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ABSTRACT 

The principal aim of this research is to investigate and develop improved sequential 

and batch learning algorithms based upon the tangent plane algorithm for artificial 

neural networks.  A secondary aim is to apply the newly developed algorithms to 

multi-category cancer classification problems in the bio-informatics area, which 

involves the study of dna or protein sequences, macro-molecular structures, and gene 

expressions.   

 

The major contributions of this thesis are summarised as follows.  In the first part of 

this thesis, sequential and batch learning algorithms based on the tangent plane 

algorithm are investigated 

 

• The tangent plane algorithm (TPA) is investigated and compared with the 

back-propagation algorithm for three neural network benchmark tasks.  The 

principal strength of the tangent plane algorithm is that it does not require 

manually tuning a learning rate parameter, but instead automatically adjusts 

the learning rate to give the correct step size.  The algorithm has been further 

modified to accept almost zero starting conditions with the expectation that 

only the minimum number of weight necessary will be activated during the 

training phase.  The results show that the tangent plane algorithm gives 

improved generalization relative to the back-propagation algorithm, and that 

generalization is independent of network size.  The limitations of the tangent 

plane algorithm are also identified 

 

• A new sequential algorithm is developed referred to as the tangent plane 

algorithm for real time recurrent learning (TPA-RTRL), targeted at improving 

the stability of the tangent plane algorithm when handling inexact data.  The 
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new algorithm is evaluated and compared with the original gradient descent 

real time recurrent learning (GD-RTRL) algorithm for two sequence 

recognition tasks.  It is shown that using the new TPA-RTRL algorithm to train 

a fully recurrent neural network with feedback connections and context units is 

more stable than using the GD-RTRL algorithm, especially when the training 

data has been corrupted with a small amount of erroneous data.      

 

• A new sequential algorithm referred to as the improved tangent plane 

algorithm (iTPA) is developed to further improve the generalization 

performance of second tangent plane algorithm.  This new algorithm is 

evaluated and compared with the original algorithm and the back-propagation 

algorithm for three neural network benchmark tasks.  The results show that 

moving along tangent planes in a direction that encourages weight elimination 

improves generalization performance.  The results also show that including a 

tendency to move laterally in random directions along tangent planes helps the 

algorithm to avoid local minima of the error landscape.    

 

• A new batch algorithm referred to as the Gauss-Newton tangent plane 

algorithm (GN-TPA) is developed for training small economical networks.  This 

new algorithm uses a modified Gauss-Newton vector to guide the search 

toward the minimum training error.  Another improvement is using a novel 

neural network structure recently described in the literature as the Extreme 

Learning Machine (ELM).  The new algorithm is evaluated and compared with 

three newly developed network building techniques for three neural network 

benchmark tasks.  The results show that the new GN-TPA algorithm is very 

fast and efficient.     
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In the later part of this thesis, the newly developed sequential and batch tangent plane 

algorithms are applied to real world classification tasks that have proven difficult for 

more conventional neural network techniques to solve.  Multi-category cancer 

classification using gene expression profiles is a difficult task to solve due to the high 

dimensionality of the data.  Traditionally this is done by combining binary classifiers in 

one-versus-one (OVO) or one-versus-all (OVA) schemes, which inevitably involves 

increasing the system complexity.  Direct classification using artificial neural networks 

has been attempted but classification accuracy is known to drop sharply with 

increasing number of classes.  The results show that the classification accuracy of the 

newly developed learning algorithms are comparable with the best learning algorithms 

found in the literature on two benchmark gene expression datasets.  
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Chapter 1 

 

INTRODUCTION 

 

1.1  Motivation 

The back propagation algorithm [1] is an iterative procedure for training the weights of 

a multi-layered feed-forward neural network to minimise a given error (or cost) 

function, typically the sum of square error.  Geometrically, the error function defines a 

surface over weight space.  At each iteration of the procedure, the weights are 

adjusted in the direction in which the error surface decreases most rapidly.  The 

direction is given by the negative gradient of the error surface at the current point in 

weight space.  The magnitude of the modification is given by the magnitude of the 

gradient and a positive constant called the learning coefficient.  If the learning co-

efficient is too large, then the movement in weight space will become oscillatory and 

the algorithm will fail to converge or convergence will be very slowly.  On the other 

hand, if the learning co-efficient is too small then the algorithm will converge slowly 

resulting in long training times.  Lee [2] proposed an alternative approach to training 

multilayered feed-forward neural networks that does not require setting the value of 

the learning coefficient.  This tangent plane algorithm treats each teaching value as a 

constraint on the network weights that defines a surface in weight space.  The weights 

are adjusted by moving from the current position to the tangent plane to this surface.  

Convergence is rapid because the step-size is determined solely by the Euclidean 

distance from the current state of the weights to the foot of the normal to the tangent 

plane.  Unfortunately, the tangent plane algorithm will often fail to converge when a 

small amount of noise is added to the teaching values.  Therefore, methods to 

improve the stability of the tangent plane algorithm are studied in this thesis.  These 

methods include using fully recurrent neural networks that are capable of predicting a 
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time step ahead the correct response to an item of data received previously by the 

network [3,4,5] 

 

A principal concern in supervised training of neural networks is how to obtain good 

generalization.  A network is said to generalize well when the input-output mapping 

computed by the network is the same for test data not used in creating or training the 

network [6].  It is known that with back-propagation learning, generalization is better in 

smaller networks.  This is because the shortage of units forces the network to develop 

general rules to discriminate between input patterns.  Unfortunately, it can be difficult 

to determine the optimum size of the network in advance without knowing the exact 

rules to be extract from the training data.  These difficulties led to the development of 

a number of techniques to determine the optimum size for good generalization.  To 

limit the size of a network, you can either use additive, subtractive, or regularization 

techniques.  Additive techniques start with a small network, and insert new units and 

connections until the network has the right size [7,8,9].  Subtractive techniques (often 

called pruning) start out with a fully trained network and remove superfluous 

connections [10,11].  Regularization techniques use a network with a large number of 

connections but limit the size of each weight [12,13].  Lee [14] suggested growing the 

weights from small initial values close to zero with the expectation that only the 

minimum number of weights would be activated.  This second tangent plane algorithm 

is essentially the same as the first tangent plane algorithm, but includes an additional 

term that pushes the weights in the direction away from the origin.  Unfortunately, the 

second tangent plane algorithm tends to create large network structures that have a 

wide distribution of weight values.   This means that any advantage gained by starting 

the training with initial conditions close to zero is soon lost.  Therefore methods to 

improve the generalization of the second tangent plane are studied in this thesis 
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The convergence speed of the tangent plane algorithm is no better than the standard 

back-propagation algorithm in small parsimonious networks where generalization is 

found to be best.  In small networks with only a few synaptic weights, it seems that 

updating the weights by approaching tangent planes would be a very slow, as one big 

weight update might actually corrupt the whole of the network.  In the batch mode of 

learning the weights are updated after the presentation of the entire dataset.  

Collecting all the gradient information together before the weights are updated helps 

to avoid the mutual interference of weight changes that could occur with large learning 

rates in the sequential (or online) learning.  This makes the batch learning particularly 

suitable for training small neural networks.  An alternative approach to batch learning 

might be to take smaller steps in weight space, the smaller steps averaging out the 

variations in the data so that the weights follow a more clearly defined trajectory in 

weight space.  Unfortunately reducing the step size leads to slow adaptation of the 

weights so training speeds can be very slow.  Furthermore iterative methods that take 

smaller steps are prone to being trapped in local minima of the error landscape.  

Therefore a new batch implementation of the tangent plane algorithm for training 

small parsimonious networks is investigated in this thesis 

 

Multi-category classification problems in the bio-informatics area are known to be 

particularly difficult problems to solve.  There are a number of reasons for this.  Firstly, 

biological data based on micro-array gene expression profiling has a very high input 

dimension, which is typically thousands of genes.  Many of these genes are irrelevant 

to cancer classification.  These irrelevant genes not only increase the complexity of 

the neural network, but also add noise to the training data which compromises 

generalization.  Secondly, the size of the data available is usually very small, typically 

less than 100 samples.  It is well known that a low ratio of the sample size to the input 

dimension produces a sparse input data space, which also leads to poor 

generalization.  The traditional method for solving multi-category classification 
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problems is to combine several binary classifiers, but this produces a heavy 

computational overhead.  This means that fast and efficient algorithms are needed.  

The new sequential and batch tangent plane algorithms are particularly suitable for 

this purpose as they are very fast and avoid problems like overfitting and local 

minima.  Therefore the new sequential and batch implementations of the tangent 

plane algorithm are applied to multi-category classification based on gene expression 

data 

 

1.2  Objectives 

The primary objectives of this research are to improve the convergence speed, 

stability and generalization of the tangent plane algorithm.  More specifically, the 

objectives of this research can be summarised as follows  

 

• Develop a new algorithm for fully recurrent neural networks targeted at 

improving the stability of the tangent plane algorithm.  One example of where 

stability is an issue with the tangent plane algorithm is when the training data 

is contains a small amount of rogue data or errors.  Therefore one objective of 

this thesis is to develop a new algorithm capable of accepting a small 

percentage of erroneous data in the training set and recovering quickly after it 

has been perturbed in this way 

• Develop a new algorithm for neural networks based on the second tangent 

plane algorithm giving improved generalization relative to the original 

algorithm.  The second tangent plane algorithm tends to create large network 

structures that have a wide distribution of weight values.  Less important 

weights have a tendency of taking on completely arbitrary values that might 

actually degrade generalization.  Therefore another objective of this thesis is 
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to develop a new algorithm giving improved generalization and evaluate its 

performance on non-trivial problems. 

• Develop a new batch tangent plane algorithm for small parsimonious 

networks.  The tangent plane algorithm is a fast method of training a neural 

network that does not require any parameters to be set manually to tune its 

performance.  This is the principal strength of the tangent plane algorithm.  

However the tangent plane algorithm is no better than the back-propagation 

algorithm when applied to small economical networks where generalization is 

known to be best.  Therefore another objective of this thesis is to develop a 

new algorithm for small economical networks capable of fast convergence and 

good generalization 

• Apply the new sequential and batch algorithms developed in this thesis to 

multi-category classification tasks that have proven difficult for more 

conventional neural network techniques to solve.  Cancer classification using 

gene expression data is considered a difficult task because of the high input 

dimension, and multi-category classification is far more difficult than binary 

classification.  The classification accuracy of ANN is known to drop sharply as 

the number of classes increases.  Therefore fast and efficient algorithms are 

needed that are capable of high classification accuracy     

 

1.3  Major contributions of the thesis 

The major contributions of this thesis can be summarised as follows.  In the first part 

of this thesis, three new algorithms are developed to overcome the difficulties with the 

tangent plane algorithm 

 

• A new sequential algorithm referred to as the tangent plane algorithm for real 

time recurrent learning (TPA-RTRL) is developed for fully recurrent neural 
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networks (FRNNs).  This algorithm is evaluated for classification and time 

series prediction tasks.  It is shown that the new TPA-RTRL algorithm is a very 

fast and stable method of training FRNN that recovers quickly when presented 

with items of erroneous data.  This is because the FRNN recycles information 

over many time steps and thereby learns to predict the correct response a 

time step ahead, provided that an ordering of the input data exists.        

• A new sequential algorithm referred to as the improved tangent plane 

algorithm (iTPA) is developed to further improve the generalization 

performance of the second tangent plane algorithm.  This new algorithm is 

evaluated for pattern classification and function approximation tasks.  The 

results show that implementing a weight elimination procedure into the 

geometry of the algorithm actually improves generalization performance by 

producing a separation of the active and inactive weights in the network.  The 

results also show that including a tendency to move laterally in random 

directions along tangent planes helps the algorithm to avoid local minima of 

the error landscape.    

• A new batch tangent plane algorithm referred to as the Gauss-Newton tangent 

plane algorithm (GN-TPA) is developed for training small parsimonious 

networks.  This new algorithm uses the Gauss-Newton vector to guide the 

search of the error surface toward the minimum training error.  In order to 

improve the convergence and efficiency of the new algorithm, a novel 

procedure recently described in the literature as the Extreme Learning 

Machine (ELM) is employed.  The new algorithm is evaluated for pattern 

classification and function approximation tasks.  The results show that GN-

TPA reaches the minimum training error and avoids problems like local 

minima of the error landscape.        
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In the later part of this thesis, the newly developed sequential and batch tangent plane 

algorithms are applied to real world classification tasks that have proven difficult for 

more conventional neural network techniques to solve.  Multi-category cancer 

classification using gene expression profiles is a difficult task to solve due to the high 

dimensionality of the data.  Traditionally this is done by combining binary classifiers in 

one-versus-one (OVO) or one-versus-all (OVA) schemes, which inevitably involves 

increasing the system complexity.  Direct classification using artificial neural networks 

has been attempted but classification accuracy is known to drop sharply with 

increasing number of classes   

 

• The new sequential algorithm is combined with a one-versus-all scheme for 

multi-classification using gene expression data.  A modular network is used 

with each segment trained to discriminate one class from all others.  The 

results show that the new scheme can produce classification accuracies 

comparable with other newly developed sequential learning algorithms, SANN 

and FGAP-RBF.   

• The new batch algorithm is applied to multi-category micro-array gene 

expression data.  One-of-c encoding is used with each output unit trained to 

discriminate one class from all others.  Results show that the GN-TPA 

algorithm gives high classification accuracy comparable with SVM-OVO, which 

is the best SVM classifier. 

 

1.4  Organisation of the thesis 

The first two chapters introduce the background of the thesis.  The artificial neural 

network (ANN) as a structure for representing complex non-linear mappings is 

introduced together with different first and second order adaptive processes that 

enable them to learn about their environment.  The concept of generalization is 
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discussed with strategies for improving generalization.  Finally a brief overview of the 

bioinformatics area with an emphasis on gene expression data is discussed.  

Chapter three investigates the convergence and generalization behaviour of the 

tangent plane algorithm.  Comparative tests are performed using the standard back-

propagation algorithm.  The benchmark datasets used were N-bit parity, breast 

cancer and hearta.  Two problems with the tangent plane algorithm were identified, 

namely slow convergence in small networks and instability when handling inexact 

data.  Finally the differentiation and evolution of weight in networks trained by the 

tangent plane algorithm was investigated 

 

In chapter four, a new algorithm referred to as TPA-RTRL is developed for fully 

recurrent neural networks targeted at improving the stability of the tangent plane 

algorithm.  This new algorithm is similar to the GD-RTRL algorithm, differing from it in 

the treatment of the output unit and in the use of a global learning rate.  Suggestions 

were made to improve the computational complexity of the new algorithm.  

Comparative tests are performed on the new TPA-RTRL algorithm and the gradient 

descent based GD-RTRL algorithm.  The benchmark datasets used were pipelined 

Xor, the simple sequence problem, and the Henon map.     

 

In chapter five, a new algorithm referred to as iTPA is developed to overcome the 

difficulty with the second tangent plane algorithm, namely the tendency of the 

algorithm to produce large network structures.  Comparative tests were carried out on 

the new iTPA algorithm and the backpropagation algorithm.  The benchmark datasets 

used were two spirals, Henon map and housing price. 

 

In chapter six, a new algorithm referred to as GN-TPA is developed for small 

parsimonious networks.  Two difficulties with this new algorithm are identified, namely 
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instability due to the step size overshooting the error minimum and the computational 

complexity of the algorithm.   

In chapter seven, the new GN-TPA algorithm is applied to the Extreme Learning 

Machine in order to overcome the difficulties with the algorithm.  An additive technique 

for growing a neural network is used to improve the computational efficiency of the 

new algorithm.  Comparative tests are performed using two additive procedures, 

cascade and the orthogonal sequential training technique.  The benchmark datasets 

used were additive function, the Henon map and housing price.   

