

IMPROVED SEQUENTIAL AND BATCH LEARNING IN NEURAL NETWORKS

USING THE TANGENT PLANE ALGORITHM

PAUL MAY

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Bolton

June 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bolton Institutional Repository (UBIR)

https://core.ac.uk/display/301020587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ACKNOWLEDGEMENTS

I would like to thank Dr. Charles Lee for his kind patience and numerous helpful

comments over the past years. Our frequent dialogues have helped me to develop as

a research degree student. These lively discussions will be greatly missed. I would

also like to thank Dr. Erping Zhou for her advice and guidance in the later years of the

research. Finally I would like to thank my wife and son for the many years of sacrifice

and for their patience and understanding without which this great journey would not

have been possible

ii

ABSTRACT

The principal aim of this research is to investigate and develop improved sequential

and batch learning algorithms based upon the tangent plane algorithm for artificial

neural networks. A secondary aim is to apply the newly developed algorithms to

multi-category cancer classification problems in the bio-informatics area, which

involves the study of dna or protein sequences, macro-molecular structures, and gene

expressions.

The major contributions of this thesis are summarised as follows. In the first part of

this thesis, sequential and batch learning algorithms based on the tangent plane

algorithm are investigated

• The tangent plane algorithm (TPA) is investigated and compared with the

back-propagation algorithm for three neural network benchmark tasks. The

principal strength of the tangent plane algorithm is that it does not require

manually tuning a learning rate parameter, but instead automatically adjusts

the learning rate to give the correct step size. The algorithm has been further

modified to accept almost zero starting conditions with the expectation that

only the minimum number of weight necessary will be activated during the

training phase. The results show that the tangent plane algorithm gives

improved generalization relative to the back-propagation algorithm, and that

generalization is independent of network size. The limitations of the tangent

plane algorithm are also identified

• A new sequential algorithm is developed referred to as the tangent plane

algorithm for real time recurrent learning (TPA-RTRL), targeted at improving

the stability of the tangent plane algorithm when handling inexact data. The

iii

new algorithm is evaluated and compared with the original gradient descent

real time recurrent learning (GD-RTRL) algorithm for two sequence

recognition tasks. It is shown that using the new TPA-RTRL algorithm to train

a fully recurrent neural network with feedback connections and context units is

more stable than using the GD-RTRL algorithm, especially when the training

data has been corrupted with a small amount of erroneous data.

• A new sequential algorithm referred to as the improved tangent plane

algorithm (iTPA) is developed to further improve the generalization

performance of second tangent plane algorithm. This new algorithm is

evaluated and compared with the original algorithm and the back-propagation

algorithm for three neural network benchmark tasks. The results show that

moving along tangent planes in a direction that encourages weight elimination

improves generalization performance. The results also show that including a

tendency to move laterally in random directions along tangent planes helps the

algorithm to avoid local minima of the error landscape.

• A new batch algorithm referred to as the Gauss-Newton tangent plane

algorithm (GN-TPA) is developed for training small economical networks. This

new algorithm uses a modified Gauss-Newton vector to guide the search

toward the minimum training error. Another improvement is using a novel

neural network structure recently described in the literature as the Extreme

Learning Machine (ELM). The new algorithm is evaluated and compared with

three newly developed network building techniques for three neural network

benchmark tasks. The results show that the new GN-TPA algorithm is very

fast and efficient.

iv

In the later part of this thesis, the newly developed sequential and batch tangent plane

algorithms are applied to real world classification tasks that have proven difficult for

more conventional neural network techniques to solve. Multi-category cancer

classification using gene expression profiles is a difficult task to solve due to the high

dimensionality of the data. Traditionally this is done by combining binary classifiers in

one-versus-one (OVO) or one-versus-all (OVA) schemes, which inevitably involves

increasing the system complexity. Direct classification using artificial neural networks

has been attempted but classification accuracy is known to drop sharply with

increasing number of classes. The results show that the classification accuracy of the

newly developed learning algorithms are comparable with the best learning algorithms

found in the literature on two benchmark gene expression datasets.

v

TABLE OF CONTENTS

List of Figures ix

List of Tables xii

1. Introduction 1

1.1. Motivation 1

1.2. Objectives 4

1.3. Major contribution of the thesis 5

1.4. Organisation of the thesis 7

2. Literature Review 10

2.1. Artificial neural networks 11

2.2. Learning in artificial neural networks 15

2.2.1. First order methods and variants 16

2.2.2. Second order optimization techniques 22

2.3. Generalization capabilities of artificial neural networks 27

2.3.1. Constructive techniques 29

2.3.2. Network pruning techniques 31

2.3.3. Other methods for improving generalization 32

2.4. Multi-category classification using gene expression data 34

3. A comprehensive evaluation of the tangent plane algorithm 38

3.1. Description of the second tangent plane algorithm 39

3.1.1. Derivation of the second tangent plane algorithm 40

3.2. Implementation of the procedure 44

3.3. Estimating weight sensitivity values 45

3.4. Simulations and results 47

3.4.1. Network initialization 48

3.4.2. Simulation problems 48

3.4.3. Error metrics used to determine convergence 49

3.4.4. Discussion of results 50

3.4.5. Discussion of weight sensitivity values 61

3.5. Problems with the tangent plane algorithm 65

vi

4. A new sequential tangent plane algorithm for fully recurrent

neural networks 67

4.1. Improved stability in the tangent plane algorithm 68

4.1.1. A brief introduction to recurrent neural networks 68

4.1.2. Derivation of the new TPA-RTRL algorithm 71

4.2. Implementation of the new procedure 77

4.3. Simulations and results 77

4.3.1. Network initialization 78

4.3.2. Simulation problems 78

4.3.3. Error metrics used to determine convergence 80

4.3.4. Discussion of results 80

4.4. Summary 90

5. A new sequential tangent plane algorithm for feed-forward

neural networks 91

5.1. Improved generalization in the tangent plane algorithm 92

5.1.1. A brief introduction to pruning and weight decay 92

5.1.2. Derivation of the new iTPA algorithm 95

5.2. Implementation of the new procedure 100

5.3. Simulations and results 101

5.3.1. Network initialization 103

5.3.2. Simulation problems 103

5.3.3. Error metrics used to determine convergence 104

5.3.4. Discussion of results 105

5.3.5. Comparison of the different algorithms 112

5.4. Summary 113

6. A new batch tangent plane algorithm for feed-forward neural

networks 115

6.1. A new batch tangent plane algorithm 116

6.1.1. Derivation of the new GN-TPA algorithm 117

6.1.2. Solving tangent plane normal equations 121

6.1.3. Implementation of the procedure 122

6.2. Simulations and results 122

6.2.1. Network initialization 123

6.2.2. Error metrics used to determine convergence 124

vii

6.2.3. Simulation problems 124

6.2.4. Discussion of results 125

6.3. Problems with the batch tangent plane algorithm 130

7. Batch learning by approaching tangent planes algorithm in

the extreme learning machine 131

7.1. Improving the convergence and efficiency of the batch tangent

plane algorithm 132

7.1.1. A brief introduction to the ELM algorithm 132

7.1.2. Derivation of the GN-TPA algorithm 134

7.1.3. Solving the tangent plane normal equations 135

7.1.4. The stopping criteria 139

7.1.5. Implementation of the procedure 139

7.1.6. Relationships with existing methods 140

7.2. Simulations and results 141

7.2.1. Network initialization 142

7.2.2. Error metrics used to determine convergence 143

7.2.3. Simulation problems 143

7.2.4. Discussion of results 145

7.3. Summary 154

8. Multi-category cancer classification using the tangent plane

algorithm 156

8.1. The multi-category classification problems 158

8.2. The sequential learning algorithm - iTPA-OVA 162

8.3. The batch learning algorithm – GN-TPA 163

8.4. Discussion of results for individual algorithms 164

8.4.1. Error metrics used in the simulations 164

8.4.2. The iTPA-OVA algorithm 165

8.4.2.1. The lymphoma problem 165

8.4.2.2. The GCM problem 167

8.4.3. The GN-TPA algorithm 171

8.4.3.1. The lymphoma problem 171

8.4.3.2. The GCM problem 173

8.5. Comparison of the different algorithms 177

8.5.1. Network initialization 177

viii

8.5.2. Results and discussion 178

8.6. Summary 181

9. Conclusions and future work 183

9.1. Conclusions 183

9.2. Recommendations for further work 189

Bibliography 192

Appendix A Program development A-1

Appendix B Class diagram of data structure B-1

Appendix C Testing strategy and test data C-1

Appendix D Implementation of iTPA algorithm D-1

ix

LIST OF FIGURES

2.1 An example of a feedforward neural network with one hidden

layer

12

2.2 A cascade neural network with three input units, two hidden units

and one output unit

13

2.3 An example of a recurrent neural network with one output layer 14

2.4 Error surface defined over two dimensional weight space 17

3.1 The structure of a multilayered feedforward neural network of

units {uj}

40

3.2 Movement from the present position in weight space to the foot of

the perpendicular of a tangent plane

41

3.3 Typical convergence behaviour of the tangent plane algorithm on

the 6-bit parity problem

52

3.4 Typical convergence behaviour of the backpropagation algorithm

on the 6-bit parity problem

52

3.5 Typical convergence behaviour of the tangent plane algorithm

with the teaching values randomised

53

3.6 Typical convergence behaviour of the backpropagation algorithm

with the teaching values randomised

53

3.7 Typical generalization behaviour of the tangent plane algorithm on

the hearta problem

58

3.8 Typical generalization behaviour of the backpropagation algorithm

on the hearta problem

58

3.9 Typical generalization behaviour of the tangent plane algorithm on

the cancer problem

60

3.10 Typical generalization behaviour of the backpropagation algorithm

on the cancer problem

60

3.11 Importance coefficient histogram for the tangent plane algorithm

(cancer problem).

63

3.12 Importance coefficient histogram for the backpropagation

algorithm (cancer problem).

63

3.13 Importance coefficient histogram for the tangent plane algorithm

(hearta problem).

64

3.14 Importance coefficient histogram for the backpropagation

algorithm (hearta problem).

64

x

4.1 An example of a fully recurrent neural network with one output

unit, one hidden unit, and two input units.

69

4.2 Movement from the present position to the foot of the

perpendicular to the tangent plane of constraint surface

72

4.3 Typical convergence behaviour of the TPA-RTRL algorithm on

the Xor problem with one unit trained to match the teaching signal

83

4.4 Typical convergence behaviour of the GD-RTRL algorithm on the

Xor problem with one unit trained to match the teaching signal

83

4.5 Typical learning curves of the TPA-RTRL algorithm on the simple

sequence problem for a network with four processing units.

86

4.6 Typical learning curves of the GD-RTRL algorithm on the simple

sequence problem for a network with four processing units.

86

4.7 Learning curves of the TPA-RTRL algorithm for a network with

four processing units.

87

4.8 Learning curves of the GD-RTRL algorithm for a network with four

processing units.

87

4.9 Typical convergence behaviour of the TPA-RTRL algorithm on

the henon map time series prediction problem

89

4.10 Typical convergence behaviour of the GD-RTRL algorithm on the

henon map time series prediction problem

89

5.1 The structure of a multilayered feedforward neural network of

units {uj}

94

5.2 Movement from the present position a to the point e inclined at an

angle β to the tangent plane to the constraint surface

95

5.3 Typical generalization behaviour of the new iTPA algorithm on the

two spiral problem

107

5.4 Typical generalization behaviour of the second tangent plane

algorithm on the two spiral problem

107

5.5 Importance coefficient histograms for the new iTPA algorithm

(henon map problem)

109

5.6 Importance coefficient histograms for the second tangent plane

algorithm (henon map problem).

109

5.7 Importance coefficient histograms for the new iTPA algorithm

(housing price problem).

111

5.8 Importance coefficient histograms for the second tangent plane

algorithm (housing price problem).

111

xi

6.1 Typical training curves generated by the batch-tangent plane

algorithm on the additive function approximation problem

127

6.2 Typical training curves produced by the Rprop algorithm on the

additive function approximation problem

127

6.3 Typical training curves produced by the batch-tangent plane

algorithm on the breast cancer problem

129

6.4 Typical training curves produced by the Rprop algorithm on the

breast cancer problem

129

7.1 Typical training and generalization curves produced by the ELM-

tangent plane algorithm on the additive problem

147

7.2 Typical training and generalization curves produced by the

Cascade algorithm on the additive problem

147

7.3 Typical training and generalization curves produced by the

sequential training technique on the additive problem

148

7.4 The AIC at each training step for the ELM-TPA algorithm on the

additive function problem

148

7.5 Plot of the model output generated by the ELM-tangent plane

algorithm on the Henon map problem

150

7.6 Typical training and generalization curves produced by the ELM-

tangent plane algorithm on the Henon map problem

150

7.7 Typical training and generalization curves produced by the

Cascade algorithm on the Henon map problem

151

7.8 Typical training and generalization curves produced by the

sequential training technique on the Henon map problem

151

7.9 Typical training and generalization curves produced by the ELM-

tangent plane algorithm on the housing estimation problem

153

7.10 Typical training and generalization curves produced by the

Cascade algorithm on the housing estimation problem

153

7.11 Training and generalization curves produced by the sequential

training technique on the housing estimation problem

154

8.1 Comparison of classification accuracy for different categories on

the GCM dataset

169

8.2 Comparison of classification accuracy for different categories on

the GCM dataset

175

8.3 Comparison of classification errors on the DLBCL tumour class

for each selected gene number

179

xii

8.4 Comparison of classification errors on FL tumour class for each

selected gene number

180

8.5 Comparison of classification errors on B-CLL tumour class for

each selected gene number

180

LIST OF TABLES

3.1 Mean number of steps to converge for standard networks with

different numbers of hidden units on 6-bit parity

50

3.2 Mean number of steps to converge on 6-bit parity for networks

trained using fuzzy data

53

3.3 Training set error and testing set error for different sized networks

with training terminated using early stopping

56

4.1 Mean number of steps to converge and number of successful

trials for both algorithms on Xor problem

81

4.2 Weight matrix for Xor with one-cycle delay 81

4.3 Mean number of steps to converge and success rate on the

simple sequence problem

84

4.4 Mean number of steps to converge and success rate on the

simple sequence problem with n (%) of teaching values

randomised

84

4.5 Number of epochs trained and test set error for the henon map

time series prediction problem.

87

5.1 Classification error on the training set and test set, mean number

of steps to converge, and number of success trials for different

values of the weight sensitivity parameters

104

5.2 Results of a t-test comparing the mean test errors of the different

algorithms.

110

6.1 Training set error and test set error for different size networks with

training terminated using early stopping:

124

7.1 Training set error and test set error for three problem domains

using: (a) ELM-TPA algorithm, (b) cascade algorithm, and (c)

orthogonal sequential training technique

144

8.1 Partitioning of the GCM_training.res dataset into training and test

samples.

157

xiii

8.2 Partitioning of the Lymphoma dataset into training and test

samples.

159

8.3 Classification accuracy on the Lymphoma dataset for different

algorithms

164

8.4 Classification accuracy (%) on the GCM dataset for different

algorithms

165

8.5 Confusion matrix obtained for iTPA-OVA on the GCM problem. 168

8.6 Classification accuracy on the Lymphoma dataset for different

algorithms

170

8.7 Optimum values for the parameters of ELM-TPA for each

selected gene number

170

8.8 Classification accuracy on the GCM dataset for different

algorithms

171

8.9 Optimum values for the parameters of ELM-TPA for each

selected gene number

172

8.10 Confusion matrix obtained for ELM-TPA on the GCM problem. 174

8.11 Results of a t-test comparing the mean test set errors for the two

algorithms.

177

Chapter 1 : Introduction

-1-

Chapter 1

INTRODUCTION

1.1 Motivation

The back propagation algorithm [1] is an iterative procedure for training the weights of

a multi-layered feed-forward neural network to minimise a given error (or cost)

function, typically the sum of square error. Geometrically, the error function defines a

surface over weight space. At each iteration of the procedure, the weights are

adjusted in the direction in which the error surface decreases most rapidly. The

direction is given by the negative gradient of the error surface at the current point in

weight space. The magnitude of the modification is given by the magnitude of the

gradient and a positive constant called the learning coefficient. If the learning co-

efficient is too large, then the movement in weight space will become oscillatory and

the algorithm will fail to converge or convergence will be very slowly. On the other

hand, if the learning co-efficient is too small then the algorithm will converge slowly

resulting in long training times. Lee [2] proposed an alternative approach to training

multilayered feed-forward neural networks that does not require setting the value of

the learning coefficient. This tangent plane algorithm treats each teaching value as a

constraint on the network weights that defines a surface in weight space. The weights

are adjusted by moving from the current position to the tangent plane to this surface.

Convergence is rapid because the step-size is determined solely by the Euclidean

distance from the current state of the weights to the foot of the normal to the tangent

plane. Unfortunately, the tangent plane algorithm will often fail to converge when a

small amount of noise is added to the teaching values. Therefore, methods to

improve the stability of the tangent plane algorithm are studied in this thesis. These

methods include using fully recurrent neural networks that are capable of predicting a

Chapter 1 : Introduction

-2-

time step ahead the correct response to an item of data received previously by the

network [3,4,5]

A principal concern in supervised training of neural networks is how to obtain good

generalization. A network is said to generalize well when the input-output mapping

computed by the network is the same for test data not used in creating or training the

network [6]. It is known that with back-propagation learning, generalization is better in

smaller networks. This is because the shortage of units forces the network to develop

general rules to discriminate between input patterns. Unfortunately, it can be difficult

to determine the optimum size of the network in advance without knowing the exact

rules to be extract from the training data. These difficulties led to the development of

a number of techniques to determine the optimum size for good generalization. To

limit the size of a network, you can either use additive, subtractive, or regularization

techniques. Additive techniques start with a small network, and insert new units and

connections until the network has the right size [7,8,9]. Subtractive techniques (often

called pruning) start out with a fully trained network and remove superfluous

connections [10,11]. Regularization techniques use a network with a large number of

connections but limit the size of each weight [12,13]. Lee [14] suggested growing the

weights from small initial values close to zero with the expectation that only the

minimum number of weights would be activated. This second tangent plane algorithm

is essentially the same as the first tangent plane algorithm, but includes an additional

term that pushes the weights in the direction away from the origin. Unfortunately, the

second tangent plane algorithm tends to create large network structures that have a

wide distribution of weight values. This means that any advantage gained by starting

the training with initial conditions close to zero is soon lost. Therefore methods to

improve the generalization of the second tangent plane are studied in this thesis

Chapter 1 : Introduction

-3-

The convergence speed of the tangent plane algorithm is no better than the standard

back-propagation algorithm in small parsimonious networks where generalization is

found to be best. In small networks with only a few synaptic weights, it seems that

updating the weights by approaching tangent planes would be a very slow, as one big

weight update might actually corrupt the whole of the network. In the batch mode of

learning the weights are updated after the presentation of the entire dataset.

Collecting all the gradient information together before the weights are updated helps

to avoid the mutual interference of weight changes that could occur with large learning

rates in the sequential (or online) learning. This makes the batch learning particularly

suitable for training small neural networks. An alternative approach to batch learning

might be to take smaller steps in weight space, the smaller steps averaging out the

variations in the data so that the weights follow a more clearly defined trajectory in

weight space. Unfortunately reducing the step size leads to slow adaptation of the

weights so training speeds can be very slow. Furthermore iterative methods that take

smaller steps are prone to being trapped in local minima of the error landscape.

Therefore a new batch implementation of the tangent plane algorithm for training

small parsimonious networks is investigated in this thesis

Multi-category classification problems in the bio-informatics area are known to be

particularly difficult problems to solve. There are a number of reasons for this. Firstly,

biological data based on micro-array gene expression profiling has a very high input

dimension, which is typically thousands of genes. Many of these genes are irrelevant

to cancer classification. These irrelevant genes not only increase the complexity of

the neural network, but also add noise to the training data which compromises

generalization. Secondly, the size of the data available is usually very small, typically

less than 100 samples. It is well known that a low ratio of the sample size to the input

dimension produces a sparse input data space, which also leads to poor

generalization. The traditional method for solving multi-category classification

Chapter 1 : Introduction

-4-

problems is to combine several binary classifiers, but this produces a heavy

computational overhead. This means that fast and efficient algorithms are needed.

The new sequential and batch tangent plane algorithms are particularly suitable for

this purpose as they are very fast and avoid problems like overfitting and local

minima. Therefore the new sequential and batch implementations of the tangent

plane algorithm are applied to multi-category classification based on gene expression

data

1.2 Objectives

The primary objectives of this research are to improve the convergence speed,

stability and generalization of the tangent plane algorithm. More specifically, the

objectives of this research can be summarised as follows

• Develop a new algorithm for fully recurrent neural networks targeted at

improving the stability of the tangent plane algorithm. One example of where

stability is an issue with the tangent plane algorithm is when the training data

is contains a small amount of rogue data or errors. Therefore one objective of

this thesis is to develop a new algorithm capable of accepting a small

percentage of erroneous data in the training set and recovering quickly after it

has been perturbed in this way

• Develop a new algorithm for neural networks based on the second tangent

plane algorithm giving improved generalization relative to the original

algorithm. The second tangent plane algorithm tends to create large network

structures that have a wide distribution of weight values. Less important

weights have a tendency of taking on completely arbitrary values that might

actually degrade generalization. Therefore another objective of this thesis is

Chapter 1 : Introduction

-5-

to develop a new algorithm giving improved generalization and evaluate its

performance on non-trivial problems.

• Develop a new batch tangent plane algorithm for small parsimonious

networks. The tangent plane algorithm is a fast method of training a neural

network that does not require any parameters to be set manually to tune its

performance. This is the principal strength of the tangent plane algorithm.

However the tangent plane algorithm is no better than the back-propagation

algorithm when applied to small economical networks where generalization is

known to be best. Therefore another objective of this thesis is to develop a

new algorithm for small economical networks capable of fast convergence and

good generalization

• Apply the new sequential and batch algorithms developed in this thesis to

multi-category classification tasks that have proven difficult for more

conventional neural network techniques to solve. Cancer classification using

gene expression data is considered a difficult task because of the high input

dimension, and multi-category classification is far more difficult than binary

classification. The classification accuracy of ANN is known to drop sharply as

the number of classes increases. Therefore fast and efficient algorithms are

needed that are capable of high classification accuracy

1.3 Major contributions of the thesis

The major contributions of this thesis can be summarised as follows. In the first part

of this thesis, three new algorithms are developed to overcome the difficulties with the

tangent plane algorithm

• A new sequential algorithm referred to as the tangent plane algorithm for real

time recurrent learning (TPA-RTRL) is developed for fully recurrent neural

Chapter 1 : Introduction

-6-

networks (FRNNs). This algorithm is evaluated for classification and time

series prediction tasks. It is shown that the new TPA-RTRL algorithm is a very

fast and stable method of training FRNN that recovers quickly when presented

with items of erroneous data. This is because the FRNN recycles information

over many time steps and thereby learns to predict the correct response a

time step ahead, provided that an ordering of the input data exists.

• A new sequential algorithm referred to as the improved tangent plane

algorithm (iTPA) is developed to further improve the generalization

performance of the second tangent plane algorithm. This new algorithm is

evaluated for pattern classification and function approximation tasks. The

results show that implementing a weight elimination procedure into the

geometry of the algorithm actually improves generalization performance by

producing a separation of the active and inactive weights in the network. The

results also show that including a tendency to move laterally in random

directions along tangent planes helps the algorithm to avoid local minima of

the error landscape.

• A new batch tangent plane algorithm referred to as the Gauss-Newton tangent

plane algorithm (GN-TPA) is developed for training small parsimonious

networks. This new algorithm uses the Gauss-Newton vector to guide the

search of the error surface toward the minimum training error. In order to

improve the convergence and efficiency of the new algorithm, a novel

procedure recently described in the literature as the Extreme Learning

Machine (ELM) is employed. The new algorithm is evaluated for pattern

classification and function approximation tasks. The results show that GN-

TPA reaches the minimum training error and avoids problems like local

minima of the error landscape.

Chapter 1 : Introduction

-7-

In the later part of this thesis, the newly developed sequential and batch tangent plane

algorithms are applied to real world classification tasks that have proven difficult for

more conventional neural network techniques to solve. Multi-category cancer

classification using gene expression profiles is a difficult task to solve due to the high

dimensionality of the data. Traditionally this is done by combining binary classifiers in

one-versus-one (OVO) or one-versus-all (OVA) schemes, which inevitably involves

increasing the system complexity. Direct classification using artificial neural networks

has been attempted but classification accuracy is known to drop sharply with

increasing number of classes

• The new sequential algorithm is combined with a one-versus-all scheme for

multi-classification using gene expression data. A modular network is used

with each segment trained to discriminate one class from all others. The

results show that the new scheme can produce classification accuracies

comparable with other newly developed sequential learning algorithms, SANN

and FGAP-RBF.

• The new batch algorithm is applied to multi-category micro-array gene

expression data. One-of-c encoding is used with each output unit trained to

discriminate one class from all others. Results show that the GN-TPA

algorithm gives high classification accuracy comparable with SVM-OVO, which

is the best SVM classifier.

1.4 Organisation of the thesis

The first two chapters introduce the background of the thesis. The artificial neural

network (ANN) as a structure for representing complex non-linear mappings is

introduced together with different first and second order adaptive processes that

enable them to learn about their environment. The concept of generalization is

Chapter 1 : Introduction

-8-

discussed with strategies for improving generalization. Finally a brief overview of the

bioinformatics area with an emphasis on gene expression data is discussed.

Chapter three investigates the convergence and generalization behaviour of the

tangent plane algorithm. Comparative tests are performed using the standard back-

propagation algorithm. The benchmark datasets used were N-bit parity, breast

cancer and hearta. Two problems with the tangent plane algorithm were identified,

namely slow convergence in small networks and instability when handling inexact

data. Finally the differentiation and evolution of weight in networks trained by the

tangent plane algorithm was investigated

In chapter four, a new algorithm referred to as TPA-RTRL is developed for fully

recurrent neural networks targeted at improving the stability of the tangent plane

algorithm. This new algorithm is similar to the GD-RTRL algorithm, differing from it in

the treatment of the output unit and in the use of a global learning rate. Suggestions

were made to improve the computational complexity of the new algorithm.

Comparative tests are performed on the new TPA-RTRL algorithm and the gradient

descent based GD-RTRL algorithm. The benchmark datasets used were pipelined

Xor, the simple sequence problem, and the Henon map.

In chapter five, a new algorithm referred to as iTPA is developed to overcome the

difficulty with the second tangent plane algorithm, namely the tendency of the

algorithm to produce large network structures. Comparative tests were carried out on

the new iTPA algorithm and the backpropagation algorithm. The benchmark datasets

used were two spirals, Henon map and housing price.

In chapter six, a new algorithm referred to as GN-TPA is developed for small

parsimonious networks. Two difficulties with this new algorithm are identified, namely

Chapter 1 : Introduction

-9-

instability due to the step size overshooting the error minimum and the computational

complexity of the algorithm.

In chapter seven, the new GN-TPA algorithm is applied to the Extreme Learning

Machine in order to overcome the difficulties with the algorithm. An additive technique

for growing a neural network is used to improve the computational efficiency of the

new algorithm. Comparative tests are performed using two additive procedures,

cascade and the orthogonal sequential training technique. The benchmark datasets

used were additive function, the Henon map and housing price.

In chapter eight, two multi-category classification problems using gene expression

profiling are described, GCM and Lymphoma, together with a gene selection method

for reducing the number of genes required for accurate cancer classification.

Comparative tests were carried out using three sequential learning algorithms, iTPA,

SANN, and FGAP-RBF, and three batch learning algorithms, GN-TPA, ELM, and

SVM-OVO.

Finally the conclusions and future work are summarised in chapter nine.

Chapter 2 : Literature review

-10-

Chapter 2

LITERATURE REVIEW

The back-propagation algorithm is a popular method for training feed-forward

multilayered neural networks. It is easy to implement and computationally simple.

The principal disadvantage of this learning method is its relatively slow rate of

convergence in practical situations. It also requires manual tuning by appropriate

choice of learning and momentum rate parameters, a process which is carried out by

trial and error. Since one of the advantages of a neural network is the ease with

which they may be applied to novel problems, it is essential to consider automated

and robust learning methods with good performance on many classes of problems. In

this chapter, we review some first order and second order optimization techniques

known to accelerate convergence. Some of these methods require the adaptation of

the parameters of the learning algorithm, whilst others use second order information

about the error surface

Artificial neural networks have been widely used in the fields of pattern classification

and function approximation due to their adaptability and generalization capabilities,

and unique power for non-linear mappings. Generalization is the property of a neural

network to produce the correct response to data previously unseen by the network but

similar in some sense to data on which the network has been trained. Good

generalization performance is influenced by a number of factors such as the size of

the training set, the size of the network, and whether the function to be learned is

sufficiently smooth. This chapter reviews some techniques used to improve

generalization in neural networks. These techniques include network building and

pruning, weight regularization, principal component analysis and early stopping.

Chapter 2 : Literature review

-11-

In the cancer classification area, micro-array gene expression profiling has attracted

more attention than conventional techniques such as microscopic histology and

tumour morphology due to recent advances in micro-array technologies. Gene

expression profiling allows for the monitoring of thousands of gene expression levels

in any cell, cell line or tissue. Hence it provides more information and more reliable

classification accuracy. There have been many classification methods used for

cancer classification. However, there are some characteristics of gene expression

data that make them difficult tasks. In this chapter we review some of the methods

used for cancer classification with an emphasis on multi-category classification using

gene expression data

2.1 Artificial neural networks

Artificial neural networks (ANNs) are complex structures for representing non-linear

input-output mappings [6,15]. Their development has been inspired by the biological

structure of the human brain. The human brain is a complex non-linear parallel

processing machine. It has the capacity to organise its structural components, known

as neurons, so as to perform computations much faster than modern computers

today. In much the same way, ANNs are composed of units called neurons that

perform non-linear transformations on the input data. These neurons are connected

together by synaptic weights to form different layers; one input layer, one output layer,

and one or more hidden layers. Like the human brain, ANNs can acquire knowledge

through learning, and that knowledge can be stored in the network. ANNs can be

classified into two different classes according to the way information flows through the

network e.g. feed-forward neural networks, and recurrent neural networks.

Chapter 2 : Literature review

-12-

 Fig 2.1. An example of a feed-forward neural network with one hidden layer

In feed-forward neural networks, the information flows in one direction from one layer

to the next. The neurons in the input layer supply information, or activations, to the

inputs of the neurons in the first hidden layer. The output signals of the neurons in the

first hidden layer supply information, or activations, to the inputs of the neurons in the

second hidden layer, and so on. Typically the neurons in each layer receive inputs

from the output of the neurons in the preceding layer. Fig 2.1 illustrates the

architecture of a multilayered feed-forward neural network (or multilayered

perceptron). This network is referred to as a 3-4-2 network because it has 3 input

neurons, 4 hidden neurons, and 2 output neurons. It is fully connected in the sense

that every neuron in each layer is connected to every neuron in the next layer.

Output layer

Hidden layer

Input layer

Chapter 2 : Literature review

-13-

Another type of multilayered feed-forward structure has each neuron forming its own

layer as illustrated in Fig 2.2. The cascaded neurons each receive an input from the

neurons in the previous layers together with an input from the original network inputs,

and pass their output to the neuron in the next layer. This cascade architecture was

first proposed by Fahlman and Lebiere [7], and has been used successfully with many

neural network problems that have proven very difficult for the standard back-

propagation algorithm to solve [8,9,16,17]

+1

Output layer

Hidden layers

Input layer

Fig 2.2. Cascade network architecture with three input units, two hidden units

and one output unit

Chapter 2 : Literature review

-14-

 Fig 2.3. An example of a recurrent neural network with one layer. The function

 z-1 is the unit delay operator whose output is delayed with respect to the input by one

time step i.e. ()[] ()1k
j

k
j

1 xxz −− = where jx is the jth input and k the time step.

Recurrent neural networks on the other hand distinguish themselves by comprising at

least one feedback loop. For example, a recurrent neural network may consist of a

single layer of neurons with each neuron feeding its output signal back to the inputs of

the other neurons. The presence of a feedback loop has a profound effect on the

learning capacity as well as its performance [6]. The feedback loops can involve the

use of unit delay operators that can result in a non-linear dynamic behaviour. Thus,

recurrent neural networks find greatest use in time series prediction problems [3,4,5].

z-1

z-1

Input units

Output units

Chapter 2 : Literature review

-15-

2.2 Learning in artificial neural networks

A neural network learns about its environment by an adaptive process whereby a

series of adjustments are made to the synaptic connections, or weights, and bias

levels. Ideally, the network becomes more knowledgeable about its environment after

each adaptive process. We define the learning process in the context of neural

networks as follows [18]:

Learning is a process by which the free parameters of a neural network are adapted

through a process of stimulation by the environment in which the network is

embedded. The type of learning is determined by the manner in which the parameter

changes take place.

A prescribed set of well-defined rules for the solution of a learning problem is called a

learning algorithm. As one would expect, there is no single unique learning algorithm,

but a diverse ‘tool-kit’ of algorithms each of which offers its own advantages.

Basically, there are five different classes of learning rule: error-correction learning,

memory-based learning, Hebbian learning, competitive learning, and Boltzmann

learning. This thesis is primarily concerned with algorithms that belong to the error-

correction class, specifically the tangent plane algorithm [2,14]. In error-correction

learning, the input data is propagated forward through the network. The output of the

network is then compared with the desired output and the error calculated. This error

is then back-propagated through the network and used to adjust the weights so that

the error decreases with each adaptive process.

Chapter 2 : Literature review

-16-

2.2.1 First order methods and variants

The method of steepest descent is an iterative procedure for obtaining the values of

the parameters that minimise the error (or cost) function. When applied to a neural

network, this is equivalent to finding the values of the synaptic weights that connect

the network units together. Geometrically, the function specifies an error surface

defined over weight space. At each iteration of the steepest descent procedure, the

weights are adjusted in the direction in which the error function decreases most

rapidly. This direction is given by the negative gradient of the error function at the

current point in weight space. The magnitude of the modification is proportional the

magnitude of the error gradient. The procedure can be written

 ()
()

()n
ji

n
kn

ji w
w

∂
∂

−=∆
ε

η (2.1)

where jiw∆ is the change to the weight jiw that regulates the connection from unit

iu to ju , η is a positive constant called the learning rate, kε is the error function to

be minimized, and n the time step. There are two main error functions, one is sum of

square errors (SSE) and the other is the relative entropy function [19]

Whilst the steepest descent method can be an efficient means for obtaining the

weight values that minimize the error function, it can be very slow to converge in

practical situations. There are two reasons for this slow convergence [20]. First, the

magnitude of the partial derivative of the error function may be such that modifying a

weight will yield only a small change. This occurs where the error surface is fairly flat

along a weight dimension, which will produce a small derivative. Alternatively, where

the error surface is highly curved, the derivative is large in magnitude. Thus the value

of the adjustment may overshoot the error minimum. Second, the direction of the

negative gradient may not point towards the minimum of the error surface. This is

Chapter 2 : Literature review

-17-

illustrated in Fig. 2.4. The error surface is drawn topographically using constant error

contours. The current weight vector is given by ()nw . Since the error surface is

steeper along the ()n
2w weight dimension than the ()n

1w dimension, the derivative along

this weight dimension will be larger.

 Fig 2.4. Error surface defined over two dimensional weight space

A simple method of reducing the oscillations due to a large learning rate is to modify

equation (2.1) as follows

 ()
()

()
()

ji

t
k

n

0t

t1n
ji

ji

n
kn

ji w
w

w
w

∂
∂

−=∆+
∂
∂

−=∆ ∑
=

− ε
αηα

ε
η (2.2)

where α is a positive constant called the momentum term, and ()1n
jiw −∆ the change

applied to weight jiw during the ()th1n − step.

1w

2w

()

()n
2

n
k

w∂
∂ε

()

()n
1

n
k

w∂
∂ε

()nw

ttanconsk =ε

Chapter 2 : Literature review

-18-

According to Jacobs [20], the back-propagation algorithm with momentum is an

exponentially weighted sum of the current and past partial derivatives of the error

function. For this algorithm to be convergent, the momentum constant must be

restricted to the range 10 <≤ α . Note that when α is zero the back-propagation

algorithm operates without momentum. When consecutive derivatives of a weight

have the same sign, the weight jiw is adjusted by a large amount, and when

consecutive derivatives possess opposite signs, this sum is adjusted by a small

amount as above. Thus, the inclusion of a momentum will either accelerate learning

in a downhill direction, or have a stabilizing effect in directions that oscillate. The

momentum term may also have the benefit of preventing the learning process from

terminating in a shallow minimum of the error surface.

In view of the poor performance of the back-propagation steepest descent algorithm,

it has been suggested that the value of the learning rate η be adapted according to

the contours of the error function [20,21,22,23]. The learning rate η is then treated

as another factor to alter the step size of the weight change on the error surface. At

present a number of strategies for adapting the learning rate can be found in the

literature. These strategies can be divided into two broad classes; global and local

learning rate adaptation. Global learning rate adaptation involves finding the proper

value for the learning rate [21,24,25,26,27]. Local learning rate adaptation involves

using independent learning rates for each adjustable weight in the network

[20,28,29,30,31,32]. Two examples are discussed below

In the first example, the learning rate is adapted for every training pattern.

Schmidhuber’s algorithm [27] calculates a new learning rate for each training pattern

and does not use a momentum term. The new weight values are found by calculating

the point of intersection of a line drawn in the steepest descent direction from the

Chapter 2 : Literature review

-19-

current position to the zero error plane. This is equivalent using a tangential hyper-

plane to locally approximate the error function. Let kε represent the error caused by

some particular pattern, so that kε is a function of the weights w . Linearising the

dependence of kε on w about some operating point ()nw

 '
kε (w) = kε (()nw) + (()nww −) . kε∇ (()nw) (2.3)

where =∇ kε (ijk w ,∂∂ε), i,j∀ represents the gradient vector, and ba .

represents the inner product of vectors a and b . We wish to find a zero of the error

function kε , so

 0 = kε (()nw) + (()nww −) . kε∇ (()nw) (2.4)

Let () () ()nnn www −=∆ +1 . From the method of steepest descent, the weights are

adjusted according to () ()n
k

n εη∇−=∆w , so the value of η that sets the linearised

error '
kε = 0 is given by

 ()
()

()()2
i,j

ji
n

k

n
kn

w∑ ∂∂
=

ε

ε
η (2.5)

where i,j range over all the weight indices. For practical reasons it is necessary to

define an upper limit maxη for a single step. There may also be some error surfaces

that never reach the zero plane. For these surfaces, a small constant value offε is

subtracted to make sure that the zero point exists. Schmidhuber emphasized that his

algorithm was able to escape from a local minima (00 kk ≈∇∧≠ εε).

