], Karl Fischer titration test [2], 

distillation [3] and electric dehydration method [4] have been reported to determine water 

content in oils. Among them, the standard distillation method (Dean and Stark distillation 

method [5]) is regarded to be one of the most mature detecting methods, but is a fairly 

burdensome method and needs a substantial sample volume to guarantee the accuracy. The 

achievable detection limits of water contents in oils are between 0.05 and 25 wt.% [6]. 

Surface acoustic wave (SAW) devices are one of the key components for electronics, 

microsensors, and microsystems. SAW devices have been widely studied to use as a sensor to 

detect gas, humidity and moisture owing to their high sensitivity, small size, and ability to be 

interfaced with passive wireless systems, etc [7, 8]. For instance, Khan et al. studied SAW 

device based fluorine gas sensor integrated on ZnO nano thin film with palladium (Pd) on top 

as sensing layer [9]. Murakawa et al. integrated ionic liquid on a SAW resonator to detect 

hydrogen sulfide gas [10]. A SAW humidity sensor based on electrospun nanofibers sensitive 

layer was reported to have a sensitivity of 75 kHz/%RH from 20 to 90% RH [11]. SAW 

devices based on Rayleigh mode were also used for measuring a small variation of moisture 

in gas medium with high accuracy [12, 13].  

Here, we firstly propose a novel way to measure water content in hydraulic oil by using 

SAW device as humidity sensor combined with the standard distillation method. It is shown 

that SAW devices can be used to detect water content down to 0.01 wt% in oils, overcoming 

the limitation of the distillation method, demonstrating its potential for the development of 

portable sensor system for monitoring the quality of hydraulic oil. 

2. SAW sensor and measurement setup 

The piezoelectric thin film SAW sensors were fabricated on a 2-inch Corning glass 2318 

substrate with a thickness of 1.1 mm. A 3-µm-thick ZnO thin film was deposited on the glass 

as piezoelectric layer by direct current (dc) reactive magnetron sputtering method. The 

deposition conditions were optimized [8, 14]: substrate temperature of 100 °C, deposition 

pressure of 2 Pa, O2/Ar mixture gas at a ratio of 50/100 sccm, sputtering power of 200 W, and 

bias voltage of −75 V. Fig. 1 shows a SEM picture of the ZnO thin film on the glass substrate. 

A clear columnar structure with large grain sizes indicates c-axis orientation of the ZnO film, 

which is crucial for the performance of SAW devices. Aluminum in thickness of 750 nm was 



used to fabricate the interdigitated transducers (IDTs), which was deposited by sputtering and 

patterned by lift-off process.  

 
Fig. 1 Cross-section view of ZnO thin film on glass substrate  

 

 
FIG. 2 (a) Schematic diagram of the experimental setup, (b) the fabricated SAW device, (c) an enlarged 

view of the IDT electrodes and (d) schematic view of the SAW device. 

The distance between the two IDT electrodes was 20λ, with the wavelength λ determined 

by the IDT pitch. The reflector was in the IDTs to enhance the performance of the SAW 

devices. The IDT electrodes are composed of 60 pairs of fingers. For this research, only the 



SAW devices with wavelength of λ=16 μm were used. Our previous work [16, 17] has 

demonstrated the fabricated SAW devices with a wavelength of λ=16 μm have the Rayleigh 

wave mode, performed well with resonant frequencies round ~171.7 MHz and have a high 

sensitivity to humidity. Fig. 2(b) and (c) are the photo images of the SAW device used for 

sensing experiments.  

The measurement setup is shown in Fig. 2(a). Oil (petroleum-based hydraulic oil, 

L-HM46) containing various contents of water in a conical flask were heated on a hotplate. 

The conical flask was connected to a plastic cylinder chamber in a sealed way. The chamber 

was capped with thermal insulation foam to avoid thermal radiation from the hotplate which 

will influence the gas temperature in the chamber, hence the measurement accuracy. The 

SAW device was mounted in the chamber connected to the flask. The evaporated water 

moisture from the oil will be absorbed by the hydrophilic ZnO surface of the SAW device, 

and monitored by tracking the frequency shift based on the principle of SAW humidity sensor. 

Transmission properties of the SAW devices were measured by a network analyzer (Agilent 

E5061B) to analyze the frequency spectrum and frequency shift. A laptop with Labview 

program was used to conveniently control the measurement and collect data from the network 

analyzer. Since the water content ratios greater than 0.1 wt.% can cause severe harm to 

hydraulic systems, the experimental oil specimens in a volume of 50 ml were prepared by 

adopting the method of standard addition with water content ranging from less than 0.01 to 

0.80 wt.%.  

3. Results and discussion 

 
FIG. 3 Transmission spectra of the SAW device for oil samples with different water contents at the heating 



time of 600 s. 