 

In chapter eight, two multi-category classification problems using gene expression 

profiling are described, GCM and Lymphoma, together with a gene selection method 

for reducing the number of genes required for accurate cancer classification.  

Comparative tests were carried out using three sequential learning algorithms, iTPA, 

SANN, and FGAP-RBF, and three batch learning algorithms, GN-TPA, ELM, and 

SVM-OVO.   

 

Finally the conclusions and future work are summarised in chapter nine. 
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Chapter 2                                                   

 

LITERATURE REVIEW 

 

The back-propagation algorithm is a popular method for training feed-forward 

multilayered neural networks.  It is easy to implement and computationally simple.  

The principal disadvantage of this learning method is its relatively slow rate of 

convergence in practical situations.  It also requires manual tuning by appropriate 

choice of learning and momentum rate parameters, a process which is carried out by 

trial and error.  Since one of the advantages of a neural network is the ease with 

which they may be applied to novel problems, it is essential to consider automated 

and robust learning methods with good performance on many classes of problems.  In 

this chapter, we review some first order and second order optimization techniques 

known to accelerate convergence.  Some of these methods require the adaptation of 

the parameters of the learning algorithm, whilst others use second order information 

about the error surface 

 

Artificial neural networks have been widely used in the fields of pattern classification 

and function approximation due to their adaptability and generalization capabilities, 

and unique power for non-linear mappings.  Generalization is the property of a neural 

network to produce the correct response to data previously unseen by the network but 

similar in some sense to data on which the network has been trained.  Good 

generalization performance is influenced by a number of factors such as the size of 

the training set, the size of the network, and whether the function to be learned is 

sufficiently smooth.  This chapter reviews some techniques used to improve 

generalization in neural networks.  These techniques include network building and 

pruning, weight regularization, principal component analysis and early stopping.   
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In the cancer classification area, micro-array gene expression profiling has attracted 

more attention than conventional techniques such as microscopic histology and 

tumour morphology due to recent advances in micro-array technologies.  Gene 

expression profiling allows for the monitoring of thousands of gene expression levels 

in any cell, cell line or tissue.  Hence it provides more information and more reliable 

classification accuracy.  There have been many classification methods used for 

cancer classification.  However, there are some characteristics of gene expression 

data that make them difficult tasks.  In this chapter we review some of the methods 

used for cancer classification with an emphasis on multi-category classification using 

gene expression data 

 

2.1  Artificial neural networks 

Artificial neural networks (ANNs) are complex structures for representing non-linear 

input-output mappings [6,15].  Their development has been inspired by the biological 

structure of the human brain.  The human brain is a complex non-linear parallel 

processing machine.  It has the capacity to organise its structural components, known 

as neurons, so as to perform computations much faster than modern computers 

today.  In much the same way, ANNs are composed of units called neurons that 

perform non-linear transformations on the input data.  These neurons are connected 

together by synaptic weights to form different layers; one input layer, one output layer, 

and one or more hidden layers.  Like the human brain, ANNs can acquire knowledge 

through learning, and that knowledge can be stored in the network.  ANNs can be 

classified into two different classes according to the way information flows through the 

network e.g. feed-forward neural networks, and recurrent neural networks.       
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 Fig 2.1.  An example of a feed-forward neural network with one hidden layer  

 

In feed-forward neural networks, the information flows in one direction from one layer 

to the next.  The neurons in the input layer supply information, or activations, to the 

inputs of the neurons in the first hidden layer.  The output signals of the neurons in the 

first hidden layer supply information, or activations, to the inputs of the neurons in the 

second hidden layer, and so on.  Typically the neurons in each layer receive inputs 

from the output of the neurons in the preceding layer.  Fig 2.1 illustrates the 

architecture of a multilayered feed-forward neural network (or multilayered 

perceptron).  This network is referred to as a 3-4-2 network because it has 3 input 

neurons, 4 hidden neurons, and 2 output neurons.  It is fully connected in the sense 

that every neuron in each layer is connected to every neuron in the next layer.   
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Another type of multilayered feed-forward structure has each neuron forming its own 

layer as illustrated in Fig 2.2.  The cascaded neurons each receive an input from the 

neurons in the previous layers together with an input from the original network inputs, 

and pass their output to the neuron in the next layer.  This cascade architecture was 

first proposed by Fahlman and Lebiere [7], and has been used successfully with many 

neural network problems that have proven very difficult for the standard back-

propagation algorithm to solve [8,9,16,17]   

 
 

  

 

 

 

+1 

Output layer 

Hidden layers 

Input layer 

Fig 2.2.  Cascade network architecture with three input units, two hidden units  

and one output unit 
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 Fig 2.3.  An example of a recurrent neural network with one layer.  The function  

 z-1 is the unit delay operator whose output is delayed with respect to the input by one 

time step i.e. ( )[ ] ( )1k
j

k
j

1 xxz −− =  where jx  is the jth  input and k  the time step.    

 

Recurrent neural networks on the other hand distinguish themselves by comprising at 

least one feedback loop.  For example, a recurrent neural network may consist of a 

single layer of neurons with each neuron feeding its output signal back to the inputs of 

the other neurons.  The presence of a feedback loop has a profound effect on the 

learning capacity as well as its performance [6].  The feedback loops can involve the 

use of unit delay operators that can result in a non-linear dynamic behaviour.  Thus, 

recurrent neural networks find greatest use in time series prediction problems [3,4,5].   
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2.2  Learning in artificial neural networks 

A neural network learns about its environment by an adaptive process whereby a 

series of adjustments are made to the synaptic connections, or weights, and bias 

levels.  Ideally, the network becomes more knowledgeable about its environment after 

each adaptive process.  We define the learning process in the context of neural 

networks as follows  [18]:   

 

Learning is a process by which the free parameters of a neural network are adapted 

through a process of stimulation by the environment in which the network is 

embedded.  The type of learning is determined by the manner in which the parameter 

changes take place.   

 

A prescribed set of well-defined rules for the solution of a learning problem is called a 

learning algorithm.  As one would expect, there is no single unique learning algorithm, 

but a diverse ‘tool-kit’ of algorithms each of which offers its own advantages.  

Basically, there are five different classes of learning rule: error-correction learning, 

memory-based learning, Hebbian learning, competitive learning, and Boltzmann 

learning.  This thesis is primarily concerned with algorithms that belong to the error-

correction class, specifically the tangent plane algorithm [2,14].  In error-correction 

learning, the input data is propagated forward through the network.  The output of the 

network is then compared with the desired output and the error calculated.  This error 

is then back-propagated through the network and used to adjust the weights so that 

the error decreases with each adaptive process.   
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2.2.1  First order methods and variants 

The method of steepest descent is an iterative procedure for obtaining the values of 

the parameters that minimise the error (or cost) function.  When applied to a neural 

network, this is equivalent to finding the values of the synaptic weights that connect 

the network units together.  Geometrically, the function specifies an error surface 

defined over weight space.  At each iteration of the steepest descent procedure, the 

weights are adjusted in the direction in which the error function decreases most 

rapidly.  This direction is given by the negative gradient of the error function at the 

current point in weight space.  The magnitude of the modification is proportional the 

magnitude of the error gradient.  The procedure can be written 

  ( )
( )

( )n
ji

n
kn

ji w
w

∂
∂

−=∆
ε

η  (2.1) 

where jiw∆  is the change to the weight jiw  that regulates the connection from unit 

iu  to ju , η  is a positive constant called the learning rate, kε  is the error function to 

be minimized, and n  the time step.  There are two main error functions, one is sum of 

square errors (SSE) and the other is the relative entropy function [19]  

 

Whilst the steepest descent method can be an efficient means for obtaining the 

weight values that minimize the error function, it can be very slow to converge in 

practical situations.  There are two reasons for this slow convergence [20].  First, the 

magnitude of the partial derivative of the error function may be such that modifying a 

weight will yield only a small change.  This occurs where the error surface is fairly flat 

along a weight dimension, which will produce a small derivative.  Alternatively, where 

the error surface is highly curved, the derivative is large in magnitude.  Thus the value 

of the adjustment may overshoot the error minimum.  Second, the direction of the 

negative gradient may not point towards the minimum of the error surface.  This is 
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illustrated in Fig. 2.4.  The error surface is drawn topographically using constant error 

contours.  The current weight vector is given by ( )nw .  Since the error surface is 

steeper along the ( )n
2w  weight dimension than the ( )n

1w  dimension, the derivative along 

this weight dimension will be larger. 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 2.4.  Error surface defined over two dimensional weight space  

 

A simple method of reducing the oscillations due to a large learning rate is to modify 

equation (2.1) as follows 
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where α  is a positive constant called the momentum term, and ( )1n
jiw −∆  the change 

applied to weight jiw  during the ( )th1n −  step.   
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According to Jacobs [20], the back-propagation algorithm with momentum is an 

exponentially weighted sum of the current and past partial derivatives of the error 

function.  For this algorithm to be convergent, the momentum constant must be 

restricted to the range 10 <≤ α .  Note that when α  is zero the back-propagation 

algorithm operates without momentum.  When consecutive derivatives of a weight 

have the same sign, the weight jiw  is adjusted by a large amount, and when 

consecutive derivatives possess opposite signs, this sum is adjusted by a small 

amount as above.  Thus, the inclusion of a momentum will either accelerate learning 

in a downhill direction, or have a stabilizing effect in directions that oscillate.  The 

momentum term may also have the benefit of preventing the learning process from 

terminating in a shallow minimum of the error surface.  

 

In view of the poor performance of the back-propagation steepest descent algorithm, 

it has been suggested that the value of the learning rate η  be adapted according to 

the contours of the error function [20,21,22,23].  The learning rate η  is then treated 

as another factor to alter the step size of the weight change on the error surface.  At 

present a number of strategies for adapting the learning rate can be found in the 

literature.  These strategies can be divided into two broad classes; global and local 

learning rate adaptation.  Global learning rate adaptation involves finding the proper 

value for the learning rate [21,24,25,26,27].  Local learning rate adaptation involves 

using independent learning rates for each adjustable weight in the network 

[20,28,29,30,31,32].  Two examples are discussed below   

 

In the first example, the learning rate is adapted for every training pattern.  

Schmidhuber’s algorithm [27] calculates a new learning rate for each training pattern 

and does not use a momentum term.  The new weight values are found by calculating 

the point of intersection of a line drawn in the steepest descent direction from the 
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current position to the zero error plane.  This is equivalent using a tangential hyper-

plane to locally approximate the error function.  Let kε  represent the error caused by 

some particular pattern, so that kε  is a function of the weights w .  Linearising the 

dependence of kε  on w  about some operating point ( )nw  

 '
kε ( w )  =  kε ( ( )nw ) + ( ( )nww − )  . kε∇ ( ( )nw ) (2.3) 

 

where =∇ kε  ( ijk w ,∂∂ε ), i,j∀  represents the gradient vector, and ba .  

represents the inner product of vectors a  and b .  We wish to find a zero of the error 

function kε , so 

 0  =  kε ( ( )nw ) + ( ( )nww − )  . kε∇ ( ( )nw ) (2.4) 

 

Let ( ) ( ) ( )nnn www −=∆ +1 .  From the method of steepest descent, the weights are 

adjusted according to ( ) ( )n
k

n εη∇−=∆w , so the value of η  that sets the linearised 

error '
kε  = 0 is given by 

 ( )
( )

( )( )2
i,j

ji
n

k

n
kn

w∑ ∂∂
=

ε

ε
η  (2.5)  

 

where i,j  range over all the weight indices.  For practical reasons it is necessary to 

define an upper limit maxη  for a single step.  There may also be some error surfaces 

that never reach the zero plane.  For these surfaces, a small constant value offε  is 

subtracted to make sure that the zero point exists.  Schmidhuber emphasized that his 

algorithm was able to escape from a local minima ( 00 kk ≈∇∧≠ εε ).  
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Unfortunately it is likely to result in very big updates that may corrupt the whole 

network in one step.  This strategy also can’t handle very big datasets where some 

wrongly classified training examples might exist.   

 

In the second example, each individual weight has a corresponding learning rate that 

is allowed to vary over time.  The Rprop (resilient back-propagation) algorithm [28] 

differs from other first order techniques in that the individual step-sizes ji∆  are 

independent of the magnitude of the partial derivatives jik w∂∂ε .  For each weight 

jiw , an individual step-size ji∆  is adjusted according to 
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 (2.6) 

 

After adjusting the step-sizes, the weight updates jiw∆  are determined.  The weight 

update rule can be written 

 ( )
( )

( )n
ji

ji

n
kn

ji w
sgnw ∆











∂
∂

−=∆
ε

 (2.7) 

 

where +− <<< ηη 10 , and ( ).sgn  is the sign function.  The principal benefit of 

this update scheme is that it removes the harmful influence of the size of the partial 

derivatives on the weight step.  Only the sign of the partial derivatives are used to find 

the proper update direction.  Further, the step sizes are adapted according to the 
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signs of the current and previous derivatives.  When the signs of successive 

derivatives are opposite, this means that the algorithm has jumped over a minimum 

and that the step size is too large.  On the other hand if two successive signs are 

equal, then the step size is not big enough and could be increased.  Finally, local 

back-tracking is usually applied to those weights when a change in the sign of the 

corresponding derivatives are detected 

 

Schiffmann et al [33] have made comparisons of different global and local adaptation 

techniques to accelerate learning, which are fixed learning rate adaptation, learning 

rate adaptation for each pattern [27], angle driven learning rate adaptation [21], the 

conjugate gradient method [36], Delta-bar-Delta [20], Rprop [28], Quickprop [32] and 

Cascade Correlation [7].  The benchmark dataset used was thyroid [34].  The results 

show that algorithms using local adaptation strategies outperform all global adaptive 

learning algorithms both in terms of training time and network performance.  On the 

other hand the back-propagation algorithm performing pattern by pattern updating 

outperforms all global adaptive learning algorithms.  Moreover, Rprop was the fastest 

algorithm that used a fixed topology.  According to training speed only Quickprop is 

comparable to Rprop.  The results also show that Rprop is robust with respect to its 

own internal parameters.  The cascade correlation algorithm outperforms all the other 

algorithms but is not directly comparable to them because it does not use a fixed 

topology.     
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2.2.2  Second-order optimization techniques  

In the sequential mode of learning, weight updating is performed after the 

presentation of each training example.  This mode of learning is also referred to as 

on-line, pattern, and stochastic mode.  In the batch mode of learning, weight updating 

is performed after the presentation of all the training examples.  There are several 

advantages in favour of each type of learning mode as outlined by Battiti [37].  One of 

the reasons in favour of sequential learning is that it possesses a degree of 

randomness that may help in escaping from a local minimum.  The fact that many 

large datasets contain redundant data has also been cited in favour of sequential 

learning, because many of the contributions to the gradient are similar, so waiting to 

collect all the gradient information together can be wasteful.  On the other hand, 

collecting all the gradient information together before the weights are updated can 

help to avoid the mutual interference of weight changes that occur with large learning 

rates.  Sequential methods may because of their degree of randomness, miss a 

perfectly good local minimum.  Even if the training data is redundant, sequential 

methods may be slow in comparison to batch methods that use second-order 

information.  Some second-order batch techniques show superior performance with 

respect to the standard back-propagation algorithm on problems with a limited 

number of weights (< 100), especially if high precision mappings are required.   

 

Newton’s method can be considered as the basic locally convergent method using 

second-order information.  It is based on using a second order Taylor expansion of 

the error function kε  about the current operating point w    

 kε ( ww ∆+ ) ≈  kε ( w ) + w∆∇ T
kε + ww ∆∇∆ k

2T

2
1 ε  (2.8) 
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and solving for the step w∆  that brings w to a point where the gradient is zero.  This 

corresponds to solving the following linear system 

 

 kk
2 εε ∇−=∆∇ w  (2.9) 

 

Generally speaking, Newton’s method converges quickly to a solution and does not 

exhibit the zigzagging behaviour that characterises the steepest descent method.  