Chapter 2 : Literature review

-20-

Unfortunately it is likely to result in very big updates that may corrupt the whole

network in one step. This strategy also can’t handle very big datasets where some

wrongly classified training examples might exist.

In the second example, each individual weight has a corresponding learning rate that

is allowed to vary over time. The Rprop (resilient back-propagation) algorithm [28]

differs from other first order techniques in that the individual step-sizes ji∆ are

independent of the magnitude of the partial derivatives jik w∂∂ε . For each weight

jiw , an individual step-size ji∆ is adjusted according to

 ()

()
() ()

()
() ()

()



















∆

<
∂
∂

∂
∂

∆

>
∂
∂

∂
∂

∆

=∆

−

−
−−

−
−+

otherwise

ww
if

ww
if

n
ji

ji

n
k

ji

n
kn

ji

ji

n
k

ji

n
kn

ji

n
ji

1

1
1

1
1

0

0

εεη

εεη

 (2.6)

After adjusting the step-sizes, the weight updates jiw∆ are determined. The weight

update rule can be written

 ()
()

()n
ji

ji

n
kn

ji w
sgnw ∆











∂
∂

−=∆
ε

 (2.7)

where +− <<< ηη 10 , and ().sgn is the sign function. The principal benefit of

this update scheme is that it removes the harmful influence of the size of the partial

derivatives on the weight step. Only the sign of the partial derivatives are used to find

the proper update direction. Further, the step sizes are adapted according to the

Chapter 2 : Literature review

-21-

signs of the current and previous derivatives. When the signs of successive

derivatives are opposite, this means that the algorithm has jumped over a minimum

and that the step size is too large. On the other hand if two successive signs are

equal, then the step size is not big enough and could be increased. Finally, local

back-tracking is usually applied to those weights when a change in the sign of the

corresponding derivatives are detected

Schiffmann et al [33] have made comparisons of different global and local adaptation

techniques to accelerate learning, which are fixed learning rate adaptation, learning

rate adaptation for each pattern [27], angle driven learning rate adaptation [21], the

conjugate gradient method [36], Delta-bar-Delta [20], Rprop [28], Quickprop [32] and

Cascade Correlation [7]. The benchmark dataset used was thyroid [34]. The results

show that algorithms using local adaptation strategies outperform all global adaptive

learning algorithms both in terms of training time and network performance. On the

other hand the back-propagation algorithm performing pattern by pattern updating

outperforms all global adaptive learning algorithms. Moreover, Rprop was the fastest

algorithm that used a fixed topology. According to training speed only Quickprop is

comparable to Rprop. The results also show that Rprop is robust with respect to its

own internal parameters. The cascade correlation algorithm outperforms all the other

algorithms but is not directly comparable to them because it does not use a fixed

topology.

Chapter 2 : Literature review

-22-

2.2.2 Second-order optimization techniques

In the sequential mode of learning, weight updating is performed after the

presentation of each training example. This mode of learning is also referred to as

on-line, pattern, and stochastic mode. In the batch mode of learning, weight updating

is performed after the presentation of all the training examples. There are several

advantages in favour of each type of learning mode as outlined by Battiti [37]. One of

the reasons in favour of sequential learning is that it possesses a degree of

randomness that may help in escaping from a local minimum. The fact that many

large datasets contain redundant data has also been cited in favour of sequential

learning, because many of the contributions to the gradient are similar, so waiting to

collect all the gradient information together can be wasteful. On the other hand,

collecting all the gradient information together before the weights are updated can

help to avoid the mutual interference of weight changes that occur with large learning

rates. Sequential methods may because of their degree of randomness, miss a

perfectly good local minimum. Even if the training data is redundant, sequential

methods may be slow in comparison to batch methods that use second-order

information. Some second-order batch techniques show superior performance with

respect to the standard back-propagation algorithm on problems with a limited

number of weights (< 100), especially if high precision mappings are required.

Newton’s method can be considered as the basic locally convergent method using

second-order information. It is based on using a second order Taylor expansion of

the error function kε about the current operating point w

 kε (ww ∆+) ≈ kε (w) + w∆∇ T
kε + ww ∆∇∆ k

2T

2
1 ε (2.8)

Chapter 2 : Literature review

-23-

and solving for the step w∆ that brings w to a point where the gradient is zero. This

corresponds to solving the following linear system

 kk
2 εε ∇−=∆∇ w (2.9)

Generally speaking, Newton’s method converges quickly to a solution and does not

exhibit the zigzagging behaviour that characterises the steepest descent method.

The main problems that can arise with Newton’s method is when the Hessian k
2ε∇ is

not positive definite (i.e. the directional derivative 02 <∆∇∆ ww k
T ε), or when the

Hessian is singular or ill-conditioned. If the Hessian is not positive definite, there

exists directions w∆ of negative curvature that would suggest an infinite number of

steps to minimise the error function. This behaviour is not uncommon in neural

networks: in some cases large steps push units into saturation resulting in very small

second order derivatives.

When the Hessian matrix is not positive definite and well conditioned, Newton’s

method cannot be used without modifications. This can be explained by examining

the eigenvalues of the Hessian. Writing the Hessian using a spectral decomposition,

we have

 ∑
=

Λ==∇
n

i

T
iiii

T
k

1

2 uuUU Λε (2.10)

where Λ is a diagonal matrix whose diagonal elements iiΛ are the eigenvalues of

the Hessian, and U is a matrix whose columns are the orthogonal set of eigenvectors

associated with the eigenvalues. It is easy to see that, if some of the eigenvalues are

close to zero, the inverse matrix will have eigenvalues close to infinity, a sure source

Chapter 2 : Literature review

-24-

of numerical problems. If one of the eigenvalues is negative, the error function does

not have a minimum because large movements in the direction of the corresponding

eigenvector decrease the error value to arbitrary negative values.

A recommended strategy for changing the Hessian in order to avoid these difficulties

is that of summing it to a diagonal matrix of the form Ikµ so that Ikk
2 µε +∇ is

positive definite and well-conditioned. A proper value for kµ can be found using the

modified Cholesky factorisation found in Gill et al [38]. The Cholesky factors of a

positive definite matrix can be considered as a sort of square root of the matrix. The

original matrix is expressed as the product TLDL , where L is a lower triangular

matrix with 1’s on the leading diagonal, and D is a diagonal matrix with positive

diagonal elements. Taking the square root of the diagonal elements using them to

form the matrix 2
1D , the original matrix can be written as TT ˆˆ2

1
2

1 LLLDDL = , where

L̂ is a general lower triangular matrix. If the original matrix is not positive definite, the

factorization can be modified in order to obtain factors D with all diagonal elements

positive. The factorization corresponds to the original factors of the Hessian, and

differing from it by adding a diagonal matrix with non-negative elements.

If the error function to be minimised is the sum of error squares, ∑ =
=

m

p pk e
1

2
2
1ε ,

where pe is the error of the pth input pattern, learning a set of examples consists of

solving a non-linear least squares problem for which special methods have been

devised. Two of these methods are now described: the Gauss-Newton method, and

the Levenberg-Marquardt method.

Chapter 2 : Literature review

-25-

Let the error signal pe be a function of the weight vector nR∈w . The gradient and

Hessian matrix of kε are given by

 eJ T
e

m

p
ppk =∇=∇ ∑

=1
eeε (2.11)

 and

[]

SJJ +=

∇+∇∇=∇ ∑
=

e
T
e

m

p
ppk ee

1

2T
pp

2 eeε

 (2.12)

where eJ is the Jacobian matrix [jw∂∂ e], e is a vector of errors pe , and S is that

part of the Hessian containing the second derivatives of e , that is, ∑ ∇=
p pp ee 2S .

For small residual problems (i.e. small values of pe), the second order part S is

negligible, and Newton’s method can be written

 =∆w - [e
T
e JJ] eJ T

e
1− (2.13)

It can be shown that this step is completely equivalent to minimizing the error obtained

using a first order Taylor expansion of the error, 'e . The updated weight vector is

then defined by

 { }''
2
1min eew

w

T= (2.14)

Equation (2.13) defines the Gauss-Newton method. The term e
T
e JJ in the Gauss-

Newton method is a low computational approximation of the Hessian matrix. It is

sufficiently accurate for small residual problems. Therefore, the Gauss-Newton

Chapter 2 : Literature review

-26-

method has quadratic or second order convergence as the minimum on the error

surface is approached. Meyer [39] has shown that the convergence of the Gauss-

Newton method is superlinear (i.e. || ()1+te ||/|| ()te || 0→ , ∞→t) whenever 0→S ,

otherwise it is only first order.

The only problem that can arise with equation (2.12) is the Jacobian matrix eJ being

rank deficient, and hence e
T
e JJ is singular. The Levenberg-Marquardt (LM) method

[40] incorporates a technique for dealing with a rank deficient eJ , and is effective for

small residual problems. In this method a diagonal matrix Iµ is added to e
T
e JJ ,

where µ is a small positive constant and I the unit matrix. When 0=µ , w∆ is

given by [e
T
e JJ] 1− eJ T

e . As ∞→µ , the effect of the term Iµ increasingly

dominates that of e
T
e JJ so that eJw T

e
1−→∆ µ , which represents an infinitesimal

step in the steepest descent direction.

Fletcher [41] has improved the LM method by providing a strategy for selecting µ .

To decide whether to change µ in the next iteration, he compares the actual

reduction in the cost function with that predicted by assuming that the cost function is

quadratic. If this ratio is in the region of 1 then the cost function is behaving

quadratically and µ should be reduced. On the other hand, if it is close to zero (a

sign of poor progress), it should be increased. Wilamowski et al [42] have further

improved the LM method by introducing a modified cost function. The LM method

requires the inversion of a e
T
e JJ square matrix, which is not practical in large

networks. Utilising a modified cost function and using the matrix inversion lemma

produces a substantial reduction in complexity and memory usage

Chapter 2 : Literature review

-27-

2.3 Generalization capabilities of artificial neural networks

A neural network is said to generalize well when the output computed by the network

is correct for test data not used in training the network. Here it is assumed that the

test data is drawn from the same population as the training data. If the learning

process is viewed as a curve fitting problem then the neural network itself may be

considered as a non-linear input-output mapping. Such a viewpoint then permits us to

look on generalization simply as the effect of good non-linear interpolation. Neural

networks can perform useful interpolation because multilayer neurons with continuous

activation functions lead to output functions that are also continuous [43].

A neural network that generalizes well will produce a correct input-output mapping

even when the test data is slightly different from the examples used to train the

network. However, when a neural network learns too many input-output examples the

network may end up memorising the training data. It may do so by finding a feature in

the training data such as noise that is not present in the underlying function. Such a

phenomenon is referred to as overfitting or overtraining. When a network is

overtrained it loses its ability to generalize between similar input-output patterns

Good generalization performance in a neural network is influenced by a number of

different factors; the size of the training set, the size of the network and the complexity

of the problem at hand [6].

• The training set size must be sufficiently large to provide enough information

to learn the underlying function. Generalization may fail if there are hidden

variables affecting the training data that are not shown to the network or if

noise has swamped the available information.

Chapter 2 : Literature review

-28-

• A neural network that is too small may fail to learn the underlying function, that

is, it will underfit the training data. However, a network that is too large may

tend to overfit the training data and thus generalize poorly to new data. Thus,

there is a trade-off between underfitting and overfitting.

• The underlying function must be sufficiently smooth. A network can learn

functions with a finite number of discontinuities but not totally chaotic or

random functions.

A number of different strategies can be found in the literature for improving

generalization in neural networks. The Vapnik-Chervonenkis (VC) dimension

provides theoretical worst case estimates for the size of the training set required for a

good generalization [44]. To limit the effect of size on a neural network, you can

either use additive, subtractive, or regularization methods. Additive methods start with

a small network and insert new units until it can represent the required function [7,8,9].

Subtractive methods remove superfluous weights from a fully trained network [10,11].

Regularization methods use a network with a large number of weights, and impose

constraints on each weight in addition to error minimization. Examples of

regularization are weight sharing, and weight decay [12,13]. The onset of overfitting

can be identified using a validation set of unseen data, similar in some sense to the

data used to train the network. Training is then stopped before convergence occurs

to avoid overfitting.

Chapter 2 : Literature review

-29-

2.3.1 Constructive techniques

Constructive methods start out with a small network and then add new units and

connections until the network can represent the required function. Perhaps the most

notable example of constructive methods is the Cascade Correlation algorithm

proposed by Fahlman and Lebiere [7]. The cascade correlation algorithm increases

the size of the network by adding new units and layers. There are two distinctive

features to the cascade correlation algorithm. First, the cascade architecture. This

means that all the hidden units are added to the network one at a time, each on a

separate hidden layer. The cascade structure leads to the creation of powerful high-

order feature detectors and to very deep networks. Second, the objective function

used to train the new hidden units. For each new hidden unit, the cascade-correlation

process aims to maximize the magnitude of the correlation between the hidden units

output and the residual network error signal. The cascade-correlation architecture

thus has several advantages over conventional back-propagation; it learns very

quickly, the network determines its own size, it preserves its structure even if the

training set changes, it does not require back-propagating error signals, and only one

layer of weights are trained at a time.

There are many constructive methods described in the literature for building Radial

Basis Function (RBF) networks. In the procedure proposed by Chen et al [45], the

training data points are considered as candidate RBF centres. The RBF centres are

selected one by one using the orthogonal least squares (OLS) method. The OLS

method has the property that each selected centre maximizes the contribution of the

RBF network to desired output variance, and it does not suffer from numerical ill-

conditioning. In [46], a constructive method was described named the Resource

Allocation Network (RAN) which adds hidden units sequentially based on the novelty

of the input data. A new input pattern is considered as novel if that sample is far away

Chapter 2 : Literature review

-30-

from existing centres and if the output error is large. If the input pattern does not pass

the criteria for novelty, then no hidden unit is added and the network is trained using

the OLS method. In [47] a new method for RBF networks named GAP-RBF was

described which adds and prunes hidden units based on a simple estimate of the

significance of centres. The significance of a unit is the error that results from

removing that unit from the network over all inputs seen so far. Results for GAP-RBF

show it can achieve a smaller network realized by RAN, and that it achieves higher

classification accuracies and better generalization.

Zhang et al [22] proposed an orthogonal sequential technique for single hidden

layered neural networks based on the OLS method. The procedure starts with a

single hidden unit and sequentially increases the number of hidden units in a single

hidden layer until the error is sufficiently small. When adding a new hidden unit, it is

the component of the output that is perpendicular to the space spanned by the

outputs of previously added hidden units that is used to train the network. The Gram-

Schmidt method is used at each step to construct a set of orthogonal bases for the

space spanned by the outputs of the hidden units. Two training examples were used

to test the sequential training technique. In the first example, a function approximation

problem was modelled using an RBF network. The results indicate that the RBF

network with centres selected through optimization performs better than with centres

selected using OLS method proposed by Chen et al [45]. In the second example,

time-series data obtained from [48] was modelled using a single hidden layer neural

network having different activations; linear, sigmoid, and Gaussian. The results

indicate that the orthogonal sequential training technique constructs small

parsimonious networks capable of good generalization.

Chapter 2 : Literature review

-31-

2.3.2 Network pruning techniques

An alternative method to adjusting the size of a neural network is to start with a large

network that overfits the input data and remove the subset of synaptic weights that

result in the smallest increase in error. Sietsma and Dow [49] analyzed this by

examining all neurons under the presentation of the entire training set and removing

only those neurons that did not change during training. Although this technique

produced good generalization results in small networks it was far too exhaustive an

approach for training large neural networks. Mozer and Smolensky [50] introduced

the idea of estimating the sensitivity of the network to the removal of a synaptic

weight. This was achieved by associating a sensitivity value with each weight

calculated from the gradient of the error function. They reasoned that weights with

the smallest sensitivity values had the least effect on the network output and could

therefore be removed from the network. LeCun [10] proposed an alternative

approach called Optimal Brain Damage (OBD) for calculating the sensitivity values of

the synaptic weights. He used a Taylor series to expand the error function about the

error minimum and then applied a quadratic approximation to remove any high order

terms from the resulting expansion. This produced saliency values dependent on the

second order derivatives of the error function. Once again the synaptic weights with

the smallest saliency values were the likeliest candidates for network pruning. The

main disadvantage of pruning techniques are that they require training down to the

error minimum before pruning can occur. This frequently produces massive

overfitting which often cannot be repaired by subsequent pruning. The autoprune

method [50] avoids this problem. Its weight importance coefficients are defined by a

test statistic for the assumption that a weight becomes zero during the training

process. Connections with a small test statistic can be pruned. Finnoff et al [52] has

shown that autoprune is superior to OBD.

Chapter 2 : Literature review

-32-

2.3.3 Other techniques for improving generalization

Overfitting can also be avoided by reducing the complexity of the data in the input

data set. A technique called Principal Component Analysis (PCA) can be used to

project the input vectors onto a vector space whose basis is described by the

eigenvectors of an input correlation matrix. The reduction is achieved by choosing the

principal components of the input vectors that have the largest variance. There are

many examples of architectures performing PCA in the literature [54,55,56,57,58].

For example, the well-known generalized hebbian algorithm (GHA) proposed by

Sanger [56], and the adaptive principal component extractor (APEX) proposed by

Kung and Diamantaras [57]. Both are extensions of Oja’s principal component

neuron [55]. Fiori [58] applied these algorithms together with the new ψ-APEX to 20

datasets containing 5,000 samples. The results show that ψ-APEX and GHA give the

best results when the eigenvalues of the correlation matrix are spread wide apart,

otherwise they are the same.

Excessive training also contributes to poor generalization in neural networks. A

technique called cross validation [59] can be used to detect the onset of overfitting

during the training stage, training can then be terminated to prevent overfitting from

developing. Prechelt [53] investigated cross validation using three different stopping

criteria; the generalization loss on the validation data, the progress on the training set,

and the ratio of the generalization loss to the progress made. He found that the

slowest stopping criteria produced best generalization results but this was at the

expense of much longer training times. Levin [60] investigated the effect of using

different generalization measures on validation data in thin-plate spline RBF networks.

When the mean squared error was used he found that the generalization error did not

increase as expected when the network started to overfit the data. This was because

the error measure used penalized networks that produced only a few erroneous

Chapter 2 : Literature review

-33-

results. He proposed the use of a new error measure based on the median of the

absolute error. The median tends to reduce the effects of a few erroneous results on

the overall sample average.

A novel approach to obtaining the right size network for good generalization was

proposed by Lee [14]. Lee suggested growing the weights of the network from almost

zero initial values with the expectation that only the necessary number of weights

would be activated. One of the difficulties of starting the training under these initial

values is that the direction of the gradient vector at a point close to the origin in weight

space is approximately along the direction of the axis defined by the output unit’s bias

weight. Iterative methods based on steepest descent would therefore adapt only the

output unit bias weight of the network. Lee suggested using the tangent plane

algorithm as a starting point [10]. The tangent plane algorithm defines not just a

single direction to move on being presented with a item of training data, but a whole

plane of directions to move towards. The efficiency of the algorithm should not be

impaired too much if a nearby point on the tangent plane is chosen, displaced

somewhat in the direction away from the origin. Lee applied this approach to the

Wisconsin State breast cancer diagnosis problem [34], and the Nettalk data [62]. The

results were very promising and comparable to those previously obtained on these

datasets. Further, the second tangent plane algorithm gives improved generalization

independent of network size whist retaining the fast convergence speed and high

classification accuracy of the original tangent plane method. A detailed description of

the second tangent plane algorithm is presented in chapter 3 together with

suggestions for improvements. The results of simulation tests will also be presented.

Chapter 2 : Literature review

-34-

2.4 Multi-category classification using gene expression data

Bioinformatics is defined as the storage and manipulation of biological information

[63]. Luscombe [64] defines bioinformatics as conceptualising biology in terms of

molecules and applying informatics techniques to understand and organise the

information associated with these molecules on a large scale. One aspect of

bioinformatics is the analysis of biological data. This involves gene identification and

prediction, gene structure prediction, and the investigation of macro structures such

as secondary and tertiary protein structures, and examining protein geometries using

distance and angle measures. Another aspect of bioinformatics is the biological data

itself. One property of biological data is the extremely large amount. For example a

DNA sequence of genes comprises strings of four base letters, each gene 1,000

bases long. The GenBank [65] repository holds more than 12.5 million bases in 115

million entries.

The intensive interest in bioinformatics has been driven by the emergence of

experimental techniques that generate a great amount of data, such as DNA

sequencing, mass spectrometry and micro-array expression analysis [66]. These

problems are so large that they are impossible to analyse manually. Micro-array

technologies [67,68] allow the monitoring of gene expression levels of thousands of

genes simultaneously in any given cell, cell line or human tissue. The study of micro-

array technology has attracted more interest and has been an important factor in

bioinformatics research during recent years [69,70,71]. There are many classification

methods being used for cancer classification both from statistical and machine based

learning, but some characteristics of gene expression make this task very difficult.

First, gene expression data usually has a high dimensionality, which often contains

thousands of genes. This can cause a great computational overload. Second, the

size of the samples is usually very small, often below 100. A low ratio between

Chapter 2 : Literature review

-35-

training sample size and number of genes results in a very sparse input space, which

makes accurate classification very difficult. Third, most of the genes are irrelevant to

cancer classification, and simply add back-ground noise to any analysis carried out.

There has been a number of classification methods used for cancer classification both

from statistical and machine learning. These methods include k-nearest neighbour

[66,72], linear discriminant analysis [68,70,72], and support vector machines

[73,74,75]. Nearest neighbour methods are based on some distance function of a

pair of patterns, such as the Euclidean distance. The k-nearest neighbour rule

proceeds as follows. For each pattern in the test set, find the k-nearest patterns in the

training set, and predict the class of the pattern by majority vote, that is choose the

class that is most common among the k-nearest neighbours. Linear discriminant

analysis is a method that finds the linear combinations of features which best separate

two or more classes. The resulting combination can be used as a linear classifier or,

more commonly, for dimensionality reduction. Fisher linear discriminant analysis is

based on finding linear combinations of pattern vectors with large ratios of between-

class to within-class sum of squares. This measure is in some sense a measure of

the signal to noise ratio for the class labelling. One of the first applications of

discriminant methods to gene expression data was the weighted voting scheme [70].

In this method a sample is assigned to a particular class according to the weighted

distance between it and the nearest class mean vector. Support vector machines

map the input space into a higher dimensional feature space so that the data is

linearly separable into two classes. This separation is achieved by constraining the

Euclidean norm of the weight vector.

Over the past few years binary classification methods using gene expression data has

been studied intensively [66,68,70,73,74,76,77,78]. These studies indicate that multi-

class problems are far more difficult than binary ones and classification accuracies

Chapter 2 : Literature review

-36-

drop off sharply as the number of classes increases. Ramaswamy et al [74] applied

an SVM algorithm for the analysis of gene expression data on 14 different tumours in

the GCM dataset. For a c-category classification problem, c binary classifiers were

used each to discriminate one class from all others. This method has potential

drawbacks when there is considerable overlap between classes in pattern space. The

results are very promising in relation to k-nearest neighbour and weighted voting

methods. Yeang et al [69] have made a comparison of three binary classification

methods, k-nearest neighbour, weighted voting and support vector machines. Three

combinatory schemes were used, one-versus-all, one-versus-one, and hierarchical

partitioning. The results show that all the support vector machines produced the best

results when all the genes were used. For the k-nearest neighbour and weighted

voting methods, one-versus-one tended to outperform one-versus-all when a fixed

number of genes were used. Dudoit et al [72] made a comparison of linear

discriminant methods, nearest neighbour classifiers, decision trees and aggregation

methods. Three datasets were used, lymphoma, leukaemia, and NCI60. The results

show that the k-nearest neighbour method and diagonal linear discriminant method

had the lowest test set errors, and that the Fisher discriminant method had the highest

test set error. Stratnikov et al [78] presents a comprehensive evaluation of several

multi-category classification methods including SVM, k-nearest neighbour, weighted

voting and a back-propagation neural network. The study used nine multi-category

datasets and two binary datasets; GCM dataset, brain tumour dataset, leukaemia

dataset, MLL dataset, lung cancer dataset, SRBCT dataset, prostrate tumour dataset

and DLBCL dataset. The results show that SVM classifiers were the best performers

with and without gene selection, and that weighted voting and decision tree methods

were the worst; the back-propagation neural network ranked in the middle.

Neural network classifiers are well established for their unique capability to map the

input space non-linearly into a higher dimensional feature space so that the data is

Chapter 2 : Literature review

-37-

linearly separable into numerous different classes. Compared with SVM, neural

networks can map the input space directly into a number of different classes, while

SVM maps the input data so that it is separable into 2 classes. This particular

property of neural networks to accommodate the non-linear features of expression

data might actually reduce the number genes required for accurate classification,

which is reducing the dimensionality of the classification problem. For linear

algorithms, more genes are required to form a higher dimensional space for the

separation. The first application of ANN for cancer classification using gene

expression data is presented in [79]. Khan et al. used a two hidden layered feed-

forward neural network to classify small, round blue-cell tumours into four categories.

The ANN method correctly classified all the samples that present difficulties in clinical

diagnosis methods. In Linder et al [77] a new neural network algorithm was

developed for multi-category classification using gene expression data. This method

uses a simple ANN to perform a pre-selection at the first stage. At this stage a simple

ANN narrows the choice down to two preferred classes with the highest activities in

the output neurons. A subsequent ANN (SANN) is applied for the final decision on

these two selected classes. Linder have applied to the GCM dataset with very good

results. The results show that SANN beats the best classifier as described in [74] but

it causes a great increase in network complexity and very slow convergence.

Therefore, faster and more efficient neural network algorithms are needed that are

capable of high classification accuracy. In the next chapter we investigate a fast

sequential algorithm for training neural networks.

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-38-

Chapter 3

COMPREHENSIVE EVALUATION OF THE TANGENT PLANE ALGORITHM

In Lee [14], an algorithm is described for supervised learning in multilayered feed-

forward neural networks. This second tangent plane algorithm uses the target values

of the training data to define a surface in the weight space of the network. The

weights are updated by moving to the tangent plane to this surface. It differs to more

conventional gradient descent based learning methods by accepting almost zero initial

conditions with the expectation that only the minimum number of weights will be

activated. It has been shown to give improved generalization and significantly faster

convergence relative to the standard back-propagation algorithm on benchmark

classification problems.

In this chapter, the performance of the second tangent plane algorithm is evaluated

for classification and function approximation tasks and compared with the back-

propagation algorithm. Two limitations of the second tangent plane algorithm are

identified. First, the performance of the second tangent plane algorithm is no better

than the backpropagation algorithm in small parsimonious networks where

generalization is found to be best. Second, the second tangent plane algorithm

frequently fails to converge when the training data is corrupted by adding a small

amount of random noise to the teaching values. Finally, the differentiation and

evolution of weights in neural networks trained by the second tangent plane algorithm

is investigated. Histograms of weight importance coefficients are used to evaluate the

effectiveness of growing the weights from small initial values as a method for

improving generalization.

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-39-

3.1 Description of the tangent plane algorithm

A neural network must have the right size for good generalization. Networks that

are too small cannot fit the required function, whereas networks that are too large

are prone to overfitting [82]. There are several approaches to determine the correct

size for a network. In Lee [14] a method was described that grows the weights from

almost zero initial conditions in the expectation that only the necessary number of

weights would be activated. Lee used the first tangent plane algorithm [2] as a

starting point, for instead of determining a single direction to move on in weight

space, it determines a plane of suitable points to move to. The first tangent plane

algorithm is a fast method of training a feed-forward neural network. It avoids

inappropriate step sizes by treating each training value as a constraint that defines a

surface in weight space. The weights are then adjusted by moving from the current

position to the tangent plane to this surface. The second tangent plane algorithm

adjusts the weights by moving from the current position to a point close to the foot of

the perpendicular, but displaced somewhat in the direction away from the origin.

This directional component of movement helps to push the network weights away

from the origin where the convergence speed of the tangent plane algorithm, and

other steepest descent methods, is known to be very slow [2]. In the region of

weight space close to the origin the axis defined by the weight from the constant

output bias is very nearly perpendicular to all the constraint surfaces. Thus the

tangent plane algorithm gives movement up and down this axis satisfying the

constraints on the weights by adjusting this weight only.

In the next section we describe the derivation of the tangent plane algorithm and the

steps involved in the training procedure. In the following section we describe the

weight elimination procedure used to measure weight importance values and in the

last section the simulation results.

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-40-

3.1.1 Derivation of the tangent plane algorithm

The basic structure of a feed-forward neural network is shown in Fig 3.1. It consists

of an input layer of units that supply information, or activations, to the inputs of units

in the first hidden layer. These in turn supply activations to inputs of units in the next

layer, and so on. Typically the units in each layer receive inputs from the output of

the units in the preceding layer. Let jiw denote the weight between unit iu and ju .

jφ and jθ will be the input and output of ju , so that fj =θ (jφ) and ∑= i ijij w θφ

for some monotonic function f .

Let ku be trained to mimic the target value ky . The tangent plane algorithm adjusts

the weights by moving at an angle β to the perpendicular from a to the tangent

plane to the surface ()k
1

k yf −=φ , taken at a point where a line dropped from a

Fig. 3.1. The structure of a feed-forward neural network

Input
layer

First
hidden
layer

Output
layer

Second
hidden
layer

 ku

1u

1,kw

0,kw

()kk f φθ =

nun2u

2,kw

n,kw

∑= i ii.kk w θφ

1+

1θ

1x

2x  

2θ

1nu +

2nu +

nθ

2 u

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-41-

and parallel to the axis defined by the output unit’s bias weight 0kw meets this

surface (see Fig. 3.2).

Let ∑= i,j ji
'
jiw ia , where jii is a unit vector in the direction of the jiw axis. Use

the equation () ∑ ≠
− +=

0i iki0kk
1 wwyf θ to find a value, "

0kw , for the bias weight

0kw from the values jiw of the other weights, so that the surface ()k
1

k yf −=φ

contains the point ∑ ≠
+=

0,ki,j ji
'
ji0k

"
0k ww iib . Now, if we use the equation

() ∑ ≠
− +=

0i i
'
ki

"
0kk

1 wwyf θ and () ∑ ≠
− +=

0i i
'
ki

'
0kk

1 wwf θθ , and note that b differs

from a only in the value of 0kw , we get

()

() ()() 0kk
1

k
1

0k
'

0k
"

0k

fyf

ww

i

iab

θ−− −=

−=−

 (3.1)

Fig. 3.2. Movement from the present position a to the foot of the perpendicular to

the tangent plane of constraint surface ()k
1

k yf −=φ to position d

o

c

()k
1

k yf −=φ

kφ∇

0ki

a
a

b

d
β

m

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-42-

Let n̂ be the unit normal to the surface at b , so kkˆ φφ ∇∇=n . The length of the

perpendicular from a to the tangent plane at b is () nab ˆ.− . If c is the foot of the

perpendicular from a to the tangent plane at b ,

() ()()

() ()
k

k

k

kk

k

k

k

k
kkk

fyf

.fyf

φ
φ

φ
θ

φ
φ

φ
φ

θ

∇

∇

∇

−
=

∇

∇

∇

∇
−=−

−−

−−

11

0
11 iac

 (3.2)

The vector parallel to the tangent plane and directed away from origin at a is

()nn.aam ˆˆ−= . Thus, if nR∈d is the point of intersection with the tangent plane

of a line from a inclined at angle β to the perpendicular, then

() ()

()ac
m

m
ac

accdad

−+−=

−+−=−

βtan
 (3.3)

Let () ()k
1

k
1 fyf θδ −− −= be the error in the input to final unit. Hence, using

equations (3.2) and (3.3), we obtain

(

)
k

k

lm lm

k
lm

kk

k

k

w
w

tan

φ

φφ

φ
β

φ

δ
φδ

φ

∇

∇
∂
∂

×

∇
−

∇
+∇

∇
=−

∑

111
2 w

m
ad

 (3.4)

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-43-

So, to adjust a given weight jiw







∂
∂

∂
∂

×








∇
−

∇
+

∂
∂

∇
=∆

∑
ji

k

lm lm

k
lm

k

ji

kji

k

k

ji

ww
w

wtan
w

w

φφ

φ
β

φ

δφ
δ

φ
22

111
m

 (3.5)

where

2

ji

k

i,j m,l lm

k
lm2

k

ji
2

ww
w1w 






∂
∂
















∂
∂

∇
−= ∑ ∑ φφ

φ
m

The term jik w∂∂φ is the partial derivative of the net input to the output unit. This

derivative is evaluated at point "w on the constraint surface, not at the current

position 'w in weight space. The treatment of this term follows from the back-

propagation rule e.g.

 i
j

k

ji

k

w
θ

φ
φφ

∂
∂

=
∂
∂

 (3.6)

 and

()













≠
∂
∂

=

=
∂
∂

∑
∈ jMm

mj
m

k
j

'
j

j

k

kjif,wf

kjif,

φ
φ

φ
φ
φ

1

 (3.7)

 where jM is the set of units to which ju passes its output

The second tangent plane algorithm requires a parameter βtan that needs to be

set manually. This parameter is the tangent of the angle between the movement

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-44-

vector and the perpendicular from the current position to tangent plane. Preliminary

tests showed that the algorithm was not particularly sensitive to the exact value

chosen. The only difficulty with βtan is that very large values may result in units

being forced into saturation which will slow down the learning. Lee suggests a

modification to the second tangent plane algorithm that involves reversing the

outwards push when the average of the absolute values of the weights w increases

above 1.0. This was achieved by multiplying βtan by the term (1 – w). This may

give the second tangent plane algorithm an advantage over the standard back-

propagation algorithm as there is no mechanism in this method for reducing large

weight sizes should they occur. However, there exists a potential danger that sign

changes in the term () ×− w1 βtan will cause oscillatory movement across the

boundary of the region w < 1.0, which will slow down convergence

3.2 Implementation of the procedure

The following section is included to clarify the procedure for updating the weights of

a network trained using the tangent plane algorithm

1. For each unit ju ,

()






 =

=

∑−
m mjmj

1
j

otherwisewxf

kjif1
x

φ

2. For each weight jiw , calculate jik w∂∂φ using

ij
ji

k x
w

θ
φ

=
∂
∂

3. Calculate

∑ 










∂
∂

=∇
i,j

2

ji

k2
k w

φ
φ

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-45-

4. Calculate the components of the vector m

ji

k
2

k
m,l

lm

k
lmjiji w

1
w

wwm
∂
∂

∇







∂
∂

−= ∑ φ
φ

φ

5. Calculate

∑= i,j
2
ji

2 mm

6. Calculate

 () ()k
1

k
1 fyf θδ −− −=

7. For each weight jiw , add







∂
∂

∂
∂

×








∇
−

∇
+

∂
∂

∇
=∆

∑
ji

k

lm lm

k
lm

2

k

ji

kji

k
2

k

ji

ww
w

1w1tan
w

1w

φφ

φ
β

φ

δφ
δ

φ m

Note: the second tangent plane algorithm reverts to the first tangent plane algorithm

when the angle parameter β is set to zero

3.3 Estimating weight sensitivity values

Despite the success of the tangent plane algorithm there is strong evidence to

suggest that large weight values can harm generalization. Excessively large

weights feeding into output units can cause wild outputs far beyond the range of the

data if an output activation function is not included. To put it another way, large

weights can cause excessively large variances in the output. According to Bartlett

[83], the size of the weights is more important than the number of weights in

determining good generalization. This poses the following question: is the strategy

of growing weights actually harmful to generalization. One approach might be to

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-46-

measure the significance or importance of each weight, as the magnitude of the

weights is not the best measure of their contribution to the training process [11].

There are several methods suggested for calculating the importance of connection

weights. Karnin [12] measures the sensitivity jiS of each weight by monitoring the

sum of all the changes to the weights during training. Thus the saliency of a weight

is given as () ()∑ ∆∂∂−=
t

t
jiji

t
kji wwŜ ε f

jiw / (0
ji

f
ji ww −), where t are the number of

epochs trained, f
jiw and 0

jiw are the final and initial values of weight jiw . Le Cun et

al [10] measure the saliency of a weight by estimating the second derivative of the

error. They also reduce the network complexity by constraining certain weights to

be equal. Low saliency means low importance of the weights. A more sophisticated

approach avoids the drawbacks of approximating the second derivatives by

computing them exactly [11].

The last two methods have the disadvantage of requiring training down to the error

minimum. The autoprune method [15] avoids this problem. It uses a statistic T to

allocate an importance coefficient to each weight based upon the assumption that a

weight becomes zero during the training process

 ()
()

() ()() 















∆−∆

∆−
=

∑
∑

t

2
ji

t
ji

t
t
jiji

ji
ww

ww
logwT (3.8)

In the above formula, sums are over all training examples t of the training set, and

the overline means arithmetic mean over all examples. A large value of T indicates

high importance of weight jiw .

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-47-

3.4 Simulations and results

Comparative tests were performed on the first and second tangent plane algorithm

and the back-propagation algorithm under a variety of initial conditions and using

different network sizes. The benchmark datasets sets used were regression and

classification problems. Classification problems involve a decision making task

where the output fits into well-defined categories. The classification tasks chosen

were N-bit parity and cancer. Regression problems involve the approximation of a

continuous valued function. The regression problem chosen was hearta. All the

datasets are from the UCI machine learning repository and made available in the

Proben1 collection [34], except N-bit parity which has already been used in the

paper on the tangent plane algorithm [2].

The N-bit parity problem was used to analyse the convergence behaviour of the first

tangent plane algorithm. Tests were performed under a variety of conditions with

respect to the network size for this purpose. Further tests were performed by

adding noise to the teaching variables to analyse the ability of the tangent plane

algorithm to converge to a compromise solution with fuzzy data. Network training

was terminated after the error was reduced to below a preset value or the maximum

number of epochs was reached

The hearta and breast cancer problems were used to determine the degree to which

the second tangent plane algorithm would generalize from the given data. Tests

were performed using different sized networks for this purpose. Network training

was terminated using the method of early stopping as this method is known to help

avoid overfitting.