When the SAW device was used to test oil samples with water contents of 0.01, 0.03 and 

0.09 wt.%, it showed a similar characteristic with different resonant frequencies and 

amplitudes under the same heating time of 600 s (Fig. 3). Both of the amplitudes and 

frequency of the SAW device decreased quickly as the amounts of water in the samples 

increased. The characteristics agreed with the non-saturation behavior, which means that the 

SAW device can operate in this range of water contents. Attachment of additional substances 

such as water molecules on the surface of the SAW device will induce a shift of resonant 

frequency and attenuation of amplitude due to the mass loading effect. Since there was no 

absorption of inclusions (additives, soot and debris etc.) on the sensing film during the 

distillation, the mass accumulation is merely caused by moisture on the sensing film. The 

Sauerbery equation [18] gives the linear relationship between resonance frequency shift and 

additional mass attached on the resonator: 

AmCff ∆−=∆ 2
0         (1) 

where C is a constant related to the substrate, and f0 is the resonant frequency, and Am∆  is 

the mass change per unit area.  

 
FIG. 4 Frequency responses and insertion loss of the SAW device with the heating time change.  

Fig. 4 shows the change of resonant frequency and insertion loss of the SAW device 

treated with distilling the oil sample with 0.03 wt.% water. Apparently, the resonant 

frequency and insertion loss decreased continuously as the heating time increased from 0 to 

600 s. More specifically, the maximum frequency shift approximated to 80 kHz and the 

insertion loss was clearly reduced by approximately 5.45 dB, reaching to around -32 dB. 



More detailed observations revealed that the obtained dynamic responses of all the samples 

can be roughly divided into two regions with different slopes relative to humidity. As shown 

in Fig. 4, in the first region with time from 0 to 400 s (Point A to B), the maximum center 

frequency and insertion loss changed slowly with reduction only about 20 kHz and 1 dB, 

respectively. During the period of 0 to 400 s, the sample of hydraulic oil was severely 

emulsified according to the dissolved water content [19], as shown in the left insert of Fig. 4. 

These changes were primarily caused by the increase of temperature. Since little moisture 

was generated in the chamber, small change of mass caused small change of resonant 

frequency of the SAW device according to the equation (1). But in the second region from 

400 to 600 s, the frequency and insertion loss of the sensor had a large change of about 60 

kHz and 4dB, respectively, and the sample became more crystal-clear since water in oil was 

distilled, as shown in the right insert of Fig. 4. The characteristic changes of the sensing are 

mainly correlated to the absorption of moisture from the oil sample. At this stage with the 

steady high temperature, the frequency changed greatly because of the accumulation of more 

water molecules attached on the sensing surface of the SAW device.  

More oil samples were tested with the water contents from less than 0.01 to 0.8 wt.%, as 

shown in Fig. 5. Similarly, the curves in Fig. 5 can be divided into two regions with different 

gradients. Time interval for the first region is different for different samples. In the first 

region, the change of frequency is due to the temperature variation, while in the second one, 

the frequency change is due to the water vapor loading on the SAW sensor. The pre-heating 

time (e.g. 400 s for 0.3 wt.%) for the first region decreased as the water content increased. 

The resonant frequencies of all the samples downshifted slightly with time in the first region, 

but decreased much quicker in the second stage. The larger the water content, the more the 

frequency changed. For the sample with a water content less than 0.01 wt.%, the resonant 

frequency shift was only 34 kHz. However, for the sample with water content of 0.09 wt.%, 

the frequency had a significant change of 389 kHz. Fig. 5(b) shows the frequency shift of the 

samples from 0.2 to 0.8 wt.% in the period of heating time from 450 to 600 s. The resonant 

frequencies of the samples (0.2~0.8 wt.%) fluctuated sharply, and even crossed with each 

other for the period from 500 to 550 s. This might be caused by the scattered formation of 

water vapor on the ZnO thin layer at the non-uniform generating speeds. Although hydraulic 



oil with such high level of water content is difficult to find in the market, it may exist in 

hydraulic systems in bad conditions. 

 
FIG. 5 Frequency shifts of the samples (with water content from 0.01% to 0.09 wt.%) and (b) the samples 

(with water content from 0.2% to 0.8 wt.%) as a function of heating time. 

 
FIG. 6 Resonant frequency shift of all the samples at the heating time of 600s. 

Fig. 6 shows the frequency shift and relative change (Δf/f0) of all the samples as a 

function of water content at the heating time of 600 s. Both of the values of two indicators 

increased when water content increased. For the sample with water content less than 0.01 

wt.%, the frequency shift and Δf/f0 were only 34 kHz and 111 ppm, respectively. However, 

for the sample with 0.80 wt.% water content, the frequency shift and Δf/f0 greatly increased to 

919 kHz and 5300 ppm, respectively. As we can see, the proposed method can detect water 

content in hydraulic fluid with high sensitivity of frequency shift, and has advantages of 

simple operation and time saving (600 s). However, more work needs to be done to find the 



smallest detectable water content, and study the nonlinear relationship between water content 

and frequency shift.  

4. Conclusions 

In summary, a novel method based on the combination of the standard distillation and the 

Rayleigh mode SAW device was proposed to measure water content in hydraulic oils. The 

SAW sensor exhibits a good performance in response to the samples with various water 

contents. The water content in hydraulic oil can be detected from the frequency shift of the 

SAW sensor with high sensitivity. The proposed method provides a possibility to develop a 

portable device for measurement of water content in hydraulic oil in the future. 
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