The main problems that can arise with Newton’s method is when the Hessian k
2ε∇  is 

not positive definite (i.e. the directional derivative 02 <∆∇∆ ww k
T ε ), or when the 

Hessian is singular or ill-conditioned.  If the Hessian is not positive definite, there 

exists directions w∆  of negative curvature that would suggest an infinite number of 

steps to minimise the error function.  This behaviour is not uncommon in neural 

networks: in some cases large steps push units into saturation resulting in very small 

second order derivatives.   

 

When the Hessian matrix is not positive definite and well conditioned, Newton’s 

method cannot be used without modifications.  This can be explained by examining 

the eigenvalues of the Hessian.  Writing the Hessian using a spectral decomposition, 

we have 

 ∑
=

Λ==∇
n

i

T
iiii

T
k

1

2 uuUU Λε  (2.10) 

 

where Λ  is a diagonal matrix whose diagonal elements iiΛ  are the eigenvalues of 

the Hessian, and U  is a matrix whose columns are the orthogonal set of eigenvectors 

associated with the eigenvalues.  It is easy to see that, if some of the eigenvalues are 

close to zero, the inverse matrix will have eigenvalues close to infinity, a sure source 
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of numerical problems.  If one of the eigenvalues is negative, the error function does 

not have a minimum because large movements in the direction of the corresponding 

eigenvector decrease the error value to arbitrary negative values. 

 

A recommended strategy for changing the Hessian in order to avoid these difficulties 

is that of summing it to a diagonal matrix of the form Ikµ  so that Ikk
2 µε +∇  is 

positive definite and well-conditioned.  A proper value for kµ  can be found using the 

modified Cholesky factorisation found in Gill et al [38].  The Cholesky factors of a 

positive definite matrix can be considered as a sort of square root of the matrix.  The 

original matrix is expressed as the product TLDL , where L  is a lower triangular 

matrix with 1’s on the leading diagonal, and D  is a diagonal matrix with positive 

diagonal elements.  Taking the square root of the diagonal elements using them to 

form the matrix 2
1D , the original matrix can be written as TT ˆˆ2

1
2

1 LLLDDL = , where 

L̂  is a general lower triangular matrix.  If the original matrix is not positive definite, the 

factorization can be modified in order to obtain factors D  with all diagonal elements 

positive.  The factorization corresponds to the original factors of the Hessian, and 

differing from it by adding a diagonal matrix with non-negative elements.  

 

If the error function to be minimised is the sum of error squares, ∑ =
=

m

p pk e
1

2
2
1ε , 

where pe  is the error of the pth  input pattern, learning a set of examples consists of 

solving a non-linear least squares problem for which special methods have been 

devised.  Two of these methods are now described: the Gauss-Newton method, and 

the Levenberg-Marquardt method.  
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Let the error signal pe  be a function of the weight vector nR∈w .  The gradient and 

Hessian matrix of kε  are given by 

 

 eJ T
e

m

p
ppk =∇=∇ ∑

=1
eeε  (2.11) 

 and 

 

[ ]

SJJ +=
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=

e
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p
ppk ee

1

2T
pp

2 eeε

 (2.12) 

 

where eJ  is the Jacobian matrix [ jw∂∂ e ], e  is a vector of errors pe , and S  is that 

part of the Hessian containing the second derivatives of e , that is, ∑ ∇=
p pp ee 2S .  

For small residual problems (i.e. small values of pe ), the second order part S  is 

negligible, and Newton’s method can be written  

  

 =∆w - [ e
T
e JJ ] eJ T

e
1−  (2.13) 

 

It can be shown that this step is completely equivalent to minimizing the error obtained 

using a first order Taylor expansion of the error, 'e .  The updated weight vector is 

then defined by 

 { }''
2
1min eew

w

T=  (2.14) 

Equation (2.13) defines the Gauss-Newton method.  The term e
T
e JJ  in the Gauss-

Newton method is a low computational approximation of the Hessian matrix.  It is 

sufficiently accurate for small residual problems.  Therefore, the Gauss-Newton 
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method has quadratic or second order convergence as the minimum on the error 

surface is approached.  Meyer [39] has shown that the convergence of the Gauss-

Newton method is superlinear (i.e. || ( )1+te ||/|| ( )te || 0→ , ∞→t ) whenever 0→S , 

otherwise it is only first order. 

 

The only problem that can arise with equation (2.12) is the Jacobian matrix eJ  being 

rank deficient, and hence e
T
e JJ  is singular.  The Levenberg-Marquardt (LM) method 

[40] incorporates a technique for dealing with a rank deficient eJ , and is effective for 

small residual problems.  In this method a diagonal matrix Iµ  is added to e
T
e JJ , 

where µ  is a small positive constant and I  the unit matrix.  When 0=µ , w∆  is 

given by [ e
T
e JJ ] 1− eJ T

e .  As ∞→µ , the effect of the term Iµ  increasingly 

dominates that of e
T
e JJ  so that eJw T

e
1−→∆ µ , which represents an infinitesimal 

step in the steepest descent direction.   

 

Fletcher [41] has improved the LM method by providing a strategy for selecting µ .  

To decide whether to change µ  in the next iteration, he compares the actual 

reduction in the cost function with that predicted by assuming that the cost function is 

quadratic.  If this ratio is in the region of 1 then the cost function is behaving 

quadratically and µ  should be reduced.  On the other hand, if it is close to zero (a 

sign of poor progress), it should be increased.  Wilamowski et al [42] have further 

improved the LM method by introducing a modified cost function.  The LM method 

requires the inversion of a e
T
e JJ  square matrix, which is not practical in large 

networks.  Utilising a modified cost function and using the matrix inversion lemma 

produces a substantial reduction in complexity and memory usage  
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2.3  Generalization capabilities of artificial neural networks 

A neural network is said to generalize well when the output computed by the network 

is correct for test data not used in training the network.  Here it is assumed that the 

test data is drawn from the same population as the training data.  If the learning 

process is viewed as a curve fitting problem then the neural network itself may be 

considered as a non-linear input-output mapping.  Such a viewpoint then permits us to 

look on generalization simply as the effect of good non-linear interpolation.  Neural 

networks can perform useful interpolation because multilayer neurons with continuous 

activation functions lead to output functions that are also continuous [43].   

 

A neural network that generalizes well will produce a correct input-output mapping 

even when the test data is slightly different from the examples used to train the 

network.  However, when a neural network learns too many input-output examples the 

network may end up memorising the training data.  It may do so by finding a feature in 

the training data such as noise that is not present in the underlying function.  Such a 

phenomenon is referred to as overfitting or overtraining.  When a network is 

overtrained it loses its ability to generalize between similar input-output patterns 

 

Good generalization performance in a neural network is influenced by a number of 

different factors; the size of the training set, the size of the network and the complexity 

of the problem at hand [6].   

 

• The training set size must be sufficiently large to provide enough information 

to learn the underlying function.  Generalization may fail if there are hidden 

variables affecting the training data that are not shown to the network or if 

noise has swamped the available information.   
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• A neural network that is too small may fail to learn the underlying function, that 

is, it will underfit the training data.  However, a network that is too large may 

tend to overfit the training data and thus generalize poorly to new data.  Thus, 

there is a trade-off between underfitting and overfitting.   

• The underlying function must be sufficiently smooth.  A network can learn 

functions with a finite number of discontinuities but not totally chaotic or 

random functions. 

 

A number of different strategies can be found in the literature for improving 

generalization in neural networks.  The Vapnik-Chervonenkis (VC) dimension 

provides theoretical worst case estimates for the size of the training set required for a 

good generalization [44].  To limit the effect of size on a neural network, you can 

either use additive, subtractive, or regularization methods.  Additive methods start with 

a small network and insert new units until it can represent the required function [7,8,9].  

Subtractive methods remove superfluous weights from a fully trained network [10,11].  

Regularization methods use a network with a large number of weights, and impose 

constraints on each weight in addition to error minimization.  Examples of 

regularization are weight sharing, and weight decay [12,13].  The onset of overfitting 

can be identified using a validation set of unseen data, similar in some sense to the 

data used to train the network.  Training is then stopped before convergence occurs 

to avoid overfitting.   
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2.3.1  Constructive techniques  

Constructive methods start out with a small network and then add new units and 

connections until the network can represent the required function.  Perhaps the most 

notable example of constructive methods is the Cascade Correlation algorithm 

proposed by Fahlman and Lebiere [7].  The cascade correlation algorithm increases 

the size of the network by adding new units and layers.  There are two distinctive 

features to the cascade correlation algorithm.  First, the cascade architecture.  This 

means that all the hidden units are added to the network one at a time, each on a 

separate hidden layer.  The cascade structure leads to the creation of powerful high-

order feature detectors and to very deep networks.  Second, the objective function 

used to train the new hidden units.  For each new hidden unit, the cascade-correlation 

process aims to maximize the magnitude of the correlation between the hidden units 

output and the residual network error signal.  The cascade-correlation architecture 

thus has several advantages over conventional back-propagation; it learns very 

quickly, the network determines its own size, it preserves its structure even if the 

training set changes, it does not require back-propagating error signals, and only one 

layer of weights are trained at a time.   

 

There are many constructive methods described in the literature for building Radial 

Basis Function (RBF) networks.  In the procedure proposed by Chen et al [45], the 

training data points are considered as candidate RBF centres.  The RBF centres are 

selected one by one using the orthogonal least squares (OLS) method.  The OLS 

method has the property that each selected centre maximizes the contribution of the 

RBF network to desired output variance, and it does not suffer from numerical ill-

conditioning.  In [46], a constructive method was described named the Resource 

Allocation Network (RAN) which adds hidden units sequentially based on the novelty 

of the input data.  A new input pattern is considered as novel if that sample is far away 
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from existing centres and if the output error is large.  If the input pattern does not pass 

the criteria for novelty, then no hidden unit is added and the network is trained using 

the OLS method.  In [47] a new method for RBF networks named GAP-RBF was 

described which adds and prunes hidden units based on a simple estimate of the 

significance of centres.  The significance of a unit is the error that results from 

removing that unit from the network over all inputs seen so far.  Results for GAP-RBF 

show it can achieve a smaller network realized by RAN, and that it achieves higher 

classification accuracies and better generalization.     

 

Zhang et al [22] proposed an orthogonal sequential technique for single hidden 

layered neural networks based on the OLS method. The procedure starts with a 

single hidden unit and sequentially increases the number of hidden units in a single 

hidden layer until the error is sufficiently small.  When adding a new hidden unit, it is 

the component of the output that is perpendicular to the space spanned by the 

outputs of previously added hidden units that is used to train the network.  The Gram-

Schmidt method is used at each step to construct a set of orthogonal bases for the 

space spanned by the outputs of the hidden units.  Two training examples were used 

to test the sequential training technique.  In the first example, a function approximation 

problem was modelled using an RBF network.  The results indicate that the RBF 

network with centres selected through optimization performs better than with centres 

selected using OLS method proposed by Chen et al [45].  In the second example, 

time-series data obtained from [48] was modelled using a single hidden layer neural 

network having different activations; linear, sigmoid, and Gaussian.  The results 

indicate that the orthogonal sequential training technique constructs small 

parsimonious networks capable of good generalization.   
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2.3.2 Network pruning techniques  

An alternative method to adjusting the size of a neural network is to start with a large 

network that overfits the input data and remove the subset of synaptic weights that 

result in the smallest increase in error.  Sietsma and Dow [49] analyzed this by 

examining all neurons under the presentation of the entire training set and removing 

only those neurons that did not change during training.  Although this technique 

produced good generalization results in small networks it was far too exhaustive an 

approach for training large neural networks.  Mozer and Smolensky [50] introduced 

the idea of estimating the sensitivity of the network to the removal of a synaptic 

weight.  This was achieved by associating a sensitivity value with each weight 

calculated from the gradient of the error function.  They reasoned that weights with 

the smallest sensitivity values had the least effect on the network output and could 

therefore be removed from the network.  LeCun [10] proposed an alternative 

approach called Optimal Brain Damage (OBD) for calculating the sensitivity values of 

the synaptic weights.  He used a Taylor series to expand the error function about the 

error minimum and then applied a quadratic approximation to remove any high order 

terms from the resulting expansion.  This produced saliency values dependent on the 

second order derivatives of the error function.  Once again the synaptic weights with 

the smallest saliency values were the likeliest candidates for network pruning. The 

main disadvantage of pruning techniques are that they require training down to the 

error minimum before pruning can occur.  This frequently produces massive 

overfitting which often cannot be repaired by subsequent pruning.  The autoprune 

method [50] avoids this problem.  Its weight importance coefficients are defined by a 

test statistic for the assumption that a weight becomes zero during the training 

process.  Connections with a small test statistic can be pruned.  Finnoff et al [52] has 

shown that autoprune is superior to OBD.    
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2.3.3 Other techniques for improving generalization  

Overfitting can also be avoided by reducing the complexity of the data in the input 

data set.  A technique called Principal Component Analysis (PCA) can be used to 

project the input vectors onto a vector space whose basis is described by the 

eigenvectors of an input correlation matrix.  The reduction is achieved by choosing the 

principal components of the input vectors that have the largest variance.  There are 

many examples of architectures performing PCA in the literature [54,55,56,57,58].  

For example, the well-known generalized hebbian algorithm (GHA) proposed by 

Sanger [56], and the adaptive principal component extractor (APEX) proposed by 

Kung and Diamantaras [57].  Both are extensions of Oja’s principal component 

neuron [55].  Fiori [58] applied these algorithms together with the new ψ-APEX to 20 

datasets containing 5,000 samples.  The results show that ψ-APEX and GHA give the 

best results when the eigenvalues of the correlation matrix are spread wide apart, 

otherwise they are the same.       

 

Excessive training also contributes to poor generalization in neural networks.  A 

technique called cross validation [59] can be used to detect the onset of overfitting 

during the training stage, training can then be terminated to prevent overfitting from 

developing.  Prechelt [53] investigated cross validation using three different stopping 

criteria; the generalization loss on the validation data, the progress on the training set, 

and the ratio of the generalization loss to the progress made.  He found that the 

slowest stopping criteria produced best generalization results but this was at the 

expense of much longer training times.  Levin [60] investigated the effect of using 

different generalization measures on validation data in thin-plate spline RBF networks.  

When the mean squared error was used he found that the generalization error did not 

increase as expected when the network started to overfit the data.  This was because 

the error measure used penalized networks that produced only a few erroneous 
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results.  He proposed the use of a new error measure based on the median of the 

absolute error.  The median tends to reduce the effects of a few erroneous results on 

the overall sample average. 