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-48-

3.4.1 Network initialization

The algorithms require parameters to be set manually. Preliminary tests showed

that the best results were obtained with the parameters set as follows. First, the

tangent plane algorithm. For N-bit parity, βtan = 0. The input weights were set to

random values in [-1,1]. For the hearta and breast cancer problems, βtan = 0.1 and

0.02 respectively. The input weights were set to random values in the range [-

0.01,0.01]. Next, the gradient descent back-propagation algorithm. For N-bit parity,

η = 0.01, and α = 0.7. For the breast cancer problem, η = 0.01, and α = 0.7. For

the hearta problem, η = 0.01, and α = 0.3. The input weights were set to random

values in the range [-1,1].

3.4.2 Simulation problems

The N-bit parity problem has N inputs and one output. The inputs are now data bits

(a data word) and the output is the parity bit. The parity bit is set to be +1 if the total

number of high bits in the data word is odd; otherwise it is set to -1. In the

simulation there are 6 data bits (N = 6). All possible combinations are gone through

(26 = 64). Thus, the number of training examples is 64. Since there were no testing

examples available, the generalization properties of the network cannot be tested

quantitatively.

The hearta problem is an analogue version of the heart disease diagnosis problem

from the UCI machine learning repository [61]. The single continuous output

predicts heart disease and decides the number of major vessels which are reduced

in diameter by less than 50%. The decision is made based upon 13 input attributes

which include age, sex, smoking habits, and subjective pain descriptions, and so on.

The hearta dataset comprises 690 training examples and 230 testing examples.

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-49-

The cancer problem contains some diagnosis results for breast cancer. Based on

cell descriptions gathered by microscopic examination, a tumour is classified as

benign or malignant. The dataset was created based upon the breast cancer

Wisconsin problem dataset from the UCI machine learning repository [61]. The

output represents the classification result for the purpose of breast cancer diagnosis.

The decision is based on nine input attributes which include cell thickness, the

uniformity of cell size, and cell shape. The number of training samples is 200 and

the number of testing samples is 167.

3.4.3 Error metrics used to determine convergence

The error metrics used in the simulations were CERR (Classification ERRor) for

classification problems, and NMSE (Normalized Mean Square Error) for regression

problems e.g.

 () ()∑ −=
i

kiki sgnysgn
m2
1CERR θ (3.9)

 and

 ()2

2

1 ∑ −=
i

kikiy
m

NMSE θ
σ

 (3.10)

where m is the number of training patterns, kiy is the target output of the ith input

pattern, kiθ is the ith network output, sgn is the sign function of a number (i.e. if

the number if negative, then the sgn function returns -1, otherwise it returns +1),

and 2σ is the variance of the target output data.

3.4.4 Discussion of results

N-bit parity. The first test is a generalization of Xor with N set to 6. In this test the

convergence behaviour of the first tangent plane algorithm was compared with the

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-50-

back-propagation algorithm. A standard two hidden layer network was used with 6

inputs, and one output. The number of units in each hidden layers was increased

from 10 to 40 units in steps of 10. 20 trials were carried out with the mean number

of steps to converge, standard deviation, and number of successful trials recorded.

Network training was terminated when the number of presentations of the entire

dataset exceeded 1,000, or when the classification error was reduced to 5 x 10-2. A

further test was carried out with training terminated when the error was reduced to

zero to give a harder measure of convergence

The results are tabulated in Table 3.1a and 3.1b. It was found that the tangent

plane algorithm converged faster than the back-propagation algorithm, except in the

smallest network where the convergence speed was slower and there were more

failed trials. The most significant gains were made by the tangent plane algorithm in

the largest networks when reducing the classification error to zero, the slow

asymptotic behaviour of the back-propagation algorithm producing very slow

convergence. Many of the trials carried out using the tangent plane algorithm in the

smallest network would get stuck in local minima, which had a deleterious effect on

the success rate. The same behaviour was observed in the back-propagation

algorithm, but this algorithm appeared to be far more robust with regards to the size

of the network.

Fig. 3.3 and 3.4 show typical convergence behaviour for the tangent plane algorithm

and the back-propagation algorithm. A standard 6-15-15-1 network was used with

training terminated after 200 epochs. The training curves for the tangent plane

algorithm are very steep with convergence occurring rapidly within 50 epochs. Two

curves contain small hills indicating the turbulent nature of network training. The

training curves for the back-propagation algorithm are much smoother which

suggests smaller weight updates. Convergence occurs within 100 epochs, with the

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-51-

exception of one curve, which appears to get stuck on a flattish plateau before

converging. This is probably due to oscillatory behaviour caused by using a

momentum term to accelerate the learning

(a)

 Avg. number of epochs to reduce
CERR below 5.0 x 10-2

Avg. number of epochs to reduce
CERR to zero

HU Mean Std Dev Succ Mean Std Dev Succ
10 314 268 8 235 84 6
20 32 12 20 56 29 20
30 20 6 20 27 8 20
40 13 2 20 18 6 20

(b)

 Avg. number of epochs to reduce
CERR below 5.0 x 10-2

Avg. number of epochs to reduce
CERR to zero

HU Mean Std Dev Succ Mean Std Dev Succ
10 85 35 20 500 290 13
20 34 9 20 68 30 20
30 21 6 20 33 9 20
40 15 3 20 20 7 20

Table 3.1. Mean number of steps to converge, standard deviation and number of

successful trials (Succ) for standard networks with different numbers of hidden units

HU on the 6-bit parity problem: (a) tangent plane algorithm, and (b) back-propagation

algorithm with momentum (η = 0.01, α = 0.7)

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-52-

Fig. 3.3. Typical convergence behaviour of the first tangent plane algorithm

on the 6-bit parity problem

Fig. 3.4. Typical convergence behaviour of the back-propagation algorithm

on the 6-bit problem (η = 0.01, and α = 0.7)

0

10

20

30

0 50 100 150 200

Epochs

NM
SE

 X
 1

00

BP trial 1

BP trial 2

BP trial 3

0

10

20

30

0 50 100 150 200

Epochs

NM
SE

 X
 1

00

TPA trial1

TPA trial2

TPA trial3

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-53-

Training with inexact data. A further test was performed with data that had been

partially corrupted in order to assess the robustness of the first tangent plane

algorithm. A standard 6-15-15-1 network is assumed with 6 inputs, one output and

15 hidden units in two hidden layers. Two different types of inexact data were used.

The first type of inaccurate data involved adding small random fluctuations to the

teaching values. Each teaching variable was randomised to a value in the range

()δδ +− kk y,y . The second type of inaccurate data involved using single items of

rogue data presented occasionally into the network. The training data was

generated in the usual way, but at epochs 4, 8, 12, …, 196, 200, the corresponding

teaching values were given a 0%, 2% and 5% probability of being randomised in the

range [-1,1]

Table 3.2a and 3.2b give the results for the first type of inexact data. The results are

averaged over 20 trials. It was found that the tangent plane algorithm was tolerant

of low levels of noise. All trials succeeded with the noise set at δ = 0.01, and 0.05.

The situation with the back-propagation algorithm was the same. Increasing the

level of noise had a deleterious effect on convergence speed with the tangent plane

algorithm completely failing to converge for the highest level of noise. This

behaviour is expected as the tangent plane algorithm uses the target data as a

constraint to be satisfied. Clearly where the input patterns change from one

presentation to the next so that no exact solution exists, the tangent plane algorithm

will find it difficult to converge on a solution, and instead continue to hop around

weight space.

Fig 3.5 and 3.6 shows the results for the second type of inexact data. The same set

of initial weights was used in each figure. The training curves for the tangent plane

algorithm drop sharply at first showing that the ability of the algorithm to converge

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-54-

upon a solution has not been impaired by the presence of noise. Thereafter the

training curves exhibit turbulent behaviour that persists without diminution. The

recovery time of the network after the presentation of the randomised data is

typically four epochs. Increasing the error rate increased the occurrence of large

spikes in the training curves. The noisy training curves for the back-propagation

algorithm show slight perturbations about the curve with no noise added. Clearly

the smaller steps taken have averaged out the fluctuations in the training data

leading to good asymptotic behaviour

(a)

 Avg. number of epochs to
NMSE below 10-2

Avg. number of epochs to
NMSE below 10-3

δ Mean Std Dev Succ Mean Std Dev Succ
0.00 31 10 20 51 11 20
0.01 32 9 20 52 12 20
0.05 33 12 20 62 12 20
0.10 33 8 20

(b)

 Avg. number of epochs to
NMSE below 10-2

Avg. number of epochs to
NMSE below 10-3

δ Mean Std Dev Succ Mean Std Dev Succ
0.00 38 13 20 59 15 20
0.01 42 25 20 60 19 20
0.05 37 9 20 101 45 20
0.10 43 11 20 336 111 11

Table 3.2. Mean number of steps to converge, standard deviation and number

of successful trials (Succ) on the 6-bit parity problem for networks trained using

fuzzy data: (a) tangent plane algorithm, and (b) back-propagation algorithm

(η = 0.01, and α = 0.7)

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-55-

Fig. 3.6. Typical convergence behaviour of the back-propagation algorithm

with momentum with the error rate for randomising the teaching values set

at 0%, 2%, and 5%

Fig. 3.5. Typical convergence behaviour of the tangent plane algorithm

with the error rate for randomising the teaching values set at 0%, 2%,

and 5%

0

10

20

30

0 50 100 150

Epochs

NM
SE

 X
 1

00

TPA (d = 0.00)

TPA (d = 0.02)

TPA (d = 0.05)

0

10

20

30

0 50 100 150

Epochs

NM
SE

 X
 1

00

BP (d = 0.00)

BP (d = 0.02)

BP (d = 0.05)

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-56-

Hearta problem. The second test is an analogue version of the heart disease

problem from the Proben1 collection [34]. In this test the generalization

performance of the second tangent plane algorithm was compared with the back-

propagation algorithm. A standard feed-forward neural network was used with 9

inputs, one output, and two hidden layers. The number of units in each hidden layer

was increased from 5 to 20 in steps of 5. 20 trials were carried out with the mean

square error on the training set and the test set recorded together with the mean

number of steps to converge. Network training was terminated using the method of

early stopping.

In preliminary tests it was found that the convergence behaviour of the second

tangent plane algorithm could be significantly improved by introducing a progressive

stiffening of the step size. An exponential schedule ()τ/texp − was used for this

purpose with the time constant set at τ = 5,000. The results are tabulated in Table

3.3a. It was found that the generalization capability of the second tangent plane

algorithm was comparable with the back-propagation algorithm, except in the

smallest network where it was worse. Generalization was found to be independent

of network size. Decreasing the value of the time constant had a beneficial effect on

generalization but this was at the expense of the convergence speed, which was

much slower

Fig. 3.7 and 3.8 show the generalization behaviour of the second tangent plane

algorithm and the back-propagation algorithm. A standard 13-20-20-1 network was

used with 13 inputs, 20 hidden units in each of two hidden layers and one output.

The generalization curves of the second tangent plane algorithm are fairly smooth.

One of the curves dips to a clearly defined minimum after 50 epochs. Two curves

rise fairly steadily showing mild overtraining. The generalization curves of the back-

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-57-

propagation algorithm show the same behaviour. One curve dips to a local

minimum after 50 epochs. There is evidence of mild overtraining in all the curves.

Increasing the momentum rate had a deleterious effect on generalization, and

produced mild turbulence in all the curves

(a)

 Second tangent plane algorithm Back-propagation algorithm

 Avg. validation set error using early
stopping (NMSE)

Avg. validation set error using early
stopping (NMSE)

HU Err Err* Steps Err Err* Steps
10 0.27 0.35 121 0.21 0.31 59
20 0.16 0.34 88 0.18 0.32 43
30 0.12 0.34 70 0.16 0.34 39
40 0.11 0.34 52 0.17 0.37 25

(b)

 Second tangent plane algorithm Back-propagation algorithm

 Avg. validation set error using early
stopping (CERR x 102)

Avg. validation set error using early
stopping (CERR x 102)

HU Err Err* Steps Err Err* Steps
10 4.35 5.14 135 4.37 4.30 82
20 3.19 4.27 62 3.97 5.79 72
30 2.70 3.78 46 4.23 6.99 37
40 2.21 3.65 41 4.03 7.51 36

Table 3.3. Training set error (Err) and test set error (Err*) for different sized networks

with training terminated using early stopping: (a) hearta1 problem, (b) the breast cancer

problem

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-58-

Fig. 3.7 Typical generalization behaviour of the second tangent plane algorithm

on the hearta problem (tanβ = 0.1, and τ = 5,000)

Fig. 3.8 Typical generalization behaviour of the back-propagation algorithm

on the hearta problem (η = 0.01, and α = 0.3)

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500

Epochs

NM
SE

BP test 1

BP test 2

BP test 3

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500

Epochs

NM
SE

2TPA test 1

2TPA test 2

2TPA test 3

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-59-

Cancer problem. The final test utilized data from the Wisconsin state breast cancer

dataset, which is a real-world problem from the Proben1 collection [34]. In this test

the generalization performance of the second tangent plane algorithm was

compared with the back-propagation algorithm. A standard feed-forward neural

network was used with 9 inputs, one output, and two hidden layers. The number of

units in each hidden layer was increased from 5 to 20 in steps of 5. 20 trials were

carried out with the classification error on the training set and test set recorded

together with the number of steps taken to converge. Network training was

terminated using the method of early stopping.

In preliminary tests it was found that the performance of the second tangent plane

algorithm could be considerably improved by introducing a progressive stiffening of

the step size. An exponential annealing schedule was used for this purpose (τ =

10,500). The results are tabulated in Table 3.3b. It was found that generalization

was significantly better in networks trained by the second tangent plane algorithm,

except in the smallest network where it was slightly worse. Increasing the size of

the angle parameter (tanβ = 0.05, 0.10) had a deleterious effect on the convergence

speed and generalization performance.

Fig. 3.9 and 3.10 show the generalization behaviour of the second tangent plane

algorithm and the back-propagation algorithm. A standard 9-20-20-1 network was

used with 9 inputs, 20 hidden units and one output. The generalization curves of the

second tangent plane algorithm dip to a local minima at 50 epochs. Thereafter the

curves rise to a flattish plateau. Very little learning occurs after 200 epochs. The

generalization curves of the back-propagation algorithm dip to a local minimum at 50

epochs. Two curves contain slight undulations that persist without diminution.

There is mild evidence of overtraining in one curve.

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-60-

Fig. 3.9 Typical generalization behaviour of the tangent plane algorithm on

the cancer problem (tanβ = 0.02, and τ = 10,500)

Fig. 3.10 Typical generalization behaviour of the back-propagation

algorithm on the cancer problem (η = 0.01, and α = 0.7)

0

1

2

3

4

5

0 100 200 300 400 500

Epochs

NM
SE

BP test 1

BP test 2

BP test 3

0

1

2

3

4

5

0 100 200 300 400 500

Epochs

NM
SE

2TPA test 1

2TPA test 2

2TPA test 3

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-61-

3.4.5 Discussion of weight sensitivity values

Next, we turn our attention to the differentiation and evolution of the weights in

networks trained by the second tangent plane algorithm. The matter of growing

weights from small initial values raises an important question, namely does the

algorithm activate only the necessary number of weights, or does it activate all the

weights leading to a large network structure? To answer this question, we will

examine the importance of weights in the network. There are many methods to

calculate the importance of weights such as assuming that the importance is

proportional to the magnitude of the weights [52]. More sophisticated methods

include optimal brain damage [10], and optimal brain surgeon [11]. Both of these

methods require training down to the error minimum. We will use the autoprune

method [51,52] which uses a statistic T to allocate an importance coefficient to

each weight during the training process.

Comparative tests were carried out using the second tangent plane algorithm and

the standard back-propagation algorithm. In our experiment we utilise data from two

benchmark datasets; the breast cancer problem, and the hearta problem obtained

from the UCI machine learning repository [61]. A standard feed-forward network

was assumed with two hidden layers and 25 units in each hidden layer. The

importance coefficients of the weights were recorded from the same trial at different

epochs. The coefficient sizes were grouped in classes of width one and histograms

plotted to show the distribution of the T values at different stages of training.

Network training was terminated after a preset number of epochs.

Breast cancer problem. Fig 3.11 and 3.12 show the histograms of the importance

coefficients for both algorithms. The histograms were plotted at epochs 20, 60, and

100. The average values of the histograms were calculated using the arithmetic

mean. The tangent plane algorithm gave histogram averages of 5.47, 6.10, and

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-62-

7.01 respectively. The back-propagation algorithm gave 8.45, 8.05, and 8.16.

Notice the drift to the right of the histograms produced by the tangent plane

algorithm (see Fig 3.11). Notice also the skewness of the histogram after 20

epochs. Initially the weights are densely packed about the origin with only a few of

the weights responding to the training data. However, as the training continues, the

algorithm activates more of the weights by pushing the weight values further away

from the origin. In contrast the histograms produced by the backpropagation

algorithm are fairly symmetric with constant mean (see Fig 3.12). Prechelt [51]

suggests pruning all the weights with coefficients less than 0.5 times the arithmetic

mean of the coefficient sizes. After 20 epochs, this is approximately 9% of the

weights in the network trained by the tangent plane algorithm and 4% of the weights

in the network trained by the backpropagation algorithm.

Hearta problem. Fig 3.13 and 3.14 show the histograms of the importance

coefficients for both algorithms. The histograms were plotted at epochs 20, 60, and

100. The average values of the histograms were calculated using the arithmetic

mean. The tangent plane algorithm gave histogram averages of 4.09, 5.48, and

6.22 respectively. The standard back-propagation algorithm gave 6.59, 6.14, and

6.05. Once again, the histograms produced by the tangent plane algorithm show a

drift to the right as training continues. Notice that the means and variances of the

histograms produced by the backpropagation algorithm remain essentially the same.

This suggests that the backpropagation algorithm learns the problem very quickly,

so that after 20 epochs there is no learning taking place. Using Prechelt’s pruning

criteria, after 20 epochs approximately 14% of the weights in the network trained by

the tangent plane algorithm are eligible for pruning, and 7% of the weights in the

network trained by the backpropagation algorithm

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-63-

Fig. 3.11 Importance coefficient histogram for the tangent plane algorithm

(cancer problem). Horizontal axis: coefficient size grouped in classes of width 1.

Vertical axis: absolute frequency of weights with this coefficient size

Fig. 3.12 Importance coefficient histogram for the back-propagation algorithm

(cancer problem). Horizontal axis: coefficient size grouped in classes of width 1.

Vertical axis: absolute frequency of weights with this coefficient size

0

40

80

120

160

200

240

-5 0 5 10 15 20

Epoch 20

Epoch 60

Epoch 100

0

40

80

120

160

200

240

-5 0 5 10 15 20

Epoch 20

Epoch 60

Epoch 100

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-64-

Fig. 3.13 Importance coefficient histogram for the tangent plane algorithm

(hearta problem). Horizontal axis: coefficient size grouped in classes of width 1.

Vertical axis: absolute frequency of weights with this coefficient size

Fig. 3.14 Importance coefficient histogram for the back-propagation algorithm

(hearta problem). Horizontal axis: coefficient size grouped in classes of width 1.

Vertical axis: absolute frequency of weights with this coefficient size

0

50

100

150

200

250

300

-5 0 5 10 15 20

Epoch 20

Epoch 60

Epoch 100

0

50

100

150

200

250

300

-5 0 5 10 15 20

Epoch 20

Epoch 60

Epoch 100

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-65-

3.5 Problems with the tangent plane algorithm

There are a number of difficulties with the tangent plane algorithm. These difficulties

are summarised as follows

• For certain starting conditions of the weights, the tangent plane algorithm

would get stuck in local minima that slow down the convergence. This

behaviour is worse in small parsimonious networks where generalization is

known to be best. Investigation into this stucking behaviour showed that it

occurred whenever the tangent planes of two or more consecutive input

patterns were very nearly parallel. The tangent plane algorithm would then

zigzag between these surfaces for much longer resulting in very slow

convergence. This problem disappeared in larger networks. As noted by

Lee [2], the convergence speed of the tangent plane will be faster in

situations where the number of free parameters in the network is greater

than the number of patterns to be learned. The rationale behind this idea is

that the tangent plane algorithm will have more directions to move on in a

higher dimensional weight space

• The tangent plane algorithm is extremely sensitive to errors in the training

data. Two different types of erroneous data were investigated. The first type

involved adding small random fluctuations to the teaching values, and the

second type adding single items of false data to the training set. It was

found that the tangent plane algorithm would not tolerate large fluctuations in

the teaching values (e.g. yk ± δ, where δ ∈ [-0.1,0.1]), or a large percentage

of erroneous data (typically > 5%). These results are to be expected in a

supervised teaching algorithm that uses the teaching values as constraints to

be satisfied by adjusting weights. Schiffmann [33] noted a similar problem

Chapter 3 : Comprehensive evaluation of the tangent plane algorithm

-66-

with Schmidhuber’s algorithm [27] when a small number of incorrect

examples were present in the dataset.

• Starting the training with weights initialised to small values and then pushing

the weights in the direction away from the origin tends to produce large

network structures having wide distributions of weight values. Histograms of

weight importance coefficients show a general drift of the weights towards

higher importance values. This suggests a differential activation of the

weights with only a few weights activated at first. However, as the training

continues, more of the weights engage in the learning which results in an

oversized network structure. This means that any advantage gained by

setting the weights to small initial values is lost if the algorithm does not find

a solution quickly

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-67-

Chapter 4

A NEW SEQUENTIAL TANGENT PLANE ALGORITHM FOR RECURRENT

NEURAL NETWORKS

In chapter three a comparative evaluation of the tangent plane algorithm and the

back-propagation algorithm was performed for regression and classification tasks.

The benchmark datasets used were 6-bit parity [61], hearta [34] and cancer [34]. All

the datasets were obtained from the UCI machine learning repository [61]. The

results show that the tangent plane algorithm gives good generalization relative to

the backpropagation algorithm. Generalization was found to be independent of

network size. However, the tangent plane algorithm finds it difficult to converge on a

compromise solution when the data is inexact or contains a small number of

erroneous patterns. In these circumstances the tangent plane algorithm will

continue to hop around weight space, adjusting the weights of the network to satisfy

each new constraint in turn. In contrast, the backpropagation algorithm gave

improved convergence, smaller steps taken effectively smoothing out the

fluctuations in the training data. In this chapter, a new tangent plane variant is

developed for fully recurrent neural networks (FRNNs). FRNNs use feedback

connections and state units to learn the relationships between temporal sequences.

The new algorithm is based upon the real time recurrent learning algorithm (RTRL),

which is a gradient descent based method for training FRNN [3]. RTRL has been

used in many application areas such as real-time process control and speech

enhancement. It is shown that that learning temporal sequences can improve the

stability of the tangent plane algorithm when handling inexact data.

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-68-

4.1 Improvement in the stability of the tangent plane algorithm

We have already seen that the tangent plane method cannot handle datasets that

contain a small amount of erroneous data, or datasets where the teaching values

are fuzzy so that they vary from one presentation to the next. To overcome this

difficulty Lee [14] has suggested using a progressive stiffening of the step size as

the network becomes trained. This stiffening was implemented using a scaling

factor ns applied to each weight change, where s is a parameter set to 1 / 1.0002

and n the time step. Although the ability of the tangent plane algorithm to converge

was restored using this method, progressively stiffening the step size may have a

dramatic slowing down effect if not properly tuned, the parameter s being

dependent on the size of the training set. Moreover, the same quality of solution

can easily be achieved using the backpropagation algorithm with a fixed learning

rate. Fully recurrent neural networks (FRNNs) are powerful tools for learning

temporal sequences. FRNNs have been used in a variety of applications that

involve time varying signals e.g. process control [84], speech recognition [85,86],

and removing artefacts from electroencephalogram (EEG) signals [87]. Thus it

seems worthwhile investigating a tangent plane variant for FRNNs as a practical

alternative to using feedforward neural networks on problems with inexact data

4.1.1 A brief introduction to recurrent neural networks

Fully recurrent neural networks (FRNN) are powerful computational models that can

learn temporal sequences, either in online or batch mode. A diagram of an FRNN is

shown in Fig 4.1. The FRNN consists of two layers, an input layer of linear units

and an output layer of non-linear units. The input layer is fully connected to the

output layer by adjustable weights. Furthermore, the FRNN features unit delay

feedback connections that feed back the activations of the output units to the input

layer units. The output units thus have some knowledge of their prior activations,

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-69-

which enables them to perform learning that extends over time. FRNNs accomplish

their learning task by mapping input sequences, and delayed activations, to another

set of output sequences. Due to the nature of feedback around the output units,

these units may continue to cycle information through the network over multiple time

steps, and thereby discover abstract representations of time.

One of the most popular algorithms for training FRNNs is the real time recurrent

learning (RTRL) algorithm [3]. RTRL is a gradient descent based algorithm for

adjusting the output layer weights in a fully recurrent neural network. In the seminal

paper by Williams and Zipser, two variations are presented, one for online and one

for off-line (batch) learning. In both forms, RTRL has been used to train applications

in a variety of areas such as speech enhancement [85,86], and real-time process

control [84], where the output of the system is the response to current and previous

Fig 4.1. An example of a fully recurrent neural network with one output unit, one

hidden unit, and two input units. The function z-1 is the unit delay operator whose

output is delayed with respect to the input by one time step.

()1t
1
−θ ()1t

2
−θ +1 ()t

1x ()t
2x

Output layer

Input layer
1z− 1z−

1,2w

1u 2u

2z1z 3z 4z 5z

2,2w 3,3w 4,4w 5,5w

() ()t
ii i,2

t
2 zw∑=φ

() ()()t
2

t
2 f φθ =()t

1θ

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-70-

input. RTRL has also been used to train FRNNs for next symbol prediction in an

English text processing application [88]. Li et al [89] have used RTRL to train

FRNNs for adaptive pre-distortion linearization of RF amplifiers. Finally RTRL has

been used to train FRNNs that are capable of removing artefacts in EEG

(electroencephalograms) signals [90].

There are a great many variants of RTRL present in the literature that are aimed at

enhancing different aspects of the algorithm such as its computational complexity,

convergence speed, and its sensitivity to the choice of initial weights. In Catfolis [91]

a technique is presented to increase the performance of the RTRL algorithm by re-

initializing it after specific time periods so that the gradient vector is dependent on

fewer past values and the weights follow the true steepest descent direction more

accurately. Also, the relationship between the slope of the activation function and

the learning rate in the RTRL algorithm is explored in order to decrease the number

of degrees of freedom on non-linear optimization problems in Mandic [92]. In Lu et

al [93,94], a new mode exchange RTRL (MERTLR) algorithm was proposed which

was designed to work in two modes, static and dynamic. In static mode some of the

elements of the gradient matrix are fixed so that they do not change. This will

reduce the time complexity to O (3n) in static mode. In dynamic mode the gradient

matrix is computed as normal.

In this section we present a new RTRL variant based upon the tangent plane

algorithm. While the original RTRL algorithm utilizes gradient information to guide

the search towards the minimum training error, the new variant trains an FRNN by

approaching the tangent planes to constraint surfaces defined in the weight space of

the network. The motivation behind this new idea was to develop a more stable

tangent plane algorithm capable of handling inexact data. Due to the presence of

feedback connections, the FRNN will continue to recycle information over many time

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-71-

steps and thereby learn abstractions that extend over time. This may lead to a more

robust tangent plane algorithm capable of predicting the correct response and not

simply memorising an item of erroneous data.

4.1.2 Derivation of the new TPA-RTRL algorithm

Consider a FRNN of units { ju } (see Fig 4.1). For unit ju , T
jw = [1jw , 2jw , ... ,

()1mn,jw ++] denotes a () 11mn ×++ vector of weights, where n are the number of

feedback connections and m the number of external inputs, one remaining input

being the bias input weight. Let jφ and jθ denote the net input and output of ju ,

and f the unit’s activation function, typically ()xtanh . The following equations

describe the FRNN at time instant t

 () ()()t
j

t
j f φθ = , n,...,2,1j = (4.1)

 () () ()∑ ++

=
=

1mn

1l
t

l
t
jl

t
j zwφ (4.2)

 [()t
lz]T = [() () () ()t

m
t

1
1t

n
1t

1 x,...,x,1,,..., −− θθ] (4.3)

The method assumes a FRNN with a single output unit. Let this output unit be

denoted by 1u , with ()t
1θ at time step t being trained to mimic the teaching value

()t
1y . For a given set of inputs ()t

ix , mi ,,1 = , we can consider ()t
1φ to be a

function of the weights, ()t
1φ : () RR mnn →++× 1 . Thus the equation () ()()t

1
1t

1 yf −=φ

defines a ×n () 11mn −++ surface in ()1++× mnnR . The aim of the training procedure

is to move from the current position in weight space to the nearest point on a

tangent plane of this surface (see Fig 4.2)

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-72-

Let () ()∑= ij ji
t

ji
t w

,
' ia , where jii is a unit vector in the direction of the jiw axis. Use

the equation ()() () () ()∑ +≠+
− +=

1ni
t

i
t
i1

t
1n,1

t
1

1 zwwyf to find a value, ()t
nw"

1,1 + , for the bias

weight 1n,1w + from the values ()t
jiw of the other weights, so that the surface

() ()()t
1

1t
1 yf −=φ contains the point () () ()∑ +≠++ +=

1,1,
'

1,1
"

1,1 nij ji
t

jin
t

n
t ww iib .

Let ()tn̂ be the unit normal to the surface at ()tb , so () () ()ttt
11ˆ φφ ∇∇=n . The

length of the perpendicular from ()ta to the tangent plane at ()tb is () .n tˆ [() ()tt ab −].

Now, if we use the equation ()() () () ()∑ +≠+
− +=

1ni
t

i
t
i1

t
1n,1

t
1

1 zwwyf , we get

 () () =− tt ab [() ()t
n

t
n ww '

1,1
"

1,1 ++ −] 1,1 +ni

 = [()() ()()tt fyf 1
1

1
1 θ−− −] 1,1 +ni (4.4)

() ()()t
1

1t
1 yf −=φ

()t
1φ∇

1n,1 +i

()ta
a

o

b

c

Fig 4.2. Movement from the present position a to the foot of the perpendicular to

the tangent plane of constraint surface () ()()t
1

1t
1 yf −=φ to position c

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-73-

Let () ()() ()()t
1

1t
1

1t fyf θδ −− −= . If ()tc is the foot of the perpendicular from ()ta to

the tangent plane at ()tb , then () () =− tt ac ([() ()tt ab −] . ()tn̂) ()tn̂ , and from

equation (4.4) we have

() () ()
()

()

()

()

() ()

() 2

1

1

1

1

1

1
11

t

tt

t

t

t

t

n,
ttt

φ

φδ

φ
φ

φ
φ

δ

∇

∇
=

∇

∇














∇

∇
=− + .iac

 (4.5)

Thus, the adjustment applied to weight pqw can be written

 ()
()

()

()

()t
pq

t

t

t
t

pq w
w

∂
∂

∇
=∆ 1

2
1

φ
φ
δ

 (4.6)

Using the chain rule of differentiation, the derivative pq1 w∂∂φ in equation (4.6)

can be re-written as

()

() ()
() ()

()

()
() ()

()()
()

()
() ()t

q1p

n

1j

t
j1t

pq

1t
j1t

j
'

t
q1p

n

1j

t
j1t

pq

1t
j

1mn

1j

t
j

t
j1t

pq
t

pq

t
1

zw
w

f

zw
w

zw
ww

δ
φ

φ

δ
θ

φ

+
∂

∂
=

+
∂

∂
=

∂
∂

=
∂
∂

∑

∑

∑

=

−
−

=

−

++

=

 (4.7)

where

 1pδ =






 =

otherwise0

1pif1

 (4.8)

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-74-

Under the assumption, also used in the RTRL algorithm [9], that when the step size

is sufficiently small, we have

()

()

()

()1t
pq

1t
j

t
pq

1t
j

ww −

−−

∂

∂
≈

∂

∂ φφ
 (4.9)

A triple index set of variables j
pqπ can be used to denote the partial derivatives

pqj w∂∂φ , np,j1 ≤≤ , 1mnq1 ++≤≤ . We compute the values j
pqπ for every

time step t and appropriate j , p , q as follows

 [] () ()() [] () () ()t
qpj

n

1m

t
jm

1tm
pq

1t
m

'tj
pq zwf δπφπ += ∑

=

−− (4.10)

Because we assume that the initial state of the FRNN has no functional dependence

on the weights, we also have [j
pqπ](0) = 0.

The computational complexity of the TPA-RTRL algorithm is O (4n), where n is the

number of processing units. This feature of the TPA-RTRL algorithm implies a

heavy computational burden, especially when the network is scaled up. According

to equation (4.10), j
pqπ is calculated by adding n products of the terms jmw , m

pqπ ,

and 'f (mφ). Therefore, the number of operations involved for each j
pqπ is n2 .

There are ()1mnn2 ++ of j
pqπ in the network. Thus the total number of

computations in equation (4.10) is ()1mnn2 3 ++ . The TPA-RTRL algorithm also

requires the calculation of a global weighting term, ()∑ q.p
21

pqπ . This term is

calculated by adding ()1mnn ++ squares of 1
pqπ , increasing the computational

burden by a further ()1mnn2 ++ operations. The computational complexity of the

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-75-

TPA-RTRL algorithm could be reduced by setting some of the j
pqπ to zero. The

MERTRL algorithm [93,94] is a useful starting place for this, as it fixes the recurrent

connections pqw with qp ≠ (i.e. sets j
pqπ to zero). This will reduce the

computational complexity to O (3n) on 3n of the pqw . An alternative approach

might be to fix a preset number of randomly selected pqw during each time step, the

selection of pqw changing from one time step to the next. This approach avoids the

problem of constraining the weight change to a limited number of directions, which

will prevent the algorithm from attaining a low MSE.

The method of adjusting weights by approaching the tangent planes could

potentially lead to some very big weight updates. Large activations based on big

weight updates fed back into the input layer may become a source of negative

feedback and instability in the network [44]. In order to improve stability, it may be

helpful to re-initialise the algorithm after a preset time period. Catfolis [91]

suggested an improvement to the basic RTRL algorithm that involves using some a

priori knowledge about the temporal requirements of the problem. The method

involves setting the partial derivatives j
pqπ to zero every τ cycles so that the weight

changes are based upon accumulated information over a time interval of τ . The

reason for re-initialising j
pqπ is that some inputs will only have an influence on the

network for a specific number of cycles, so accumulating information over a longer

period may take the trajectory in weight space further away from the true trajectory

taken by the gradient descent method. This is equivalent to adding noise to the

negative gradient vector so that its direction may not point directly towards the

minimum on the error surface

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-76-

4.2 Implementation of the procedure

The following section is included to clarify the procedure for updating the weights of

a network trained using the TPA-RTRL algorithm

1. Initialize

 []1,1wpq −∈ , 0j
pq =π , ∀ Uj∈ , Up∈ , IUq ∪∈ s.t.

{ }n,...,1U = , { }m,...,1nI +=

2. For each unit ju , calculate jθ using

 () () ()∑ ∪∈
=

IUq
t

q
t
jq

t
j zwθ , ∀ Uj∈

3. For each unit ju , calculate j
pqπ using

[]() ()() [] () () ()t
qpjUm

t
jm

1tj
pq

1t
m

'tj
pq zwf δπφπ += ∑ ∈

−− , ∀ Up,j ∈ , IUq ∪∈

where pjδ denotes the Kronecker delta

4. Calculate

[]() []()()∑ ∪∈∈
=

IUq,Up

2t1
pq

2t1 ππ

5. Calculate

 () ()() ()()t
1

1t
1

1t fyf θδ −− −=

6. For each weight pqw , add

()
()

[]()
[]()t1

pq2t1

t
t

pqw πδ

π
=∆ , ∀ Up∈ , IUq ∪∈

4.3 Simulations and results

Comparative tests were performed with the TPA-RTRL algorithm and the original

GD-RTRL algorithm under a variety of initial conditions and using different network

sizes. Three different datasets were used; pipelined Xor [3], simple sequence

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-77-

recognition [3], and the henon map time series [95]. The pipelined Xor problem was

used to analyse the convergence behaviour of each algorithm on a simple pattern

classification task. The simple sequence recognition and henon map time series

problems were used to determine the ability of the network to configure itself so that

it stores important information from an earlier stage in the input stream to help

determine the output at a later time. For all the tests described here a fully

recurrent neural network was used with the same unit trained to match specific

target values at specified times. The tests were carried out using an Intel Pentium

IV (2.67 GHz).

4.3.1 Network initialization

Both algorithms require parameters to be set manually. Preliminary tests showed

that the best results were obtained with the parameters set as follows. First, the

original GD-RTRL algorithm. For the pipelined Xor and simple sequence recognition

problems, the learning rate was set to η = 4.0. For the henon map problem, the

learning rate was set to η = 0.01. The input weights were set to random values in

the range [-1.0, 1.0]. Next, the new TPA-RTRL algorithm. The input weights were

set to random values in the range [-1.0,1.0].

4.3.2 Simulation problems

The Exclusive OR (XOR) problem is an example of a pattern classification task that

cannot be solved using a single neuron. The input patterns are (-1,-1), (-1,1), (1,1)

and (1,-1). The first and third patterns are in class -1, and the second and fourth

patterns in class 1. The training examples were presented to the network in a

random order, one each time step. Thus the epoch length is four cycles. The

network was operated in a continuous mode, meaning that all the epochs were

presented to the network after each other without telling the network something had

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-78-

happened. Tests were performed by varying the time delay between the

presentation of an input pattern and training the network to match the corresponding

teaching value. For each test, 50 trials were made with the mean number of steps

to converge, the standard deviation, and the number of successful trials recorded.

Network training was terminated when the error was reduced to below 10-2 for at

least 20 epochs or 1,000 epochs elapsed

The simple sequence recognition problem has four inputs and one output. Two of

the input lines, labelled a and b, serve a special purpose. The other two input lines,

c and d, serve as distractors. At each time step one input line carries a 1, and all

other input lines a -1. The network is trained to output a 1 when a 1 on the b line is

immediately followed by a 1 on the a line, otherwise the output is -1. Once such a b

occurs, its corresponding a is considered to be used up. An additional constraint

was imposed that two 1s should be output every 16 time steps. Thus the epoch

length is 16 cycles. Tests were carried out using different sized networks, and data

that had been partially corrupted in order to determine the robustness of the TPA-

RTRL algorithm. For each test, 50 trials were made with the mean number of steps

to converge, standard deviation and number of successful trials recorded. Network

training was terminated when the error was reduced to below 10-3 for at least 20

epochs or 1,000 epochs elapsed.