 

A novel approach to obtaining the right size network for good generalization was 

proposed by Lee [14].  Lee suggested growing the weights of the network from almost 

zero initial values with the expectation that only the necessary number of weights 

would be activated.  One of the difficulties of starting the training under these initial 

values is that the direction of the gradient vector at a point close to the origin in weight 

space is approximately along the direction of the axis defined by the output unit’s bias 

weight.  Iterative methods based on steepest descent would therefore adapt only the 

output unit bias weight of the network.  Lee suggested using the tangent plane 

algorithm as a starting point [10].  The tangent plane algorithm defines not just a 

single direction to move on being presented with a item of training data, but a whole 

plane of directions to move towards.  The efficiency of the algorithm should not be 

impaired too much if a nearby point on the tangent plane is chosen, displaced 

somewhat in the direction away from the origin.  Lee applied this approach to the 

Wisconsin State breast cancer diagnosis problem [34], and the Nettalk data [62].  The 

results were very promising and comparable to those previously obtained on these 

datasets.  Further, the second tangent plane algorithm gives improved generalization 

independent of network size whist retaining the fast convergence speed and high 

classification accuracy of the original tangent plane method.  A detailed description of 

the second tangent plane algorithm is presented in chapter 3 together with 

suggestions for improvements.  The results of simulation tests will also be presented.  
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2.4  Multi-category classification using gene expression data 

Bioinformatics is defined as the storage and manipulation of biological information 

[63].  Luscombe [64] defines bioinformatics as conceptualising biology in terms of 

molecules and applying informatics techniques to understand and organise the 

information associated with these molecules on a large scale.  One aspect of 

bioinformatics is the analysis of biological data.  This involves gene identification and 

prediction, gene structure prediction, and the investigation of macro structures such 

as secondary and tertiary protein structures, and examining protein geometries using 

distance and angle measures.   Another aspect of bioinformatics is the biological data 

itself.  One property of biological data is the extremely large amount.  For example a 

DNA sequence of genes comprises strings of four base letters, each gene 1,000 

bases long.  The GenBank [65] repository holds more than 12.5 million bases in 115 

million entries.   

 

The intensive interest in bioinformatics has been driven by the emergence of 

experimental techniques that generate a great amount of data, such as DNA 

sequencing, mass spectrometry and micro-array expression analysis [66].  These 

problems are so large that they are impossible to analyse manually.  Micro-array 

technologies [67,68] allow the monitoring of gene expression levels of thousands of 

genes simultaneously in any given cell, cell line or human tissue.  The study of micro-

array technology has attracted more interest and has been an important factor in 

bioinformatics research during recent years [69,70,71].  There are many classification 

methods being used for cancer classification both from statistical and machine based 

learning, but some characteristics of gene expression make this task very difficult.  

First, gene expression data usually has a high dimensionality, which often contains 

thousands of genes.  This can cause a great computational overload.  Second, the 

size of the samples is usually very small, often below 100.  A low ratio between 
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training sample size and number of genes results in a very sparse input space, which 

makes accurate classification very difficult.  Third, most of the genes are irrelevant to 

cancer classification, and simply add back-ground noise to any analysis carried out. 

 

There has been a number of classification methods used for cancer classification both 

from statistical and machine learning.  These methods include k-nearest neighbour 

[66,72], linear discriminant analysis [68,70,72], and support vector machines 

[73,74,75].  Nearest neighbour methods are based on some distance function of a 

pair of patterns, such as the Euclidean distance.  The k-nearest neighbour rule 

proceeds as follows.  For each pattern in the test set, find the k-nearest patterns in the 

training set, and predict the class of the pattern by majority vote, that is choose the 

class that is most common among the k-nearest neighbours.  Linear discriminant 

analysis is a method that finds the linear combinations of features which best separate 

two or more classes.  The resulting combination can be used as a linear classifier or, 

more commonly, for dimensionality reduction.  Fisher linear discriminant analysis is 

based on finding linear combinations of pattern vectors with large ratios of between-

class to within-class sum of squares.  This measure is in some sense a measure of 

the signal to noise ratio for the class labelling.  One of the first applications of 

discriminant methods to gene expression data was the weighted voting scheme [70].  

In this method a sample is assigned to a particular class according to the weighted 

distance between it and the nearest class mean vector.  Support vector machines 

map the input space into a higher dimensional feature space so that the data is 

linearly separable into two classes.  This separation is achieved by constraining the 

Euclidean norm of the weight vector.   

 

Over the past few years binary classification methods using gene expression data has 

been studied intensively [66,68,70,73,74,76,77,78].   These studies indicate that multi-

class problems are far more difficult than binary ones and classification accuracies 
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drop off sharply as the number of classes increases.  Ramaswamy et al [74] applied 

an SVM algorithm for the analysis of gene expression data on 14 different tumours in 

the GCM dataset.  For a c-category classification problem, c binary classifiers were 

used each to discriminate one class from all others.  This method has potential 

drawbacks when there is considerable overlap between classes in pattern space.  The 

results are very promising in relation to k-nearest neighbour and weighted voting 

methods.  Yeang et al [69] have made a comparison of three binary classification 

methods, k-nearest neighbour, weighted voting and support vector machines.  Three 

combinatory schemes were used, one-versus-all, one-versus-one, and hierarchical 

partitioning.  The results show that all the support vector machines produced the best 

results when all the genes were used.  For the k-nearest neighbour and weighted 

voting methods, one-versus-one tended to outperform one-versus-all when a fixed 

number of genes were used.  Dudoit et al [72] made a comparison of linear 

discriminant methods, nearest neighbour classifiers, decision trees and aggregation 

methods.  Three datasets were used, lymphoma, leukaemia, and NCI60.  The results 

show that the k-nearest neighbour method and diagonal linear discriminant method 

had the lowest test set errors, and that the Fisher discriminant method had the highest 

test set error.  Stratnikov et al [78] presents a comprehensive evaluation of several 

multi-category classification methods including SVM, k-nearest neighbour, weighted 

voting and a back-propagation neural network.  The study used nine multi-category 

datasets and two binary datasets; GCM dataset, brain tumour dataset, leukaemia 

dataset, MLL dataset, lung cancer dataset, SRBCT dataset, prostrate tumour dataset 

and DLBCL dataset.  The results show that SVM classifiers were the best performers 

with and without gene selection, and that weighted voting and decision tree methods 

were the worst; the back-propagation neural network ranked in the middle.   

 

Neural network classifiers are well established for their unique capability to map the 

input space non-linearly into a higher dimensional feature space so that the data is 
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linearly separable into numerous different classes.  Compared with SVM, neural 

networks can map the input space directly into a number of different classes, while 

SVM maps the input data so that it is separable into 2 classes.  This particular 

property of neural networks to accommodate the non-linear features of expression 

data might actually reduce the number genes required for accurate classification, 

which is reducing the dimensionality of the classification problem.  For linear 

algorithms, more genes are required to form a higher dimensional space for the 

separation.  The first application of ANN for cancer classification using gene 

expression data is presented in [79].  Khan et al. used a two hidden layered feed-

forward neural network to classify small, round blue-cell tumours into four categories.  

The ANN method correctly classified all the samples that present difficulties in clinical 

diagnosis methods.  In Linder et al [77] a new neural network algorithm was 

developed for multi-category classification using gene expression data.  This method 

uses a simple ANN to perform a pre-selection at the first stage.  At this stage a simple 

ANN narrows the choice down to two preferred classes with the highest activities in 

the output neurons.  A subsequent ANN (SANN) is applied for the final decision on 

these two selected classes.  Linder have applied to the GCM dataset with very good 

results.  The results show that SANN beats the best classifier as described in [74] but 

it causes a great increase in network complexity and very slow convergence.  

Therefore, faster and more efficient neural network algorithms are needed that are 

capable of high classification accuracy.  In the next chapter we investigate a fast 

sequential algorithm for training neural networks. 
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Chapter 3 

 

COMPREHENSIVE EVALUATION OF THE TANGENT PLANE ALGORITHM 

 

In Lee [14], an algorithm is described for supervised learning in multilayered feed-

forward neural networks.  This second tangent plane algorithm uses the target values 

of the training data to define a surface in the weight space of the network.  The 

weights are updated by moving to the tangent plane to this surface.  It differs to more 

conventional gradient descent based learning methods by accepting almost zero initial 

conditions with the expectation that only the minimum number of weights will be 

activated.  It has been shown to give improved generalization and significantly faster 

convergence relative to the standard back-propagation algorithm on benchmark 

classification problems.  

 

In this chapter, the performance of the second tangent plane algorithm is evaluated 

for classification and function approximation tasks and compared with the back-

propagation algorithm.  Two limitations of the second tangent plane algorithm are 

identified.  First, the performance of the second tangent plane algorithm is no better 

than the backpropagation algorithm in small parsimonious networks where 

generalization is found to be best.  Second, the second tangent plane algorithm 

frequently fails to converge when the training data is corrupted by adding a small 

amount of random noise to the teaching values.  Finally, the differentiation and 

evolution of weights in neural networks trained by the second tangent plane algorithm 

is investigated.  Histograms of weight importance coefficients are used to evaluate the 

effectiveness of growing the weights from small initial values as a method for 

improving generalization.  
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3.1  Description of the tangent plane algorithm 

A neural network must have the right size for good generalization.  Networks that 

are too small cannot fit the required function, whereas networks that are too large 

are prone to overfitting [82].  There are several approaches to determine the correct 

size for a network.  In Lee [14] a method was described that grows the weights from 

almost zero initial conditions in the expectation that only the necessary number of 

weights would be activated.  Lee used the first tangent plane algorithm [2] as a 

starting point, for instead of determining a single direction to move on in weight 

space, it determines a plane of suitable points to move to.  The first tangent plane 

algorithm is a fast method of training a feed-forward neural network.  It avoids 

inappropriate step sizes by treating each training value as a constraint that defines a 

surface in weight space.  The weights are then adjusted by moving from the current 

position to the tangent plane to this surface.  The second tangent plane algorithm 

adjusts the weights by moving from the current position to a point close to the foot of 

the perpendicular, but displaced somewhat in the direction away from the origin.  

This directional component of movement helps to push the network weights away 

from the origin where the convergence speed of the tangent plane algorithm, and 

other steepest descent methods, is known to be very slow [2].  In the region of 

weight space close to the origin the axis defined by the weight from the constant 

output bias is very nearly perpendicular to all the constraint surfaces.  Thus the 

tangent plane algorithm gives movement up and down this axis satisfying the 

constraints on the weights by adjusting this weight only. 

 

In the next section we describe the derivation of the tangent plane algorithm and the 

steps involved in the training procedure.  In the following section we describe the 

weight elimination procedure used to measure weight importance values and in the 

last section the simulation results. 
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3.1.1 Derivation of the tangent plane algorithm 

The basic structure of a feed-forward neural network is shown in Fig 3.1.  It consists 

of an input layer of units that supply information, or activations, to the inputs of units 

in the first hidden layer.  These in turn supply activations to inputs of units in the next 

layer, and so on.  Typically the units in each layer receive inputs from the output of 

the units in the preceding layer.  Let jiw  denote the weight between unit iu  and ju .  

jφ  and jθ  will be the input and output of ju , so that fj =θ ( jφ ) and ∑= i ijij w θφ  

for some monotonic function f .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let ku  be trained to mimic the target value ky .  The tangent plane algorithm adjusts 

the weights by moving at an angle β  to the perpendicular from a  to the tangent 
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Fig. 3.1. The structure of a feed-forward neural network  
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and parallel to the axis defined by the output unit’s bias weight 0kw  meets this 

surface (see Fig. 3.2). 
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Let n̂  be the unit normal to the surface at b , so kkˆ φφ ∇∇=n .  The length of the 

perpendicular from a  to the tangent plane at b  is ( ) nab ˆ.− .  If c  is the foot of the 

perpendicular from a  to the tangent plane at b ,  
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The vector parallel to the tangent plane and directed away from origin at a  is 

( )nn.aam ˆˆ−= .  Thus, if nR∈d  is the point of intersection with the tangent plane 

of a line from a  inclined at angle β  to the perpendicular, then 
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So, to adjust a given weight jiw  
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The term jik w∂∂φ  is the partial derivative of the net input to the output unit.  This 

derivative is evaluated at point "w  on the constraint surface, not at the current 

position 'w  in weight space.  The treatment of this term follows from the back-

propagation rule e.g. 
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  where jM  is the set of units to which ju  passes its output 

 

The second tangent plane algorithm requires a parameter βtan  that needs to be 

set manually.  This parameter is the tangent of the angle between the movement 
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vector and the perpendicular from the current position to tangent plane.  Preliminary 

tests showed that the algorithm was not particularly sensitive to the exact value 

chosen.  The only difficulty with βtan  is that very large values may result in units 

being forced into saturation which will slow down the learning.  Lee suggests a 

modification to the second tangent plane algorithm that involves reversing the 

outwards push when the average of the absolute values of the weights w  increases 

above 1.0.  This was achieved by multiplying βtan  by the term (1 – w ).  This may 

give the second tangent plane algorithm an advantage over the standard back-

propagation algorithm as there is no mechanism in this method for reducing large 

weight sizes should they occur.  However, there exists a potential danger that sign 

changes in the term ( ) ×− w1 βtan  will cause oscillatory movement across the 

boundary of the region w  < 1.0, which will slow down convergence  

 

3.2  Implementation of the procedure 

The following section is included to clarify the procedure for updating the weights of 

a network trained using the tangent plane algorithm 
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4.   Calculate the components of the vector m   
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Note: the second tangent plane algorithm reverts to the first tangent plane algorithm 

when the angle parameter β is set to zero 

 

3.3  Estimating weight  sensitivity values 

Despite the success of the tangent plane algorithm there is strong evidence to 

suggest that large weight values can harm generalization.  Excessively large 

weights feeding into output units can cause wild outputs far beyond the range of the 

data if an output activation function is not included.  To put it another way, large 

weights can cause excessively large variances in the output.  According to Bartlett 

[83], the size of the weights is more important than the number of weights in 

determining good generalization.  This poses the following question: is the strategy 

of growing weights actually harmful to generalization.  One approach might be to 
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measure the significance or importance of each weight, as the magnitude of the 

weights is not the best measure of their contribution to the training process [11].   

 

There are several methods suggested for calculating the importance of connection 

weights.  Karnin [12] measures the sensitivity jiS  of each weight by monitoring the 

sum of all the changes to the weights during training.  Thus the saliency of a weight 

is given as ( ) ( )∑ ∆∂∂−=
t

t
jiji

t
kji wwŜ ε f

jiw  / ( 0
ji

f
ji ww − ), where t  are the number of 

epochs trained, f
jiw  and 0

jiw  are the final and initial values of weight jiw .  Le Cun et 

al [10] measure the saliency of a weight by estimating the second derivative of the 

error.  They also reduce the network complexity by constraining certain weights to 

be equal.  Low saliency means low importance of the weights.  A more sophisticated 

approach avoids the drawbacks of approximating the second derivatives by 

computing them exactly [11].       

 

The last two methods have the disadvantage of requiring training down to the error 

minimum.  The autoprune method [15] avoids this problem.  It uses a statistic T  to 

allocate an importance coefficient to each weight based upon the assumption that a 

weight becomes zero during the training process 
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In the above formula, sums are over all training examples t of the training set, and 

the overline means arithmetic mean over all examples.  A large value of T  indicates 

high importance of weight jiw . 

 



Chapter 3 : Comprehensive evaluation of the tangent plane algorithm 

-47- 

3.4  Simulations and results 

Comparative tests were performed on the first and second tangent plane algorithm 

and the back-propagation algorithm under a variety of initial conditions and using 

different network sizes.  The benchmark datasets sets used were regression and 

classification problems.  Classification problems involve a decision making task 

where the output fits into well-defined categories.  The classification tasks chosen 

were N-bit parity and cancer.  Regression problems involve the approximation of a 

continuous valued function.  The regression problem chosen was hearta.  All the 

datasets are from the UCI machine learning repository and made available in the 

Proben1 collection [34], except N-bit parity which has already been used in the 

paper on the tangent plane algorithm [2].   

 

The N-bit parity problem was used to analyse the convergence behaviour of the first 

tangent plane algorithm.  Tests were performed under a variety of conditions with 

respect to the network size for this purpose.  Further tests were performed by 

adding noise to the teaching variables to analyse the ability of the tangent plane 

algorithm to converge to a compromise solution with fuzzy data.  Network training 

was terminated after the error was reduced to below a preset value or the maximum 

number of epochs was reached  

 

The hearta and breast cancer problems were used to determine the degree to which 

the second tangent plane algorithm would generalize from the given data.  Tests 

were performed using different sized networks for this purpose.  Network training 

was terminated using the method of early stopping as this method is known to help 

avoid overfitting.   
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3.4.1 Network initialization 

The algorithms require parameters to be set manually.  Preliminary tests showed 

that the best results were obtained with the parameters set as follows.  First, the 

tangent plane algorithm.  For N-bit parity, βtan = 0.  The input weights were set to 

random values in [-1,1].  For the hearta and breast cancer problems, βtan = 0.1 and 

0.02 respectively.  The input weights were set to random values in the range [-

0.01,0.01].  Next, the gradient descent back-propagation algorithm.  For N-bit parity, 

η = 0.01, and α = 0.7.  For the breast cancer problem, η = 0.01, and α = 0.7.  For 

the hearta problem, η = 0.01, and α = 0.3.  The input weights were set to random 

values in the range [-1,1].   

 

3.4.2 Simulation problems 

The N-bit parity problem has N inputs and one output.  The inputs are now data bits 

(a data word) and the output is the parity bit.  The parity bit is set to be +1 if the total 

number of high bits in the data word is odd; otherwise it is set to -1.  In the 

simulation there are 6 data bits (N = 6).  All possible combinations are gone through 

(26 = 64).  Thus, the number of training examples is 64.  Since there were no testing 

examples available, the generalization properties of the network cannot be tested 

quantitatively. 

 

The hearta problem is an analogue version of the heart disease diagnosis problem 

from the UCI machine learning repository [61].  The single continuous output 

predicts heart disease and decides the number of major vessels which are reduced 

in diameter by less than 50%.  The decision is made based upon 13 input attributes 

which include age, sex, smoking habits, and subjective pain descriptions, and so on.  

The hearta dataset comprises 690 training examples and 230 testing examples.   
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The cancer problem contains some diagnosis results for breast cancer.  Based on 

cell descriptions gathered by microscopic examination, a tumour is classified as 

benign or malignant.  The dataset was created based upon the breast cancer 

Wisconsin problem dataset from the UCI machine learning repository [61].  The 

output represents the classification result for the purpose of breast cancer diagnosis.  

The decision is based on nine input attributes which include cell thickness, the 

uniformity of cell size, and cell shape.  The number of training samples is 200 and 

the number of testing samples is 167. 

 

3.4.3 Error metrics used to determine convergence 

The error metrics used in the simulations were CERR (Classification ERRor) for 

classification problems, and NMSE (Normalized Mean Square Error) for regression 

problems e.g.   

 ( ) ( )∑ −=
i

kiki sgnysgn
m2
1CERR θ   (3.9) 

 and 

 ( )2

2

1 ∑ −=
i

kikiy
m

NMSE θ
σ

 (3.10) 

 

where m  is the number of training patterns, kiy  is the target output of the ith  input 

pattern, kiθ  is the ith  network output, sgn   is the sign function of a number ( i.e. if 

the number if negative, then the sgn  function returns -1, otherwise it returns +1), 

and 2σ  is the variance of the target output data.   

 

3.4.4 Discussion of results 

N-bit parity. The first test is a generalization of Xor with N set to 6.  In this test the 

convergence behaviour of the first tangent plane algorithm was compared with the 
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back-propagation algorithm.  A standard two hidden layer network was used with 6 

inputs, and one output.  The number of units in each hidden layers was increased 

from 10 to 40 units in steps of 10.  20 trials were carried out with the mean number 

of steps to converge, standard deviation, and number of successful trials recorded.  

Network training was terminated when the number of presentations of the entire 

dataset exceeded 1,000, or when the classification error was reduced to 5 x 10-2.  A 

further test was carried out with training terminated when the error was reduced to 

zero to give a harder measure of convergence 

 

The results are tabulated in Table 3.1a and 3.1b.  It was found that the tangent 

plane algorithm converged faster than the back-propagation algorithm, except in the 

smallest network where the convergence speed was slower and there were more 

failed trials.  The most significant gains were made by the tangent plane algorithm in 

the largest networks when reducing the classification error to zero, the slow 

asymptotic behaviour of the back-propagation algorithm producing very slow 

convergence.   Many of the trials carried out using the tangent plane algorithm in the 

smallest network would get stuck in local minima, which had a deleterious effect on 

the success rate.  The same behaviour was observed in the back-propagation 

algorithm, but this algorithm appeared to be far more robust with regards to the size 

of the network.           

 

Fig. 3.3 and 3.4 show typical convergence behaviour for the tangent plane algorithm 

and the back-propagation algorithm.  A standard 6-15-15-1 network was used with 

training terminated after 200 epochs.  The training curves for the tangent plane 

algorithm are very steep with convergence occurring rapidly within 50 epochs.  Two 

curves contain small hills indicating the turbulent nature of network training.  The 

training curves for the back-propagation algorithm are much smoother which 

suggests smaller weight updates.  Convergence occurs within 100 epochs, with the 
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exception of one curve, which appears to get stuck on a flattish plateau before 

converging.  This is probably due to oscillatory behaviour caused by using a 

momentum term to accelerate the learning  

 

 

 

 

 

(a)   
   

 Avg. number of epochs to reduce  
CERR below 5.0 x 10-2 

Avg. number of epochs to reduce 
CERR to zero 

HU Mean Std Dev Succ Mean Std Dev Succ 
10 314 268 8 235 84 6 
20 32 12 20 56 29 20 
30 20 6 20 27 8 20 
40 13 2 20 18 6 20 
       

(b)       
       

 Avg. number of epochs to reduce  
CERR below 5.0 x 10-2 

Avg. number of epochs to reduce 
CERR to zero 

HU Mean Std Dev Succ Mean Std Dev Succ 
10 85 35 20 500 290 13 
20 34 9 20 68 30 20 
30 21 6 20 33 9 20 
40 15 3 20 20 7 20 

Table 3.1.  Mean number of steps to converge, standard deviation and number of 

successful trials (Succ) for standard networks with different numbers of hidden units 

HU on the 6-bit parity problem: (a) tangent plane algorithm, and (b) back-propagation 

algorithm with momentum (η = 0.01, α = 0.7) 
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Fig. 3.3.  Typical convergence behaviour of the first tangent plane algorithm 

on the 6-bit parity problem  

Fig. 3.4.  Typical convergence behaviour of the back-propagation algorithm 

on the 6-bit problem (η = 0.01, and α = 0.7) 
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Training with inexact data.  A further test was performed with data that had been 

partially corrupted in order to assess the robustness of the first tangent plane 

algorithm.  A standard 6-15-15-1 network is assumed with 6 inputs, one output and 

15 hidden units in two hidden layers.  Two different types of inexact data were used.  

The first type of inaccurate data involved adding small random fluctuations to the 

teaching values.  Each teaching variable was randomised to a value in the range 

( )δδ +− kk y,y .  The second type of inaccurate data involved using single items of 

rogue data presented occasionally into the network.  The training data was 

generated in the usual way, but at epochs 4, 8, 12, …, 196, 200, the corresponding 

teaching values were given a 0%, 2% and 5% probability of being randomised in the 

range [-1,1]       

 

Table 3.2a and 3.2b give the results for the first type of inexact data.  The results are 

averaged over 20 trials.  It was found that the tangent plane algorithm was tolerant 

of low levels of noise.  All trials succeeded with the noise set at δ = 0.01, and 0.05.  

The situation with the back-propagation algorithm was the same.  Increasing the 

level of noise had a deleterious effect on convergence speed with the tangent plane 

algorithm completely failing to converge for the highest level of noise.  This 

behaviour is expected as the tangent plane algorithm uses the target data as a 

constraint to be satisfied.  Clearly where the input patterns change from one 

presentation to the next so that no exact solution exists, the tangent plane algorithm 

will find it difficult to converge on a solution, and instead continue to hop around 

weight space.   

 

Fig 3.5 and 3.6 shows the results for the second type of inexact data.  The same set 

of initial weights was used in each figure.  The training curves for the tangent plane 

algorithm drop sharply at first showing that the ability of the algorithm to converge 
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upon a solution has not been impaired by the presence of noise.  Thereafter the 

training curves exhibit turbulent behaviour that persists without diminution.  The 

recovery time of the network after the presentation of the randomised data is 

typically four epochs.  Increasing the error rate increased the occurrence of large 

spikes in the training curves.  The noisy training curves for the back-propagation 

algorithm show slight perturbations about the curve with no noise added.  Clearly 

the smaller steps taken have averaged out the fluctuations in the training data 

leading to good asymptotic behaviour   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
(a)       
       

 Avg. number of epochs to  
NMSE below 10-2 

Avg. number of epochs to  
NMSE below 10-3 

δ Mean Std Dev Succ Mean Std Dev Succ 
0.00 31 10 20 51 11 20 
0.01 32 9 20 52 12 20 
0.05 33 12 20 62 12 20 
0.10 33 8 20    

       
(b)       

       

 Avg. number of epochs to  
NMSE below 10-2 

Avg. number of epochs to  
NMSE below 10-3 

δ Mean Std Dev Succ Mean Std Dev Succ 
0.00 38 13 20 59 15 20 
0.01 42 25 20 60 19 20 
0.05 37 9 20 101 45 20 
0.10 43 11 20 336 111 11 

Table 3.2.  Mean number of steps to converge, standard deviation and number 

of successful trials (Succ) on the 6-bit parity problem for networks trained using 

fuzzy data: (a) tangent plane algorithm, and (b) back-propagation algorithm  

(η = 0.01, and α = 0.7) 
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Fig. 3.6.  Typical convergence behaviour of the back-propagation algorithm 

with momentum with the error rate for randomising the teaching values set 

at 0%, 2%, and 5% 

Fig. 3.5.  Typical convergence behaviour of the tangent plane algorithm 

with the error rate for randomising the teaching values set at 0%, 2%, 

and 5% 
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Hearta problem.  The second test is an analogue version of the heart disease 

problem from the Proben1 collection [34].  In this test the generalization 

performance of the second tangent plane algorithm was compared with the back-

propagation algorithm.  A standard feed-forward neural network was used with 9 

inputs, one output, and two hidden layers.  The number of units in each hidden layer 

was increased from 5 to 20 in steps of 5.  20 trials were carried out with the mean 

square error on the training set and the test set recorded together with the mean 

number of steps to converge.  Network training was terminated using the method of 

early stopping.   

 

In preliminary tests it was found that the convergence behaviour of the second 

tangent plane algorithm could be significantly improved by introducing a progressive 

stiffening of the step size.  An exponential schedule ( )τ/texp −  was used for this 

purpose with the time constant set at τ = 5,000.  The results are tabulated in Table 

3.3a.  It was found that the generalization capability of the second tangent plane 

algorithm was comparable with the back-propagation algorithm, except in the 

smallest network where it was worse.  Generalization was found to be independent 

of network size.  Decreasing the value of the time constant had a beneficial effect on 

generalization but this was at the expense of the convergence speed, which was 

much slower  

 

Fig. 3.7 and 3.8 show the generalization behaviour of the second tangent plane 

algorithm and the back-propagation algorithm.  A standard 13-20-20-1 network was 

used with 13 inputs, 20 hidden units in each of two hidden layers and one output.  

The generalization curves of the second tangent plane algorithm are fairly smooth.  

One of the curves dips to a clearly defined minimum after 50 epochs.  Two curves 

rise fairly steadily showing mild overtraining.  The generalization curves of the back-
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propagation algorithm show the same behaviour.  One curve dips to a local 

minimum after 50 epochs.  There is evidence of mild overtraining in all the curves.  

Increasing the momentum rate had a deleterious effect on generalization, and 

produced mild turbulence in all the curves  

 

(a)   
   

 Second tangent plane algorithm Back-propagation algorithm 

 Avg. validation set error using early 
stopping (NMSE) 

Avg. validation set error using early 
stopping (NMSE) 

HU Err Err* Steps Err Err* Steps 
10 0.27 0.35 121 0.21 0.31 59 
20 0.16 0.34 88 0.18 0.32 43 
30 0.12 0.34 70 0.16 0.34 39 
40 0.11 0.34 52 0.17 0.37 25 
       

(b)       
       

 Second tangent plane algorithm Back-propagation algorithm 

 Avg. validation set error using early 
stopping (CERR x 102) 

Avg. validation set error using early 
stopping (CERR x 102) 

HU Err Err* Steps Err Err* Steps 
10 4.35 5.14 135 4.37 4.30 82 
20 3.19 4.27 62 3.97 5.79 72 
30 2.70 3.78 46 4.23 6.99 37 
40 2.21 3.65 41 4.03 7.51 36 

 

 

   

Table 3.3.   Training set error (Err) and test set error (Err*) for different sized networks 

with training terminated using early stopping: (a) hearta1 problem, (b) the breast cancer 

problem  
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Fig. 3.7  Typical generalization behaviour of the second tangent plane algorithm 

on the hearta problem (tanβ = 0.1, and τ = 5,000) 

Fig. 3.8  Typical generalization behaviour of the back-propagation algorithm 

on the hearta problem (η = 0.01, and α = 0.3) 
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Cancer problem. The final test utilized data from the Wisconsin state breast cancer 

dataset, which is a real-world problem from the Proben1 collection [34].  In this test 

the generalization performance of the second tangent plane algorithm was 

compared with the back-propagation algorithm.  A standard feed-forward neural 

network was used with 9 inputs, one output, and two hidden layers.  The number of 

units in each hidden layer was increased from 5 to 20 in steps of 5.  20 trials were 

carried out with the classification error on the training set and test set recorded 

together with the number of steps taken to converge.  Network training was 

terminated using the method of early stopping.   

 

In preliminary tests it was found that the performance of the second tangent plane 

algorithm could be considerably improved by introducing a progressive stiffening of 

the step size.  An exponential annealing schedule was used for this purpose (τ = 

10,500).  The results are tabulated in Table 3.3b.  It was found that generalization 

was significantly better in networks trained by the second tangent plane algorithm, 

except in the smallest network where it was slightly worse.  Increasing the size of 

the angle parameter (tanβ = 0.05, 0.10) had a deleterious effect on the convergence 

speed and generalization performance. 

 

Fig. 3.9 and 3.10 show the generalization behaviour of the second tangent plane 

algorithm and the back-propagation algorithm.  A standard 9-20-20-1 network was 

used with 9 inputs, 20 hidden units and one output.  The generalization curves of the 

second tangent plane algorithm dip to a local minima at 50 epochs.  Thereafter the 

curves rise to a flattish plateau.  Very little learning occurs after 200 epochs.  The 

generalization curves of the back-propagation algorithm dip to a local minimum at 50 

epochs.  Two curves contain slight undulations that persist without diminution.  

There is mild evidence of overtraining in one curve. 
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Fig. 3.9  Typical generalization behaviour of the tangent plane algorithm on 

the cancer problem (tanβ = 0.02, and τ = 10,500)  

Fig. 3.10  Typical generalization behaviour of the back-propagation 

algorithm on the cancer problem (η = 0.01, and α = 0.7) 
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3.4.5 Discussion of  weight sensitivity values 

Next, we turn our attention to the differentiation and evolution of the weights in 

networks trained by the second tangent plane algorithm.  The matter of growing 

weights from small initial values raises an important question, namely does the 

algorithm activate only the necessary number of weights, or does it activate all the 

weights leading to a large network structure?  To answer this question, we will 

examine the importance of weights in the network.  There are many methods to 

calculate the importance of weights such as assuming that the importance is 

proportional to the magnitude of the weights [52].  More sophisticated methods 

include optimal brain damage [10], and optimal brain surgeon [11].  Both of these 

methods require training down to the error minimum.  We will use the autoprune 

method [51,52] which uses a statistic T  to allocate an importance coefficient to 

each weight during the training process.     