The henon map problem is a chaotic time-series prediction problem. The time

series is computed by

 () ()() ()121 1 −+ +−= ttt xbxcx (4.11)

where b = 0.3, c= 1.4, ()0x = -0.361938, and ()1x = 0.896601. The objective of the

simulation is to train a network with one input and one output and various

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-79-

processing units to model the chaotic series generated by (4.11). Since maxx =

1.272967 and minx = -1.284657, the input values were scaled in the range [-0.5, 0.5].

Tests were carried out using different sized networks. For each test, 5 trials were

made with the mean square error and CPU time of the learning algorithms recorded.

The mean square error (MSE) was measured by averaging the output square errors

between 4,999,000 and 5,000,000 time steps. Network training was terminated

after 5,000,000 time steps had elapsed.

4.3.3 Error metrics used to determine convergence

The error metric used in the simulations is MSE (Mean Square Error). The MSE is

given by

 ()2
i

kikiy
m
1MSE ∑ −= θ (4.12)

where m is a predefined time interval (typically one epoch), kiy is the target value

of the ith input, and kiθ is the ith model output

4.3.4 Discussion of results

Exclusive Or (Xor) with time delay. The first test is a simple non-linearly separable

problem requiring at least two processing cycles to complete. The test was carried

out using a FRNN network with three processing units. One of the processing units

was trained to match the teaching signal at time t corresponding to the inputs

presented to the network at time τ−t , where the computational time delay τ was

chosen to be one or two cycles (time steps). The results are tabulated in Table 4.1.

It was found that the new TPA-RTRL algorithm gave significantly faster convergence

than the original algorithm when the target values were delayed by one cycle

relative to the inputs being Xored. It was also found that increasing the time delay

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-80-

between the inputs and corresponding target values had a deleterious effect on

convergence, and that additional units had to be added to the network for

convergence to occur. Generally speaking for longer delays than one cycle the

network has to configure itself to have more than two hidden layers in order to

match the required delay.

The final weight values of a typical FRNN network trained by the TPA-RTRL

algorithm are given in Table 4.2. Notice the weights providing a feed-forward

solution have become large, whilst the recurrent weights have become small. This

suggests that the FRNN network has organised itself into a single hidden layered

feed-forward neural network with outputs delayed by one cycle relative to the inputs.

The function of the recurrent weights has become one of providing additional

pathways during the learning stage.

Fig 4.3 and 4.4 show some typical training curves for both algorithms on the Xor

problem. The training examples were split into groups of four with the network

operated in continuous mode. Thus the epoch length is four cycles. The MSE was

calculated over a strip length of 5 epochs. The training curves for the new TPA-

RTRL algorithm show that convergence occurs rapidly, typically within 80 epochs.

One of the curves (test 2) contains a slight dip which is probably due to the

presence of turbulence caused by large weight updates, averaged over by the

coarse sampling rate in Fig 4.3. The training curves for the original GD-RTRL

algorithm show the same general trend, but this time convergence occurs typically

within 200 epochs.

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-81-

(a)

 New TPA-RTRL algorithm Original GD-RTRL

 Training terminated after 1,000
epochs trained or MSE < 10-2

Training terminated after 1,000
epochs trained or MSE < 10-2

Units Mean Std Succ Mean Std Succ
3 88.38 66.98 40 357.5 138.62 40

(b)

 New TPA-RTRL algorithm Original GD-RTRL

 Training terminated after 1,000
epochs trained or MSE < 10-2

Training terminated after 1,000
epochs trained or MSE < 10-2

Units Mean Std Succ Mean Std Succ
3 806.67 166.15 3 0
4 484.41 268.86 17 726.33 194.79 15
5 342..09 218.53 43 588.78 156.77 37

U B I R T

1 1.88 0.00 0.00 -0.01 -1.98 1.99 +
2 1.49 -1.98 1.98 -0.02 0.15 -0.16 -
3 -1.97 -2.12 2.13 -0.01 0.15 -0.19 -

Table 4.1. Mean number of steps to converge, standard deviation and number of

successful trials (Succ) for both algorithms on Xor problem: (a) one cycle delay,

and (b) two cycle delay

Table 4.2. Weight matrix for Xor with one-cycle delay. The columns labelled U, B,

I, R, T indicate respectively: unit number, the bias weight, input weights, recurrent

weights, and the teaching status where ‘+’ indicates the presence of teaching value,

and ‘-’ no teaching value present

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-82-

Fig. 4.4. Typical convergence behaviour of the original GD-RTRL algorithm

on the Xor problem with one unit trained to match the teaching signal of the

inputs one cycle ago

Fig. 4.3. Typical convergence behaviour of the new TPA-RTRL algorithm

on the Xor problem with one unit trained to match the teaching signal of the

inputs one cycle ago

0

30

60

90

120

150

0 50 100 150 200 250 300 350 400

Learning time (epochs)

M
SE

 x
 1

00
 p

er
 5

 e
po

ch
s

TPA-RTRL test 1

TPA-RTRL test 2

TPA-RTRL test 3

0

30

60

90

120

150

0 50 100 150 200 250 300 350 400

Learning time (epochs)

M
SE

 x
 1

00
 p

er
 5

 e
po

ch
s

GD-RTRL test 1

GD-RTRL test 2

GD-RTRL test 3

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-83-

Simple sequence recognition. The second test is a simple sequence recognition

task. The results are tabulated in Table 4.3. From the table we can see that that

the new TPA-RTRL algorithm converges to a solution faster than the original RTRL

algorithm, and that the convergence speeds of both algorithms improves with the

size of the network. The improvement in the performance of the TPA-RTRL

algorithm in larger networks can be explained as follows. If there are N patterns to

be learned and ()1mnn ++× free parameters in the network, the probability of a

pair of normals 1φ∇ being nearly parallel, or a set of normals in weight space being

nearly linearly dependent, will be reduced if () N1mnn >>++× . Therefore a set

of patterns should be learned more quickly by a network with a greater number of

connections. Fig 4.5 and 4.6 show typical learning curves for both algorithms. The

training examples were split into groups of 16. Thus the epoch length is 16 cycles.

The learning curves for the TPA-RTRL algorithm show that convergence occurs

rapidly, typically within 15 epochs. One curve (test 3) gets trapped in a local

minimum. Convergence was restored by increasing the time delay between the

presentation of an input pattern and the response of the network. The learning

curves for the GD-RTRL algorithm show slow asymptotic behaviour with

convergence occurring within 30 epochs.

A further test was carried out with the training data generated as normal, but at each

presentation of an item of data the corresponding teaching value was given a 1%,

2% and 5% probability of being set at +1. The results are tabulated in Table 4.4. It

was found that the TPA-RTRL algorithm is far more tolerant of noisy data, the slow

convergence of the GD-RTRL algorithm producing a sluggish response that resulted

in a higher proportion of failed trials. Fig 4.7 and 4.8 show some typical learning

curves for a different type of inaccurate data. Once again, the training examples

were split into groups of 16, so the epoch length is 16 cycles. The training data was

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-84-

generated as normal, but this time a pattern selected at random had its teaching

value set at +1 during 12, 24 and 36 epochs. The learning curves for the TPA-

RTRL algorithm show a pronounced peak at 12 epochs that corresponds to the first

item of corrupted data. Subsequent responses to noisy data at epoch 24 and 36

diminish in amplitude. In each case, the network recovers quickly within two epochs

after being presented with an item of corrupted data. The learning curves for the

GD-RTRL algorithm show small peaks occurring at 24 and 36 epochs, the peak at

12 epochs being averaged over by the higher training error.

 New TPA-RTRL algorithm Original GD-RTRL

 Training terminated after 5,000
epochs trained or MSE < 10-3

Training terminated after 5,000
epochs trained or MSE < 10-3

Units Mean Std Succ Mean Std Succ
2 47.50 53.45 48 215.84 43.76 50
4 21.04 11.01 50 127.70 21.55 50
6 18.66 8.49 50 102.74 13.90 50
8 18.00 13.15 50 90.56 11.74 50

 New TPA-RTRL algorithm Original GD-RTRL

 Training terminated after 5,000
epochs trained or MSE < 10-3

Training terminated after 5,000
epochs trained or MSE < 10-3

n (%) Mean Std Succ Mean Std Succ
0 26.16 42.45 50 128.22 16.52 50
1 26.01 15.61 50 164.42 28.80 50
2 23.00 11.32 50 322.33 196.86 50
5 44.00 28.15 50

Table 4.4. Mean number of steps to converge, standard deviation and success rate

(Succ) for the new TPA-RTRL algorithm and original GD-RTRL algorithm on the

simple sequence problem with n (%) of teaching values randomised

Table 4.3. Mean number of steps to converge, standard deviation and success rate

(Succ) for the new TPA-RTRL algorithm and original GD-RTRL algorithm on the

simple sequence problem for different sized networks

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-85-

Fig. 4.5. Typical learning curves of the new TPA-RTRL algorithm on the

simple sequence problem for a network with four processing units. Note that

1 epoch = 16 cycles

Fig. 4.6. Typical learning curves of the original GD-RTRL algorithm on the

simple sequence problem for a network with four processing units. Note that

1 epoch = 16 cycles

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

Learning time (epochs)

M
SE

 x
 1

00
 p

er
 e

po
ch

TPA-RTRL test 1

TPA-RTRL test 2

TPA-RTRL test 3

0

30

60

90

120

150

0 5 10 15 20 25 30 35 40 45 50

Learning time (epochs)

M
SE

 x
 1

00
 p

er
 e

po
ch

GD-RTRL test1

GD-RTRL test 2

GD-RTRL test 3

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-86-

Fig. 4.7. Learning curves of the new TPA-RTRL algorithm for a network

with four processing units. One teaching value has been corrupted at epoch

12, 24 and 36

Fig. 4.8. Learning curves of the original GD-RTRL algorithm for a network

with four processing units. One teaching value has been corrupted at epoch

12, 24 and 36

0

30

60

90

120

150

0 5 10 15 20 25 30 35 40 45 50

Learning time (epochs)

M
SE

 x
 1

00
 p

er
 e

po
ch

GD-RTRL test 1

GD-RTRL test 2

GD-RTRL test 3

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

Learning time (epochs)

M
SE

 x
 1

00
 p

er
 e

po
ch

TPA-RTRL test 1

TPA-RTRL test2

TPA-RTRL test 3

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-87-

Henon map time series. The third test is a classical one-step-ahead prediction

problem. Table 4.5 shows the mean square error and CPU time in seconds of the

learning algorithms for various processing units. The mean square error was

obtained by averaging the error over 1,000 time steps. It was found that the TPA-

RTRL algorithm gave faster convergence relative to the original algorithm, and that

the convergence speed improved with the number of processing units. The slower

convergence of the original algorithm can be explained by very slow asymptotic

behaviour, and the tendency of the network to get trapped in local minima. In

contrast the much larger steps taken by the TPA-RTRL algorithm made this method

of learning an effective global minimizer. However, the faster convergence of the

new algorithm was paid for at the expense of the CPU time used. The training error

is very similar to those given by Mak, Lu and Ku [93]. The mean square error was

RTRL (6 units = 0.008, 9 units = 0.0008, 12 units = 0.0006), and MERTRL (6 units =

0.001, 9 units = 0.003, 12 units = 0.001). The poor performance of the MERTL

algorithm is because some of the weights were seldom adapted, which prevents the

algorithm from attaining a low mean square error. Figure 4.9 and 4.10 show some

typical convergence curves for both algorithms. The learning curves for the TPA-

RTRL algorithm show good asymptotic behaviour, whilst the curves for the original

algorithm get trapped in a stucking state after a few epochs.

 Units = 6 Units = 9 Units = 12

 MSEx102 CPU Time MSEx102 CPU Time MSEx102 CPU Time
TPA-RTRL 0.021 440 0.007 862 0.004 2147
GD-RTRL 0.018 208 0.013 694 0.022 1804

 Table 4.5. Number of epochs trained and test set error for the henon map time series

prediction problem. Note that 1 epoch = 1,000 cycles

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-88-

Fig. 4.9. Typical convergence behaviour of the new TPA-RTRL algorithm

on the henon map time series prediction problem

Fig. 4.10. Typical convergence behaviour of the original GD-RTRL

algorithm on the henon map time series prediction problem

0

1

2

3

4

0 5 10 15 20 25 30

x 1000 cycles

M
SE

 x
 1

00
 p

er
 1

00
0

cy
cl

es

TPA-RTRL test 1

TPA-RTRL test 2

TPA-RTRL test 3

0

2

4

6

8

10

0 5 10 15 20 25 30

x 1000 cycles

M
SE

 x
 1

00
 p

er
 1

00
0

cy
cl

es

GD-RTRL test 1

GD-RTRL test 2

GD-RTRL test 3

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-89-

4.4 Summary

In this chapter, a new algorithm referred to as TPA-RTRL is proposed for training

fully recurrent neural networks (FRNN). Recurrent neural networks contain

feedback connections and state units to encode the temporal relationships between

input data sequences. The new algorithm is based upon the real time recurrent

learning (RTRL) algorithm proposed by Williams and Zipser [3], which has been

used in many application areas such as real-time process control and speech

enhancement. It is shown that learning to predict temporal sequences improves the

stability of the tangent plane algorithm when the network is presented with a small

amount of erroneous data. Several suggestions are made to improve the

computational efficiency of the TPA–RTRL algorithm which include fixing the off-

diagonal recurrent connections, and fixing a preset number of randomly selected

connections at each time step

Comparative tests were carried out using the TPA-RTRL algorithm and the original

GD-RTRL algorithm. The benchmark datasets used were pipelined Xor, and the

simple sequence recognition problem, and the henon map time series. The results

show that the new TPA-RTRL algorithm is very fast and stable. It can operate in

feed-forward mode by organising a fully recurrent neural network into a conventional

feed-forward neural network. It can also recover quickly when presented with small

amounts of erroneous data. The results also show that the new algorithm is capable

of producing high model accuracies on a non-trivial deterministic chaotic time series

and that it outperforms RTRL and MERTRL in terms of accuracy. However, the

runtimes may be prohibitively long in large networks

In the next chapter, a new variant of the tangent plane algorithm is proposed for

feed-forward neural networks. This new algorithm includes two modifications to the

original algorithm. Firstly, a directional movement vector is introduced into the

Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks

-90-

training process to push the movement in weight space towards the origin. This

movement vector simulates weight decay, which is known to have a beneficial effect

on generalization in back-propagation learning. The directional movement vector is

modified to give a heavier weighting to weights with small weight values.

Secondly, a random sideways movement along tangent planes is introduced into the

training process. This improves the likelihood of finding a good solution with small

weights values (which can help generalization)

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-91-

Chapter 5

A NEW SEQUENTIAL TANGENT PLANE ALGORITHM FOR FEED-FORWARD

NEURAL NETWORKS

In chapter three, the second tangent plane algorithm was evaluated for function

approximation and classification tasks on three neural network benchmark

problems. This second tangent plane algorithm introduces a novel way of activating

the weights in a neural network for good generalization to occur. It accepts almost

zero starting conditions and moves away from the origin in weight space in a

direction indicated by the training data. Compared with the back-propagation

algorithm, the second tangent plane algorithm gives good generalization across a

range of network sizes; the back-propagation algorithm generalizes well but only in

small networks. However, the second tangent plane algorithm did not produce the

expected separation of weights into active and inactive groups. Histograms of

weight importance coefficients show that both the mean and variance of the

distributions were observed to increase. This suggests that the tangent plane

algorithm activates an increasing number of weights, each taking on more important

roles within the network. In this chapter, two modifications to the tangent plane

algorithm are suggested to overcome this difficulty. Firstly, a directional movement

vector is introduced into the training process to push the movement in weight space

towards the origin. This movement vector will encourage weight decay, which is

known to have a beneficial effect on generalization. The directional movement

vector is modified to give a heavier weighting to weights with small weight values.

Secondly, a random sideways movement along tangent planes is introduced into the

training process. This improves the likelihood of finding a good solution with smaller

weight values (which can help generalization).

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-92-

5.1 Improvement in the generalization of the tangent plane algorithm

Previously, we have investigated the evolution and differentiation of weights in

networks trained by the second tangent plane algorithm. In order to determine

whether a weight was active or not, the importance of the weight was calculated

using the autoprune method. Autoprune [51,52] uses a statistic to allocate each

weight an importance coefficient for the assumption that a weight becomes zero.

Examination of the values of importance coefficients in networks trained by the

second tangent plane algorithm show that both the mean and variance of the

distribution of coefficient values tends to increase. This suggests that each weight

takes on increasingly important roles in the network, so any advantage gained by

starting the training with almost zero initial conditions is soon lost. It is well known

that weight decay has a beneficial effect on generalization [12,13,52]. In the weight

decay procedure the network itself removes superfluous weights by penalizing

weights with small values. Thus an alternative strategy improve generalization in

the tangent plane algorithm might be to start the training from arbitrary initial

conditions, and then push the weights in a direction that encourages weight decay.

The introduction of a directional component of movement along the tangent planes

and towards the origin would have this effect

5.1.1 A brief introduction to pruning and weight decay

The principal idea of pruning is to reduce the number of free parameters in the

network by removing superfluous weights from the network. If applied properly, it

often reduces overfitting and improves generalization. The key to pruning is

estimating the importance of a connection. Several such methods have been

suggested. The simplest method estimates the importance of a weight based upon

its magnitude [12]. More sophisticated methods include optimal brain damage

(OBD) and optimal brain surgeon (OBS). OBD [10] uses a diagonal approximation

of the Hessian of the error with respect to each weight to determine the saliency of

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-93-

the removal of that weight. Weights with low saliency are removed from the

network. OBS [11] avoids the drawbacks of estimating the Hessian by computing

the second derivatives almost exactly. Both methods require that the network is

trained to the error minimum

Another approach is to have the network remove the superfluous weights itself.

This can be achieved by giving each connection a tendency to decay to zero so that

connections disappear unless they are reinforced. The simplest method is to

subtract a small proportion of a weight after it has been updated [13]. This is

equivalent to adding a penalty term ∑ ij jiw
,

2γ to the original error function kε and

performing gradient descent on the resulting total error. While this method clearly

penalizes more jiw ’s than necessary, it overly discourages large weights. This can

be cured by using a different penalty term ∑ ji
2
jiwµ / (2

jiw1+) such that the small

jiw ’ s decay faster than the larger ones [101]. Simulations [102,103] using this

penalty term show that no overtraining was observed and that the network was

reduced to the optimum number of hidden units. Other regularisation methods may

involve not only the weights but various derivatives of the output function [104], and

sensitivity measures based on the significance of hidden units [105].

In this section we present a new sequential learning algorithm referred to as iTPA

based upon the tangent plane algorithm. Whilst the original algorithm accepts

almost-zero initial conditions and moves away from the origin, the new algorithm

starts the training with weights initialized to arbitrary values and moves in a direction

that encourages weight elimination. The motivation behind this new idea was to

develop a tangent plane algorithm capable of building small economical networks by

removing superfluous weights. A further motivation was to avoid the large weight

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-94-

values caused by moving in the direction away from the origin in weight space.

Large weight values are known to have a harmful effect on the generalization

capabilities of neural networks.

5.1.2 Derivation of the new iTPA algorithm

The basic structure of a feed-forward neural network is shown in Fig 5.1. It consists

of an input layer of units that supply information, or activations, to the inputs of units

in the first hidden layer. These in turn supply activations to units in the next layer,

and so on. Typically the units in each layer receive inputs from the output of the

units in the preceding layer. Let jiw denote the connection between unit iu and ju .

jφ and jθ will be the input and output of ju , so that fj =θ (jφ) and ∑= i ijij w θφ

for some monotonic function f .

Fig. 5.1. The structure of a feed-forward neural network

Input
layer

First
hidden
layer

Output
layer

Second
hidden
layer

 ku

1u

1,kw

0,kw

()kk f φθ =

nun2u

2,kw

n,kw

∑= i ii.kk w θφ

1+

1θ

1x

2x  

2θ

1nu +

2nu +

nθ

2 u

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-95-

Let the single output unit ku be trained to mimic the target value ky , and let 0u be

the constant output unit, with 0θ = 1. Let n denote the number of weights in the

network. The current state of the weights is represented by a nR∈ . For a given set

of inputs we can consider kφ to be a function of the weights kφ : nRR → . The

second tangent plane algorithm adjusts the weights by moving along the line at an

angle β to the perpendicular from the current position a to the ()1n − tangent

plane to the surface ()k
1

k yf −=φ , on the side of the perpendicular away from the

origin (see Fig 5.2).

Fig. 5.2. Movement from the present position a to the point d inclined at an

angle β to the perpendicular from a to the tangent plane to the constraint

surface 1
k f −=φ (ky) at point b in the weight space Rn. The vector m

represents the orthogonal projection of the weight elimination vector w'

orthogonally onto the normal n to the constraint surface at point b

0ki

oβ

b

()kk yf 1−=φ

n̂

a

m

a

d

c

'w

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-96-

Let ∑= i,j ji
'
jiw ia be the current values of the weights, where jii is a unit vector in

the direction of the jiw axis. Use the equation () ∑ ≠
− +=

0i iki0kk
1 wwyf θ to find a

value, "
0kw , for the bias weight 0kw from the values jiw of the other weights, so that

the surface ()k
1

k yf −=φ contains the point ∑ ≠
+=

0,ki,j ji
'
ji0k

"
0k ww iib . Now, if we

use the equation () ∑ ≠
− +=

0i i
'
ki

"
0kk

1 wwyf θ and () ∑ ≠
− +=

0i i
'
ki

'
0kk

1 wwf θθ , and

note that b differs from a only in the value of 0kw , we get

()

() ()() 0
11

0
'

0
"

0

kkk

kkk

fyf

ww

i

iab

θ−− −=

−=−
 (5.1)

Let n̂ be the unit normal to the surface at b , so kkˆ φφ ∇∇=n . The length of the

perpendicular from a to the tangent plane at b is () nab ˆ.− . If c is the foot of the

perpendicular from a to the tangent plane at b ,

 () ()() () nniac ˆˆ.0
11

kkk fyf θ−− −=−

() ()

k

k

k

kk fyf
φ
φ

φ
θ

∇

∇

∇

−
=

−− 11

 (5.2)

and

() ()

k

kk fyf
φ

θ
∇

−
=−

−− 11

ac (5.3)

The vector that is directed towards the origin and biased along the axes of the

weights jiw that have small weight values relative to some small positive constant

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-97-

aw is ='w ()∑− i,j jiaji ww i / (2
a

2
ji ww1 +). The projection of 'w onto the

tangent plane is given by

 () nn.wwm ˆˆ'' −=

k

k

m,l lm

k'
lm

k

'

w
w1

φ
φφ

φ ∇

∇








∂
∂

∇
−= ∑w (5.4)

where

 i,j
i,j

2
a

2
ji

aji'

ww1
ww

iw ∑ +
−= (5.5)

Thus, if d is the point of intersection with the tangent plane of a line from a inclined

at angle β to the perpendicular, then

 ()ac
m
macad −+−=− βtan (5.6)

Let () ()k
1

k
1 fyf θδ −− −= be the error in the input to final unit. Hence using

equations (5.2), (5.3) and (5.4) in (5.5) yields

(

)
k

k

lm lm

k'
lm

k

'

k

k2

k

w
w

11
tan

1

φ

φφ

φ
β

φ

δ
φδ

φ

∇

∇

∂

∂
×

∇
−

∇
+∇

∇
=−

∑

w
m

ad

 (5.7)

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-98-

Thus, to adjust a given weight jiw







∂
∂

∂
∂

×








∇
−

∇
+

∂
∂

∇
=∆

∑
ji

k

lm lm

k'
lm

2

k

'
ji

kji

k
2

k

ji

ww
w

1w1tan
w

1w

φφ

φ
β

φ

δφ
δ

φ m

(5.8)

where

2

ji

k

i,j m,l lm

k'
lm2

k

'
ji

2

ww
w1w 






∂
∂
















∂
∂

∇
−= ∑ ∑ φφ

φ
m (5.9)

The term jik w∂∂φ is the partial derivative of the net input to the output unit. The

treatment of this term follows from Lee [2,11]

 i
j

k

ji

k

w
θ

φ
φφ

∂
∂

=
∂
∂

 (5.10)

 and

()













≠
∂
∂

=

=
∂
∂

∑
∈ jMm

mj
m

k
j

'
j

j

k

kjif,wf

kjif,

φ
φ

φ
φ
φ

1

 (5.11)

 where jM is the set of units to which ju passes its output

Let us consider the different terms of (5.8) separately. The first term represents

movement to the foot of the perpendicular at c from the current position a to the

tangent plane to the constraint surface ()k
1

k yf −=φ . The second term determines

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-99-

the complexity of the network. The constant factor βtan gives the angle between

the movement vector and the perpendicular from the current position to the tangent

plane. Its value is preferred to be small (e.g. typically ∼ 0.05) so that a point nearby

the foot of the perpendicular is chosen to move toward. A large value for βtan

would introduce inaccuracy into the weight update. The term in the brackets

represents the projection of 'w onto the tangent plane. The directional vector 'w

targets specific weights for removal according to the value of aw . Those weights

having an absolute value aji ww >> will receive a smaller push and thereby decay

less rapidly to zero.

Let us next consider the computational efficiency of the new algorithm. A simple

cost saving can be made by replacing the norm m in equation (5.9) with the norm

of the directional vector 'w . 'w is greater than or equal to ()nn.ww ˆˆ'' − . Its

use will result in a reduction in the size of m , but this term is scaled by βtan

anyway. Let n denote the total number of weights in the network. According to

(5.9) m involves the expansion of the inner product k
' . φ∇w , which requires n2

operations. The term 2
kk

' . φφ ∇∇w is used to scale n partial derivatives,

jik w∂∂φ , which requires a further n3 operations. Thus the total computational

saving is n5 operations

The inclusion of a tendency to move towards the origin can be a disadvantage in the

later stages of training. In cases where convergence does not occur quickly, the

weight decay term 'w may penalize more of the weights than necessary giving

average weight sizes small enough to trap the network in the region of weight space

nearby the origin. A second improvement can be made by adding a small

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-100-

randomising term x , []1,1−∈jix , to the directional weight vector 'w . When

projected onto the tangent plane it will take the movement laterally along tangent

planes in random directions. Now, we only want this term to dominate 'w when all

the weights are small. We can achieve this goal by scaling x according to some

monotonically decreasing function of the weights, say =0α bw / w , where bw is

a small positive constant

5.2 Implementation of the new procedure

The following section is included to clarify the procedure for updating the weights of

a network using the new iTPA algorithm

1. For each unit ju ,

()

()





 =

=

∑−
m mjmj

1

t
j

otherwisewxf

kjif1
x

φ

2. For each weight jiw ,

ij
ji

k x
w

θ
φ

=
∂
∂

3. Calculate the squared norm of kφ∇

∑ 










∂
∂

=∇
i,j

2

ji

k2
k w

φ
φ

4. Calculate the average of the absolute values of the weights

∑=
i,j jiw

n
1w

5. Generate a random vector [jix] with 1<jix

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-101-

6. For each weight jiw ,

()
() ji02

a
2
ji

aji'
ji x

1ww
ww

w α+
+

−=

7. Calculate the components of the vector m

ji

k
2

k
m,l

lm

k'
lm

'
jiji w

1
w

wwm
∂
∂

∇







∂
∂

−= ∑ φ
φ

φ

8. Calculate the squared norm of m

∑= i,j
2
ji

2 mm

9. For each weight jiw , add











∇+

∂
∂

∇
=∆ jik

ji

k
2

k
ji m1tan

w
1w

m
βφδ

φ
δ

φ

where () ()k
1

k
1 fyf θδ −− −=

5.3 Simulations and results

Comparative tests were performed on the new iTPA algorithm and original tangent

plane algorithm under a variety of different initial conditions. The datasets used

were regression and classification problems. Classification problems involve a

decision making task where the output fits into well-defined categories. The

classification task chosen was the two spiral problem as given in Fahlman [7].

Regression problems involve the approximation of a continuous valued function.

The regression tasks chosen are the henon map time series [9], which were made

artificially by computer simulation, and the housing price estimation problem

obtained from the UCI data repository [61]

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-102-

The two spiral problem was used to determine the effect of the weight sensitivity

parameters on the convergence properties of the new iTPA algorithm. Since the

tangent plane algorithm converges faster in oversized networks, a 2-30-30-1

architecture was used rather standard architectures quoted elsewhere e.g. the 2-5-

5-5-1 architecture in [106]. For each test, 10 trials were performed with the

classification error on the training set and the test set, mean number of epochs to

converge, and number of successful trials recorded. Network training was

terminated using Fahlman’s 40-20-40 criteria [32] (e.g. for each pattern the output

had to be less than 0.4 if the desired value was 0, or greater than 0.6 if the desired

output was 1) for the purpose of comparison with [107]

The henon map and house price estimation problem were used to determine the

effect of the directional movement vector on the distribution of weight sensitivities in

networks trained by the new iTPA algorithm. The method used to estimate the

importance of the weights was the autoprune [51]. Once again, an oversized

network was used with the expectation that the weight decay term would

automatically prune the network. For each test, 20 trials were performed with the

mean square error on the training set and test set recorded together with the mean

number of steps to converge. Network training was terminated when the error on

the training set was reduced to below a preset value or the maximum number of

permissible epochs was exceeded.

5.3.1 Network initialization

Both algorithms require parameters to be set manually. Preliminary tests showed

that the best results were obtained with the parameters set as follows. First, the

iTPA algorithm. For the two spiral problem, βtan = 0.05. The weight sensitivity

parameters aw and bw were varied according to a grid search. The input weights

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-103-

were set to random values in the range [-2, 2]. For the henon map and house price

estimation problems, βtan = 0.05, aw = 0.05, and bw = 0.2. The input weights were

set to random values in the range [-1,1]. Next, the second tangent plane algorithm.

The angle parameter βtan = 0.05. The input weights were set to random values in

the range [-0.01, 0.01]

5.3.2 Simulation problems

The two spiral problem consists of two interlocking spirals, each made up of 97 data

points. The network must learn to discriminate the two spirals. Traditionally this is

known to be a very difficult problem for the back-propagation algorithm to solve.

There are two inputs and one output. The inputs are the x and y co-ordinates, and

the output notifies which spiral the point belongs to. For the points in the first spiral

the output is set to +1, and for points on the other spiral the output is set to -1. The

number of training samples is 194. A test set of 192 samples was generated by

rotating the two spirals by a small angle.

The henon map problem is a chaotic time-series prediction problem. The time

series is computed by

 () ()() ()121 1 −+ +−= ttt xbxcx (5.12)

where ()tx is the value at taken time t , and the parameters 3.0b = , and 4.1c = .

Initial values for the time series are () () 63133545.0xx 01 == . This point is called

the fixed point of the time series. In neural network simulations, four successive

values of the time series are used in predicting the next value. Thus, the number of

inputs is four and the number of outputs in one. The number of training samples is

100, and testing samples is 100. Data values were taken from the range [31,230]

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-104-

The house price estimation problem is a real-world problem that estimates the price

of houses in the suburbs of Boston based on some attributes of houses (e.g.

location, crime rate, level of air pollution, etc.). The number of inputs is 13, and the

number of outputs is one. The number of training and testing examples is 253. The

data sets used in the simulation were sampled randomly from the dataset provided

by the UCI data repository with the outputs scaled down in the range [-1,1].

5.3.3 Error metrics used to determine convergence

The error metrics used in the simulations were CERR (Classification ERRor) for

classification problems, and NMSE (Normalized Mean Square Error) for regression

problems e.g.

 () ()∑ −=
i

kiki sgnysgn
m2
1CERR θ (5.13)

 and

 ()2

2

1 ∑ −=
i

kikiy
m

NMSE θ
σ

 (5.14)

where m is the number of training patterns, kiy is the target output of the ith input

pattern, kiθ is the ith network output, sgn is the sign function of a number (i.e. if

the number if negative, then the sgn function returns -1, otherwise it returns +1),

and 2σ is the variance of the target output data.

5.3.4 Discussion of results

Two spiral problem. The first test is a difficult non-linearly separable problem where

a set of co-ordinates (x,y) is classified as belonging to one of two interwoven spirals.

For the iTPA algorithm, the average number of steps to converge varied from 370 to

810 epoch (mean = 566, std. dev. = 168) with the weight sensitivity parameters set

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-105-

at aw = 0.02, and bw = 0.2. One failed trial was excluded from the results. The

classification error on the test set was 1.69 x 10-2 (e.g. % test set learned is 98.3)

with all the points on the training set correctly classified. Using the original tangent

plane algorithm, all trials converged in less than 710 epochs (mean = 529, std. dev.

= 149). The classification error on the test set was 1.63 x 10-2 (e.g. % test set

learned is 98.4) with all the training points correctly classified. The results compare

favourably with those given by Linder et al [107] (Aprop: epochs = 67, % test set

learned = 96.6; Rprop: epochs = 246, % test set learned = 65.6). The network

architecture used with Aprop was 2-100-100-1, giving a total of 31,000 weights.

Table 5.1 demonstrates the effects of changing the weight sensitivity parameters aw

and bw of the new iTPA algorithm. It was found that the classification error was not

particularly sensitive to the exact value chosen for aw . However, increasing the

value of aw had a deleterious effect on the convergence speed of the new algorithm

and resulted in more failed trials. Clearly larger values for aw have driven more of

the weights down to zero resulting in problems with local minima. It was also found

that increasing the value of bw improved the speed of convergence speed.

Including random movement along tangent planes into the weight update equation

was sufficient to break out of local minima and permits the network to move in

directions that are not available to the original algorithm

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-106-

Fig 5.3 and 5.4 show some typical test curves for both algorithms on the two spiral

problem. Different sets of initial weights were used in each test. The test curves of

the new iTPA algorithm show some variation (Fig 5.3). In many of the curves

generated the convergence speed was found to be slow at the start of the training

run with intermittent rises in the test error fairly typical (test 3). When the new

algorithm was close to a solution, the convergence speed was usually rapid (test 1

and 3). The test curves of the original algorithm also show wide variation in the

error (Fig 5.4). In the best curves the convergence speed was rapid with the

network learning all the points on the test set (test 3). Generally speaking the

original algorithm had fewer problems with local minima. There was very little

evidence of overfitting observed in any of the test curves

aw bw Cerr Cerr* Steps Succ

0.02 0.5 0.0093 0.0017 566 10
0.05 0.5 0.0096 0.0019 1101 10
0.10 0.5 0.0096 0.0020 1716 10
0.20 0.5 0.0097 0.0018 1604 5
0.05 0.02 0.0097 0.0021 1319 9
0.05 0.05 0.0095 0.0023 1030 10
0.05 0.10 0.0095 0.0016 960 9
0.05 0.50 0.0096 0.0019 1101 10

Table 5.1. Classification error on the training set (Cerr) and test set (Cerr*), mean

number of steps to converge, and number of successful trials (Succ) for different

values of the weight sensitivity parameters aw and bw

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-107-

Fig. 5.4. Typical generalization behaviour of the second tangent plane

algorithm on the two spiral problem

Fig. 5.3. Typical generalization behaviour of the new iTPA algorithm

on the two spiral problem

0

50

100

150

200

0 100 200 300 400 500

Epochs

NM
SE

 x
 1

00

iTPA test 1

iTPA test 2

iTPA test 3

0

50

100

150

200

0 100 200 300 400 500

Epochs

NM
SE

 x
 1

00

TPA test 1

TPA test 2

TPA test 3

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-108-

Henon map time series. The second test is a classical deterministic one-step-ahead

prediction problem. Once again, an oversized 2-20-20-1 network architecture was

chosen in order to determine the degree to which the new algorithm would remove

redundant weight connections. For the iTPA algorithm, the number of steps to

converge varied from 310 to 1150 (mean = 676, and std. dev. = 321) when the

weight sensitivity parameters were set at aw = 0.02, and bw = 0.2. The mean

square error on the test set was 0.003, with standard deviation 0.001. There was

little evidence of overtraining. Increasing the value of the parameter aw had a

beneficial effect on generalization behaviour but resulted in much slower

convergence. Using the original tangent plane algorithm, all trials converged in less

than 1110 epochs (mean = 431, std. dev. = 259). The final error on the test set was

0.004 with standard deviation 0.006. Gross overfitting was observed in many trials,

which accounts for the large variance in the final error.

Fig 5.5 and 5.6 show histograms of the importance coefficients of the weights for

both algorithms on the henon map problem. The importance coefficients were

recorded from the same trial at epochs 100, 300 and 500. The coefficient sizes

were grouped in classes of width one and histograms plotted to show the distribution

of the jiT values at three different stages of training. The new iTPA algorithm gave

average coefficient sizes of 1.48, 1.46, and 1.46. The original algorithm gave 1.70,

1.96, and 2.25. Notice the lengthening of the right tail of the histograms produced

by the new algorithm (see Fig 5.5). This result suggests that a small proportion of

the weights have taken on increasingly important roles in the network as the

learning continues. Notice also the peak to the left of the main distribution (see Fig

5.5). This suggests that the weights of the network trained by the new algorithm are

separating into two distinct groups.

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-109-

Fig. 5.5 Importance coefficient histograms for the new iTPA algorithm (henon

map problem). Horizontal axis: coefficient size grouped in classes of width 1.

Vertical axis: absolute frequency of weights with this coefficient size.

Fig. 5.6 Importance coefficient histograms for the second tangent plane algorithm

(henon map problem). Horizontal axis: coefficient size grouped in classes of width

1. Vertical axis: absolute frequency of weights with this coefficient size

0

30

60

90

120

150

180

-5 0 5 10 15

Epoch 100

Epoch 300

Epoch 500

0

30

60

90

120

150

180

-5 0 5 10 15

Epoch 100

Epoch 300

Epoch 500

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-110-

Housing price estimation problem. The final test is a real world problem that aims

to estimate the price of housing in the suburbs of Boston. Once again, an oversized

13-20-20-1 network was used to determine the degree to which both algorithms

could generalize in a network that contains redundant connections. For the iTPA

algorithm, the number of steps to converge varied from 310 to 1190 (mean = 519,

and std. dev. = 334) when the weight sensitivity parameters were set at aw = 0.01,

and bw = 0.1. The mean square error on the test set was 0.13, with standard

deviation 0.02. There was little evidence of overtraining. Using the original tangent

plane algorithm, all trials converged in less than 1110 epochs (mean = 389, std. dev.

= 305). The final error on the test set was 0.17 with standard deviation 0.05. Gross

overfitting was observed in most trails. These results compare favourably with the

results given by Lahnajärvi et al [17] (CasCor: epochs = 496, generalization = 0.22;

Rprop: epochs = 603, generalization = 0.23).