 

Comparative tests were carried out using the second tangent plane algorithm and 

the standard back-propagation algorithm.  In our experiment we utilise data from two 

benchmark datasets; the breast cancer problem, and the hearta problem obtained 

from the UCI machine learning repository [61].  A standard feed-forward network 

was assumed with two hidden layers and 25 units in each hidden layer.  The 

importance coefficients of the weights were recorded from the same trial at different 

epochs.  The coefficient sizes were grouped in classes of width one and histograms 

plotted to show the distribution of the T values at different stages of training.  

Network training was terminated after a preset number of epochs.   

 

Breast cancer problem.  Fig 3.11 and 3.12 show the histograms of the importance 

coefficients for both algorithms.  The histograms were plotted at epochs 20, 60, and 

100.  The average values of the histograms were calculated using the arithmetic 

mean.  The tangent plane algorithm gave histogram averages of 5.47, 6.10, and 
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7.01 respectively.  The back-propagation algorithm gave 8.45, 8.05, and 8.16.  

Notice the drift to the right of the histograms produced by the tangent plane 

algorithm (see Fig 3.11).  Notice also the skewness of the histogram after 20 

epochs.  Initially the weights are densely packed about the origin with only a few of 

the weights responding to the training data.  However, as the training continues, the 

algorithm activates more of the weights by pushing the weight values further away 

from the origin.  In contrast the histograms produced by the backpropagation 

algorithm are fairly symmetric with constant mean (see Fig 3.12).  Prechelt [51] 

suggests pruning all the weights with coefficients less than 0.5 times the arithmetic 

mean of the coefficient sizes.  After 20 epochs, this is approximately 9% of the 

weights in the network trained by the tangent plane algorithm and 4% of the weights 

in the network trained by the backpropagation algorithm.   

 

Hearta problem.  Fig 3.13 and 3.14 show the histograms of the importance 

coefficients for both algorithms.  The histograms were plotted at epochs 20, 60, and 

100.  The average values of the histograms were calculated using the arithmetic 

mean.  The tangent plane algorithm gave histogram averages of 4.09, 5.48, and 

6.22 respectively.  The standard back-propagation algorithm gave 6.59, 6.14, and 

6.05.  Once again, the histograms produced by the tangent plane algorithm show a 

drift to the right as training continues.  Notice that the means and variances of the 

histograms produced by the backpropagation algorithm remain essentially the same.  

This suggests that the backpropagation algorithm learns the problem very quickly, 

so that after 20 epochs there is no learning taking place.  Using Prechelt’s pruning 

criteria, after 20 epochs approximately 14% of the weights in the network trained by 

the tangent plane algorithm are eligible for pruning, and 7% of the weights in the 

network trained by the backpropagation algorithm 
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Fig. 3.11  Importance coefficient histogram for the tangent plane algorithm 

(cancer problem). Horizontal axis: coefficient size grouped in classes of width 1. 

Vertical axis: absolute frequency of weights with this coefficient size 

Fig. 3.12  Importance coefficient histogram for the back-propagation algorithm 

(cancer problem). Horizontal axis: coefficient size grouped in classes of width 1. 

Vertical axis: absolute frequency of weights with this coefficient size 
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Fig. 3.13  Importance coefficient histogram for the tangent plane algorithm 

(hearta problem). Horizontal axis: coefficient size grouped in classes of width 1. 

Vertical axis: absolute frequency of weights with this coefficient size 

Fig. 3.14  Importance coefficient histogram for the back-propagation algorithm 

(hearta problem). Horizontal axis: coefficient size grouped in classes of width 1. 

Vertical axis: absolute frequency of weights with this coefficient size 
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3.5  Problems with the tangent plane algorithm 

There are a number of difficulties with the tangent plane algorithm.  These difficulties 

are summarised as follows 

 

• For certain starting conditions of the weights, the tangent plane algorithm 

would get stuck in local minima that slow down the convergence.  This 

behaviour is worse in small parsimonious networks where generalization is 

known to be best.  Investigation into this stucking behaviour showed that it 

occurred whenever the tangent planes of two or more consecutive input 

patterns were very nearly parallel.  The tangent plane algorithm would then 

zigzag between these surfaces for much longer resulting in very slow 

convergence.  This problem disappeared in larger networks.  As noted by 

Lee [2], the convergence speed of the tangent plane will be faster in 

situations where the number of free parameters in the network is greater 

than the number of patterns to be learned.  The rationale behind this idea is 

that the tangent plane algorithm will have more directions to move on in a 

higher dimensional weight space  

 

• The tangent plane algorithm is extremely sensitive to errors in the training 

data.  Two different types of erroneous data were investigated.  The first type 

involved adding small random fluctuations to the teaching values, and the 

second type adding single items of false data to the training set.  It was 

found that the tangent plane algorithm would not tolerate large fluctuations in 

the teaching values (e.g. yk ± δ, where δ ∈ [-0.1,0.1]), or a large percentage 

of erroneous data (typically > 5%).  These results are to be expected in a 

supervised teaching algorithm that uses the teaching values as constraints to 

be satisfied by adjusting weights.  Schiffmann [33] noted a similar problem 
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with Schmidhuber’s algorithm [27] when a small number of incorrect 

examples were present in the dataset.   

 

• Starting the training with weights initialised to small values and then pushing 

the weights in the direction away from the origin tends to produce large 

network structures having wide distributions of weight values.  Histograms of 

weight importance coefficients show a general drift of the weights towards 

higher importance values.  This suggests a differential activation of the 

weights with only a few weights activated at first.  However, as the training 

continues, more of the weights engage in the learning which results in an 

oversized network structure.  This means that any advantage gained by 

setting the weights to small initial values is lost if the algorithm does not find 

a solution quickly       
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Chapter 4 

 

A NEW SEQUENTIAL TANGENT PLANE ALGORITHM FOR RECURRENT 

NEURAL NETWORKS 

 

In chapter three a comparative evaluation of the tangent plane algorithm and the 

back-propagation algorithm was performed for regression and classification tasks.  

The benchmark datasets used were 6-bit parity [61], hearta [34] and cancer [34].  All 

the datasets were obtained from the UCI machine learning repository [61].  The 

results show that the tangent plane algorithm gives good generalization relative to 

the backpropagation algorithm.  Generalization was found to be independent of 

network size.  However, the tangent plane algorithm finds it difficult to converge on a 

compromise solution when the data is inexact or contains a small number of 

erroneous patterns.  In these circumstances the tangent plane algorithm will 

continue to hop around weight space, adjusting the weights of the network to satisfy 

each new constraint in turn.  In contrast, the backpropagation algorithm gave 

improved convergence, smaller steps taken effectively smoothing out the 

fluctuations in the training data.  In this chapter, a new tangent plane variant is 

developed for fully recurrent neural networks (FRNNs).  FRNNs use feedback 

connections and state units to learn the relationships between temporal sequences.  

The new algorithm is based upon the real time recurrent learning algorithm (RTRL), 

which is a gradient descent based method for training FRNN [3].  RTRL has been 

used in many application areas such as real-time process control and speech 

enhancement.  It is shown that that learning temporal sequences can improve the 

stability of the tangent plane algorithm when handling inexact data.     
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4.1  Improvement in the stability of the tangent plane algorithm 

We have already seen that the tangent plane method cannot handle datasets that 

contain a small amount of erroneous data, or datasets where the teaching values 

are fuzzy so that they vary from one presentation to the next.  To overcome this 

difficulty Lee [14] has suggested using a progressive stiffening of the step size as 

the network becomes trained.  This stiffening was implemented using a scaling 

factor ns  applied to each weight change, where s  is a parameter set to 1 / 1.0002 

and n  the time step.  Although the ability of the tangent plane algorithm to converge 

was restored using this method, progressively stiffening the step size may have a 

dramatic slowing down effect if not properly tuned, the parameter s  being 

dependent on the size of the training set.  Moreover, the same quality of solution 

can easily be achieved using the backpropagation algorithm with a fixed learning 

rate.  Fully recurrent neural networks (FRNNs) are powerful tools for learning 

temporal sequences.  FRNNs have been used in a variety of applications that 

involve time varying signals e.g. process control [84], speech recognition [85,86], 

and removing artefacts from electroencephalogram (EEG) signals [87].  Thus it 

seems worthwhile investigating a tangent plane variant for FRNNs as a practical 

alternative to using feedforward neural networks on problems with inexact data 

 

4.1.1 A brief introduction to recurrent neural networks 

Fully recurrent neural networks (FRNN) are powerful computational models that can 

learn temporal sequences, either in online or batch mode.  A diagram of an FRNN is 

shown in Fig 4.1.  The FRNN consists of two layers, an input layer of linear units 

and an output layer of non-linear units.  The input layer is fully connected to the 

output layer by adjustable weights.  Furthermore, the FRNN features unit delay 

feedback connections that feed back the activations of the output units to the input 

layer units.  The output units thus have some knowledge of their prior activations, 
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which enables them to perform learning that extends over time.  FRNNs accomplish 

their learning task by mapping input sequences, and delayed activations, to another 

set of output sequences.  Due to the nature of feedback around the output units, 

these units may continue to cycle information through the network over multiple time 

steps, and thereby discover abstract representations of time.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the most popular algorithms for training FRNNs is the real time recurrent 

learning (RTRL) algorithm [3].  RTRL is a gradient descent based algorithm for 

adjusting the output layer weights in a fully recurrent neural network.  In the seminal 

paper by Williams and Zipser, two variations are presented, one for online and one 

for off-line (batch) learning.  In both forms, RTRL has been used to train applications 

in a variety of areas such as speech enhancement [85,86], and real-time process 

control [84], where the output of the system is the response to current and previous 

 
 

 

 
 

 

 
 

 
 

 
 

Fig 4.1.  An example of a fully recurrent neural network with one output unit, one 

hidden unit, and two input units.  The function z-1 is the unit delay operator whose 

output is delayed with respect to the input by one time step.   
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input.  RTRL has also been used to train FRNNs for next symbol prediction in an 

English text processing application [88].  Li et al [89] have used RTRL to train 

FRNNs for adaptive pre-distortion linearization of RF amplifiers.  Finally RTRL has 

been used to train FRNNs that are capable of removing artefacts in EEG 

(electroencephalograms) signals [90].   

 

There are a great many variants of RTRL present in the literature that are aimed at 

enhancing different aspects of the algorithm such as its computational complexity, 

convergence speed, and its sensitivity to the choice of initial weights.  In Catfolis [91] 

a technique is presented to increase the performance of the RTRL algorithm by re-

initializing it after specific time periods so that the gradient vector is dependent on 

fewer past values and the weights follow the true steepest descent direction more 

accurately.  Also, the relationship between the slope of the activation function and 

the learning rate in the RTRL algorithm is explored in order to decrease the number 

of degrees of freedom on non-linear optimization problems in Mandic [92].  In Lu et 

al [93,94], a new mode exchange RTRL (MERTLR) algorithm was proposed which 

was designed to work in two modes, static and dynamic.  In static mode some of the 

elements of the gradient matrix are fixed so that they do not change.  This will 

reduce the time complexity to O ( 3n ) in static mode.  In dynamic mode the gradient 

matrix is computed as normal.   

 

In this section we present a new RTRL variant based upon the tangent plane 

algorithm.  While the original RTRL algorithm utilizes gradient information to guide 

the search towards the minimum training error, the new variant trains an FRNN by 

approaching the tangent planes to constraint surfaces defined in the weight space of 

the network.  The motivation behind this new idea was to develop a more stable 

tangent plane algorithm capable of handling inexact data.  Due to the presence of 

feedback connections, the FRNN will continue to recycle information over many time 
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steps and thereby learn abstractions that extend over time.  This may lead to a more 

robust tangent plane algorithm capable of predicting the correct response and not 

simply memorising an item of erroneous data.   

 

4.1.2 Derivation of the new TPA-RTRL algorithm 

Consider a FRNN of units { ju } (see Fig 4.1).  For unit ju , T
jw  = [ 1jw , 2jw , ... , 

( )1mn,jw ++ ] denotes a ( ) 11mn ×++  vector of weights, where n  are the number of 

feedback connections and m  the number of external inputs, one remaining input 

being the bias input weight.  Let jφ  and jθ  denote the net input and output of ju , 

and f  the unit’s activation function, typically ( )xtanh .  The following equations 

describe the FRNN at time instant t  

 

 ( ) ( )( )t
j

t
j f φθ = , n,...,2,1j =  (4.1) 

 ( ) ( ) ( )∑ ++

=
=

1mn

1l
t

l
t
jl

t
j zwφ  (4.2) 

 [ ( )t
lz ]T = [ ( ) ( ) ( ) ( )t

m
t

1
1t

n
1t

1 x,...,x,1,,..., −− θθ ] (4.3) 

 

The method assumes a FRNN with a single output unit.  Let this output unit be 

denoted by 1u , with ( )t
1θ  at time step t  being trained to mimic the teaching value 

( )t
1y .  For a given set of inputs ( )t

ix , mi ,,1 = , we can consider ( )t
1φ  to be a 

function of the weights, ( )t
1φ  : ( ) RR mnn →++× 1 .  Thus the equation ( ) ( )( )t

1
1t

1 yf −=φ  

defines a ×n ( ) 11mn −++  surface in ( )1++× mnnR .  The aim of the training procedure 

is to move from the current position in weight space to the nearest point on a 

tangent plane of this surface (see Fig 4.2) 
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Let ( ) ( )∑= ij ji
t

ji
t w

,
' ia , where jii  is a unit vector in the direction of the jiw  axis.  Use 

the equation ( )( ) ( ) ( ) ( )∑ +≠+
− +=

1ni
t

i
t
i1

t
1n,1

t
1

1 zwwyf  to find a value, ( )t
nw"

1,1 + , for the bias 

weight 1n,1w +  from the values ( )t
jiw  of the other weights, so that the surface 

( ) ( )( )t
1

1t
1 yf −=φ  contains the point  ( ) ( ) ( )∑ +≠++ +=

1,1,
'

1,1
"

1,1 nij ji
t

jin
t

n
t ww iib .   

 

Let ( )tn̂  be the unit normal to the surface at ( )tb , so ( ) ( ) ( )ttt
11ˆ φφ ∇∇=n .  The 

length of the perpendicular from ( )ta  to the tangent plane at ( )tb  is ( ) .n tˆ [ ( ) ( )tt ab − ].  

Now, if we use the equation ( )( ) ( ) ( ) ( )∑ +≠+
− +=

1ni
t

i
t
i1

t
1n,1

t
1

1 zwwyf ,  we get 

 

  ( ) ( ) =− tt ab [ ( ) ( )t
n

t
n ww '

1,1
"

1,1 ++ − ] 1,1 +ni   

 = [ ( )( ) ( )( )tt fyf 1
1

1
1 θ−− − ] 1,1 +ni  (4.4) 

( ) ( )( )t
1

1t
1 yf −=φ

( )t
1φ∇

1n,1 +i

( )ta
a

o

b

c

Fig 4.2.  Movement from the present position a to the foot of the perpendicular to 

the tangent plane of constraint surface ( ) ( )( )t
1

1t
1 yf −=φ  to position c 
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Let ( ) ( )( ) ( )( )t
1

1t
1

1t fyf θδ −− −= .  If ( )tc  is the foot of the perpendicular from ( )ta  to 

the tangent plane at ( )tb , then ( ) ( ) =− tt ac  ([ ( ) ( )tt ab − ] . ( )tn̂ ) ( )tn̂ ,  and from 

equation (4.4) we have 
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∇

∇
=− + .iac

 (4.5) 

Thus, the adjustment applied to weight pqw  can be written   

 ( )
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( )

( )

( )t
pq

t

t

t
t

pq w
w

∂
∂

∇
=∆ 1

2
1

φ
φ
δ

 (4.6) 

Using the chain rule of differentiation, the derivative pq1 w∂∂φ  in equation (4.6) 

can be re-written as  
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where  

 1pδ =






 =

otherwise0

1pif1

 (4.8) 
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Under the assumption, also used in the RTRL algorithm [9], that when the step size 

is sufficiently small, we have 

 
( )

( )

( )

( )1t
pq

1t
j

t
pq

1t
j

ww −

−−

∂

∂
≈

∂

∂ φφ
 (4.9) 

 

A triple index set of variables j
pqπ  can be used to denote the partial derivatives 

pqj w∂∂φ , np,j1 ≤≤ , 1mnq1 ++≤≤ .  We compute the values j
pqπ  for every 

time step t  and appropriate j , p , q  as follows 

 

 [ ] ( ) ( )( ) [ ] ( ) ( ) ( )t
qpj

n

1m

t
jm

1tm
pq

1t
m

'tj
pq zwf δπφπ += ∑

=

−−  (4.10) 

 

Because we assume that the initial state of the FRNN has no functional dependence 

on the weights, we also have [ j
pqπ ](0) = 0.   