Fig. 5.7 and 5.8 each show histograms of the importance coefficients for both

algorithms on the housing price estimation problem. The importance coefficients

were recorded from the same trial at epochs 100, 300 and 500. The coefficient

sizes were grouped in classes of width one and histograms plotted to show the

distribution of the jiT values at three different stages of training. The new iTPA

algorithm gave average coefficient sizes of 2.24, 2.68, and 2.79 respectively. The

original algorithm gave 2.56, 3.33, and 3.81. The histograms produced by the new

algorithm show the same kind of behaviour as before, namely the lengthening of the

right tail and the small peak to the left of the distribution (see Fig 5.7). The

histograms produced by the original algorithm show a distinctive drift to the right.

This result shows that an increasing number of weights have evolved from the initial

distribution about the origin (Fig 5.8)

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-111-

Fig. 5.7 Importance coefficient histograms for the new iTPA algorithm (housing

price problem). Horizontal axis: coefficient size grouped in classes of width 1.

Vertical axis: absolute frequency of weights with this coefficient size

Fig. 5.8 Importance coefficient histograms for the second tangent plane algorithm

(housing price problem). Horizontal axis: coefficient size grouped in classes of

width 1. Vertical axis: absolute frequency of weights with this coefficient size

0

40

80

120

160

200

-5 0 5 10 15

Epoch 100

Epoch 300

Epoch 500

0

40

80

120

160

200

-5 0 5 10 15

Epoch 100

Epoch 300

Epoch 500

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-112-

5.3.5 Comparison of the different algorithms

In order to determine whether the difference in the results is statistically significant,

we perform some hypothesis tests. The test used was a standard t-test with the

iTPA sample of 20 test errors compared with the corresponding sample from the

original tangent plane algorithm for each dataset used in the study. A second test

was carried out by comparing the results of weight growth and weight decay using

the tangent plane algorithm to training a static network with early stopping. The

backpropagation algorithm (learning rate η = 0.01, momentum term α = 0.7) was

used for this purpose. For the correct application of the t-test, it was necessary to

take the logarithm of the test errors (since the test errors have log-normal

distribution) and remove any outliers, following the same procedure in [51]. The

resulting samples were tested for normality using the Kolmogorov-Smirnov test.

The results are tabulated in Table 5.2. Dashes mean differences that are not

significant at the 10% level i.e. the probability that the differences are purely

accidental. Other entries indicate the superior algorithm (e.g. iTPA algorithm - I,

second tangent plane algorithm – T, backpropagation algorithm - B), and the value

of the t statistic. Column (a) gives a comparison between the new iTPA algorithm

and the second tangent plane algorithm. The results show that there is no

Problem Training
samples

Test
samples Inputs (a) (b) (c)

Spiral 194 192 2 - B 3.03 B 1.89
Henon 100 100 4 - - -

Housing 150 103 13 I 2.76 B 1.97 B 4.60

Table 5.2. Results of a t-test comparing the mean test errors of the different algorithms.

The entries show differences that are statistically significant on a 10% level and dashes

mean no significance found. Column (a): iTPA algorithm (“I”) vs. second tangent plan

algorithm (“T”). Column (b): iTPA algorithm vs. backprop algorithm (“B”). Column.

(c): second tangent plane algorithm vs. backprop algorithm

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-113-

significant difference in most of the benchmarks datasets used in the study. This

would suggest that the new iTPA algorithm produces networks with a similar

proportion of inactive weights as the original second tangent plane algorithm. The

result in the housing estimation problem might be accounted for by a larger weight

sensitivity parameter aw , which gives the cut-off value below which weights are

forced to zero in the iTPA algorithm. Column (b) and (c) gives a comparison with

the backpropagation algorithm using early stopping. The results show that early

stopping is superior to weight growth and weight elimination using the tangent plane

algorithm. However this success was gained at the expense of prohibitively long

runtimes (e.g. two spiral: epochs = 1600; henon: epochs = 1544; and housing:

epochs = 449)

5.4 Summary

In this chapter, a new variant of the tangent plane algorithm referred to as iTPA is

proposed for feed-forward neural networks. This new algorithm includes two

modifications to the existing algorithm. Firstly, a directional movement vector is

introduced into the training process to push the movement in weight space towards

the origin. This movement vector simulates weight decay, which is known to have a

beneficial effect on generalization in back-propagation learning. The directional

movement vector is further modified to give a heavier weighting to weights with

small weight values. Secondly, a random sideways movement along tangent planes

is introduced into the training process. This improves the likelihood of finding a

good solution with small weights values (which can help generalization).

Comparative tests were carried out using the new iTPA algorithm and the second

tangent plane algorithm. The benchmark datasets used were two spiral, henon

map, and housing price. The results indicate that the new iTPA algorithm retains

Chapter 5 : A new sequential tangent plane algorithm for feed-forward neural networks

-114-

the fast convergence speed of the original method. Including a small amount of

random movement along tangent planes into the weight update often helps the

network break out of local minima that can slow down the convergence. The results

also show that the new algorithm gives improved generalization relative to the

original algorithm in some problems (e.g. housing price), and comparable

generalization in yet other problems (e.g. henon map). Finally, the new iTPA

algorithm does not appear to give any tangible benefits in terms of improved

generalization relative to the backpropagation algorithm with early stopping

In the next chapter, a new batch tangent plane algorithm is developed for training

small parsimonious networks. This new algorithm uses the gradient information and

target values to construct a linear system, and solves this system by finding a least

squares solution. The newly developed algorithm is evaluated and compared with

Rprop [28] on two benchmark datasets. Rprop is a very fast locally adaptive

learning algorithm that is very robust relative to the selection of its internal

parameters. The results show that the new batch tangent plane algorithm is very

fast relative to Rprop. Some limitations of the new algorithm are also identified.

In chapter 7, two improvements are suggested to overcome the difficulties of the

batch tangent plane algorithm. The newly developed algorithm is evaluated and

compared with two popular network constructive techniques on three neural network

benchmark problems

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-115-

Chapter 6

A NEW BATCH TANGENT PLANE ALGORITHM FOR FEED-FORWARD

NEURAL NETWORKS

In chapter three, a sequential learning algorithm called the tangent plane algorithm

was evaluated for function approximation and classification tasks. This algorithm

modifies the weights of a feed-forward neural network in the direction in which the

error function decreases most rapidly. Unlike the gradient descent backpropagation

algorithm, it does not require a learning rate parameter to be set to adjust the step

size. Instead it uses the target data to define a surface in weight space. The

weights are then updated by moving to the tangent plane to this surface, taken at a

convenient point. The results show that the tangent plane algorithm is very fast

relative to the standard backpropagation algorithm. However this improvement in

speed was observed in large network structures. In small economical networks the

convergence speed was found to be very slow and there were more failures to

converge. Collecting all the gradient information together before the weights are

updated can help to avoid the mutual interference of weight changes that slow down

the convergence speed. Further, sequential methods may be slow in comparison to

batch methods that use second-order information. In this chapter, a batch

implementation of the tangent plane algorithm is developed for training small

parsimonious feed-forward networks. This new algorithm uses the Gauss-Newton

vector to guide the search toward the solution of a system of tangent plane

equations. It is shown that the new batch tangent plane algorithm is fast compared

with the best first order learning algorithm

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-116-

6.1 Improving convergence in small economical networks

Previously, we have evaluated the tangent plane algorithm for three neural network

benchmark tasks. This tangent plane algorithm treats each target value as a

constraint which defines a surface in weight space. The weights are updated by

moving to the tangent plane to this surface. Unlike the backpropagation algorithm, it

automatically calculates the correct step to be taken. This is the principal strength of

the tangent plane algorithm. Compared with the back-propagation algorithm, the

tangent plane algorithm is very fast and avoids problems like local minima.

However, this improvement was observed in large networks that have a high

dimensional weight space. In small networks the convergence speed at best was

comparable with more failures to converge.

Another difficulty with the tangent plane algorithm is locally instability due to the

large steps taken in weight space. This was particularly noticeable with large

datasets that contain one or more incorrect patterns. In order to address this

difficulty a progressive stiffening factor was introduced whereby the step size was

progressively decreased as the weights become trained. However, this strategy

produced slower convergence relative to the backpropagation algorithm. Further it

requires setting a parameter that can be difficult to tune

Collecting all the gradient information together before the weights are updated can

help to avoid the mutual interference of weight changes that occur with large

learning rates. Furthermore, sequential methods may be slow in comparison to

batch methods that use second-order information. Thus it seems worthwhile

investigating a batch implementation of the tangent plane algorithm for small

economical networks. In the next section we describe the derivation of the new

algorithm referred to as GN-TPA

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-117-

6.1.1 Derivation of the new GN-TPA algorithm

A multi-layered feed-forward neural network of { ju } units is assumed where the

connection from iu to ju is regulated by weight jiw . jφ and jθ will be the input and

output of ju so that fj =θ (jφ) for some monotonic function f , and ∑= i ijij w θφ .

Let ku be the single output neuron with kθ trained to mimic a target value ky . The

tangent plane algorithm determines a plane of suitable points to move to within

weight space. This suggests an attractive possibility for training in batch mode,

which is to move to the intersection of each plane after the presentation of all the

training patterns.

Our starting place is a general equation for the movement from the present position

to a point on the tangent plane to the surface ()k
1

k yf −=φ . Let '
jiw be the current

point in weight space, and let "
jiw be a point on the constraint surface such that "

jiw

differs from '
jiw only in the value of the bias weight 0kw . It follows that

() ()k
1

k
1 fyf θ−− − is the distance along the axis corresponding to 0kw from '

jiw to

"
jiw . Let kφ∇ be the gradient vector at "

jiw . The perpendicular distance w∆ from

'
jiw to the tangent plane at "

jiw is given by

() ()()

() ()

() ()
k

k
1

k
1

0i
iki0k

0kk

k
1

k
1

0kk
1

k
1

k

T
k

fyf

ww
w

fyf

fyfw

φ
θ

θ
φ

θ

θ
φ
φ

∇

−
=









+

∂
∂

∇

−
=

−⋅
∇

∇
=∆

−−

≠

−−

−−

∑

i

 (6.1)

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-118-

If nR∈∆w denotes a vector from the current point to a point on the tangent plane,

then the projection of w∆ onto kφ∇ is given by

 [kφ∇]T () ()kk fyf θ11 −− −=∆w (6.2)

Equation (6.2) defines a ()1n − plane of suitable points to move to, within the

weight space nR . In order to develop a batch tangent plane algorithm we construct

a system of equations using the entire training set and solve for a suitable point to

move towards. For a set of input-output data {(() ()i
k

i y,x)} m
i 1= , equation (6.2) can be

written as an nm× system as follows

()[] ()() ()()

()[] ()() ()()

()[] ()() ()()m
k

1m
k

1Tm
k

2
k

12
k

1T2
k

1
k

11
k

1T1
k

fyf

fyf

fyf

θφ

θφ

θφ

−−

−−

−−

−=∆∇

−=∆∇

−=∆∇

w

w

w



 (6.3)

Alternatively, equation (6.3) can be written more concisely as

 () () ()k
1

k
1 ff θywwJ −− −=∆φ

where =φJ [() ()m
kk φφ ∇∇ ,,1 ]T, () ni

k R∈∇φ , nm ≥ , is an nmR × Jacobian matrix,

=ky [() ()m
kk yy ,,1 ]T is a vector of target values, and =kθ [() ()m

kk θθ ,,1 ]T is a

vector of model outputs

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-119-

If the number of training samples m equals the dimension of weight space n , then

φJ is square and the system (6.3) can be solved by matrix inversion provided that

φJ is non-singular (e.g. invertible). However, for most real neural network problems

nm >> , which makes the system overdetermined. For such problems φJ will not

be square, so there may not exist a set of jiw∆ such that (6.3) is satisfied exactly.

Instead, one may need to find specific jiŵ∆ such that

 () () () () 2
k

2
k minˆ wewwJwewwJ

w
−∆=−∆

∆ φφ (6.4)

where () =wek [() ()k
1

k
1 ff θy −− −] mR∈ represent a vector of errors. Expanding

the norm squared of the residuals, we have

() () () ()

() k
T
kk

TT
k

T
k

T
k

eeewJwJe

wJwJewJewJ

+∆−∆

−∆∆=−∆−∆

φφ

φφφφ

 (6.5)

The two middle terms on the right-hand side of (6.5) are equal. Differentiating and

setting the result equal to zero, we arrive at the normal equations

 k
TT eJwJJ φφφ =∆ (6.6)

Equation (6.6) defines the new GN-TPA algorithm. The training procedure is

iterative and proceeds as follows. Starting with some initial guess initialw for the

minimum, the weight update proceeds according to the iteration www ∆+= oldnew ,

where w∆ is the weight increment at time step n . The iteration is terminated when

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-120-

the error vector () ()k
1

k
1

k ff θye −− −= is sufficiently small or the matrix φφ JJ T

becomes rank deficient

Let us next consider the convergence properties of the GN-TPA algorithm. If

() ()kkk ff θye 11 −− −= , then kφ∇ equals ke∇− or eJ− . Using this in the right-

hand side of (6.6) yields k
T
e eJ− , which is the gradient of the error surface

∑= i kik e2ε . As far as the generation of a descent direction goes, the square

matrix φφ JJ T is always at least semi-positive definite, so 0k
TT ≥∆ eJw φ or

0k
T
e

T ≤∆ eJw (e.g. w∆ is a descent direction for kε). However this does not

guarantee that old
k

new
k εε < as w∆ might be too large locating w well beyond the

minima. This problem is exacerbated by the choice of ()xf 1− . For example ()xf 1−

= ()xtanh 1− blows up as x approaches 1±

The only difficulty that can arise is φJ being rank deficient and hence φφ JJ T is

singular. The customary practice for dealing with a rank deficient φJ is to add a

diagonal matrix Iµ to the term φφ JJ T , where 0≥µ is a constant and I nnR ×∈ the

unit matrix. When 0=µ , w∆ is a least squares step. As ∞→µ , the term Iµ

increasingly dominates that of φφ JJ T so that k
T1 eJw φµ −→∆ . Finally, there

remains the problem of finding the proper value of µ . One approach might be use a

line search, but the main objection here is that is it prohibitively slow. Another

approach might be to use a region of trust model. In Fletcher [41], if the error

surface is approximately quadratic, then the model is operating optimally and µ is

halved; otherwise µ incremented by a factor ν > 2

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-121-

6.1.2 Solving the tangent plane normal equations

The explicit formulation of the matrix [φφ JJ T]-1 T
φJ from equation (6.6) is undesirable

as it is prone to considerable round-off errors during its computation. Instead we

can solve the equation kewJ =∆φ using a singular value decomposition (SVD)

which is numerically more stable [109]. This method involves factorizing the matrix

φJ into an nm× orthogonal matrix U , an nn× orthogonal matrix V , and an nn×

diagonal matrix Σ comprising the singular values of φφ JJ T along the leading

diagonal with zero’s elsewhere

 TVUJ Σ=φ (6.7)

If the columns iv of the right orthogonal matrix V are treated as eigenvectors of the

symmetric matrix φφ JJ T , then the elements along the leading diagonal of Σ are the

positive square roots of the corresponding eigenvalues. The columns iu of the left

orthogonal matrix U correspond to the eigenvectors of T
φφ JJ . Solving (6.3) using a

singular value decomposition, we arrive at the standard result

 =∆w ∑
=

n

i
i

i

k
T
i

1
v

eu
σ

 (6.8)

where ke is a vector of residuals (errors), which is this case are given by

() ()k
1

k
1 ff θy −− − , and iσ are the singular values. In the summation above the

terms that correspond with relatively small singular values can be omitted to improve

the robustness in the calculation of w∆ . This situation arises whenever φJ is

close to being rank deficient

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-122-

6.1.3 Implementation of the procedure

The following section is included to clarify the procedure for updating the weights of

a network trained using the batch tangent plane algorithm. For m distinct training

samples (() ()i
k

i y,x), where () Ni R∈x and () Ry i
k ∈

1. Compute the unit outputs m
j R∈θ

2. Compute the components of the Jacobian nmR ×∈φJ

3. Compute the eigenvalues and orthonormal eigenvectors of the

 symmetric matrix nnT R ×∈φφ JJ

4. Construct Σ nnR ×∈ as a square matrix whose diagonal elements iiσ

 are the singular values of φJ

5. Set =V [iv] nnR ×∈ where the columns iv nR∈ are the eigenvectors

 identified in step 3

6. Calculate VJU φ= Σ -1

7. Calculate =∆w ()∑ =

n

1i iik
T
i veu σ

8. Test on the training set

9. If model adequate, then Stop

 else Goto step 1

6.2 Simulations and results

Comparative tests were performed using the new GN-TPA algorithm and a fast first

order learning algorithm, Rprop (resilient back-propagation) [28], under a variety of

initial conditions and different network sizes. The training sets used were regression

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-123-

and classification problems. Classification problems involve a decision making task

where the output fits into well-defined categories. The classification task chosen

was the breast cancer diagnosis problem obtained from the Proben1 collection [34].

Regression problems involve the approximation of a continuous valued function.

The regression task was the additive function problem which was created artificially

by computer simulation [22].

For each test carried out a single hidden layer feed-forward neural network was

trained 20 times using different starting values for the weights. The number of steps

to converge, and the normalised square error on the training set and test set were

averaged over the 20 trials. An upper limit was placed on the maximum permissible

number of steps. Network training was terminated using the method of early

stopping as this method is known to help avoid overfitting [52].

6.2.1 Network initialization

The GN-TPA algorithm does not require any parameters to be set manually. In

preliminary tests it was found that the performance of the algorithm was sensitive to

the initialization of the weights. For the breast cancer problem, the input weights

were set to random values in the range [-2, 2]. For the additive problem, the input

weights were set to random values in the range [-1, 1]

The parameters used with the Rprop algorithm are the step increment factor +η , the

step decrement factor −η , the initial step size ()0∆ , the maximum step size max∆ ,

and the minimum step size min∆ . The step increment and decrement factors were

chosen to be the same as in the original paper, i.e. 2.1=+η , 5.0=−η . The initial

step size is not critical, and was set to () []2.0,05.00 ∈∆ . The maximum step size

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-124-

was also chosen to be the same as in the original paper, i.e. 50max =∆ . Finally, the

minimum step size was set to 8
min 10x1 −=∆ to avoid overflow/underflow problems

with floating point variables. The input weights were set to random values in the

range [-0.1, 0.1]

6.2.2 The error metric used to determine convergence

The error metrics used in the simulations were CERR (Classification ERRor) for

classification problems, and NMSE (Normalized Mean Square Error) for regression

problems e.g.

 () ()∑ −=
i

kiki sgnysgn
m2
1CERR θ (6.9)

 and

 ()2

2

1 ∑ −=
i

kikiy
m

NMSE θ
σ

 (6.10)

where m is the number of training patterns, kiy is the target output of the ith input

pattern, kiθ is the ith network output, sgn is the sign function of a number (i.e. if

the number if negative, then the sgn function returns -1, otherwise it returns +1),

and 2σ is the variance of the target output data.

6.2.3 Simulations problems

The cancer problem contains some diagnosis results for breast cancer. Based on

cell descriptions gathered by microscopic examination, a tumour is classified as

benign or malignant. The dataset was created based upon the breast cancer

Wisconsin problem dataset from the UCI machine learning repository [61]. The

output represents the classification result for the purpose of breast cancer diagnosis.

The decision is based on nine input attributes which include cell thickness, the

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-125-

uniformity of cell size, and cell shape. The number of training samples is 200 and

the number of testing samples is 167.

The additive problem is a non-linear function approximation problem that was

obtained from [22]. The function is computed by

 u05.0e5.0
x1

x
x5.0xxx5.0z 21 xx

2
2

12
221

2
1 ++

+
++−−= − (6.11)

A small signal u is added to the output with values uniformly distributed in the range

[-1, 1]. Four hundred data points are generated. The first 200 data points are used

as training data whilst the remaining are used as test data. The input values are

uniformly distributed in the range [-1, 1]. All functional values or outputs are scaled

down in the range [-1, 1]

6.2.4 Discussion of results

The first test utilized the additive function data. The results are tabulated in Table

6.1a. It was found that the batch tangent plane algorithm gave significantly faster

convergence relative to Rprop, and that the convergence speed improved with

network size. Both methods reached the minimum training error. It was also found

that the new GN-TPA algorithm gave comparable generalization relative to Rprop,

except in the smallest network where it was slightly worse. When failed trials were

removed from the results, the performance of the batch tangent plane algorithm in

the smallest network was significantly better (test error = 2 x 10-4, epochs = 18).

The improvement in the Rprop algorithm in comparison was relatively small (test

error = 1 x 10-4, epochs = 1873)

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-126-

Fig 6.1 and 6.2 show the training curves for both algorithms. The curves for the GN-

TPA algorithm drop quickly at first. Thereafter two of the curves exhibit sharp

bumps. Convergence occurs rapidly within 15 epochs. The sharp bumps suggest

oscillatory behaviour caused by the step size overshooting the linear minimum. The

curves for Rprop show a sharp initial bump after one epoch. Thereafter the curves

are relatively flat illustrating linear convergence. The first sharp bump is probably

due to Rprop increasing the step size far too quickly in the initial weight space. The

subsequent bump illustrates the tendency of Rprop to overcompensate the step size

when moving in a descent direction

(a)

 Batch tangent plane algorithm
(GN-TPA)

Resilient back-prop
(Rprop)

 Avg. validation set error using early
stopping (NMSE x 102)

Avg. validation set error using early
stopping (NMSE x 102)

Size Err Err* Steps Err Err* Steps
10 0.03 0.04 811 0.02 0.02 1975
15 0.01 0.02 25 0.02 0.02 1865
20 0.01 0.01 30 0.02 0.02 1724

(b)

 Batch tangent plane algorithm
(GN-TPA)

Resilient back-prop
(Rprop)

 Avg. validation set error using early
stopping (CERR x 102)

Avg. validation set error using early
stopping (CERR x 102)

Size Err Err* Steps Err Err* Steps
10 3.71 2.81 10 3.91 2.12 20
15 3.54 2.01 12 3.91 2.69 17
20 3.66 2.66 10 3.83 2.78 23

Table 6.1. Training set error (Err), test set error (Err*) and steps to converge for

different size networks with training terminated using early stopping: (a) additive

function approximation problem, (b) the breast cancer problem

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-127-

Fig.6.1. Typical training curves generated by the new GN-TPA algorithm on the

additive function approximation problem

Fig.6.2. Typical training curves produced by the Rprop algorithm on the

additive function approximation problem

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Epochs

N
M

SE
 X

 1
00

GN-TPA trial 1

GN-TPA trail 2

GN-TPA trial 3

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15 20 25 30 35 40

Epochs

N
M

SE
 X

 1
00

RPROP trial 1

RPROP trail 2

RPROP trial 3

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-128-

The second test utilized the breast cancer dataset. The results are tabulated in

Table 6.1b. It was found that the GN-TPA algorithm gave faster convergence

relative to Rprop across a range of network sizes. However, this improvement was

paid for by much longer training times. It takes approximately 5 minutes for the

batch tangent plane algorithm to train a network with 20 units 5 times using a

Pentium IV (2.67 GHz). Rprop takes approximately 10 seconds to finish the training

process. Clearly the computational burden of performing an SVD operation makes

the batch tangent plane algorithm suitable only for small to medium sized networks.

It was also found that the batch tangent plane algorithm gave comparable

generalization relative to the Rprop algorithm, and that generalization was

independent of network size.

Figures 6.1 and 6.2 show some typical training curves for both algorithms. The

training curves for the new GN-TPA algorithm are very different. The first curve

drops fairly sharply within the first five epochs. Thereafter it is relatively flat

illustrating linear convergence. The second curve exhibits sharp bumps during the

first 8 epochs, and then the behaviour is similar to the first curve. The sharp bumps

suggest oscillatory behaviour due to the large steps taken overshooting a solution

point. The last curve drops sharply and then stalls at 10 epochs. This is probably

an effect of an (almost) singular Jacobian matrix. The curves for the Rprop

algorithm drop rapidly within the first 5 or so epochs. However, these curves differ

by converging to a deep minimum. One curve performs steep gradient ascent

before converging on a solution. Note that these curves follow the same general

trend. This result is not surprising given the starting values of the weights are within

a much smaller region in the weight space

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-129-

Fig.6.3. Typical training curves produced by the new GN-TPA algorithm on the

breast cancer problem

Fig.6.4. Typical training curves produced by the Rprop algorithm on the breast

cancer problem

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Epochs

NM
SE

GN-TPA trial 1

GN-TPA trail 2

GN-TPA trial 3

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Epochs

N
M

SE

RPROP trial 1

RPROP trail 2

RPROP trial 3

Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks

-130-

6.2.5 Problems with the new GN-TPA algorithm

There are a number of difficulties with the GN-TPA algorithm. These difficulties can

be summarised as follows

• First, a good initial guess is required if convergence is to occur. The GN-TPA

algorithm is a local minimizer of the error (or cost) function kε . A necessary

condition for local convergence is that the initial guess must be sufficiently

close to a solution *w , that is kε (*w) ≤ kε (w) for δ<− *ww where δ

is a small positive constant. Local convergence is likely to cause problems

with stability and convergence, and where the error function has more than

one minimum.

• Secondly, the computational overhead of performing a generalized inverse

operation causes the computer to crash. The computational complexity of a

generalized inverse operation of a nm × matrix will vary depending on the

method used. Under an SVD operation this is equal to 322 n9mn8nm4 ++ ,

where m is the number of patterns to be learned, and n the number of

weights. For a given training set with m patterns to be learned, the

computational cost increases as 3n , which can be quite significant in large

networks with many weights.

• Finally, the computation of the generalized inverse operation is prone to

numerical errors. This is due to the Jacobian matrix φJ becoming rank

deficient. For example, at the minimum *w the vector k
T eJφ , being

proportional to the gradient vector, must be zero. Therefore, if ke (*w) 0≠ ,

then it follows that φJ (*w) is rank deficient.

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-131-

Chapter 7

BATCH LEARNING BY APPROACHING TANGENT PLANES IN THE

EXTREME LEARNING MACHINE

In chapter six, a new batch tangent plane algorithm was developed for small

parsimonious networks. This new algorithm utilizes the Gauss-Newton vector to

guide the search toward the error minimum. Comparative tests were performed

using the new batch tangent plane algorithm and a fast locally adaptive learning

algorithm, Rprop (resilient back-propagation) [28] under a variety of different initial

conditions and network sizes. The benchmark datasets used were breast cancer

obtained from the UCI machine learning repository [61], and the additive function

problem obtained from [22]. The results show that the new batch tangent plane

algorithm gives improved convergence speed and comparable generalization

performance relative to the Rprop algorithm. However, the batch tangent plane

algorithm suffers from a number of problems. Firstly, the algorithm is locally

convergent, meaning that a good initial starting condition is required for

convergence to a local good minimum to occur. Secondly, the computational

overhead of performing a generalized inverse operation after each learning step is

very large making runtimes very long. Finally, the computation of the generalized

inverse matrix is prone to numerical errors. This is due to the Jacobian matrix

becoming rank deficient. In this chapter, the newly developed batch tangent plane

algorithm is applied to a novel network structure called an extreme learning machine

to overcome the difficulties with this algorithm, namely local convergence and the

high computational overhead. Studies [76,110,111] have shown that the extreme

learning machine (ELM) is very fast and efficient

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-132-

7.1 Improving the convergence behaviour and efficiency of the new batch

tangent plane algorithm

Previously, we have described a new learning algorithm based on tangent plane

algorithm targeted at small parsimonious networks. This new algorithm relaxes the

requirement of the original method for movement to the nearest point on the tangent

plane to a constraint surface, but instead moves to a general point on the tangent

plane. Further a system of equations is constructed for the entire training set and

solved using a singular value decomposition. The resulting movement is a Gauss-

Newton (GN) step toward the minimum training error. Unfortunately this strategy

can produce some big weight updates leading to oscillatory behaviour for certain

starting conditions of the weights. In Huang et al [110,111], a new learning

algorithm was described for single hidden layer feed-forward neural networks

(SLFN) called the Extreme Learning Machine (ELM). In this method, the input

weights of the hidden units are initialized to random values and fixed. The learning

process is then treated as a linear problem with the weights of the output unit

optimized through a generalized inverse operation. Studies [111,112] have shown

that ELM is very fast and efficient. Thus a strategy to improve the convergence of

the batch tangent plane algorithm would be to use a SLFN with input weights set to

random values

7.1.1 A brief introduction to the ELM algorithm

Traditionally gradient descent based learning methods and variations such as the

back-propagation algorithm have been used to train the weights of feed-forward

neural networks. It is generally known that these methods are very slow due to the

improper choice of step size and problems with convergence to local minima. Also,

many epochs or presentations of the entire dataset are required to learn the training

data making gradient descent based methods very slow.

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-133-

Recently it has been shown that single hidden layered neural networks (with N

hidden units) with input weights chosen arbitrarily can learn N distinct observations

[113,114]. Unlike more traditional methods that tune all the parameters, the input

weights of the first hidden layer do not have to be adjusted at all. Study results

[110] show that this method not only makes learning extremely fast but also

produces good generalization. Recently it has been further proved that single

hidden layered neural networks with arbitrarily assigned input weights can

approximate any continuous function on any compact dataset. After the input

weights of the hidden layer units are randomly chosen, a single hidden layered

neural network can be treated as a linear system and the output weights determined

analytically through a generalized inverse operation of the hidden layer outputs.

From the foregoing discussion, we show that a SLFN with m units can learn m

distinct samples

For m arbitrary distinct samples ()ii y,x , where [] NT
iNii Rxx ∈= ,,1 x , and

Ryi ∈ , the output of a SLFN is ()∑= i iikik ,w wxθθ , where kiw is ith weight of

output unit ku , iθ is the output of hidden unit iu , [] NT
iNii Rww ∈= ,,1 w are the

input weights of iu . If hidden unit iu has activation f , then ()xwT
ii f=θ . For a

set of inputs ix , m,i 21= , the output of iu can be treated as an m dimensional

vector m
i R∈θ . If the input weights { ijw : ki ≠ } are set to arbitrary values and

fixed, then the outputs m
i R∈θ , n,i 21= form a random set of vectors that span

a subspace of mR . Provided that mn < , then with probability one these vectors are

linearly independent [111]. As mn → , the outputs m
i R∈θ , n,,2,1i = , will be

extended to form a spanning set of mR . Thus, for a specific set of weights { kiŵ },

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-134-

any point m
k R∈y can be reached by a single hidden layered neural network with

input weights fixed at arbitrary values.

Based on the foregoing analysis, we evaluate the newly developed GN-TPA

algorithm for the Extreme Learning Machine.

7.1.2 Derivation of the new GN-TPA algorithm

For m distinct samples (() ()i
k

i y,x), where () =ix [() ()i
N

i x,,x 1]T NR∈ and () Ry i
k ∈ ,

a single layer feed-forward neural network with n hidden units and activation

function f is given by

 (+0kwf ())∑
=

n

1i

j
ikiw θ ()j

kθ= , m,,2,1j = (7.1)

 () (+= 0i
j

i wfθ ())∑
=

N

1l

j
lil xw (7.2)

The method assumes a single layer feed-forward neural network with input weights

iw , ni ,,2,1 = chosen arbitrarily. For such a system, the batch tangent plane

algorithm is defined by the following matrix equation

 [()tθ] () () ()()t
kk

t
k

T ff θyw 11 −− −=∆ (7.3)

In equation (7.3), () =tθ [() ()t
n

t
1 ,, θθ ]T, () mt

i R∈θ , is a matrix of outputs from

hidden layer units iu at time step t , () nt
k R∈∆w is a vector of weight changes to

the final unit, m
k R∈y is a vector of desired outputs, and () mt

k R∈θ a vector of

outputs from the neural network.

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-135-

Expanding the left-hand side of (7.3),

 [()tθ]T [() ()t
k

1t
k ww −+] () ()()t

k
1

k
1 ff θy −− −= (7.4)

But ()() =− t
kf θ1 [()tθ] T ()t

kw , so we arrive at

 [()tθ] T () =+1t
kw [()tθ] T () () −+ −

k
t

k f yw 1 [()tθ] T ()t
kw

 ()kf y1−= (7.5)

For convenience, we drop the notation for the time step t . If nm >> , then θ will

not be square, so there may not exist a set of kiw such that (7.5) is exactly satisfied.

Instead, one may need to find specific kiŵ such that

 () ()k
1

k
T

R
k

1
k

T fminfˆ
n

ywθywθ
w

−

∈

− −=− (7.6)

Let J represent a nm× matrix with columns m
i R∈θ , so J = [n1 ,, θθ ]. For

the general case where nm >> , the solution of the above linear least squares

problem is given by

 [] ()k
1T1T

k fˆ yJJJw −−
= (7.7)

Equation (7.7) defines the GN-TPA algorithm applied to the ELM paradigm. It

solves the optimization problem in a single step.

Consider the different terms in (7.7). The term [J T J]-1 J T is recognised as the

Moore-Penrose generalized inverse of J , that is +J = [J T J]-1 J T. A theorem [108]

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-136-

tells us that if there exists a matrix B such that YB is a minimum norm least

squares solution of the linear system YAX = , then it is necessary and sufficient

that += AB , the Moore-Penrose generalized inverse of A . Thus the special

solution kŵ is the solution with the minimum norm least squares, meaning that the

minimum training error can be reached by this solution.

Next, the term 1f − (ky) is the target vector mapped backward to give the desired

input to the final unit. 1f − (ky) will tend to favour solutions with a large norm of

weights, which is known to be harmful to generalization. Introducing a regularisation

term Iλ (0≥λ) into the pseudo-inverse [J T J]-1 J T will help to discourage

overtraining in the network [135]

7.1.3 Solving the tangent plane normal equations

Using a singular decomposition to compute the pseudo-inverse can be

computationally expensive, especially when the network is scaled up. An alternative

method, solving the tangent plane normal equations ()k
1T

k
T f yJwJJ −= using a

thin QR factorization, is computationally simple [109]. The method is based on the

orthogonal decomposition of J into

 []n21 RRRJ =























nn

n222

n11211

a

aa

aaa







 (7.8)

where =R [nRR ,,1 ] nmR ×∈ is orthogonal and =A [jia] nnR ×∈ is upper right

triangular. If J has full column rank, then the columns of R will form an orthonormal

basis for span (J1 … Jn).

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-137-

From equation (7.6), we need to find a specific kw such that the norm

()kk f ywJ 1−− is minimised. To proceed, we note that an arbitrary vector y is

invariant under multiplication by an orthogonal matrix Z e.g.

 () () yyyyZZyyZ === 2
1

2
1

TTT (7.9)

Therefore, from equation (7.8)

 ()k
1

k f ywJ −− = (TR ()k
1

k f ywJ −−)

 ()k
1T

k
T f yRwARR −−= (7.10)

But R is orthogonal, so

 () ()k
T

kkk ff yRwAywJ 11 −− −=− (7.11)

If A has non-zero elements in the leading diagonal (e.g. J is non-singular), the least

squares solution kŵ that minimises the norm ()k
1

k f ywJ −− can be found by

back substitution in

 ()k
T

k f yRwA 1−= (7.12)

A great computational saving can be made if we choose a method that computes

the QR factorisation of J iteratively so that the jth column of R is generated after

the jth step. If the hidden units are added one by one, then any increase in

computational complexity is solely due to the next jR . Since the Gram-Schmidt

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-138-

algorithm [116] generates each jR as a linear combination of 1j1 −θθ  , m
i R∈θ , it

makes sense to choose this algorithm. When the Gram-Schmidt process is

implemented on a computer rounding-off errors can cause significant loss of

orthogonality. For this reason, the process is said to be unstable. The process can

be stabilised with a small modification. The nth iteration of the stabilized Gram-

Schmidt process can be summarized as follows

() nnnnnnn

jjnnnj
T
njn

aa

njaa

θRθ

RθθRθ

1,

1,2,1,,

==

−=−←= 

 (7.13)

According to equation (7.13), n1a is calculated by multiplying two m -dimensional

vectors, nθ and 1R , which requires m2 computations. The projection of nθ

orthogonally onto 1R also requires m2 computations. Thus, the number of

operations is m4 . There are totally ()1n − of jR . Therefore, the number of

operations is ()1nm4 − . Finally, nR is calculated by normalizing nθ , which

requires m2 computations. Therefore, the total number of operations at is

() mnm 214 +− . Summing over all jR , there are totally ∑ =

n

j
jm

1
4 ∑ =

−
n

j
m

1
14

∑ =
+

n

j
m

1
12 = 2nm2 operations

A simple mechanism to avoid numerical ill-conditioning in the matrix J can be built

into the Gram-Schmidt procedure. A very small nna implies that the vector nθ is a

linear combination of 1n1 −θθ  . Therefore, if nna is less than a certain threshold

value, a new nθ should be generated by randomizing the weights niw . The

procedure is then repeated for the nth step.

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-139-

7.1.4 The stopping criteria

The stopping criteria used to terminate training is the Akaike Information Criteria

(AIC) [117]. The AIC is an effective measure of the trade-off between the model

accuracy and model complexity, and has been used elsewhere as stopping criterion

in related models [22,45]. The AIC criteria can be written as

 () () χχ kelogNAIC += (7.14)

where N is the number of training data, e is the variance of the model residuals

(errors), k is the number of hidden units, and χ is the critical value of the 2χ

distribution with one degree of freedom for a given significance level.

7.1.5 Implementation of the procedure

The following section is included to clarify the procedures for updating the weights of

a network using the algorithm outlined in this chapter. Given a set of training data

{(kii y,x) : m,,2,1i,Ry,R ki
N

i =∈∈x }

Step 1

Initialise the constant output vector m
1 R∈θ

Compute the norm 111a θ=

Compute first orthonormal vector () 1111 a1 θR =

Next n

Step n

Initialise the weight vector N
n R∈w

Compute the output vector m
n R∈θ

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-140-

For 1=j to 1−n

Compute the inner product j
T
njna Rθ=

Set jjnnn a Rθθ −←

Compute the norm nnna θ=

Compute nth orthonormal vector () nnnn a θR 1=

If δ<nna , then Goto Step n

Solve ()k
1T

j
n

1i kiji fwa yR −
=

=∑ , n2,1j =

If model adequate, then Stop

Next n

Goto Step n

7.1.6 Relationship with existing methods

The GN-TPA algorithm presented in this thesis shares some similarities with the

orthogonal sequential training technique developed by Zhang and Morris [22]. The

orthogonal sequential training technique adds new hidden units one by one to a

single hidden layer feed-forward neural network. When adding a new unit the new

information introduced by this unit is caused by that component of its output that is

perpendicular to the space spanned by the outputs from the previously added units.

The new units are trained to minimise the error in the contribution they make to the

overall error. Learning is terminated when the network error is sufficiently small.

The model robustness was improved by modifying the cost function to include a

novel regularisation term

Both the GN-TPA algorithm and the orthogonal sequential training technique build

neural networks in a constructive way. They eliminate the need to guess in advance

the size of the network. However the GN-TPA differs from the orthogonal sequential

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-141-

training technique in two respects. Firstly, the GN-TPA algorithm sets the input

weights and biases of new hidden units to arbitrary values and fixes them; only the

output layer weights are trained. The orthogonal sequential training technique uses

error minimization to train the new hidden units and output connections. This

suggests that the orthogonal sequential training technique is likely to produce

smaller more economical networks. Secondly, the solution of the GN-TPA algorithm

is the solution with the smallest least squares, meaning that the smallest training

error can be reached by this solution. The orthogonal sequential training technique

attempts to minimise the cost function using a gradient descent based algorithm

which is prone to getting stuck in local minima.

7.2 Simulations and results

Comparative tests were performed using three network-building techniques; the GN

-TPA algorithm, the orthogonal sequential training technique [22], and the cascade

algorithm [8,9]. These are methods that start with a small network and insert

additional units and connections until the network can represent the required

function. The orthogonal sequential training technique inserts new units and

connections one by one into a single hidden layer feedforward neural network. The

new hidden units are trained to minimise the contribution they make to the overall

network error. The learning rule used to train the new units is the standard back-

propagation algorithm. The cascade algorithm inserts new units and connections

one by one, each into a different hidden layer of a cascade neural network. After a

new hidden unit is inserted, its output connections are trained by error minimization.

The learning rule used for candidate training is the Rprop (resilient back-

propagation) algorithm [28]. Rprop is a very fast gradient descent based learning

rule that uses the signs of the current and previous partial derivatives of the error

function to adapt the weights.

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-142-

The results presented in this investigation were averaged over 20 trials. For each

trial carried out, the error on the training set and test set were recorded together with

the number of units inserted into the network. The best results on the test set were

also recorded. The method of early stopping was used to terminate each stage of

network training. Overall network training was terminated when the Akaike

Information Criterion reached its minimum. Hidden unit training was terminated

when the generalization loss on the test set was significant, and there was little

progress made on the training set [44].

7.2.1 Network initialization

The GN-TPA algorithm and the sequential orthogonal training technique are

methods that build single hidden layer neural networks. In all simulations, the

weights of the new units were initialised to random values in the range [-2, 2]. The

choice of network architecture for the cascade algorithm is not critical. Prechelt [8]

investigated the effect of cascading hidden units versus not cascading hidden units

for six members of the CasCor family. He concluded that in most cases there was

no significant difference. We will use a cascade network in this investigation as the

performance of the cascade algorithm has been well documented for this type of

network. The weights of the hidden units were initialised to random values in the

range [-0.1, 0.1], which according to Lahnajarvi [9] gives the best results for the

problems used in this investigation.

The Rprop algorithm and the back-propagation algorithm require parameters that

need to be set manually. First, the Rprop algorithm. The parameters used with

Rprop are the step increment factor +η , the step decrement factor −η , the initial

step size ()0∆ , the maximum step size max∆ , and the minimum step size min∆ . The

step increment and decrement factors were chosen to be the same as in the original

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-143-

paper, i.e. 2.1=+η , 5.0=−η . The initial step size is not critical, and was set to

() 30 10x5 −=∆ . The maximum step size was also chosen to be the same as in the

original paper, i.e. 50max =∆ . Finally, the minimum step size was set to

8
min 10x1 −=∆ to avoid overflow/underflow problems with floating point variables.

Second, the back-propagation algorithm. The learning rate η was set to 1.0=η . A

small value for the learning rate was chosen to avoid oscillatory behaviour, the

training stage of candidate units being very turbulent. In any event the convergence

speed of the learning algorithm is not critical

7.2.2 The error metric used to determine convergence

The error metric used in the simulations is NMSE (Normalized Mean Square Error).

NMSE is given by

 ()2

i
kiki2 y

m
1NMSE ∑ −= θ
σ

 (7.15)

where m is the number of training patterns, kiy is the target value of the ith input

pattern, kiθ is the ith network output, and 2σ the variance of the target data.

7.2.3 Simulations problems

The training sets used in all the simulations were regression problems, which are

problems that involve the approximation of a continuous valued target function. The

regression tasks chosen are the additive problem [22], the housing price estimation

problem [61], and the Henon map chaotic time series [9].

The house price estimation problem is a real-world problem that estimates the price

of houses in the suburbs of Boston based on some attributes of houses (e.g.

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-144-

location, crime rate, level of air pollution, etc.). The number of inputs is 13, and the

number of outputs is one. The number of training and testing examples is 253. The

data sets used in the simulation were sampled randomly from the dataset provided

by the UCI data repository with the outputs scaled down in the range [-1,1].

The additive problem is a non-linear function approximation problem that was

obtained from [22]. The function is computed by

 u05.0e5.0
x1

x
x5.0xxx5.0z 21 xx

2
2

12
221

2
1 ++

+
++−−= − (7.16)

A small signal u is added to the output with values uniformly distributed in the range

[-1,1]. Four hundred data points are generated. The first 200 data points are used

as training data whilst the remaining are used as test data. The input values are

uniformly distributed in the range [-1,1]. All functional values or outputs are scaled

down in the range [-1,1]

The henon map is a time series prediction problem. The chaotic time series data is

computed as follows

 () ()() ()1t2t1t xbxc1x −+ +−= (7.17)

where ()tx is the value at time t , while 3.0b = and 4.1c = are parameters. Initial

values for the time series are () () 63133545.0xx 01 == [95]. In neural network

simulations, four successive values are used to predict the next value. Thus, the

number of inputs is four, and the number of outputs is one. The number of training

and testing samples is 200, and the used data values are taken from the time step

range [31, 230]. Since maxx = 1.272967 and minx = -1.284657, the input values were

scaled in the range [-1,1].

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-145-

7.2.4 Discussion of results

Additive function. The first test is a non-linear function approximation problem

obtained from [22]. The results are tabulated in Table 7.1a. It was found that the

GN-TPA algorithm gave the best results on the test set (Err* = 1.4 x 10-4), and the

cascade algorithm the worst (Err* = 3.5 x 10-4). However, the best results in terms

of the network size were obtained by the cascade algorithm which constructed the

smallest networks (e.g. between 15 and 32 units), and the GN-TPA algorithm the

worst (e.g. between 21 and 40 units). This result is not surprising as the GN-TPA

algorithm does not optimize the new hidden units, so the amount of new information

they introduce into the network may be very small. Fig. 7.1, 7.2 and 7.3 display the

variation in the error on the training and test sets unit by unit, for each of the three

algorithms. The training curves for both the GN-TPA algorithm and cascade

algorithm are quite smooth whereas the curve for the orthogonal sequential training

technique contains two small kinks. There is very little evidence of overtraining in

any of the generalization curves. This suggests that each of the three algorithms is

perfectly capable of constructing a network that can perform an accurate mapping of

the simulation data. Note that the generalization curve produced by the orthogonal

sequential training technique is a good match with Zhang’s results in [22]. Figure

7.4 shows the variation in the AIC, unit by unit, for the GN-TPA algorithm. It was

found that the AIC stopped decreasing after using 30 units. This result is in good

agreement with the average size of the network constructed by the GN-TPA

algorithm (e.g. 29.1 units). Note that the general trend of the AIC curve is similar to

the results reported by Zhang [22].

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-146-

(a)

 Best test set error using
early stopping (NMSE x 102)

Avg. test set error using
early stopping (NMSE x 102)

Problem Size Err Err* Min-Max Err Err*

Additive 21 0.001 0.001 21-40 0.009 0.014

Henon 19 1.070 1.347 14-30 1.063 2.680

Housing 17 4.871 14.030 06-21 9.147 19.417

(b)

 Best test set error using
early stopping (NMSE x 102)

Avg. test set error using
early stopping (NMSE x 102)

Problem Size Err Err* Min-Max Err Err*

Additive 27 0.001 0.012 13-29 0.012 0.035

Henon 12 1.559 2.131 09-23 3.190 4.880

Housing 13 4.838 11.322 07-16 5.842 15.617

(c)

 Best test set error using
early stopping (NMSE x 102)

Avg. test set error using
early stopping (NMSE x 102)

Problem Size Err Err* Min-Max Err Err*

Additive 25 0.003 0.005 15-32 0.026 0.024

Henon 40 0.467 1.476 10-40 2.975 4.046

Housing 15 8.793 10.552 05-22 9.667 12.252

Table 7.1. Training set error (Err) and test set error (Err*) for three problem domains

using: (a) GN-TPA algorithm, (b) Cascade algorithm, and (c) Orthogonal sequential

training technique

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-147-

Fig.7.1. Typical training and generalization curves produced by the GN-TPA

algorithm on the additive problem

Fig.7.2. Typical training and generalization curves produced by the Cascade

algorithm on the additive problem

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 25 30 35 40

Units

NM
SE

 x
 1

00

GN-TPA training set

GN-TPA testing set

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 25 30 35 40

Units

NM
SE

 x
 1

00

CASRPR training set

CASRPR testing set

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-148-

Fig.7.3. Typical training and generalization curves produced by the sequential

training technique on the additive problem

Fig.7.4. The AIC at each training step for the GN-TPA algorithm on the

additive function problem

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 25 30 35 40

Units

NM
SE

 x
 1

00

OSTT - training set

OSTT - testing set

GN-TPA algorithm

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

0 5 10 15 20 25 30 35 40

Units

AI
C

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-149-

Henon map time series. The second test is a deterministic one-step-ahead

prediction problem. The results are tabulated in Table 7.1b. It was found that the

GN-TPA algorithm gave the best results on the test set (Err* = 2.68 x 10-2), and the

Cascade algorithm the worst (Err* = 4.88 x 10-2). The best results in terms of the

network size were obtained by the Cascade algorithm, which constructed the

smallest networks (e.g. between 9 and 23 units). The orthogonal sequential training

technique constructed the largest networks (e.g. between 10 and 40 units) and not

the GN-TPA algorithm as expected. The results for the cascade algorithm are

similar to those obtained by Lahnajarvi [9]. Figure 7.5 shows the model output

produced by the GN-TPA algorithm for the Henon map data. The test data used

was taken from the time step [100,130]. As can be seen, the network produces a

good representation of the target data. Figures 7.6, 7.7 and 7.8 show the training

and test curves for the GN-TPA algorithm, cascade algorithm, and orthogonal

sequential training technique respectively. The results for the GN-TPA algorithm

and the orthogonal sequential training technique are very similar. Both methods

produce very smooth training curves. Mild overtraining occurred in both test curves

after 25 units. In the case of the orthogonal sequential training technique this is

probably due to poorly conditioned R and θ matrices used to train the output unit.

As pointed out by Zhang [22], the likelihood of two or more columns in θ being very

nearly parallel increases as more units are inserted into the network and trained to

minimise the residual model error. The Cascade algorithm performed less well as

seen from Figure 7.7. The training curve gradually tapers off after five units

resulting in long runtimes. It was during the later stages of training that gross

overfitting occurred. This result is typical of the generalization behaviour found in

cascade networks [8]

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-150-

Fig.7.5. Plot of the model output generated by the GN-TPA algorithm on the

Henon map problem

Fig.7.6. Typical training and generalization curves produced by the GN-TPA

algorithm on the Henon map problem

-1.00

-0.60

-0.20

0.20

0.60

1.00

100 110 120 130

Time

GN-TPA testing set

Target testing set

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

Units

NM
SE

 x
 1

00

GN-TPA training set

GN-TPA testing set

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-151-

Fig.7.7. Typical training and generalization curves produced by the Cascade

algorithm on the Henon map problem

Fig.7.8. Typical training and generalization curves produced by the sequential

training technique on the Henon map problem

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

Units

NM
SE

 x
 1

00

CAS-RPR training set

CAS-RPR testing set

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

Units

NM
SE

 x
 1

00

OSTT training set

OSTT testing set

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-152-

Housing price estimation. The third test is a regression problem that predicts the

price of houses in the suburbs of Boston based on some attributes. The results are

tabulated in Table 7.1c. This was a far more challenging test for the GN-TPA

algorithm (Err = 9.15 x 10-2, Err* = 19.42 x 10-2). The size of the networks

constructed contained between 6 and 21 units. The cascade algorithm performed

much better giving Err = 5.84 x 10-2, Err* = 15.62 x 10-2. As expected, the cascade

algorithm constructed the smallest networks containing between 7 and 16 units.

These results are similar to those obtained by Lahnajarvi [9]. Finally, the orthogonal

sequential training technique gave Err= 9.67 x 10-2, Err* = 12.25 x 10-2. The size of

the networks constructed contained between 5 and 22 units. Figures 7.9, 7.10 and

7.11 show the training and test curves for the GN-TPA algorithm, cascade algorithm,

and orthogonal sequential training technique respectively. The training curve for the

orthogonal sequential training technique tapers off gradually resulting in very long

runtimes. The test curve exhibits mild overtraining over the full range of hidden

units. This suggests that the individual contributions of new hidden units must be

very small resulting in slow convergence. Very small jR will lead to ill conditioned

R and θ matrices, which in turn will contribute to poor generalization performance.

The training curve for the cascade algorithm drops off steeply at first giving good

convergence. The test curve dips quickly to a clearly defined minimum after seven

units and thereafter rises sharply. This is fairly typical behaviour for the cascade

algorithm and has been observed elsewhere (e.g. Henon map problem). The

training curve for the GN-TPA algorithm also drops off steeply at first giving good

convergence. The test curve quickly dips to a flat plateau after 5 units. There is

very little evidence of overtraining in the test curve. This is the principal strength of

the GN-TPA algorithm.

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-153-

Fig.7.10. Typical training and generalization curves produced by the Cascade

algorithm on the housing estimation problem

Fig.7.9. Typical training and generalization curves produced by the GN-TPA

algorithm on the housing estimation problem

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

Units

NM
SE

 x
 1

00

GN-TPA training set

GN-TPA testing set

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

Units

NM
SE

 x
 1

00

CAS-RPR training set

CAS-RPR testing set

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-154-

7.3 Summary

In this chapter, the newly developed batch tangent plane algorithm referred to as

GN-TPA is evaluated for a novel network structure called the extreme learning

machine. This extreme learning machine is a single hidden layer neural network

(SLFN) with input weights fixed at arbitrary values. The SLFN is then treated as a

linear system with the output layer weights determined analytically. The smallest

training error can be achieved using this method. The new algorithm is modified in

order to improve its computational efficiency by using the QR decomposition. The

outputs of the hidden units are projected one by one orthogonally onto the hidden

layer output space. This means that any increase in the computational cost is solely

due to the next hidden unit. Network training is terminated when the model

performance is satisfactory. The procedure is very fast and stable and avoids

problems like ill conditioning

Fig.7.11. Training and generalization curves produced by the sequential training

technique on the housing estimation problem

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

Units

NM
SE

 x
 1

00

OSTT training set

OSTT testing set

Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine

-155-

Comparative tests were carried out using the GN-TPA algorithm, the cascade

algorithm, and the orthogonal sequential training technique. The benchmark

datasets used in the study were the additive function, henon map, and housing

price. The results show that the GN-TPA algorithm gives the best training and test

set errors relative to the other algorithms on two of the datasets. The GN-TPA

algorithm does not suffer from the same computational difficulties as the orthogonal

sequential training technique, namely numerical ill-conditioning in the orthogonal

matrix. Generalization appears to be independent of network size. The principal

weakness of the GN-TPA algorithm is that it constructed the large networks

compared with the other algorithms; although this does not appear to degrade

generalization performance.

In the next chapter we investigate multi-classification problems in the bioinformatics

area using gene expression data. Two cancer classification problems are

investigated that have proven difficult for conventional neural network techniques to

solve, GCM [118] and Lymphoma [119]. The new iTPA and GN-TPA tangent plane

algorithms developed in this thesis are applied to multi-category cancer

classification problems, and compared with other current classification methods, a

support vector machine (SVM) and two newly developed algorithms called

subsequent ANN (SANN) and FGAP-RBF.

Chapter 8: Multi-category classification using the tangent plane algorithm

-156-

Chapter 8

MULTI-CATEGORY CANCER CLASSIFICATION USING THE TANGENT PLANE

ALGORITHM

The artificial neural network (ANN) has been well established as a classifier for its

unique capability to represent non-linear mappings between the input and output data.

It can perform complex non-linear mappings by encoding the input patterns into a high

dimensional feature space. In this feature space the input patterns can be mapped

directly into a number of different classes. It is this ability of ANN to map the input

data directly into a number of classes that has seen their increasing use as intelligent

alternatives to more established classifiers such as support vector machines in the

area of cancer classification.

The first application of ANN for diagnostic classification of cancer using gene

expression data was done by Khan et al [79]. In this paper a two hidden layered

neural network was used to classify small, round blue-cell tumours into 4 diagnostic

categories. The ANN method correctly classified all the samples which often present

difficulty in clinical diagnosis. Stratnikov et al [78] presents a comparison of multi-

classification methods for gene expression cancer diagnosis problems. In this paper

several methods are compared such as SVM, k-nearest neighbour, weighted voting

and back-propagation neural networks. The benchmark datasets used were 11-

Tumours [121], GCM [118], 9_Tumours [122], Brain_Tumour1 [123], Brain_Tumour2

[124], Leukemia [70], MLL [125], Lung cancer [126], SRBCT [79], Prostrate_Tumour

[127], and DLBCL [128]. The results show that the SVM based classifiers are the best

performers, whilst k-nearest neighbour and weighted voting are the worst. Neural

networks rank in the middle.

Chapter 8 : Multi-category classification using the tangent plane algorithm

-157-

In order to improve classification accuracy, several ANNs can be combined either by

using ensembles of networks or cascading ANNs. When ANNs are trained for

different subtasks instead of the same task, those approaches are combined into a

mixture of experts. For example, Qian and Sejnowski [129] have used a two-level

ANN to predict the secondary structure of protein. In this scheme the output of the

first ANN was used as the input for the second ANN. Employing a consecutive

structure network obtained a 2% increase in prediction accuracy. Linder et al [77]

have developed a novel neural network algorithm for multi-category classification

using micro-array gene expression data. This subsequent ANN (SANN) uses a

simple ANN to perform a pre-selection. At the first stage the two most preferred

classes are selected. After that a subsequent ANN stage makes the final decision

based upon the two most preferred classes. The benchmark dataset used was GCM

[118]. The results show that the SANN approach displayed higher classification

accuracy than a simple ANN for the range of selected genes [74]. However, this

improvement was paid for by a big increase in network complexity causing a great

computational burden and very long run-times in terms of the number of epochs

trained and the computation time.

In this chapter we present two newly developed algorithms based on the tangent

plane algorithm for multi-category cancer classification. The problems used in the

investigation are described in the first section. The second and third sections

describe the two algorithms and the fourth section the simulation results. Finally a

comparison of the two algorithms is presented in section five

Chapter 8 : Multi-category classification using the tangent plane algorithm

-158-

8.1 The multi-category classification problems

The first dataset comes from a study of microarray data for snap-frozen human

tumour and normal tissue samples, spanning 14 different tumour classes were

obtained from four different hospitals. Initial diagnosis was made at university hospital

referral centres by using available clinical and microscopic histopathological

information. All tumours were biopsy specimens were obtained from primary sites

obtained before any treatment and were enriched in malignant cells. Normal tissue

RNA was taken from snap-frozen autopsy specimens. Hybridization targets were

prepared with RNA taken from whole tumours by using published methods [70].

Targets were hybridized sequentially by using oligonucleotide micro-arrays containing

a total of 16,063 genes. Expression values for each gene were calculated by using

Affymetrix GENCHIP analysis software. Of 314 tumour samples, and 98 normal

tissue samples processed, 218 tumours and 90 normal tissue samples passed quality

control criteria and were used for subsequent data analysis. Ramaswamy et al. [74]

made this dataset available as a reference for micro-array gene expression profiling at

[118] offering several files for download.

• GCM_Training.res (training set: 144 primary tumour samples)

• GCM_Test.res (test set: 46 primary, 8 metastatic)

• GCM_PD.res (poorly differentiated adenocarcinomas: 20 samples)

• GCM_Total.res (training set + test set + normals (90): 280 samples)

In each dataset above, columns represent gene profiles, rows represent samples, and

the values are raw averaged real number values output from the Affymetrix package

Chapter 8 : Multi-category classification using the tangent plane algorithm

-159-

The data from the above mentioned file GCM_Training.res contains gene expression

profiles comprising 16,063 genes and 144 primary tumour samples spanning 14

common tumours. The detailed information of the number of patterns in each class of

tumour used for training and testing is given in Table 8.1. All the input attributes were

normalised to remove any bias in the mean values

Tumour Type Abbr. Sample
Size

Training
Set

Test
Set

Breast BR 8 6 2

Prostrate PR 8 6 2

Lung LU 8 6 2

Colorectal CO 8 6 2

Lymphoma LY 16 13 3

Bladder BL 8 6 2

Melanoma ML 8 6 2

Uterus-Adeno UT 8 6 2

Leukaemia LE 24 19 5

Renal RE 8 6 2

Pancreas PA 8 6 2

Ovary OV 8 6 2

Mesothelioma ME 8 6 2

CNS CNS 16 13 3

For the purpose of comparison, we use the same gene selection method as in Zhang

[110], Linder et al. [77] and Ramsawamy et al [74], which is the recursive feature

elimination method. In Ramsawamy et al [74], an SVM-OVA classifier was used for

gene expression profiling on multi-category classification micro-array data. Each

SVM-OVA classifier produces a hyper-plane in the input space defined by a weight

vector w , which is a vector of n elements each corresponding to a particular gene.

Table 8.1. Partitioning of the GCM_training.res dataset into training

and test samples.

Chapter 8 : Multi-category classification using the tangent plane algorithm

-160-

The absolute magnitude of each element in w can be considered as a measure of

the importance of the corresponding gene. In the recursive feature elimination

method, each SVM-OVA classifier is first trained with all the genes, and then the

bottom 10% genes with the smallest iw are removed. Each classifier is then re-

trained. The process is repeated iteratively and a rank of all genes obtained for each

class of tumour. The most significant 14, 28, 42, 56, 70, 84, and 98 genes selected

by this method can be found in the file OVA_MARKERS.xls. It also gives the most

significant genes for each of the 14 classes of tumour.

The second dataset comes from a study of gene expressions for the most prevalent

adult lymphoid malignancies: B-cell chronic lymphocrytic leukaemia (B-CLL), follicular

lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL) obtained from [119].

Gene expression levels were measured using a special cDNA micro-array containing

genes preferentially expressed in lymphoma cells. In each hybridization, fluorescent

cDNA targets were prepared from tumour mRNA samples (fluorescent dye Cy5) and

a reference sample derived from a pool of nine different lymphoma cell lines

(fluorescent dye Cy3). The cell lines in the common pool were chosen to represent

diverse expression patterns. The lymphoma dataset contains 62 samples each

consisting of 4,062 genes which include 42 cases of DLBCL, 9 cases of FL, and 11

cases of B-CLL. The gene expression data is summarised by an 62 x 4062 matrix

=X [jix] where jix denotes the base 2 logarithm of the Cy5/Cy3 background

corrected fluorescence intensity ratio for gene j in lymphoma sample i .

Chapter 8 : Multi-category classification using the tangent plane algorithm

-161-

For the Lymphoma dataset, the microarray data contained a number of genes with

fluorescent intensity too low to be recorded and flagged as missing. The mean

percent of missing data in the array is 6.6%. The missing data was imputed using a k

nearest neighbour algorithm as in [72,76]. For each gene expression profile with

missing data, k other gene expression profiles that are most similar are found and

then the weighted average of the corresponding attributes used to estimate the

missing attribute. The metric used to determine the k nearest neighbours is the

Euclidean distance. A value of k = 5 was used as in [72].

Many genes exhibit near constant expression levels across tumour samples. In this

study a preliminary selection of genes based on the ratio of their between-group to

within-group sum of squares is used to sort the genes in a descending order of

importance as in [72,76] e.g.

() ()
() ()∑ ∑

∑ ∑
−=

−=
=

i k
2

kjiji

i k
2

jkji
j x̂xkyI

x̂x̂kyI
BW

where jx̂ and kjx̂ represent the average expression level of gene j across all

tumour samples i , and across tumour samples belonging to class k . The function I

returns the value 1 when the sample class label iy equals k , otherwise it returns 0.

Tumour Type Abbr. Sample
Size

Training
Set Test Set

Diffuse Large B-cell Lymphoma DLBCL 42 35 7

Follicular Lymphoma FL 9 7 2

B-cell Chronic Lymphoma B-CLL 11 8 3

Table 8.2. Partitioning of the Lymphoma dataset into training and

test samples.

Chapter 8 : Multi-category classification using the tangent plane algorithm

-162-

8.2 The sequential learning algorithm - iTPA-OVA

In chapter five, a new algorithm referred to as iTPA algorithm was developed to

overcome the drawbacks of the second tangent plane algorithm. Compared with the

original algorithm, this new iTPA algorithm produces the desired separation of active

and inactive weights for good generalization to occur. However, the new iTPA

algorithm may face difficulties in applications that have multiple outputs as the weights

need to be adjusted to satisfy several constraints. Consider a network with r outputs,

each of which is trained to recognise a target output. On the presentation of an input

pattern, each target output would define a (1n −) surface in the weight space nR . A

powerful convergence method would be to adjust the weights by moving to the

intersection of the tangent planes to these r surfaces. However, this would produce

a great computational overload as it requires a system of r equations to be solved for

each input pattern.

Recently support vector machines (SVM) have been widely used for cancer

classification problems [73,74,75]. Some combinatory schemes have been used to

modify SVM for multi-category classification. Ramsawamy [74] have used a one-

versus-all (OVA) scheme to perform multi-classification using SVM. For a k

classification problem, k binary classifiers would be used to distinguish one class

from all others. Ramaswamy applied this method to the GCM dataset. The results

show that SVM using an OVA scheme is best suited for classification. The method

adopted here uses a similar approach. Instead of training a single ANN on one task,

several ANN are trained on separate sub-tasks

The method assumes a modular network structure. Within the modular architecture

each module represents a single hidden layer ANN. Each ANN is trained to

discriminate one particular class from all others (OVA). 1-of-c encoding is used for the

Chapter 8 : Multi-category classification using the tangent plane algorithm

-163-

target outputs. Upon the presentation of an input pattern, the ANN corresponding to

the input class has its output set to +1; all other outputs are set to -1. The new

algorithm referred to as iTPA-OVA uses the target output encodings to define a set of

(1n −) surfaces in the weight space of the modular ANN. The weights are adjusted

by moving to a point on the tangent planes to these surfaces, each taken at a

convenient point.

The principal benefit of using a modular network is that it dichotomises a multi-class

problem into a set of two class problems. Binary classification is a much easier task

for ANN than multi-category classification and classification accuracy is much higher.

A further benefit is that the one-versus-all scheme is scalable. A k class problem will

require only k modular ANN to be trained. An alternative method, which is to use a

one-versus-one scheme, requires k (1k −) / 2 ANN to be trained which will produce

a great computational overload as k increases

8.3 The batch learning algorithm - ELM-TPA

The new GN-TPA algorithm is attempted for multi-category classification. 1-of-c

encoding is used for the target outputs. The number of output units is equal to the

number of classes in the problem. The index of the output unit with the highest output

activity indicates the class label of the corresponding input. In the ELM architecture,

the input weights are chosen arbitrarily and fixed so that they do not change. Huang

et al [108,109] have shown that the outputs from the hidden units will form a spanning

set in mR as the number of outputs n approaches m , the number of training

examples. Each output unit is trained to discriminate one class from all others using

the new GN-TPA algorithm. Since the inputs to the final units form a linear

combination of the spanning set, we expect the outputs from the final units to match

exactly the target values of the corresponding inputs.

Chapter 8 : Multi-category classification using the tangent plane algorithm

-164-

8.4 Discussion of results for the individual algorithms

The classification performance of the iTPA-OVA algorithm and the GN-TPA algorithm

are evaluated for multi-category classification problems using micro-array gene

expression data, namely the GCM dataset [118] and the Lymphoma dataset [119].

The results obtained were compared with the best results for other classification

methods found in the literature; SANN, SVM OVA, SVM OVO [74], and FGAP-RBF

[110]. All the results for SANN, SVM OVA, SVM OVO, and FGAP-RBF are taken

from the literature

In our simulations, 10 trials were carried out with the mean classification accuracy

recorded for the most significant genes in each dataset. For the GCM dataset the

most significant 14, 28, 42, 56, 70, 84 and 98 genes can be found in the file

OVA_MARKERS. For the Lymphoma dataset the genes were sorted according to the

ratio of their “between group” to “within group” sum of squares and the top 10, 20, 50,

100, 200, 400 and 800 genes selected as in [110]. The Lymphoma dataset also

required missing genes to be calculated. A k-nearest neighbour algorithm was used

for this purpose with k = 5. Multi-fold cross-validation was used on the sample data as

the number of training samples is relatively small. The sample data was split into two

subsets, a training set and test set, according to the ratio 4:1 as in Linder et al [77]

with different shuffles of the data used in each trial.

8.4.1 Error metrics used in the simulations

A simple measure is used to determine the classification accuracy. For each problem,

the number of output units in the network corresponds to the number of classes of the

problem. The index position of the output unit with the highest output corresponds to

the class of the input data. Thus the classification accuracy is the percentage of

correct responses on the test data.

Chapter 8 : Multi-category classification using the tangent plane algorithm

-165-

8.4.2 The iTPA-OVA algorithm

In our simulations, all the input attributes were normalised. 1-of-c encoding was used

to label each class category. The number of outputs is equal to the number of class

categories. The output of the neuron with the highest value indicates class

membership of the corresponding input. The size of each module was restricted to 10

units to save on computation size. The weights were initialized to random values in

the range [-1,1]. iTPA requires three parameters to be set. Preliminary tests showed

that the best results were obtained with the parameters set as follows.

For the Lymphoma problem; βtan = 0.5, aw = 0.5, and bw = 0.5 respectively. The

angle parameter βtan is preferred to be small so that it does not disturb the training

process too much. However, a few trials of values in [0.0, 0.2] would cause the

network to overfit the training data, so a larger value had to be used. aw and bw

depend upon the initial values of the weights. The learning algorithm was not

particularly sensitive to the exact value chosen

For the GCM problem; βtan = 0.2, aw = 0.5, and bw = 0.5. The learning algorithm

was not particularly sensitive to the exact value chosen for the angle parameter

βtan . aw and bw were preferred to be large so that the weights were pushed

quickly towards the origin before convergence occurred. In that way the algorithm

could search more thoroughly for a solution with small weight values.

8.4.2.1 The lymphoma problem

The performance of iTPA was evaluated for the lymphoma dataset. The results are

presented and compared with other classification methods found in the literature,

namely SVM-OVO [76]. All the results are tabulated in Table 8.3. It was found that

iTPA performed well when fewer genes were selected. However, the classification

Chapter 8 : Multi-category classification using the tangent plane algorithm

-166-

accuracy tended to decline with increasing number of genes. With 400 selected

genes, misclassifications were due to one sample, DLBCL-0009. This sample tended

to be classified as an FL case, perhaps reflecting tissue sampling. The FL cases

were generally harder to classify. This was due to the larger classes (DLBCL, and B-

CLL) being chosen in preference to the smaller classes (FL). Clearly as the number

of genes was increased, less important genes perhaps not relevant to cancer

distinction have added noise to the training data. These genes will compromise

classification accuracy and increase the computational burden. This suggests that the

real issue to be addressed is the selection of marker genes. A better choice for the

number of genes might be achieved by imposing a cut-off on BW [72]

Convergence occurred rapidly for smaller gene numbers, typically within 2 epochs,

but declined slightly for the largest gene number. This result is to be expected as

there are more patterns to be learned. The results are comparable with SVM OVO

which also achieves high classification accuracies across the range of selected

genes.

Genes iTPA
OVA

SVM
OVO

10 100.0 98.3
20 99.6 99.7
50 100.0 100.0
100 100.0 100.0
200 100.0 100.0
400 99.2 100.0
800 98.3 100.0

Table 8.3. Classification accuracy on the Lymphoma dataset for

different algorithms

Chapter 8 : Multi-category classification using the tangent plane algorithm

-167-

8.4.2.2 The GCM problem

The performance of iTPA was evaluated for the GCM benchmark dataset. The

results are presented and compared with other classification methods found in the

literature; SANN [77], and FGAP-RBF [110]. All the results are presented in Table

8.4. It was found that iTPA out performs SANN and FGAP-RBF for each selected

gene number. The most significant gains were made when fewer genes were

selected. The poor performance of FGAP-RBF on fewer gene numbers may be due

to the decoupling effect of the DEKF method used for parameter selection which

undermines model accuracy [110].

Convergence occurs rapidly, typically within 15 epochs. The convergence speed

improves with more genes selected. Runtimes take approximately 5 minutes on a

Pentium IV (2.67 GHz). The situation with SANN is far worse. SANN requires up to

1000 epochs to finish the training process. Here runtimes can take up to two hours.

FGAP-RBF converges in one epoch. Runtimes take only a few seconds, making this

algorithm the most efficient with iTPA a good second best. No doubt the poor

performance of SANN results from the network complexity. In SANN there are one

ANN and 91 SANN to be trained, each ANN consisting of 10 hidden units. Networks

are organised into ensembles of 5 modules making a total of 4600 units to be trained.

Genes iTPA
OVA

FGAP
RBF SANN

14 81.2 65.5 68.6
28 85.8 69.1 71.5
42 86.1 75.2 72.9
56 88.8 79.4 79.2
70 89.7 80.3 76.4
84 89.1 82.1 80.6
98 88.8 82.4 77.1

Table 8.4. Classification accuracy (%) on the GCM dataset for different

algorithms

Chapter 8 : Multi-category classification using the tangent plane algorithm

-168-

 The classification accuracy of iTPA on each individual tumour class was investigated.

The dataset used was GCM with the most significant 84 genes selected as in [8]. The

classification accuracy is taken as the number of hits on the test data using 5-fold

cross validation. The results are displayed in Fig. 8.1. It was found that iTPA

performed equally well in most tumour classes. The tumour classes with the largest

samples were all classified correctly; Lymphoma, Leukaemia, and CNS. The number

of misclassifications in the other tumour classes was less than 25% of the sample size

(e.g. 1 in 4) except in Breast, Bladder and Ovary where it was worse. SANN

performed the worst in most tumour classes, showing distinct preference for some

classes than others. Classification accuracies for the different algorithms were

particularly poor in the Ovary class making Ovary a difficult class to predict.

Table 8.5 shows the confusion matrix for iTPA on the GCM problem for each

individual tumour class. The elements on the leading diagonal give the percentage of

correct classifications whilst those in the off-diagonal positions give the percentage of

misclassifications. It can be seen that the samples in the largest classes were all

correctly classified. This shows that increasing the sample size will improve

classification accuracy. The classification accuracy for Colorectal and Mesothelioma

was also high. Regarding misclassifications, it can be seen that the worst class was

Ovary with iTPA showing a distinct preference for Breast, Uterus, and Bladder. The

classification accuracy for Bladder was also quite low with iTPA showing a distinct

preference for Melanoma and Ovary

Chapter 8: Multi-category classification using the tangent plane algorithm

-169-

Fig 8.1. Comparison of classification accuracy for different categories on the GCM dataset; breast, prostrate, lung, colorectal,

lymphoma, bladder, melanoma, uterus adreno, leukaemia, renal, pancreas, ovary, mesothelioma, and cns

0

5

10

15

20

25

Brea
st

Pros
tra

te
Lu

ng

Colo
rec

tal

Ly
mpho

ma

Bladd
er

Mela
nom

a

Uter
us A

dren
o

Le
uk

emia
Ren

al

Pan
cre

as
Ova

ry

Mes
othe

lio
ma

CNS

N
um

be
r o

f h
its

iTPA
FGAP-RBF
SANN
Sample size

Chapter 8: Multi-category classification using the tangent plane algorithm

-170-

 BR(%) PR(%) LU(%) CO(%) LY(%) BL(%) ML(%) UT(%) LE(%) RE(%) PA(%) OV(%) ME(%) CNS(%)

BR 65 10 20 0 0 0 0 0 0 15 5 10 5 0

PR 5 70 0 0 0 0 5 0 0 0 0 0 0 0

LU 5 20 70 0 0 5 0 0 0 0 5 0 0 0

CO 0 0 0 95 0 5 0 0 0 0 0 0 0 0

LY 0 0 5 0 100 0 0 0 0 0 0 0 0 0

BL 0 0 0 0 0 60 5 0 0 5 5 10 0 0

ML 5 0 5 0 0 15 75 10 0 0 0 0 5 0

UT 5 0 0 0 0 0 10 75 0 0 0 15 0 0

LE 0 0 0 0 0 0 0 0 98 0 0 5 0 0

RE 5 0 0 0 0 0 0 0 0 65 5 10 0 0

PA 5 0 0 0 0 0 0 5 2 0 80 0 0 0

OV 5 0 0 0 0 10 0 10 0 15 0 45 0 0

ME 0 0 0 5 0 5 0 0 0 0 0 0 90 0

CNS 0 0 0 0 0 0 5 0 0 0 0 5 0 100

Table 8.5. Confusion matrix obtained for iTPA on the GCM problem. The elements on the leading diagonal represent percentage
correct classifications, and the elements on the off-diagonal positions percentage of misclassifications

Chapter 8: Multi-category classification using the tangent plane algorithm

-171-

8.4.3 The GN-TPA algorithm

In our simulations, all the input attributes were normalised to remove any bias in the

mean values. 1-of-c coding was used to label each class category. The number of

outputs is equal to the number of class categories. The GN-TPA algorithm was

implemented using an SVD operation. GN-TPA requires two parameters to set

manually. Firstly, a gain parameter λ was introduced into the activation function of

the hidden units, which decides the flatness of the output. According to Zhang et al

[76,110], a flatter activation function gives better generalization on problems where

the input data is sparsely distributed. Observation of a few trials showed that small

values of λ caused a great improvement in generalization. Secondly, the number of

hidden units N also has to be specified. Large values of N close to the input

dimension of the sample data would cause gross overfitting on the training set. The

exact value of λ and N was determined by grid search; ∈N {5, 10, 15, …, 100}, and

∈λ {1.0, 0.1, 0.01, 0.001}. Finally, the input weights and hidden unit biases were set

to random values in the range [-1,1]

8.4.3.1 The lymphoma problem

The performance of the GN-TPA algorithm was evaluated for the Lymphoma

benchmark dataset. The results are presented and compared with other classification

methods found in the literature; ELM and SVM-OVO in [76]. All the results are

tabulated in Table 8.6. It was found that GN-TPA achieved very high classification

accuracies, except when the number of selected genes was 800. With 800 genes,

misclassifications were due to samples in the smaller FL class being classified as

DLBCL cases. Once again, one particular DLBCL sample, DLBCL-0009, tended to

be misclassified as an FL case, perhaps reflecting tissue sampling. It is clear that less

important genes not relevant to cancer distinction have added noise to the training

data. These genes will compromise classification accuracy and increase the

Chapter 8 : Multi-category classification using the tangent plane algorithm

-172-

computational burden. This is probably due to the BW criteria being unable to identify

genes that discriminate between all classes. It is also possible that the initialization

method used has rendered some genes useless to cancer distinction. This would

suggest further research is required on different initialization techniques and smarter

gene selection methods.