 

The computational complexity of the TPA-RTRL algorithm is O ( 4n ), where n  is the 

number of processing units.  This feature of the TPA-RTRL algorithm implies a 

heavy computational burden, especially when the network is scaled up.  According 

to equation (4.10), j
pqπ  is calculated by adding n  products of the terms jmw , m

pqπ , 

and 'f ( mφ ).  Therefore, the number of operations involved for each j
pqπ  is n2 .  

There are ( )1mnn2 ++  of j
pqπ  in the network.  Thus the total number of 

computations in equation (4.10) is ( )1mnn2 3 ++ .  The TPA-RTRL algorithm also 

requires the calculation of a global weighting term, ( )∑ q.p
21

pqπ .  This term is 

calculated by adding ( )1mnn ++  squares of 1
pqπ , increasing the computational 

burden by a further ( )1mnn2 ++  operations.  The computational complexity of the 
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TPA-RTRL algorithm could be reduced by setting some of the j
pqπ  to zero.  The 

MERTRL algorithm [93,94] is a useful starting place for this, as it fixes the recurrent 

connections pqw  with qp ≠  (i.e. sets j
pqπ  to zero).  This will reduce the 

computational complexity to O ( 3n ) on 3n  of the pqw .  An alternative approach 

might be to fix a preset number of randomly selected pqw  during each time step, the 

selection of pqw  changing from one time step to the next.  This approach avoids the 

problem of constraining the weight change to a limited number of directions, which 

will prevent the algorithm from attaining a low MSE.    

 

The method of adjusting weights by approaching the tangent planes could 

potentially lead to some very big weight updates.  Large activations based on big 

weight updates fed back into the input layer may become a source of negative 

feedback and instability in the network [44].  In order to improve stability, it may be 

helpful to re-initialise the algorithm after a preset time period.  Catfolis [91] 

suggested an improvement to the basic RTRL algorithm that involves using some a 

priori knowledge about the temporal requirements of the problem.  The method 

involves setting the partial derivatives j
pqπ  to zero every τ  cycles so that the weight 

changes are based upon accumulated information over a time interval of τ .  The 

reason for re-initialising j
pqπ  is that some inputs will only have an influence on the 

network for a specific number of cycles, so accumulating information over a longer 

period may take the trajectory in weight space further away from the true trajectory 

taken by the gradient descent method.  This is equivalent to adding noise to the 

negative gradient vector so that its direction may not point directly towards the 

minimum on the error surface 
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4.2  Implementation of the procedure 

The following section is included to clarify the procedure for updating the weights of 

a network trained using the TPA-RTRL algorithm 

 

1.  Initialize 

 [ ]1,1wpq −∈ , 0j
pq =π , ∀ Uj∈ , Up∈ , IUq ∪∈  s.t. 

{ }n,...,1U = , { }m,...,1nI +=  

2.   For each unit ju , calculate jθ  using 

 ( ) ( ) ( )∑ ∪∈
=

IUq
t

q
t
jq

t
j zwθ , ∀ Uj∈  

3.   For each unit ju , calculate j
pqπ  using 
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t
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m

'tj
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where pjδ  denotes the Kronecker delta 
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1
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6.   For each weight pqw ,  add   

( )
( )

[ ]( )
[ ]( )t1

pq2t1

t
t

pqw πδ

π
=∆ , ∀ Up∈ , IUq ∪∈  

 

4.3  Simulations and results 

Comparative tests were performed with the TPA-RTRL algorithm and the original 

GD-RTRL algorithm under a variety of initial conditions and using different network 

sizes.  Three different datasets were used; pipelined Xor [3], simple sequence 
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recognition [3], and the henon map time series [95].  The pipelined Xor problem was 

used to analyse the convergence behaviour of each algorithm on a simple pattern 

classification task.  The simple sequence recognition and henon map time series 

problems were used to determine the ability of the network to configure itself so that 

it stores important information from an earlier stage in the input stream to help 

determine the output at a later time.   For all the tests described here a fully 

recurrent neural network was used with the same unit trained to match specific 

target values at specified times.  The tests were carried out using an Intel Pentium 

IV (2.67 GHz).   

 

4.3.1 Network initialization  

Both algorithms require parameters to be set manually.  Preliminary tests showed 

that the best results were obtained with the parameters set as follows.  First, the 

original GD-RTRL algorithm.  For the pipelined Xor and simple sequence recognition 

problems, the learning rate was set to η  = 4.0.  For the henon map problem, the 

learning rate was set to η  = 0.01.  The input weights were set to random values in 

the range [-1.0, 1.0].  Next, the new TPA-RTRL algorithm.  The input weights were 

set to random values in the range [-1.0,1.0].   

 

4.3.2 Simulation problems  

The Exclusive OR (XOR) problem is an example of a pattern classification task that 

cannot be solved using a single neuron.  The input patterns are (-1,-1), (-1,1), (1,1) 

and (1,-1).  The first and third patterns are in class -1, and the second and fourth 

patterns in class 1.  The training examples were presented to the network in a 

random order, one each time step.  Thus the epoch length is four cycles.  The 

network was operated in a continuous mode, meaning that all the epochs were 

presented to the network after each other without telling the network something had 
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happened.  Tests were performed by varying the time delay between the 

presentation of an input pattern and training the network to match the corresponding 

teaching value.  For each test, 50 trials were made with the mean number of steps 

to converge, the standard deviation, and the number of successful trials recorded.  

Network training was terminated when the error was reduced to below 10-2 for at 

least 20 epochs or 1,000 epochs elapsed 

 

The simple sequence recognition problem has four inputs and one output.  Two of 

the input lines, labelled a and b, serve a special purpose.  The other two input lines, 

c and d, serve as distractors.  At each time step one input line carries a 1, and all 

other input lines a -1.  The network is trained to output a 1 when a 1 on the b line is 

immediately followed by a 1 on the a line, otherwise the output is -1.  Once such a b 

occurs, its corresponding a is considered to be used up.  An additional constraint 

was imposed that two 1s should be output every 16 time steps.  Thus the epoch 

length is 16 cycles.  Tests were carried out using different sized networks, and data 

that had been partially corrupted in order to determine the robustness of the TPA-

RTRL algorithm.  For each test, 50 trials were made with the mean number of steps 

to converge, standard deviation and number of successful trials recorded.  Network 

training was terminated when the error was reduced to below 10-3 for at least 20 

epochs or 1,000 epochs elapsed.      

 

The henon map problem is a chaotic time-series prediction problem.  The time 

series is computed by  

 ( ) ( )( ) ( )121 1 −+ +−= ttt xbxcx  (4.11) 

 

where b = 0.3, c= 1.4, ( )0x = -0.361938, and ( )1x = 0.896601.  The objective of the 

simulation is to train a network with one input and one output and various 
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processing units to model the chaotic series generated by (4.11).  Since maxx = 

1.272967 and minx = -1.284657, the input values were scaled in the range [-0.5, 0.5].  

Tests were carried out using different sized networks.  For each test, 5 trials were 

made with the mean square error and CPU time of the learning algorithms recorded.  

The mean square error (MSE) was measured by averaging the output square errors 

between 4,999,000 and 5,000,000 time steps.  Network training was terminated 

after 5,000,000 time steps had elapsed.   

 

4.3.3 Error metrics used to determine convergence  

The error metric used in the simulations is MSE (Mean Square Error).  The MSE is 

given by 

 ( )2
i

kikiy
m
1MSE ∑ −= θ  (4.12) 

 

where m  is a predefined time interval (typically one epoch), kiy  is the target value 

of the ith  input, and kiθ  is the ith  model output 

 

4.3.4 Discussion of results  

Exclusive Or (Xor) with time delay.  The first test is a simple non-linearly separable 

problem requiring at least two processing cycles to complete.  The test was carried 

out using a FRNN network with three processing units.  One of the processing units 

was trained to match the teaching signal at time t  corresponding to the inputs 

presented to the network at time τ−t , where the computational time delay τ  was 

chosen to be one or two cycles (time steps).  The results are tabulated in Table 4.1.  

It was found that the new TPA-RTRL algorithm gave significantly faster convergence 

than the original algorithm when the target values were delayed by one cycle 

relative to the inputs being Xored.  It was also found that increasing the time delay 



Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks 
 

-80- 

between the inputs and corresponding target values had a deleterious effect on 

convergence, and that additional units had to be added to the network for 

convergence to occur.  Generally speaking for longer delays than one cycle the 

network has to configure itself to have more than two hidden layers in order to 

match the required delay.   

 

The final weight values of a typical FRNN network trained by the TPA-RTRL 

algorithm are given in Table 4.2.  Notice the weights providing a feed-forward 

solution have become large, whilst the recurrent weights have become small.  This 

suggests that the FRNN network has organised itself into a single hidden layered 

feed-forward neural network with outputs delayed by one cycle relative to the inputs.  

The function of the recurrent weights has become one of providing additional 

pathways during the learning stage.   

 

Fig 4.3 and 4.4 show some typical training curves for both algorithms on the Xor 

problem.  The training examples were split into groups of four with the network 

operated in continuous mode.  Thus the epoch length is four cycles.  The MSE was 

calculated over a strip length of 5 epochs.  The training curves for the new TPA-

RTRL algorithm show that convergence occurs rapidly, typically within 80 epochs.  

One of the curves (test 2) contains a slight dip which is probably due to the 

presence of turbulence caused by large weight updates, averaged over by the 

coarse sampling rate in Fig 4.3.  The training curves for the original GD-RTRL 

algorithm show the same general trend, but this time convergence occurs typically 

within 200 epochs.   
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(a)   
   

 New TPA-RTRL algorithm Original GD-RTRL 

 Training terminated after 1,000 
epochs trained or MSE < 10-2 

Training terminated after 1,000 
epochs trained or MSE < 10-2 

Units Mean Std Succ Mean Std Succ 
3 88.38 66.98 40 357.5 138.62 40 
       

(b)       
       

 New TPA-RTRL algorithm Original GD-RTRL 

 Training terminated after 1,000 
epochs trained or MSE < 10-2  

Training terminated after 1,000 
epochs trained or MSE < 10-2 

Units Mean Std Succ Mean Std Succ 
3 806.67 166.15 3   0 
4 484.41 268.86 17 726.33 194.79 15 
5 342..09 218.53 43 588.78 156.77 37 

 
 
 
 
 
 
 

U B I R T 

1 1.88 0.00 0.00 -0.01 -1.98 1.99 + 
2 1.49 -1.98 1.98 -0.02 0.15 -0.16 - 
3 -1.97 -2.12 2.13 -0.01 0.15 -0.19 - 

 

 

 

 

 

 

Table 4.1.   Mean number of steps to converge, standard deviation and number of 

successful trials (Succ) for both algorithms on Xor problem: (a) one cycle delay, 

and (b) two cycle delay 

Table 4.2.    Weight matrix for Xor with one-cycle delay.  The columns labelled U, B, 

I, R, T indicate respectively: unit number, the bias weight, input weights, recurrent 

weights, and the teaching status where ‘+’ indicates the presence of teaching value, 

and ‘-’ no teaching value present 
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Fig. 4.4.  Typical convergence behaviour of the original GD-RTRL algorithm 

on the Xor problem with one unit trained to match the teaching signal of the 

inputs one cycle ago 

Fig. 4.3.  Typical convergence behaviour of the new TPA-RTRL algorithm 

on the Xor problem with one unit trained to match the teaching signal of the 

inputs one cycle ago 
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Simple sequence recognition. The second test is a simple sequence recognition 

task.  The results are tabulated in Table 4.3.  From the table we can see that that 

the new TPA-RTRL algorithm converges to a solution faster than the original RTRL 

algorithm, and that the convergence speeds of both algorithms improves with the 

size of the network.  The improvement in the performance of the TPA-RTRL 

algorithm in larger networks can be explained as follows.  If there are N  patterns to 

be learned and ( )1mnn ++×  free parameters in the network, the probability of a 

pair of normals 1φ∇  being nearly parallel, or a set of normals in weight space being 

nearly linearly dependent, will be reduced if ( ) N1mnn >>++× .  Therefore a set 

of patterns should be learned more quickly by a network with a greater number of 

connections.  Fig 4.5 and 4.6 show typical learning curves for both algorithms.  The 

training examples were split into groups of 16.  Thus the epoch length is 16 cycles.  

The learning curves for the TPA-RTRL algorithm show that convergence occurs 

rapidly, typically within 15 epochs.  One curve (test 3) gets trapped in a local 

minimum.  Convergence was restored by increasing the time delay between the 

presentation of an input pattern and the response of the network.  The learning 

curves for the GD-RTRL algorithm show slow asymptotic behaviour with 

convergence occurring within 30 epochs. 

 

A further test was carried out with the training data generated as normal, but at each 

presentation of an item of data the corresponding teaching value was given a 1%, 

2% and 5% probability of being set at +1.  The results are tabulated in Table 4.4.  It 

was found that the TPA-RTRL algorithm is far more tolerant of noisy data, the slow 

convergence of the GD-RTRL algorithm producing a sluggish response that resulted 

in a higher proportion of failed trials.  Fig 4.7 and 4.8 show some typical learning 

curves for a different type of inaccurate data.  Once again, the training examples 

were split into groups of 16, so the epoch length is 16 cycles.  The training data was 
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generated as normal, but this time a pattern selected at random had its teaching 

value set at +1 during 12, 24 and 36 epochs.  The learning curves for the TPA-

RTRL algorithm show a pronounced peak at 12 epochs that corresponds to the first 

item of corrupted data.  Subsequent responses to noisy data at epoch 24 and 36 

diminish in amplitude.  In each case, the network recovers quickly within two epochs 

after being presented with an item of corrupted data.  The learning curves for the 

GD-RTRL algorithm show small peaks occurring at 24 and 36 epochs, the peak at 

12 epochs being averaged over by the higher training error. 