Convergence occurs rapidly in one epoch. Runtimes take only a few seconds on a

Pentium IV (2.67 GHz). The situation with ELM and SVM OVO is the same.

Runtimes take only a few seconds for a C++ implementation of SVM and a Matlab

implementation of ELM on a similar platform.

Genes GN-TPA ELM SVM
OVO

10 100.0 98.3 100.0
20 100.0 99.7 99.2
50 100.0 100.0 99.2
100 100.0 100.0 100.0
200 100.0 100.0 100.0
400 100.0 100.0 100.0
800 99.2 100.0 100.0

Genes 10 20 50 100 200 400 800
N 12 6 8 11 21 10 9

λ 1.0 0.1 0.1 0.001 0.001 0.001 0.001

Table 8.6. Classification accuracy on the Lymphoma dataset for

different algorithms

Table 8.7. Optimum values for the parameters of GN-TPA for each

selected gene number

Chapter 8 : Multi-category classification using the tangent plane algorithm

-173-

8.4.3.2 The GCM problem

The performance of GN-TPA was evaluated for the GCM dataset. The results are

presented and compared with other classification methods found in the literature;

SVM-OVO and ELM [76]. The most significant 14, 28, 42, 56, 70, 84, and 98 genes

selected as in [74]. Different combinations of ()λ,N were used for each gene

number. The maximum number of hidden units was set to 100 as there are only 111

samples used at any time in the training data. The results for the best ()λ,N are

recorded in Table 8.8. The optimum network size and gain parameter for each

selected gene number is given in Table 8.9. It was found that the classification

accuracy of the GN-TPA algorithm grows with the number of genes selected. The

results are better than SVM OVO, which is the best SVM classifier, but slightly worse

than ELM (i.e. typically < 1%). The inferior performance of the GN-TPA algorithm

relative to ELM across the gene numbers may be due to the preparation of the input

data, which was different in [76]. In the present study, all the input attributes were

normalized, whereas in [76] they were scaled in the range [0,1]. Scaling the input

values is equivalent to scaling the columns in the hidden layer output matrix. Pre-

conditioning strategies such as scaling, reordering and shifting are known to affect the

condition number of linear equations [130]

Genes GN-TPA ELM SVM
OVO

14 74.5 74.3 70.2
28 77.6 78.5 74.5
42 79.7 80.6 75.1
56 80.9 81.9 75.7
70 80.9 83.4 77.9
84 83.6 84.1 77.9
98 82.6 83.4 79.2

Table 8.8. Classification accuracy on the GCM dataset for different

algorithms

Chapter 8 : Multi-category classification using the tangent plane algorithm

-174-

In the second test the classification accuracy of the GN-TPA for each individual

tumour category was investigated. The dataset used was GCM with the most

significant 84 genes selected. The results are illustrated in Fig 8.2. It was found that

the GN-TPA performed equally well in most tumour categories. The tumour classes

with the most samples were classified correctly, namely lymphoma, leukaemia, and

CNS. For lung, colorectal, bladder, melanoma, uterus, renal, pancreas, and

mesothelioma, misclassifications were less than 25% (i.e. 2 in 8). For bladder,

prostrate and ovary, misclassifications were less than 50% (i.e. 1 in 2). These results

differ to ELM in colorectal, bladder, melanoma and pancreas, which were better than

expected, and in prostrate, ovary, and mesothelioma, which were slightly worse.

Clearly an improvement in classification accuracy in one class has been paid for by

more misclassifications in another class

Table 8.10 shows the confusion matrix for GN-TPA on the GCM problem. It can be

seen that the samples in the largest classes were all correctly classified. This shows

that increasing the sample size will improve classification accuracy. The classification

accuracy for Colorectal and Mesothelioma was also high. Regarding

misclassifications, it can be seen that Ovary was the worst class with GN-TPA

showing a distinct preference for Bladder, Uterus, Lymphoma and Renal

Genes 14 28 42 56 70 84 98
N 15 25 25 35 40 40 45

λ 0.1 0.1 0.1 0.1 0.1 0.001 0.001

Table 8.9. Optimum values for the parameters of GN-TPA for each

selected gene number

Chapter 8: Multi-category classification using the tangent plane algorithm

-175-

Fig 8.2. Comparison of classification accuracy for different categories on the GCM dataset; breast, prostrate, lung, colorectal,

lymphoma, bladder, melanoma, uterus adreno, leukaemia, renal, pancreas, ovary, mesothelioma, and cns

0

5

10

15

20

25

Brea
st

Pros
tra

te
Lu

ng

Colo
rec

tal

Ly
mph

om
a

Blad
de

r

Mela
no

ma

Uter
us

 A
dr

en
o

Le
uk

em
ia

Ren
al

Pan
cre

as
Ova

ry

Mes
oth

eli
om

a
CNS

N
um

be
r

of
 h

its

GN-TPA

SVM-OVO

ELM

Sample Size

Chapter 8 : Multi-category classification using the tangent plane algorithm

-176-

 BR(%) PR(%) LU(%) CO(%) LY(%) BL(%) ML(%) UT(%) LE(%) RE(%) PA(%) OV(%) ME(%) CNS(%)

BR 65 15 0 0 0 5 5 0 0 0 5 5 0 0

PR 0 70 0 0 0 0 0 0 0 0 0 0 0 0

LU 5 15 85 0 0 0 0 0 0 5 0 0 0 0

CO 0 0 0 90 0 0 5 0 0 0 0 0 0 0

LY 5 0 0 0 100 0 0 0 0 0 0 10 0 0

BL 5 0 15 0 0 70 0 0 0 0 5 10 0 0

ML 0 0 0 0 0 10 70 5 0 0 20 5 0 0

UT 0 0 0 0 0 0 15 80 0 5 0 15 0 0

LE 5 0 0 0 0 0 0 0 100 10 0 0 0 3

RE 5 0 0 0 0 0 5 0 0 70 0 10 0 0

PA 5 0 0 0 0 0 0 0 0 0 65 5 0 0

OV 0 0 0 0 0 10 0 15 0 10 5 40 0 0

ME 5 0 0 10 0 5 0 0 0 0 0 0 100 0

CNS 0 0 0 0 0 0 0 0 0 0 0 0 0 97

Table 8.10. Confusion matrix obtained for GN-TPA on the GCM problem. The elements on the leading diagonal represent
percentage correct classifications, and the elements on the off-diagonal positions percentage of misclassifications

Chapter 8 : Multi-category classification using the tangent plane algorithm

-177-

8.5 Comparison of the different algorithms

We have already seen that the GN-TPA algorithm creates larger network structures

compared with other network building techniques. However, the number of adjustable

weights n in the network is small; only the output weights are trained. This raises the

following question; “Does the tangent plane algorithm operating in batch mode

actually produce better generalization results than in sequential mode?” In order to

answer this question, we carry out a statistical hypothesis test on the simulation

results for the Lymphoma dataset in the last section. The most significant genes were

selected as in [74]. The values tested were the mean square error on the test set.

The statistical hypothesis test used was a two-tailed t-test with Cochran-Cox

approximation for the case of unequal variances. The results were tested for

normality using a Kolmogorov-Smirnov (KS) test. For normality, the p-value

associated with KS test should exceed 0.15. A small number of tests (overall 14%)

deviate substantially from a normal distribution, which under-estimates the

significance of differences.

8.5.1 Network initialization

1-of-c encoding was used for each class label. The number of output units is equal to

the number of class categories. The output activation with the highest activity

indicates class membership of the corresponding input. The parameters for GN-TPA

were set as follows. The number of hidden units was fixed at Ν = 10, which is the

same as the number of hidden units per module in the sequential learning algorithm,

iTPA-OVA. A gain parameter λ was introduced into the activation function giving a

flatter output, which gives better generalization results when the ratio of the input

dimension to the number of samples is high. Different values of the gain parameter λ

were used for each selected gene number. The exact values for λ were determined

by grid search: λ ∈ {1.0, 0.1, 0.001}. The parameters for iTPA were set as follows;

Chapter 8 : Multi-category classification using the tangent plane algorithm

-178-

βtan = 0.5, aw = 0.5, and bw = 0.5. tan β is preferred to be large so that the network

does not overfit the training data. aw and bw depend upon the initial values of the

weights. The learning algorithm was not particularly sensitive to the exact value

chosen for these parameters

10 trials were carried out with the mean classification accuracy on the test set

recorded. Multi-fold cross-validation was used to test the network as the number of

training samples per class is relatively small. The mix of training and test data were

kept fixed in the ratio 4:1 as in Linder et al [77]. Different shuffles between training

and test data were used according to each trial. Early stopping was used to terminate

network training, which helps to prevent overtraining.

8.5.2 Results and discussion

We performed a statistical hypothesis test to answer our question; “Does GN-TPA

generalize better than iTPA-OVA in small networks?“ The results are tabulated in

Table 8.11. Dashes mean differences that are not significant at the 5% level i.e. the

probability that the differences are purely accidental. Parenthesis means that the

results are not precise because one test deviated from a normal distribution. Other

entries indicate the superior algorithm (e.g. GN-TPA - E, and iTPA-OVA - M), and the

value of the t statistic. For DLBCL: 7 times no significant difference. For FL: 4 times

no significant difference, 3 times iTPA-OVA better than GN-TPA. For B-CLL: 7 times

iTPA-OVA better than GN-TPA.

iTPA-OVA significantly out-performs GN-TPA with one exception, the DLBCL dataset.

This dataset contains the most training examples making it the easiest dataset to

learn. Otherwise, the results suggest that iTPA-OVA is the superior algorithm. This

result is not surprising as there are significantly more adjustable weights per module

Chapter 8 : Multi-category classification using the tangent plane algorithm

-179-

in a SLFN than in the corresponding ELM network. Fig. 8.3, 8.4, and 8.5 show the

test curves of GN-TPA and iTPA-OVA for each tumour class. The results suggest

that although different algorithms are used, the trends of the curves are very similar

for each tumour class.

Genes 10 20 50 100 200 400 800
DLBCL (0.64) (0.32) - - - - -
FL (0.10) - - M 3.24 M 4.19 M 4.42 -
B-CLL M 7.00 M 6.56 M 4.02 M 2.67 M 5.64 M 4.88 M 3.35

Table 8.11. Results of a t-test comparing the mean test set errors for the two

algorithms. Dashes mean that differences are not significant at the 5% level,

parenthesis mean that the results are imprecise. Other entries indicate the superior

algorithm: iTPA-OVA – M, GN-TPA – E

Fig 8.3. Comparison of classification errors on the DLBCL tumour

class for each selected gene number

0

1

2

3

4

5

10 20 50 100 200 400 800

Number of genes

N
M

SE
 x

 1
00

GN-TPA

iTPA-OVA

Chapter 8 : Multi-category classification using the tangent plane algorithm

-180-

Fig 8.4. Comparison of classification errors on FL tumour class for each

selected gene number

Fig 8.5. Comparison of classification errors on B-CLL tumour class for

each selected gene number

0

1

2

3

4

5

10 20 50 100 200 400 800

Number of genes

N
M

SE
 x

 1
00

GN-TPA

iTPA-OVA

0

1

2

3

4

5

10 20 50 100 200 400 800

Number of genes

N
M

SE
 x

 1
00

GN-TPA

iTPA-OVA

Chapter 8 : Multi-category classification using the tangent plane algorithm

-181-

8.6 Summary

Artificial neural networks have been well established for their unique capability to

represent any non-linear input-output mapping. Compared with SVM, neural

networks try to map the input data directly into separate classes in feature space,

while SVM tries to separate the data into two classes. However, studies show that the

classification accuracy of neural networks drops quickly as the number of classes

increases. Various combinatory schemes have been proposed for combining neural

networks, but these schemes produce larger and more complex network structures,

longer runtimes, and heavy computational burdens. Therefore there is a need for fast

and efficient algorithms to train them. In this chapter, two neural network algorithms

are investigated for multi-category classification using gene expression data, namely

iTPA and GN-TPA. Both algorithms are fast and efficient. Studies show that they

have good generalization properties on benchmark neural network tasks

The iTPA algorithm is attempted for multi-category classification and compared with

the latest results in the literature. The method adopted here referred to as iTPA-OVA

uses a modular network. Within the modular network architecture, each module

represents a single hidden layered ANN. Each ANN is trained to discriminate one

particular class from all others. The benchmark datasets used were GCM [118] and

lymphoma [119]. The results show that iTPA-OVA gives better overall classification

accuracy relative to the FGAP-RBF and SANN algorithms, and comparable

classification accuracy relative to SVM-OVO. The classification accuracy in individual

tumour categories is better than SANN, and at least as good as FGAP-RBF. iTPA-

OVA does not favour one class over another, but gives a good overall balance among

the various classes

The GN-TPA algorithm is compared with the latest results in the literature on two

benchmark multi-category cancer classification problems, the GCM dataset [118] and

Chapter 8 : Multi-category classification using the tangent plane algorithm

-182-

the lymphoma dataset [119]. The results show that the GN-TPA gives comparable

classification accuracy relative to the best SVM classifier, SVM OVO, and slightly

worse classification accuracy relative to the ELM algorithm. The performance of ELM

depends to a large extent on the generation of a set of inputs to the final layer units.

The larger the subspace spanned by these vectors, the better the classification

accuracy. Unfortunately these input vectors are not optimised to minimise the training

set error, but generated randomly. Thus, any improvement in classification accuracy

is gained by utilizing more hidden units.

The classification accuracy of iTPA-OVA and GN-TPA are sensitive to the number of

genes required for accurate cancer classification. Experimental results show that the

overall classification accuracy drops when the number of genes approaches 1,000.

This is probably due to the method of gene selection used for accurate cancer

classification. Many genes are irrelevant to cancer classification. These genes

increase computational complexity and introduce noise into the training data. This

problem is exacerbated by the relatively small sample sizes. It is recognised that the

higher the ratio of the training samples to the number of free parameters in the

network, the better the generalization will be. Micro-array data typically comprises

very few samples (< 30) of many thousands of genes. This suggests that smarter

gene selection methods are needed to identify marker genes

Chapter 9 : Conclusions and future work

-183-

Chapter 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In this thesis, we have investigated and developed sequential and batch learning

algorithms based upon the tangent plane algorithm for artificial neural networks with

applications from the bioinformatics area.

In the first part of this thesis, the performance of sequential and batch learning

algorithms based on the tangent plane algorithm are investigated

• The convergence behaviour of the tangent plane algorithm is investigated and

compared with the gradient descent back-propagation algorithm. The results

indicate that the tangent plane algorithm gives fast convergence relative to the

back-propagation algorithm, except in small networks where the convergence

speed was slower and there were more failed trials. The principal strength of

the tangent plane algorithm is that it does not require manually tuning a

learning rate parameter, but instead automatically adjusts the learning rate to

give the correct step size.

• The stability of the tangent plane algorithm is investigated and compared with

the gradient descent back-propagation algorithm using two different types of

inexact data. First, varying amounts of random “white” noise were added to

the teaching values of the training data so that they vary from pattern

presentation to pattern. Second, single items of rogue data were occasionally

fed into the network during training. The results indicate that the tangent

Chapter 9 : Conclusions and future work

-184-

plane algorithm is a relatively robust method of training neural networks.

However, the big weight updates caused by noisy data frequently disrupt the

training when the level of noise is high resulting in longer recovery times and

more failed trails

• The generalization performance of the second tangent plane algorithm is

investigated and compared with the gradient descent back-propagation

algorithm. The results indicate that the second tangent plane algorithm gives

improved generalization relative to the back-propagation algorithm in some

task and comparable generalization in the others, except in the smallest

networks where it was the same. Generalization was found to be independent

of network size. This is the principal strength of the second tangent plane

algorithm.

• A number of limitations leading to slightly inferior performance are identified in

the tangent plane algorithm

o The convergence speed of the tangent plane algorithm is no better

than the steepest descent back-propagation method in small

parsimonious networks where generalization is known to be best. The

probability of a set of normals to constraint surfaces being nearly

linearly dependent will be much higher in small networks with few

adjustable weights leading to slow convergence.

o The tangent plane algorithm frequently fails to converge when the

training set is inexact or fuzzy. The convergence of the algorithm was

frequently disrupted by big weight updates in response to rogue data

patterns that were occasionally fed into the network. Further the

Chapter 9 : Conclusions and future work

-185-

algorithm would not converge to a compromise solution when the

teaching values were corrupted by a small amount of artificial noise. In

this case the algorithm would continue to oscillate between

approximate solutions

o The distribution of weight importance coefficients in networks trained

by the second tangent plane algorithm was investigated. The results

indicate that the tangent plane algorithm does not produce a

separation of active and inactive weights as expected, but the weights

continue to grow from small initial values producing large network

structures with wide distributions of weight values.

• A new sequential learning algorithm referred to as TPA-RTRL is developed for

fully recurrent neural networks. It is shown that recycling information around

the network can improve the stability of the tangent plane algorithm when the

training set contains a small percentage of rogue data. This is because the

network learns to predict the correct response to an item of data in advance of

receiving the input. The new algorithm is investigated and compared with the

original GD-RTRL algorithm on two sequence recognition tasks. The results

show that the new algorithm learns to predict temporal sequences faster than

the original GD-RTRL algorithm. The results also show that the new algorithm

recovers quickly after the network is presented with spurious items of rogue

data. However the runtimes are significantly longer and increase with the size

of the network.

• A new sequential learning algorithm referred to as iTPA is developed to

improve the generalization performance of the second tangent plane

algorithm. In the new algorithm, an additional term is included that pushes the

Chapter 9 : Conclusions and future work

-186-

weights along tangent planes in a direction that encourages weight

elimination. The new algorithm is investigated and compared with the original

algorithm on two real world neural network problems. The results show that

the new algorithm gives improved generalization relative to the original

algorithm in some problems, and comparable generalization in others. The

results also show that the new algorithm retains the fast convergence speed of

the original method. Including a small amount of random movement along

tangent planes often helps the network break out of local minima that can slow

down the convergence.

• A new batch learning algorithm referred to as GN-TPA is developed to

overcome the problem of slow convergence in small parsimonious networks

where generalization is known to be best.

o In the new algorithm, a system of tangent plane equations is

constructed and solved using the method of least squares, which is an

optimization technique used to find an approximate solution to a

system of equations where no exact solution exists. The new

algorithm is investigated and compared with the Rprop algorithm on

two neural network benchmark problems. The results show that the

new algorithm is very fast. However some trials stalled due to

oscillatory behaviour, showing that the step size was too large and that

a good initial guess is needed for fast convergence to occur. Also,

some trials failed due to rank deficiency in the Jacobian matrix.

o Two modifications are suggested to overcome the difficulties with the

new batch algorithm, viz. convergence to local minima, and the

computational cost of performing an SVD operation. Firstly, a novel

Chapter 9 : Conclusions and future work

-187-

network architecture called an extreme learning machine (ELM) is

utilised, which is a single hidden layer feed-forward neural network

(SLFN) with input weights chosen arbitrarily. Secondly, the tangent

plane normal equations are solved iteratively by using an orthogonal

transformation. This improves the computational efficiency of the

algorithm and gives improved generalization when combined with early

stopping. Comparative tests were performed using the new GN-TPA

algorithm, the cascade algorithm, and the orthogonal sequential

training technique. The results show that the GN-TPA gives improved

generalization on some problems relative to the cascade algorithm and

the orthogonal training technique. There was little evidence of

overtraining in any of the networks trained by the GN-TPA algorithm.

The principal weakness of the GN-TPA algorithm is that it builds large

networks. However, this is only a minor issue as generalization

performance does not appear to deteriorate with increasing network

size

In the later part of this thesis, a significant contribution is made to multi-category

classification problems in the bioinformatics area

• A new sequential learning algorithm referred to as iTPA-OVA is investigated

and compared with SANN and FGAP-RBF on two cancer classification

problems using gene expression data. In order to improve classification

accuracy several simple ANNs are combined using a one-versus-all (OVA)

combinatory scheme. The results show that the new iTPA-OVA algorithm

gives better overall accuracy across a range of selected marker genes relative

to SANN, and FGAP-RBF, and an overall accuracy at least as good as the

Chapter 9 : Conclusions and future work

-188-

best SVM classifier. Classification accuracy in individual tumour categories is

better than SANN, and at least as good as FGAP-RBF. The new sequential

algorithm does not favour one class over another, but gives a good overall

balance among the various classes. Although the new algorithm gives better

classification accuracy relative to the best classifier, FGAP-RBF, the training

times are slightly longer, so an improvement in one process must be paid for

by a deterioration in another

• The new batch leaning algorithm GN-TPA is investigated and compared with

SVM-OVO and the original ELM algorithm on two cancer classification

problems using gene expression data. In order to improve classification

accuracy a gain parameter was introduced into the hidden unit activations

giving a flatter output. The results show that the new batch algorithm gives

comparable overall accuracy across a range of selected marker genes relative

to the best SVM classifier, SVM-OVO, and slightly worse performance relative

to the original ELM algorithm. The classification accuracy of the new algorithm

in individual tumour categories is at least as good as the best SVM classifier.

The new batch algorithm does not favour one class over other classes.

• Study results show that the new GN-TPA algorithm constructs slightly larger

networks than other popular network building techniques. This raises the

following question, “Does the new batch tangent plane algorithm generalize

better than the new sequential tangent plane algorithm is smaller networks?”

In order to answer this question, a statistical hypothesis test is carried out

using the gene expression data. The results show that there is a significant

difference at the 5% level. The new sequential algorithm gives better

classification accuracy in smaller tumour classes across a range of selected

Chapter 9 : Conclusions and future work

-189-

marker genes. Both algorithms give comparable accuracy on the largest

tumour class.

• The classification accuracy of the new sequential and batch learning

algorithms tends to drop with more selected marker genes (> 100). This is

probably due to the inability of the gene selection method to identify genes that

discriminate between different classes rather than the performance of the

individual algorithms

9.2 Recommendations for future work

Possible areas for future work that emerge from this thesis include

• Study results show that the new TPA-RTRL algorithm takes more time to

finish the learning process due to the high computational complexity of the

algorithm. Therefore methods to reduce the computational complexity of the

algorithm can be investigated such as fixing some of the recurrent connections

in MERTRL [93,94] or fixing a preset number of weights that are randomly

chosen during each time step.

• Speech enhancement remains a developing area in neural network research.

Several researchers have used neural networks for speech enhancement

[85,86]. Conventional ANNs cannot easily model the temporal behaviour of

speech signals by using a windowed input [62]. One way to address this issue

is using recurrent neural networks to deal with the varying length of speech.

Therefore the new TPA-RTRL algorithm will be further developed for speech

enhancement applications

Chapter 9 : Conclusions and future work

-190-

• Traditionally the Extreme Learning Machine requires a high number of hidden

units which may lead to ill conditioning on some problems. Fei Han et al [130]

have applied a modified particle swarm optimization method to select input

weights and biases of hidden layer units giving better generalization and

condition than other ELM methods. Particle swarm optimization methods are

known to converge rapidly in the initial stages of training around a global

minimum [131]. However this strategy still requires the number of hidden units

to be selected a-priori. This suggests there is scope to further modify the

sequential GN-TPA algorithm for the extreme learning machine using particle

swarm optimization methods so that the most favourable new hidden units are

selected for insertion into the network

• Gene selection is of vital importance in molecular cancer classification using

high dimensional gene expression data. Carrying out feature selection

reduces the curse of the dimensionality problem and improves prediction

accuracy. Wang et al [132] have compared established feature selection

methods using eight gene expression datasets; Colon tumour, CNS tumour,

DLBCL, Leukaemia 1, Lung cancer, Prostrate cancer, Leukaemia 2, and

breast cancer. The classification methods used were a probabilistic classifier

(NB), K-NN and SVM. Therefore a further development of this work is to

compare the performance of ANN trained using the GN-TPA algorithm to

benchmark the performance of neural network classifiers on the microarray

datasets used in this study

• Cancer cells possess traits similar to normal stem cells. It is unclear however

whether these similarities reflect the activity of common molecular pathways.

Ittah Ben-Porath et al [133] all have analysed the enrichment patterns of

Chapter 9 : Conclusions and future work

-191-

genes associated with embryonic stem (ES) cell identity in the expression

levels of various human cancer types. Recently developed gene expression

analysis methods [134] were used to determine whether the expression

signatures that define human ES cell identity are also active in human

tumours. The results indicate a novel link between ES cell identify and

microscopic histopathelogical traits of tumours. Therefore a further

development of this work is to use neural network methods to benchmark the

performance of neural networks in determining the link between human ES

cells and tumour cells

Bibliography

-192-

BIBLIOGRAPHY

01 Rumelhart, D.E. and McClelland, J.L. Parallel distributed processing:

Explorations in the microstructure of cognition. Cambridge, MA: MIT Press,

1986.

02 Lee, C.W. Learning in neural networks by using tangent planes to constraint

surfaces. Neural Networks, vol. 6. pp. 385-392, 1993.

03 Williams, R.J, and Zipser, D. A learning algorithm for continually running

recurrent neural networks. Neural Computation, vol.1, no. 2, pp.270-280, 1989

04 Jordan, M.I. Attractor dynamics and parallelism in a connectionist sequential

machine. Proceedings of the eighth annual conference of the cognitive science

society, 531-546, 1986

05 Pineda, F.J. Dynamics and architecture for neural computation. Journal of

complexity, 4, 216-245, 1988

06 Haykin, S. Neural networks: a comprehensive foundation. New Jersey :

Prentice Hall, 1999.

07 Fahlman, S. and Lebiere, C. The cascade correlation learning architecture.

Advances in neural information processing systems, vol. 2. pp. 524-532, 1990.

08 Prechelt, L. Investigation of the CasCor family of learning algorithms. Neural

Networks, vol.10, no. 5, pp. 885-896, 1997.

09 Lahnajärvi, J.J.T, Lehtokangas, M.I. and Saarinen, J.P.P. Evaluation of

constructive neural networks with cascade architectures. Neurocomputing, vol.

48, pp. 573-607, 2002.

10 LeCun, Y.L, Denker, J.S., and Solla, S.A. Optimal brain damage. Advances in

neural information processing systems, vol.2, pp. 598-605, 1990.

11 Hassibi, B. and Stork, D.G. Second order derivatives for network pruning.

Advances in neural information processing systems, vol.5, pp. 164-171, 1993.

12 Krogh, A. and Hertz, J.A. A simple weight decay can improve generalization.

Advances in neural information processing systems, vol.4, pp. 950-957, 1992.

13 Nowlan, S.J., and Hinton, G.E. Simplifying neural networks by soft weight-

sharing. Neural Computation, 4(4) : 473-493, 1992.

14 Lee, C.W. Training feedforward neural networks: an algorithm giving improved

generalization. Neural Networks, vol. 10. pp. 61-68, 1997.

15 Lapedes, A. and Faber, R. How neural networks work. Los Alamos National

Laboratory, NM 87545.

Bibliography

-193-

16 Lehtokangas, M. Fast initialization for fast cascade correlation learning. IEEE

transactions on neural networks, 10(2) : 410-414, 1999.

17 Lahnajärvi, J.J.T, Lehtokangas, M.I. and Saarinen, J.P.P. Fixed cascade error

: a novel constructive neural network for structure learning. Proceedings of the

artificial neural networks in engineering conference, Nov 7-10, pp. 25-30, 1999

18 Mendel, J.M. and McLaren, R.W. Reinforcement-learning control and pattern

recognition systems. Adaptive learning and recognition systems: theory and

applications, vol. 66., pp. 287-318, 1970.

19 Solla, S.A, and Levin, E., and Fleisher, M. Accelerated learning in layered

neural networks. Complex Systems, 2, pp. 625-639, 1988

20 Jacobs, R.A. Increased rates of convergence through learning rate adaptation

methods. Neural Networks, vol. 1, pp. 295-307, 1988.

21 Chan, L. W., and Fallside, F. An adaptive training algorithm for back-

propagation networks. Computer speech and language, 2: 205-218, 1987.

22 Zhang, J and Morris, A.J. A sequential learning approach for single hidden

layer neural networks. Neural Networks, vol. 11, no. 1, pp. 65-80, 1998.

23 Haffner, P., Waibel, A., Sawai, H. and Shikano, K. Fast back-propagation

learning methods for neural networks in speech. ATR Interpreting telephony

research laboratories, TR-1-0058, 1988.

24 Darken, C. and Moody, J. Note on learning rate schedules for stochastic

optimization. Neural information processing systems, pp. 832-838, 1991

25 Saloman, R. Improved convergence ate of back-propagation with dynamic

adaptation of the learning rate. Lecture notes in computer Science, PPSN1,

Dortmund, pages 269-273, 1990

26 Hertz, J., Krogh, A., and Palmer, R.G. Introduction to the theory of neural

computation. Addison-Wesley, ISBN 0-201-51560-1, 1991

27 Schmidhuber, J. Accelerated learning in back-propagation nets.

Connectionism in perspective, Elsevier Science Publishers, pp. 439-445, 1989

28 Reidmiler, M, and Braun, H. A direct adaptive method for faster

backpropagation learning: The RPROP algorithm. Proceedings of the IEEE

International conference on Neural Networks, pages 589-591, IEEE Press,

1993.

29 Silva, F.M, and Almeida, L.B. Speeding up back-propagation. Advanced

neural computers, pp. 151-158, 1990

30 Tollenaere, T. Fast adaptive back-propagation with good scaling properties.

Bibliography

-194-

Neural networks, vol. 3, pp. 561-573, 1990

31 Igel, C., and Husken, M. Empirical evaluation of the improved Rprop learning

algorithms. Neurocomputing, 50(C), pp. 105-123, 2003

32 Fahlman, S. An empirical study of the learning speed in back-propagation

networks. Technical Report CMU-CS-88-162, 1988

33 Schiffmann, W., Joost, M., and Werner, R. Comparison of optimized back-

propagation algorithms, Proc. of the European Symposium of Artificial Neural

Networks, Brussels, pp. 97-104, 1993

34 Prechelt, L. PROBEN1 – A set of benchmarks and benchmarking rules for

neural network training algorithms. Technical report 21/94, Fakultät für

Informatik, Universität Kaxlsruhe, Germany.

ftp:/pub/papers/techreports/1994/1994-21.ps.gz

35 Press, W., Teukolsky, S., Vetterling, W., Flannery, B. Numerical recipes in C.

Cambridge University Press, 2nd Edition, 1994

36 Kramer, A.H., Vincentelli, Sanglovanni, A. Efficient parallel learning algorithms

for neural networks. Advances in neural information processing systems I, pp.

40-48, 1989

37 Battiti, R. First and second order methods of learning: between steepest

descent and Newton’s method. Neural Computation, 4, 141-166, 1992.

38 Gill, P.E., Murray, W., and Wright, M.H. Practical optimization. London :

Academic Press, 1981

39 Meyer, R.R. Theoretical and computational aspect of nonlinear regression.

Nonlinear Programming, pp. 465-486. Academic Press, New York, 1970

40 Levenberg, K. A method for the solution of certain problems in least squares.

Quart. Appl. Math, vol. 2, pp. 164-168, 1944.

41 Fletcher, R. A modified Marquardt subroutine for nonlinear least squares.

Atomic energy establishment report R6799, Harwell, England, 1971

42 Wilamowski, B.M., Kaynak, O., Iplikei, S., Őnder Efe, M. An algorithm for fast

convergence in training neural networks. Proceedings of the international joint

conference on neural networks, 2, 1778-1782, 2001

43 Poggio, T. and Girosi, F. Networks for approximation and learning.

Proceedings of the IEEE , vol. 78, pp. 1481-1497, 1990

44 Vapnik, V.N., and Chervonenkis, A.Ya. On the uniform convergence of relative

frequencies of events to their probabilities. Theoretical probability and its

applications. vol. 17, pp.264-280, 1971.

Bibliography

-195-

45 Chen, S, Cowan, C.F.N and Grant, P.M. Orthogonal least squares learning

algorithm for radial basis function networks. IEEE Transactions on Neural

Networks, vol. 2, no. 2, pp. 302-309, 1991.

46 Platt, J. A resource allocating network for function interpolation. Neural

Computation, 3(2) : 213-255, 1991

47 Guang-Bin Huang, Saratchandran, P, and Sundarajan, N. An efficient

sequential learning algorithm for growing and pruning RBF (GAP-RBF)

networks. IEEE transactions on systems, man and cybernetics, Part B, 34(6) :

2284-2292, 2004

48 Narenda, K.S. and Parthasaranthy, K. Identification and control of dynamic

systems using neural networks. IEEE Transactions on Neural Networks, vol. 1,

no. 1, pp. 4-27, 1990.

49 Sietsma, J. and Dow, R. Neural network pruning – why and how. Proc. IEEE

int. conf. neural networks I, 325-333, 1988

50 Mozer, M.C. and Smolensky, P. Skeletonization: A technique for trimming the

fat from a network via relevance assessment. Advances in Neural Information

Processing, pp. 107-115, 1989.

51 Prechelt, L. Connection pruning with static and adaptive pruning schedules.

Neurocomputing, Volume 16, Issue 1, pp. 49-61, 1997

52 Finnoff, W, Hergert, F, Zimmermann, H.G. Improving model selection by non-

convergent methods. Neural Networks, vol.6, 771-783, 1993.

53 Prechelt, L. Automatic early stopping using cross validation: quantifying the

criteria. Neural Networks, vol.10, no. 5, pp. 885-896, 1997.

54 Schittenkopf, C, Deco, G. and Brauer, W. Two strategies to avoid overfitting in

feedforward networks. Neural Networks, vol. 10, no. 3, 1997.

55 Oja, E. Principal components, minor components, and linear networks. Neural

networks 5, pp. 927-935, 1992

56 Sanger, T.D. Optimal unsupervised learning in a single layered neural

network. Neural networks, vol. 2, pp. 459-473, 1989

57 Diamantaras, K.I, and Kung, S.Y. Principal component networks: theory and

applications, Wiley and Sons, New York, 1996

58 Fiori, S. An experimental comparison of three PCA neural networks. Neural

processing letters, vol. 11, pp. 209-218, 2000

59 Stone, M. Cross validation choice and assessment of statistical predictions.

Royal Statistical Society, B36, pp. 111-113, 1974.

Bibliography

-196-

60 Levin, R.I, Lieven, N.A.J. and Lowenberg, M.H. Measuring and improving

neural network generalization for model updating. Journal of Sound and

Vibration, 238 (3), pp. 401-424, 2000.

61 The UCI Learning Machine Repository WWW site (http://www.ics.uci.edu/

~mlearn/MLRepository.html).

62 Sejnowski, T.J. and Rosenberg, C.R. Parallel networks that learn to pronounce

English text. Complex Systems. 1, 145-168, 1987.

63 Hanock, J.M, and Zvelebil, M.J. Dictionary of bioinformatics and computational

biology. Wiley, 2004

64 Luscombe, N.M., Greenbaum, D., and Gerstein, M. What is bioinformatics? A

proposed definition and overview of the field. Int medical informatics

association, pages Yearbook, pages 83-99, 2001

65 Benson, D.A., Boguski, M., Lipman, D.J., and Ostel, J. Nucleic acids research,

29(1):15-18, 2000

66 Bourne, P.E. and Weissig, H. Structural Bioinformatics. Wiley, 2003

67 Brown, P.O. and Botstein, D. Exploring the new world of the genome with dna

microarrays. Nature genetics, 21:33-37, 1999

68 Lander, E.S. Array of hope. Nature genetics, 21:3-4, 1999

69 Chen-Hsiang Yeang, Sridhar Ramaswamy, Pablo Tamayo, Sayan Mukherjee,

Ryan Rifkin, Michael Angelo, Michael Reich, Eric Lander, and Todd Golub.

Molecular classification of multiple tumor types. Bioinformatics, 17:316-322,

2001

70 Golub, T.R., Slonim, P., Tamayo, P., Huard, M., Gaasenbeek, J.P., Mesirov,

H., Coller, H., Loh, M.L, Downing, J.R., Caligiuri, C.D., and Lander, E.S.

Molecular classification of cancer: class discovery and class prediction by gene

expression monitoring. Science, 286(5439):531-537, 1999

71 Alon, U., Barkai, D.A, Notterman, K., Gish, K., Ybarra, D.M.S, and Levine, A.J.

Broad patterns of gene expression revealed by clustering analysis of tumor

and normal colon tissue probed by oligonucleotide arrays. Proceedings of

National academy of Sciences, 96(12):6745-6750, 1999

72 Dudoit, S., Fridlyand, J., Speed, T.P. Comparison of different discrimination

methods for classification of tumours using gene expression data. Journal of

the American statistics association, 97 (457):77-87, 2002

73 Furey, T., Cristianini, N., Duffy, N., Haussler, D. Support vector machine

classification and validation of cancer tissue samples using microarray

http://www.ics.uci.edu/�

Bibliography

-197-

expression data. Bioinformatics, 16(10):906-914, 2000

74 Ramaswamy, S., Tamayo, P., Golub, T.R. Multiclass cancer diagnosis using

tumor gene expression signatures. Proceedings of National Academy

Sciences, USA, 98(26):15149-15154, 2002

75 Yoonkyung Lee and Cheol-Koo Lee. Classification of multiple cancer types by

multi-category support vector machines using gene expression data.

Bioinformatics, 18:1132-1139, 2003

76 Zhang, R, Guang-Bin Huang, Saratchandran, P, and Sundarajan, N. Multi-

category classification using an extreme learning machine for microarray gene

expression cancer diagnosis. IEEE transactions on computational biology and

bioinformatics, Vol. 4, No. 3, pp. 485-495, 2007

77 Linder, R., Dew, D. Sudhoff, H, Theegarten, D, Remberger, K. The subsequent

artificial neural network (sann) approach might bring more classificatory power

to ann-based dna microarray analysis. Bioinformatics, 20(18):3544-3552, 2004

78 Statnikov, A. Aliferis, C.F., Tsamardinos, I., Hardin, D., and Levy, S. A

comprehensive evaluation of multi-category classification methods for

microarray gene expression cancer diagnosis. Bioinformatics, 21(5):631-643,

2005

79 Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F.,

Berthold, F., Schwab, M., Antonescu, C.R., Petersen, C., and Meltzer, P.

Classification and diagnosis of cancers using gene expression profiling and

artificial neural networks. Nature Medicine, 7(6): 673-679, 2001

80 Alizadeh, A., Eisen, M., Davis, E., Chi Ma, Lossos, I.S., Rosenwald, A.,

Boldrick, J.C., Hajeer Sabet, Truc Tran, Xin Yu, Powell, J.I., Liming Yang,

Marti, G.E., Moore, T., Hudson, J., Byrd, J.C., Botstein, D., Brown, P.O., and

Staudt, L.M. Distinct types of diffuse large b-cell lymphoma identified by gene

expression profiling. Nature, 403(6760) : 503-511, 2000

81 Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T, and Alkon, D.L. Accelerating

the convergence of the back-propagation method. Biological cybernetics, 59 :

257-263, 1988

82 Geman, S., Bienenstock, E. and Doursat, R. Neural networks and the

bias/variance dilemma. Neural Computation, 4 : 1-58, 1992.

83 Bartlett, P.L. The same complexity of pattern classification with neural

networks: the size of the weights is more important than the size of the

network. IEEE transactions on information theory, 44(2) : 42–61, 1998.

Bibliography

-198-

84 Hambaba, A. Robust hybrid architecture to signals from manufacturing and

machine monitoring. . Intell. Fuzzy Syst. 9(1-2), pp. 29-41, 2000

85 Juang, C.F., and Lin, C.T. Noisy speech processing by recurrently adaptive

fuzzy filters. IEEE trans. Fuzzy systems. 9(1), pp. 139-152, 2001

86 Parveen, S, and Green, P. Speech enhancement with missing data techniques

using recurrent neural networks. IEEE trans. Fuzzy systems. 1, 733-736, 2004

87 Selvan, S, Srinivasan, R. Recurrent neural network based efficient adaptive

filtering technique for removal of ocular artefacts from EEG. IETE Tech

Review, 17 (1-2), 73-78, 2000

88 Perez-Ortez, J.A., Calera-Rubio, M.L, Forcada, M.L. Online symbolic sequence

prediction with discrete time recurrent neural networks. Proceedings of the

International Conference on Artificial Intelligence, vol. 2130, pp.719-724, 2001

89 Li, C.G., He, S.B., Liao, X.F. Yu, J.B. Using recurrent neural network for

adaptive predistortion linearization of RF amplifiers. Int. Rf Microwave

computer aided eng. 12(1), pp.125-130, 2002

90 Selvan, S. Srinivasan, R. Adaptive filtering techniques using neural networks.

IETE Tech Rev. 17(1-2), pp.73-78, 2000

91 Catfolis, T. A method for improving the real-time recurrent learning algorithm.

Neural Networks, 6(6), 807-821, 1993

92 Mandic, D.P. Chambers, J.A. Relating the slope of the activation function and

learning rate within recurrent neural networks. Neural computation, 11(5),

1069-1077, 1999

93 Lu, Y.L., Mak, M.W., and Siu, W.C. Application of a fast recurrent learning

algorithm to text-to-phoneme conversion, to appear in Proc ICNN’95,

Australia, Dec 1995

94 Lu, Y.L., Mak, M.W., and Siu, W.C. Diminish the computational burden of real

time recurrent learning algorithm by constrained sensitivity, to appear in Proc

ICNNSP’95, China, Dec 1995

95 Mak, M.W., Ku, K.W., and Lu, Y.L. On the improvement of the real time

recurrent learning algorithm for recurrent neural networks. Neurocomputing, vol

24, issues 1-3, pp. 13-36, Feb 1999

96 Hush, D.R, and Horne, B.G. Progress in supervised neural networks: What’s

new since Lippmann?” IEEE Signal Processing, 10, 8-39, 1993.

97 Burton, R.M., and Mpitsos, G.J. Event-dependent control of noise enhances

learning in neural networks. Neural Networks, vol. 5, pp. 627-637, 1992

Bibliography

-199-

98 Heskes, T. Stochastics of on-line backpropagation. Proceedings of the

European symposium on artificial neural networks, pages 223-228, 1994

99 Rögnvaldsson, T. On Langevin updating in multilayered perceptrons. Neural

Computation, 6, 916-926, 1994

100 An, G. The effect of adding noise during back-propagation training on a

generalization performance. Neural Computation, 8, 643-674, 1996

101 Weigend, A., Rumelhart, D., and Huberman, B. Generalization by weight

elimination with application to forecasting. Advances in neural information

processing systems 3 (NIPS 90), pp. 875-882, 1991

102 Chauvin, Y. Dynamic behaviour of constrained back-propagation networks.

Advances in neural information processing (2), pp. 642-649, 1990

103 Chauvin, Y. Generalization performance of overtrained back-propagation

networks. Neural Networks, Proc EUROSIP Workshop. pp. 46-55, 1990

104 Chauvin, Y. A back-propagation algorithm with optimal use of hidden units.

Advances in neural information processing systems I, pp. 519-526, 1989

105 Ji, C. Snapp, R., and Psaltis, D. Generalizing smoothness constraints from

discrete samples. Neural Computation, vol. 2, no. 2, 188-197, 1990

106 Lang, K.L., and Michael J, Witbrock, M.J. Learning to Tell Two Spirals Apart.

Proceedings of the 1988 Connectionist Models Summer School, Morgan

Kaufmann, 1988

107 Linder, R., Wirtz, S., Poppl, S.J. Speeding up backpropagation learning by the

APROP algorithm. Proceedings of the second international ICSC symposium

on neural computation, ICSC Academic Press, pp. 122-128, 2000

108 Serre, D. Matrices: Theory and applications. Springer-Verlag New York, Inc

2002, pp. 147

109 Teoh Eu Jin. Training issues and learning algorithms for feedforward and

recurrent neural networks. PhD thesis, National University of Singapore, 2009

110 Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Slew. Extreme learning

machine: A new learning scheme of feedforward neural networks. Proceedings

of the international joint conference of neural networks (IJCNN2004), 25-29,

2004

111 Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Slew. Extreme learning

machine: Theory and applications. Neurocomputing, 70, 489-501, 2006

112 Zhang, R. Efficient sequential and batch learning artificial neural network

methods for classification problems. PhD thesis, Nanyang Technological

Bibliography

-200-

University, 2005

113 Guang-Bin Huang. Learning capacity and storage capacity of two hidden layer

feedforward networks. IEEE transactions on neural networks. 14(2):274-281,

2003

114 Shi’ichi Tamura and Masahiko Tateish1. Capabilities of a four-layered

feedforward neural network: four layers versus three. IEEE transactions on

neural networks: 8(2):251-255, 1997

115 Businger and Golub, 1965. Linear least squares reduction by householder

transformations. Numerische Maths, 7, 265-276, 1965

116 Björk, A. Solving least linear squares problems by Gram-Schmidt

orthogonalization. Nordisk Tidskr: Information-Be-handling, vol. 7, pp. 1-21,

1967.

117 Akaike, H. A new look at the statistical model identification. IEEE

Transactions on Automatic Control. 19(6), 716-723, 1974.

118 The Broad Institute WWW site (http://www.broad.mit.edu/cgi-

bin/cancer/publications/pub)

119 WWW site (http://llmpp.nih.gov/lymphoma/data.shtml)

120 Ringner, M, Peterson, C., Khan, J. Analysing array data using supervised

methods. Pharmacogenomics, 3(3) : 403-415, 2002

121 Su, A., Welsh, J.B., Sapinoso, L.M., Kern, S.G., Dimitrov, P., Schultz, P.G.,

Powell, S.M. Molecular classification of human carcinomas by use of gene

expression signatures. Cancer research, 61:7388-7393, 2001

122 Staunton, J., Slomin, D.K., Coller, H.A., Tomayo, P., Angelo, M.J., park, J.,

Scherf, U., Lee, J.K, Reinhold, W.O., Weinstein, J.N., Mesirov, J.P., Lander,

E.S., Golub, T. Chemosensitivity prediction by transcription profiling.

Proceedings of National Academy Sciences, USA, 98(19):10787-10792, 2001

123 Pomeroy, S., Tamayo, P., Gassenbeek, M., Lisa, M.A., Sturla, M., McLaughlin,

M.E., Kirn, J.Y.H., Gournnerova, L.C., Black, P. Lander, E.S., and Golub, T.S.

Prediction of central nervous system embryonal tumour outcomes based on

gene expression. Nature, 415:436-442, 2002

124 Nutt, C.L., mani, D.R., Betensky, R.A., Tamayo, P., Carincross, G., Ladd, C.,

Pohl, U., Hartmann, C., McLaughlin, M.E., Batchelor, T.T., Black, P.M.,

Andreas von Deimling, Pomeroy, S., Golub, T., Louis, D.N. Gene expression

based classification of malignant glicomas correlates better with survival that

histological classification. Cancer research, 63:1602-1607, 2003

Bibliography

-201-

125 Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L.,

Minden, M.D., Sallan, S.E., Lander, E.S., Golub, T.R. Mll translocations specify

a distinct gene expression profile that distinguishes a unique leukemia.

Bioinformatics, 30(16):41-47, 2002

126 Arindarn Bhattacharjee, Richards, W.G., Staunton, J., Cheng Li, Monti, S.,

Vasa, P., Ladd, C., Javad Beheshti, Bueno, R., Gillette, M., Loda, M., Weber,

G., Mark, E.J., Lander, E.S., Wing Wong, Meyerson, M. Classification of

human lung carsimonas by mma expression profiling reveals distinct

adrenocarcinoma subclasses. Proceedings of national Academy Sciences,

USA.98(24):13790-13795, 2001

127 Ship, M.A., Ross, K., Tamayo, P. Weng, A.P., Kutok, J.L., Aguiar., R.C.T.,

Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G.S., and Golub, T.R. Gene

expression correlates of clinical prostrate cancer behaviour. Nature Medicine,

8:68-74, 2002

128 Dinesh Singh, Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., ladd, C.,

Tamayo, P., Renshaw, A., Golub, T.R., Sellers, W. Diffuse large b-cell

lymphoma outcome prediction by gene expression profiling and supervised

learning machine. Cancer cell, 1(2), 2002

129 Qian, N, and Sejnowski, T. Predicting the secondary structure of globular

proteins using neural network models. J. Mol. Biol., 202, 865-884, 1988

130 Fei Han, hei-Fen Yao, Qing Hua Ling. An improved extreme learning machine

based on particle swarm optimization. Bio-inspired computing and

applications, volume 6840/2012, 699-704, 2012

131 Jing-Ru Zhang, Jun Zhang, Tat Ming Lok, Michael R. Lyu. A hybrid particle

swarm optimization – backpropagation algorithm for feedforward neural

network training. Applied mathematics and computation, 1026–1037, 2007

132 Xiasheng Wang, Osamu Gotoh. A robust gene selection method for micro-

array based cancer classification. Cancer inform, 9, 15-30, 2010

133 Ben-Porath I, Thomson, M.W., Carey, V.J., Ruping Ge, Bell, G.W., Regev A,

Weinberg, R.A. An embryonic stem cell-lie gene expression signature in poorly

differentiated aggressive human tumours. Net Genet, 40(5): 499-507, 2008

134 Segal E, Friedman N, Koller D, Regev A. A module map showing conditional

activity of expression modules in cancer. Net Genet, 36:1090-1098, 499-507,

2004

Appendix A – Program development

A-1

APPENDIX A - PROGRAM DEVELOPMENT

Hardware, software and platform

The implementation of the programs used in the simulations was carried out on a

Hewlett Packard Pavilion Pentium 4 2.67 CPU GHz with 512 MB of RAM running

Windows XP Professional SP2. The programs were written in Object Pascal using

Borland Delphi Professional 6. Delphi is a rapid application development tool (RAD)

for developing Windows applications, dynamic linked libraries (DLLs), system control

modules, console applications and web server applications. Microsoft Excel was used

to plot the graphs and charts included the thesis

Modular structure

A classical procedural paradigm was adopted to implement the algorithms. The

program design was broken down into discrete modules implementing strong

cohesion and low coupling between modules. Typical modules include

build_net. This procedure accepts the numbers of layers in the neural network and

number of inputs and builds the corresponding network structure

add_neuron. This procedure accepts the layer and unit position and adds a neuron

to the network

init_weights. This procedure accepts the layer and unit position and initialises the

weights in the weight table to random values

set_inputs. This procedure reads a row of data from the input buffer into the input

layer of the network

forward_prop. This procedure forward propagates the activations from the input

layer to the output layer

Appendix A – Program development

A-2

backward_prop. This procedure calculates the local gradients of each individual unit

in the network

calc_grads. This procedure calculates the gradient contribution of each individual

weight in the network

Update_weights. This procedure calculates the adjustments to the weights in the

neural network

Data structures

The programs used in the simulations utilised many advanced features of a modern

programming language. Specifically, dynamic data structures were used to store to

store the unit activations, gradient information and weight values. Using a data

structure permitted units to be added to the network at runtime so that the memory

requirements of the application were optimised to the runtime environment

Fig A.1. The figure shows the layer structure used to model a collection

of nodes with similar function. In this example the weight values of all

input connections to the fourth unit u1 are stored sequentially in the w1,j

array, connections to the second unit u2 in the w2,j array, and so on,

enabling rapid sequential access to these values

hidden
node

outputs

weight ptrs weights

2u
1u

3u
4u 4,4w

3,4w
2,4w
1,4w

2θ
1θ

3θ
4θ

Appendix A – Program development

A-3

The network structure consisted of a network node with pointers or references to layer

nodes. The layer notes in turn contained pointers or references to output tables,

gradient and weight pointer nodes. Finally the gradient and weight pointer nodes

contained references to the data tables. Fig A.1 shows part of the data structure used

to implement a single layer in the neural network.

Data transformation algorithms

The individual programs used in this study share common routines for data

processing, namely procedures to set the inputs, forward propagate activations,

backward propagate local gradients, calculate the gradient vector and update the

weights of the network. Other modules specific to individual programs include

functions to perform the SVD and QR decomposition

Module: set_inputs(j)

 FOR i <- 0 TO inputs

 IN_layer^.output^[i] <- input_buffer[j].pattern[i]

 target <- input_buffer[j].target

END set_inputs

Module: forward_prop

 Module: forward_prop_layer (upper_layer, lower_layer)

 FOR j <- 1 TO upper_layer^.units

 FOR i <- 1 TO lower_layer^.units

 a <- lower_layer^.output^[j] * upper_layer^.conn_w^[j]^[i]

 upper_layer^.output^[j] <- tanh(a)

 END forward_prop_layer

 FOR k <- layers – 1 DOWNTO 1

 upper_layer <- network^.layer [k]

 Lower_layer <- network^.layer [k + 1]

 forward_prop_layer (upper_layer, lower_layer)

END forward_prop

Module: back_prop

 Module: back_prop_layer (upper_layer, lower_layer)

 FOR j <- 1 TO lower_layer^.units

Appendix A – Program development

A-4

 FOR i <- 1 TO upper_layer^.units

 lower_layer^.grads^[j] <- lower_layer^.grads^[j] +

 upper_layer^.grads^[j] * upper_layer^.conn_w^[j]^[i]

 lower_layer^.grads^[j] <- lower_layer^.grads^[j] *

 (1 – sqr(lower_layer^.output^[j]))

 END back_prop_layer

FOR k <- 1 TO layers – 1

 upper_layer <- network^.layer [k]

 lower_layer <- network^.layer [k + 1]

 back_prop_layer (upper_layer, lower_layer)

END back_prop

Module: calc_grad

 FOR k <- 1 TO layers – 1

 upper_layer <- network^.layer [k]

 lower_layer <= network^.layer [k + 1]

 FOR j <- 1 TO upper_layer^.units

 FOR i <- TO lower_layer^.units

 upper_layer^.conn_g^[j]^[i] <- upper_layer^.grads^[j] *

 lower_layer^.output^[i]

END calc_grad

Module: adjust_weights

 Module: adjust_layer (upper_layer, lower_layer)

 FOR j <- 1 TO upper_layer^.units

 FOR i <- 1 TO lower_layer^.units

 upper_layer^.conn_w^[j]^[i] <- upper_layer^.conn_w^[j]^[i] +

 nu * upper_layer^.conn_g^[j]^[i]

 END adjust_layer

 nu <- calc_learning_rate

 FOR k <- 1 TO layers – 1

 upper_layer <- network^.layer [k]

 lower_layer <- network^.layer [k + 1]

 adjust_layer (upper_layer, lower_layer)

END adjust_weights

Appendix A – Program development

A-5

File organisation and record structure

Most of the benchmark data used in the simulations has been made publically

available on websites as text files. Thus the file organisation is sequential. This

means that input attributes are accessed sequentially starting from the first item in the

file, and reading the attributes one by one until the last item was reached. The input

attributes are either floating point or integer. A typical text file would have

corresponding data attributes organised in columns, the last column containing the

target values. Similarly the results of computations used to determine the

performance of the algorithms was written item by item to a text file. The output data

was either floating point or integer

Appendix B – Class diagram of data structure

B-1

APPENDIX B – CLASS DIAGRAM OF DATA STRUCTURE

has

Network_rec

+

+

layers : int

layer : Layer_rec []

Layer_rec

+

+

+

+

+

units : int

output : Network_table

grads : Network_table

conn_g : Conn_table

conn_w : Conn_table

Conn_table

+ conn_table : Network_table

Network_table

+ network_table : double []

1 ..*

1

1 ..*

1 ..* 1

1

1 ..*
has

has

Appendix C – Testing strategy and test data

C-1

APPENDIX C – TESTING STRATEGY AND TEST DATA

Testing strategy and test data

The neural network benchmark datasets used to evaluate the newly developed

algorithms have all been made publicly available on the UCI machine learning

repository unless otherwise stated. These datasets are divided up into training,

validation and testing examples. The training data is used to train the network. The

performance of the network on the test data estimates its effectiveness in practice.

Therefore, the network should not see the test data during the training stage. The

training data of some datasets is further subdivided into actual training examples and

validation examples. The validation dataset is used to determine the performance of

the network during training. A detailed description of the datasets used in this thesis

is given below

cancer. The cancer problem contains some diagnosis results for breast cancer. The

output represents the classification result for the diagnosis. The decision is based on

9 continuous valued input attributes. The number of training examples is 200 and test

examples is 167

hearta1. The hearta problem is an analogue version of the heart disease diagnosis

problem. The single continuous output predicts heart disease. The decision is based

on 13 continuous valued input attributes. The number of training examples is 690 and

test examples is 230

housing. The housing problem is real world problem that estimates the price of

housing in the suburbs of Boston. The number of inputs is 13 and the number of

outputs one. The number of training and test examples is 253

henon map. This problem is an artificially generated deterministic time series

prediction task. Four successive values are used to predict the next value. Thus

Appendix C – Testing strategy and test data

C-2

there are four inputs and one output. The number of training examples is 100 and

test examples is 100

two spiral. The two spiral problem is an artificially generated dataset containing the

(x, y) coordinates of two interlocking spirals. For points in the first spiral the output is

set to +1, and for points on the second spiral -1. The number of training examples is

194 and test examples in 192

additive. The additive problem is an artificially generated nonlinear regression task.

There are two continuous valued inputs uniformly distribute in the range [-1,1]. The

single continuous output scaled in the range [-1,1]. The number of training examples

is 200 and test examples in 200

Appendix D – Implementation of iTPA algorithm

D-1

APPENDIX D – IMPLEMENTATION OF iTPA ALGORITHM

//**
// Improved tangent plane algorithm *
// Version: 1.0 *
// Author: Paul May *
// Date: *
//**
// Description: *
// The following program implements the improved tangent plane algorithm (iTPA) *
// in Object Pascal. Specific libraries used include UN012 which contains the *
// data structures and UN022 which builds the neural network *
//**
// Usage: *
// The program runs in batch mode *
// Input files - hearta1.txt *
// Output files - *
//**
program M304;
{$APPTYPE CONSOLE}
uses
 sysUtils,
 UN012 in '..\Units\UN012.pas',
 UN022 in '..\Units\UN022.pas';

const
 b = 1.00;
 c = 1.30;
 n0 = 6.0;
 w0 = 0.05;
 w1 = 0.5;
 tan_b1 = 0.05;
 nu_max = 1.00;
 nu_min = 1.00;
 nu_zero = 1.00;
 sig2_tr = 0.55;
 sig2_val = 0.55;
 err_min = 5.00;
 layers = 4;
 outputs = 01;
 hidden_L1 = 20;
 hidden_L2 = 20;
 inputs = 13;
 pk_max = 1.0;
 vl_max = 1.0;
 epoch_max = 5000;
 epoch_min = 30;
 start = 001;
 train = 690;
 pattern = 920;
 max_trial = 010;
 strip_len = 010;
 high_values = $FFFF;
 low_values = $0000;
 file_IN = '..\..\data\hearta1.txt';
 file_OUT_1 = 'G:\hearta101.txt';

type
 net_rec_type = record
 pattern : array [1..inputs] of real;
 target : real;
 end;
 net_file_Type = file of net_rec_type;

var
 OUT_layer : layer_ptr;
 IN_layer : layer_ptr;

 network : network_ptr;
 net_record : net_rec_type;
 net_IN : Text;
 net_OUT_1 : Text;

 data : array[1..50] of integer;
 data_buffer : array[1..pattern,1..15] of real;
 input_buffer : array[1..pattern] of net_rec_type;

 pk, vl, err_tr, err_val, err_val_min, target, cerr_tr, cerr_val, perr_tr, perr_val,
 err_strip, err_tr_tmp, err_val_tmp, err_tr_avg, err_tr_last, err_val_avg, epoch_avg,
 nu, wavg : real;

Appendix D – Implementation of iTPA algorithm

D-2

 epoch, epoch_tmp, neurons, i, n : integer;

//attr0, attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8, attr9, attr10, attr11,
//attr12, attr13 : integer;
 attr0, attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8, attr9, attr10, attr11,
 attr12, attr13 : real;

function tanh(a : real) : real;
begin
 tanh := (exp(a) - exp(-a)) / (exp(a) + exp(-a));
end;

function inv_tanh(a : real) : real;
begin
 inv_tanh := 0.5 * ln ((1 + a) / (1 - a));
end;

function norm_t : real;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp : real;
 i, j, k : integer;
begin
 temp := 0;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 temp := temp + sqr(UPPER_layer^.conn_t^[j]^[0]);
 for i := 1 to LOWER_layer^.neuron do
 temp := temp + sqr(UPPER_layer^.conn_t^[j]^[i]);
 end;
 end;
 norm_t := sqrt(temp);
end;

function norm_s : real;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp : real;
 i, j, k : integer;
begin
 temp := 0;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 temp := temp + sqr(UPPER_layer^.grads^[j]);
 for i := 1 to LOWER_layer^.neuron do
 temp := temp + sqr(UPPER_layer^.grads^[j] * LOWER_layer^.output^[i]);
 end;
 end;
 norm_s := sqrt(temp);
end;

function norm_r : real;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp : real;
 i, j, k : integer;
begin
 temp := 0;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 temp := temp + sqr(UPPER_layer^.conn_r^[j]^[0]);
 for i := 1 to LOWER_layer^.neuron do
 temp := temp + sqr(UPPER_layer^.conn_r^[j]^[i]);
 end;
 end;
 norm_r := sqrt(temp);
end;

function calc_wavg : real;
var

Appendix D – Implementation of iTPA algorithm

D-3

 UPPER_layer, LOWER_layer : layer_ptr;
 temp : real;
 i, j, k, num : integer;
begin
 temp := 0; num := 0;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 num := num + 1;
 temp := temp + abs(UPPER_layer^.conn_w^[j]^[0]);
 for i := 1 to LOWER_layer^.neuron do
 begin
 num := num + 1;
 temp := temp + abs(UPPER_layer^.conn_w^[j]^[i]);
 end;
 end;
 end;
 calc_wavg := temp / num;
end;

function calc_ws : real;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp : real;
 i, j, k : integer;
begin
 temp := 0;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 temp := temp + UPPER_layer^.conn_w^[j]^[0] * UPPER_layer^.grads^[j];
 for i := 1 to LOWER_layer^.neuron do
 temp := temp + UPPER_layer^.conn_w^[j]^[i] * UPPER_layer^.grads^[j] *

 LOWER_layer^.output^[i];
 end;
 end;
 calc_ws := temp;
end;

procedure calc_r;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp1 : real;
 temp2 : real;
 i, j, k : integer;
begin
 temp1 := calc_ws;
 temp2 := norm_s;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 UPPER_layer^.conn_r^[j]^[0] := UPPER_layer^.conn_w^[j]^[0] - temp1 *

 UPPER_layer^.conn_s^[j]^[0] / sqr(temp2);
 for i := 1 to LOWER_layer^.neuron do
 UPPER_layer^.conn_r^[j]^[i] := UPPER_layer^.conn_w^[j]^[i] - temp1 *

 UPPER_layer^.conn_s^[j]^[i] / sqr(temp2);
 end;
 end;
end;

procedure init_g;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 i, j, k, sgn : integer;
begin
 wavg := calc_wavg;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 for i := 0 to LOWER_layer^.neuron do

Appendix D – Implementation of iTPA algorithm

D-4

 begin
 if random > 0.5 then
 sgn := +1
 else
 sgn := -1;
 UPPER_layer^.conn_g^[j]^[i] := (UPPER_layer^.conn_w^[j]^[i] / w0) /

 (power((UPPER_layer^.conn_w^[j]^[i] / w0),n0) + 1) + sgn * random / (wavg / w1);
 end;
 end;
 end;
end;

function norm_g : real;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp : real;
 i, j, k : integer;
begin
 temp := 0;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 temp := temp + sqr(UPPER_layer^.conn_g^[j]^[0]);
 for i := 1 to LOWER_layer^.neuron do
 temp := temp + sqr(UPPER_layer^.conn_g^[j]^[i]);
 end;
 end;
 norm_g := sqrt(temp);
end;

function calc_gs : real;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp : real;
 i, j, k : integer;
begin
 temp := 0;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 temp := temp + UPPER_layer^.conn_s^[j]^[0] * UPPER_layer^.conn_g^[j]^[0];
 for i := 1 to LOWER_layer^.neuron do
 temp := temp + UPPER_layer^.conn_s^[j]^[i] * UPPER_layer^.conn_g^[j]^[i];
 end;
 end;
 calc_gs := temp;
end;

function calc_gr : real;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp : real;
 i, j, k : integer;
begin
 temp := 0;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 temp := temp + UPPER_layer^.conn_r^[j]^[0] * UPPER_layer^.conn_g^[j]^[0];
 for i := 1 to LOWER_layer^.neuron do
 temp := temp + UPPER_layer^.conn_r^[j]^[i] * UPPER_layer^.conn_g^[j]^[i];
 end;
 end;
 calc_gr := temp;
end;

procedure calc_g;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp1, temp2, temp3, temp4 : real;
 i, j, k : integer;
begin
 init_g;

Appendix D – Implementation of iTPA algorithm

D-5

 temp1 := calc_gs;
 temp2 := calc_gr;
 temp3 := norm_s;
 temp4 := norm_r;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 UPPER_layer^.conn_g^[j]^[0] := UPPER_layer^.conn_g^[j]^[0] - temp1 *

 UPPER_layer^.conn_s^[j]^[0] / sqr(temp3);
 for i := 1 to LOWER_layer^.neuron do
 UPPER_layer^.conn_g^[j]^[i] := UPPER_layer^.conn_g^[j]^[i] - temp1 *

 UPPER_layer^.conn_s^[j]^[i] / sqr(temp3);
 end;
 end;
end;

procedure calc_grad;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 temp : real;
 i, j, k : integer;
begin
 temp := 0;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 for j := 1 to UPPER_layer^.neuron do
 begin
 UPPER_layer^.conn_s^[j]^[0] := UPPER_layer^.grads^[j];
 for i := 1 to LOWER_layer^.neuron do
 UPPER_layer^.conn_s^[j]^[i] := UPPER_layer^.grads^[j] * LOWER_layer^.output^[i];
 end;
 end;
end;

procedure set_inputs(j : integer);
var
 i : integer;
begin
 IN_layer^.output^[0] := 1;
 for i := 1 to inputs do
 IN_layer^.output^[i] := input_buffer[j].pattern[i];
 target := input_buffer[j].target;
end;

procedure forward_prop;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 k : integer;
 a : real;

 procedure forward_prop_layer(var UPPER_layer, LOWER_layer : layer_ptr);
 var
 j, i : integer;
 a : real;
 begin
 for j := 1 to UPPER_layer^.neuron do
 begin
 a := UPPER_layer^.conn_w^[j]^[0];
 for i := 1 to LOWER_layer^.neuron do
 a := a + LOWER_layer^.output^[i] * UPPER_layer^.conn_w^[j]^[i];
 UPPER_layer^.output^[j] := tanh(a);
 end;
 end;

begin
 for k := layers - 1 downto 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 forward_prop_layer(UPPER_layer, LOWER_layer);
 end;
end;

procedure backward_prop;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 k : integer;

Appendix D – Implementation of iTPA algorithm

D-6

 procedure backward_prop_layer(var UPPER_layer, LOWER_layer : layer_ptr);
 var
 i, j : integer;
 begin
 for j := 1 to LOWER_layer^.neuron do
 begin
 LOWER_layer^.grads^[j] := 0;
 for i := 1 to UPPER_layer^.neuron do
 LOWER_layer^.grads^[j] := LOWER_layer^.grads^[j] + UPPER_layer^.grads^[i] *

 UPPER_layer^.conn_w^[i]^[j];
 LOWER_layer^.grads^[j] := LOWER_layer^.grads^[j] * (1 - sqr (LOWER_layer^.output^[j]));
 end;
 end;

begin
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 backward_prop_layer(UPPER_layer, LOWER_layer);
 end;
end;

procedure adjust_weights;
var
 UPPER_layer, LOWER_layer : layer_ptr;
 eta, alpha1, temp1, temp2, temp3, temp4, temp5, temp6 : real;
 k, sgn : integer;

 procedure adjust_layer(var UPPER_layer, LOWER_layer : layer_ptr);
 var
 i, j : integer;
 begin
 for j := 1 to UPPER_layer^.neuron do
 begin
 for i := 0 to LOWER_layer^.neuron do
 begin
 UPPER_layer^.conn_t^[j]^[i] := nu * (eta * UPPER_layer^.conn_s^[j]^[i] / temp1 –
 alpha1 * TAN_B1 * (UPPER_layer^.conn_g^[j]^[i] / temp5));
 UPPER_layer^.conn_w^[j]^[i] := UPPER_layer^.conn_w^[j]^[i] +

 UPPER_layer^.conn_t^[j]^[i];
 end;
 end;
 end;

begin
 temp1 := norm_s;
 temp2 := norm_r;
 temp5 := norm_g;
 eta := (inv_tanh(target) - inv_tanh(OUT_layer^.output^[1])) / temp1;
 alpha1 := abs(inv_tanh(target) - inv_tanh(OUT_layer^.output^[1])) / temp1;
 for k := 1 to layers - 1 do
 begin
 UPPER_layer := network^.layer[k];
 LOWER_layer := network^.layer[k + 1];
 adjust_layer(UPPER_layer, LOWER_layer);
 end;
end;

procedure train_net;
var
 j : integer;
begin
 for j := start to train do
 begin
 set_inputs(j);
 forward_prop;
 backward_prop;
 calc_grad;
 calc_r;
 calc_g;
 adjust_weights;
 end;
end;

procedure test_net;
var
 t_max, t_min : real;
 j, x, y : integer;
begin
 err_tr := 0;

Appendix D – Implementation of iTPA algorithm

D-7

//err_tr := 1;
 cerr_tr := 0;
 t_max := LOW_VALUES;
 t_min := HIGH_VALUES;
 for j := start to train do
 begin
 set_inputs(j);
 forward_prop;
 if target > t_max then
 t_max := target;
 if target < t_min then
 t_min := target;
 err_tr := err_tr + sqr(target - OUT_layer^.output^[1]);
// err_tr := err_tr * sqr(target - OUT_layer^.output^[1]);
 if target >= 0 then
 y := 1
 else
 y := -1;
 if OUT_layer^.output^[1] >= 0 then
 x := 1
 else
 x := -1;
 cerr_tr := cerr_tr + abs(y - x);
 end;
// percentage sum of square error
 perr_tr := 100 * err_tr / (train * sqr(t_max - t_min));
// Classification error CERR x 100
 cerr_tr := 100 * cerr_tr / (2 * train);
// Normalised mean square error NMSE x 100
 err_tr := 100 * err_tr / (train * sig2_tr);
//err_tr := 100 * power(err_tr, 1 / train) * sig2_tr;
//err_tr := err_tr / (train * sig2_tr);
end;

procedure validate_net;
var
 t_max, t_min : real;
 j, x, y : integer;
begin
 err_val := 0;
 cerr_val := 0;
 t_max := LOW_VALUES;
 t_min := HIGH_VALUES;
 for j := train + 1 to pattern do
 begin
 set_inputs(j);
 forward_prop;
 if target > t_max then
 t_max := target;
 if target < t_min then
 t_min := target;
 err_val := err_val + sqr(target - OUT_layer^.output^[1]);
 if target >= 0 then
 y := 1
 else
 y := -1;
 if OUT_layer^.output^[1] >= 0 then
 x := 1
 else
 x := -1;
 cerr_val := cerr_val + abs(y - x);
 end;
// Percentage sum of square error
 perr_val := 100 * err_val / ((pattern - train) * sqr(t_max - t_min));
// Classification error CERR x 100
 cerr_val := 100 * cerr_val / (2 * (pattern - train));
// Normalised mean square error NMSE x 100
 err_val := 100 * err_val / ((pattern - train) * sig2_val);
//err_val := err_val / ((pattern - train) * sig2_val);
end;

procedure net_input;
var
 i, j : integer;
begin
 assign(net_IN, file_IN);
 reset(net_IN);
 for j := start to pattern do
 begin
 for i := 1 to inputs do
 begin
 read(net_IN, attr1);

Appendix D – Implementation of iTPA algorithm

D-8

 input_buffer[j].pattern[i] := attr1 / b;
 end;
 readln(net_IN, attr0);
 input_buffer[j].target := attr0 / c;
 end;
 close(net_IN);
end;

procedure train_strip;
var
 err_strip, err_strip_min : real;
 j : integer;
begin
 err_strip := 0;
 err_strip_min := high_values;
 for j := 1 to strip_len do
 begin
 train_net;
 test_net;
 if err_strip_min > err_tr then
 err_strip_min := err_tr;
 err_strip := err_strip + err_tr;
 end;
 pk := 1000 * (err_strip / (strip_len * err_strip_min) - 1);
end;

procedure validate_val;
var
 j : integer;
begin
 validate_net;
 if err_val_min > err_val then
 err_val_min := err_val;
 vl := 100 * ((err_val / err_val_min) - 1);
end;

begin

 assign(net_OUT_1, file_OUT_1);
 rewrite(net_OUT_1);

 n := 0;
 err_val_tmp := high_values;
 err_val_avg := low_values;
 err_tr_avg := low_values;
 epoch_avg := low_values;
 for i := 1 to max_trial do
 begin
 epoch := 0;
 nu := nu_zero;
 err_val_min := high_values;
 err_tr_last := low_values;
 new(network);
 build_network(network, layers, inputs);
 add_neuron(network, 1, outputs);
 for neurons := 1 to hidden_L1 do
 add_neuron(network, 2, neurons);
 for neurons := 1 to hidden_L2 do
 add_neuron(network, 3, neurons);
 OUT_layer := network^.layer[1];
 IN_layer := network^.layer[layers];
 OUT_layer^.grads^[1] := 1.0;
 net_input;
 init_weights(network, 1, outputs);
 for neurons := 1 to hidden_L1 do
 init_weights(network, 2, neurons);
 for neurons := 1 to hidden_L2 do
 init_weights(network, 3, neurons);
 repeat
 train_strip;
 validate_val;
 writeln(i:6, epoch:6, perr_tr:12:3, perr_val:12:3, vl:12:3, wavg:12:3);
 epoch := epoch + strip_len;
 until (epoch >= EPOCH_MAX) or ((err_tr <= ERR_MIN) and
 (vl > VL_MAX));
 if (err_val < err_val_tmp) then
 begin
 err_val_tmp := err_val;
 err_tr_tmp := err_tr;
 epoch_tmp := epoch;
 end;
 dispose(network);

Appendix D – Implementation of iTPA algorithm

D-9

 if (epoch < EPOCH_MAX) then
 begin
 err_val_avg := err_val_avg + err_val;
 err_tr_avg := err_tr_avg + err_tr;
 epoch_avg := epoch_avg + epoch;
 end;
 end;

 writeln('Training error ', err_tr_tmp:9:2);
 writeln('Validation error ', err_val_tmp:9:2);
 writeln('Epochs ', epoch_tmp:9);

 writeln('Avg training error ', err_tr_avg / n:9:2);
 writeln('Avg validation error ', err_val_avg / n:9:2);
 writeln('Avg epochs ', epoch_avg / n:9:2);

 close(net_OUT_1); readln;

end.

	00PhD Thesis
	01Chapter 1
	02Chapter 2
	03Chapter 3
	Chapter 3
	COMPREHENSIVE EVALUATION OF THE TANGENT PLANE ALGORITHM

	04Chapter 4
	05Chapter 5
	Henon map time series. The second test is a classical deterministic one-step-ahead prediction problem. Once again, an oversized 2-20-20-1 network architecture was chosen in order to determine the degree to which the new algorithm would remove redund...
	Fig 5.5 and 5.6 show histograms of the importance coefficients of the weights for both algorithms on the henon map problem. The importance coefficients were recorded from the same trial at epochs 100, 300 and 500. The coefficient sizes were grouped ...

	06Chapter 6
	Chapter 6

	07Chapter 7
	Chapter 7
	Additive function. The first test is a non-linear function approximation problem obtained from [22]. The results are tabulated in Table 7.1a. It was found that the GN-TPA algorithm gave the best results on the test set (Err* = 1.4 x 10-4), and the ...

	08Chapter 8
	09Chapter 9
	10Bibliography
	11Appendix A
	12Appendix B
	13Appendix C
	14Appendix D