 

 New TPA-RTRL algorithm Original GD-RTRL 

 Training terminated after 5,000 
epochs trained or MSE < 10-3 

Training terminated after 5,000 
epochs trained or MSE < 10-3 

Units Mean Std Succ Mean Std Succ 
2 47.50 53.45 48 215.84 43.76 50 
4 21.04 11.01 50 127.70 21.55 50 
6 18.66 8.49 50 102.74 13.90 50 
8 18.00 13.15 50 90.56 11.74 50 

 
 
 
 
 
 
 

       

 New TPA-RTRL algorithm Original GD-RTRL 

 Training terminated after 5,000 
epochs trained or MSE < 10-3  

Training terminated after 5,000 
epochs trained or MSE < 10-3 

n (%) Mean Std Succ Mean Std Succ 
0 26.16 42.45 50 128.22 16.52 50 
1 26.01 15.61 50 164.42 28.80 50 
2 23.00 11.32 50 322.33 196.86 50 
5 44.00 28.15 50    

 
 
 
 
 
 

Table 4.4.   Mean number of steps to converge, standard deviation and success rate 

(Succ) for the new TPA-RTRL algorithm and original GD-RTRL algorithm on the 

simple sequence problem with n (%) of teaching values randomised  

Table 4.3.   Mean number of steps to converge, standard deviation and success rate 

(Succ) for the new TPA-RTRL algorithm and original GD-RTRL algorithm on the 

simple sequence problem for different sized networks  
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Fig. 4.5.  Typical learning curves of the new TPA-RTRL algorithm on the 

simple sequence problem for a network with four processing units. Note that 

1 epoch = 16 cycles 

Fig. 4.6.  Typical learning curves of the original GD-RTRL algorithm on the 

simple sequence problem for a network with four processing units. Note that 

1 epoch = 16 cycles 
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Fig. 4.7.  Learning curves of the new TPA-RTRL algorithm for a network 

with four processing units.  One teaching value has been corrupted at epoch 

12, 24 and 36 

Fig. 4.8.  Learning curves of the original GD-RTRL algorithm for a network 

with four processing units.  One teaching value has been corrupted at epoch 

12, 24 and 36 
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Henon map time series.  The third test is a classical one-step-ahead prediction 

problem.  Table 4.5 shows the mean square error and CPU time in seconds of the 

learning algorithms for various processing units.  The mean square error was 

obtained by averaging the error over 1,000 time steps.  It was found that the TPA-

RTRL algorithm gave faster convergence relative to the original algorithm, and that 

the convergence speed improved with the number of processing units.  The slower 

convergence of the original algorithm can be explained by very slow asymptotic 

behaviour, and the tendency of the network to get trapped in local minima.  In 

contrast the much larger steps taken by the TPA-RTRL algorithm made this method 

of learning an effective global minimizer.  However, the faster convergence of the 

new algorithm was paid for at the expense of the CPU time used.  The training error 

is very similar to those given by Mak, Lu and Ku [93].   The mean square error was 

RTRL (6 units = 0.008, 9 units = 0.0008, 12 units = 0.0006), and MERTRL (6 units = 

0.001, 9 units = 0.003, 12 units = 0.001).  The poor performance of the MERTL 

algorithm is because some of the weights were seldom adapted, which prevents the 

algorithm from attaining a low mean square error.   Figure 4.9 and 4.10 show some 

typical convergence curves for both algorithms.   The learning curves for the TPA-

RTRL algorithm show good asymptotic behaviour, whilst the curves for the original 

algorithm get trapped in a stucking state after a few epochs.   

 

 Units = 6 Units = 9 Units = 12 

 MSEx102 CPU Time MSEx102 CPU Time MSEx102 CPU Time 
TPA-RTRL 0.021 440 0.007 862 0.004 2147 
GD-RTRL 0.018 208 0.013 694 0.022 1804 

 

     Table 4.5.   Number of epochs trained and test set error for the henon map time series 

prediction problem. Note that 1 epoch = 1,000 cycles 



Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks 
 

-88- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9.  Typical convergence behaviour of the new TPA-RTRL algorithm 

on the henon map time series prediction problem 

Fig. 4.10.  Typical convergence behaviour of the original GD-RTRL 

algorithm on the henon map time series prediction problem 
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4.4  Summary 

In this chapter, a new algorithm referred to as TPA-RTRL is proposed for training 

fully recurrent neural networks (FRNN).  Recurrent neural networks contain 

feedback connections and state units to encode the temporal relationships between 

input data sequences.  The new algorithm is based upon the real time recurrent 

learning (RTRL) algorithm proposed by Williams and Zipser [3], which has been 

used in many application areas such as real-time process control and speech 

enhancement.  It is shown that learning to predict temporal sequences improves the 

stability of the tangent plane algorithm when the network is presented with a small 

amount of erroneous data.  Several suggestions are made to improve the 

computational efficiency of the TPA–RTRL algorithm which include fixing the off-

diagonal recurrent connections, and fixing a preset number of randomly selected 

connections at each time step  

 

Comparative tests were carried out using the TPA-RTRL algorithm and the original 

GD-RTRL algorithm.  The benchmark datasets used were pipelined Xor, and the 

simple sequence recognition problem, and the henon map time series.  The results 

show that the new TPA-RTRL algorithm is very fast and stable.  It can operate in 

feed-forward mode by organising a fully recurrent neural network into a conventional 

feed-forward neural network.  It can also recover quickly when presented with small 

amounts of erroneous data.  The results also show that the new algorithm is capable 

of producing high model accuracies on a non-trivial deterministic chaotic time series 

and that it outperforms RTRL and MERTRL in terms of accuracy.  However, the 

runtimes may be prohibitively long in large networks 

 

In the next chapter, a new variant of the tangent plane algorithm is proposed for 

feed-forward neural networks.  This new algorithm includes two modifications to the 

original algorithm.  Firstly, a directional movement vector is introduced into the 



Chapter 4 : A new sequential tangent plane algorithm for recurrent neural networks 
 

-90- 

training process to push the movement in weight space towards the origin.  This 

movement vector simulates weight decay, which is known to have a beneficial effect 

on generalization in back-propagation learning.  The directional movement vector is 

modified to give a heavier weighting to weights with small weight values.    

Secondly, a random sideways movement along tangent planes is introduced into the 

training process.  This improves the likelihood of finding a good solution with small 

weights values (which can help generalization)  
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Chapter 5 

 

A NEW SEQUENTIAL TANGENT PLANE ALGORITHM FOR FEED-FORWARD 

NEURAL NETWORKS 

 

In chapter three, the second tangent plane algorithm was evaluated for function 

approximation and classification tasks on three neural network benchmark 

problems.  This second tangent plane algorithm introduces a novel way of activating 

the weights in a neural network for good generalization to occur.  It accepts almost 

zero starting conditions and moves away from the origin in weight space in a 

direction indicated by the training data.  Compared with the back-propagation 

algorithm, the second tangent plane algorithm gives good generalization across a 

range of network sizes; the back-propagation algorithm generalizes well but only in 

small networks.   However, the second tangent plane algorithm did not produce the 

expected separation of weights into active and inactive groups.  Histograms of 

weight importance coefficients show that both the mean and variance of the 

distributions were observed to increase.  This suggests that the tangent plane 

algorithm activates an increasing number of weights, each taking on more important 

roles within the network.  In this chapter, two modifications to the tangent plane 

algorithm are suggested to overcome this difficulty.  Firstly, a directional movement 

vector is introduced into the training process to push the movement in weight space 

towards the origin.  This movement vector will encourage weight decay, which is 

known to have a beneficial effect on generalization.  The directional movement 

vector is modified to give a heavier weighting to weights with small weight values.  

Secondly, a random sideways movement along tangent planes is introduced into the 

training process.  This improves the likelihood of finding a good solution with smaller 

weight values (which can help generalization).   
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5.1  Improvement in the generalization of the tangent plane algorithm 

Previously, we have investigated the evolution and differentiation of weights in 

networks trained by the second tangent plane algorithm.  In order to determine 

whether a weight was active or not, the importance of the weight was calculated 

using the autoprune method.  Autoprune [51,52] uses a statistic to allocate each 

weight an importance coefficient for the assumption that a weight becomes zero.  

Examination of the values of importance coefficients in networks trained by the 

second tangent plane algorithm show that both the mean and variance of the 

distribution of coefficient values tends to increase.  This suggests that each weight 

takes on increasingly important roles in the network, so any advantage gained by 

starting the training with almost zero initial conditions is soon lost.  It is well known 

that weight decay has a beneficial effect on generalization [12,13,52].  In the weight 

decay procedure the network itself removes superfluous weights by penalizing 

weights with small values.  Thus an alternative strategy improve generalization in 

the tangent plane algorithm might be to start the training from arbitrary initial 

conditions, and then push the weights in a direction that encourages weight decay.  

The introduction of a directional component of movement along the tangent planes 

and towards the origin would have this effect  

 

5.1.1 A brief introduction to pruning and weight decay  

The principal idea of pruning is to reduce the number of free parameters in the 

network by removing superfluous weights from the network.  If applied properly, it 

often reduces overfitting and improves generalization.  The key to pruning is 

estimating the importance of a connection.  Several such methods have been 

suggested.  The simplest method estimates the importance of a weight based upon 

its magnitude [12].  More sophisticated methods include optimal brain damage 

(OBD) and optimal brain surgeon (OBS).  OBD [10] uses a diagonal approximation 

of the Hessian of the error with respect to each weight to determine the saliency of 
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the removal of that weight.  Weights with low saliency are removed from the 

network.  OBS [11] avoids the drawbacks of estimating the Hessian by computing 

the second derivatives almost exactly.  Both methods require that the network is 

trained to the error minimum 

 

Another approach is to have the network remove the superfluous weights itself.  

This can be achieved by giving each connection a tendency to decay to zero so that 

connections disappear unless they are reinforced.  The simplest method is to 

subtract a small proportion of a weight after it has been updated [13].  This is 

equivalent to adding a penalty term ∑ ij jiw
,

2γ  to the original error function kε  and 

performing gradient descent on the resulting total error.  While this method clearly 

penalizes more jiw ’s than necessary, it overly discourages large weights.  This can 

be cured by using a different penalty term ∑ ji
2
jiwµ  / ( 2

jiw1+ )  such that the small 

jiw ’ s decay faster than the larger ones [101].   Simulations [102,103] using this 

penalty term show that no overtraining was observed and that the network was 

reduced to the optimum number of hidden units.   Other regularisation methods may 

involve not only the weights but various derivatives of the output function [104], and 

sensitivity measures based on the significance of hidden units [105]. 

 

In this section we present a new sequential learning algorithm referred to as iTPA 

based upon the tangent plane algorithm.  Whilst the original algorithm accepts 

almost-zero initial conditions and moves away from the origin, the new algorithm 

starts the training with weights initialized to arbitrary values and moves in a direction 

that encourages weight elimination.  The motivation behind this new idea was to 

develop a tangent plane algorithm capable of building small economical networks by 

removing superfluous weights.  A further motivation was to avoid the large weight 
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values caused by moving in the direction away from the origin in weight space.  

Large weight values are known to have a harmful effect on the generalization 

capabilities of neural networks.   

 

5.1.2 Derivation of the new iTPA algorithm  

The basic structure of a feed-forward neural network is shown in Fig 5.1.  It consists 

of an input layer of units that supply information, or activations, to the inputs of units 

in the first hidden layer.  These in turn supply activations to units in the next layer, 

and so on.  Typically the units in each layer receive inputs from the output of the 

units in the preceding layer.  Let jiw  denote the connection between unit iu  and ju .  

jφ  and jθ  will be the input and output of ju , so that fj =θ ( jφ ) and ∑= i ijij w θφ  

for some monotonic function f .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.1. The structure of a feed-forward neural network  
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Let the single output unit ku  be trained to mimic the target value ky , and let 0u  be 

the constant output unit, with 0θ  = 1.  Let n  denote the number of weights in the 

network.  The current state of the weights is represented by a nR∈ .  For a given set 

of inputs we can consider kφ  to be a function of the weights   kφ  : nRR → .  The 

second tangent plane algorithm adjusts the weights by moving along the line at an 

angle β  to the perpendicular from the current position a  to the ( )1n −  tangent 

plane to the surface ( )k
1

k yf −=φ , on the side of the perpendicular away from the 

origin (see Fig 5.2). 

 

Fig. 5.2.  Movement from the present position a to the point d inclined at an 

angle β  to the perpendicular from a to the tangent plane to the constraint 

surface 1
k f −=φ ( ky ) at point b in the weight space Rn.  The vector m 

represents the orthogonal projection of the weight elimination vector w' 

orthogonally onto the normal n to the constraint surface at point b 

0ki

oβ
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Let ∑= i,j ji
'
jiw ia  be the current values of the weights, where jii  is a unit vector in 

the direction of the jiw  axis.  Use the equation ( ) ∑ ≠
− +=

0i iki0kk
1 wwyf θ  to find a 

value, "
0kw , for the bias weight 0kw  from the values jiw  of the other weights, so that 

the surface ( )k
1

k yf −=φ  contains the point ∑ ≠
+=

0,ki,j ji
'
ji0k

"
0k ww iib .  Now, if we 

use the equation ( ) ∑ ≠
− +=

0i i
'
ki

"
0kk

1 wwyf θ  and ( ) ∑ ≠
− +=

0i i
'
ki

'
0kk

1 wwf θθ , and 

note that b  differs from a  only in the value of 0kw , we get  

 

  
( )

( ) ( )( ) 0
11

0
'

0
"

0

kkk

kkk

fyf

ww

i

iab

θ−− −=

−=−
 (5.1) 

 

Let n̂  be the unit normal to the surface at b , so kkˆ φφ ∇∇=n .  The length of the 

perpendicular from a  to the tangent plane at b  is ( ) nab ˆ.− .  If c  is the foot of the 

perpendicular from a  to the tangent plane at b ,  

 

 ( ) ( )( ) ( ) nniac ˆˆ.0
11

kkk fyf θ−− −=−   

 
( ) ( )

k

k

k

kk fyf
φ
φ

φ
θ

∇

∇

∇

−
=

−− 11

  (5.2) 

and 

 
( ) ( )

k

kk fyf
φ

θ
∇

−
=−

−− 11

ac   (5.3) 

 

The vector that is directed towards the origin and biased along the axes of the 

weights jiw  that have small weight values relative to some small positive constant 
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aw  is ='w ( )∑− i,j jiaji ww i / ( 2
a

2
ji ww1 + ).  The projection of 'w  onto the 

tangent plane is given by 

 

 ( ) nn.wwm ˆˆ'' −=  

 
k

k

m,l lm

k'
lm

k

'

w
w1

φ
φφ

φ ∇

∇








∂
∂

∇
−= ∑w  (5.4) 

where 

 i,j
i,j

2
a

2
ji

aji'

ww1
ww

iw ∑ +
−=  (5.5)  

 

Thus, if d  is the point of intersection with the tangent plane of a line from a  inclined 

at angle β  to the perpendicular, then 

 

 ( )ac
m
macad −+−=− βtan  (5.6) 

 

Let ( ) ( )k
1

k
1 fyf θδ −− −=  be the error in the input to final unit.  Hence using 

equations (5.2), (5.3) and (5.4) in (5.5) yields 
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Thus, to adjust a given weight jiw  
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The term jik w∂∂φ  is the partial derivative of the net input to the output unit.  The 

treatment of this term follows from Lee [2,11] 
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  where jM  is the set of units to which ju  passes its output 

 

Let us consider the different terms of (5.8) separately.  The first term represents 

movement to the foot of the perpendicular at c  from the current position a  to the 

tangent plane to the constraint surface ( )k
1

k yf −=φ .  The second term determines 
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the complexity of the network.  The constant factor βtan  gives the angle between 

the movement vector and the perpendicular from the current position to the tangent 

plane.  Its value is preferred to be small (e.g. typically ∼ 0.05) so that a point nearby 

the foot of the perpendicular is chosen to move toward.   A large value for βtan  

would introduce inaccuracy into the weight update.  The term in the brackets 

represents the projection of 'w  onto the tangent plane.  The directional vector 'w  

targets specific weights for removal according to the value of aw .  Those weights 

having an absolute value aji ww >>  will receive a smaller push and thereby decay 

less rapidly to zero.   

 

Let us next consider the computational efficiency of the new algorithm.  A simple 

cost saving can be made by replacing the norm m  in equation (5.9) with the norm 

of the directional vector 'w .  'w  is greater than or equal to ( )nn.ww ˆˆ'' − .  Its 

use will result in a reduction in the size of m , but this term is scaled by βtan  

anyway.  Let n  denote the total number of weights in the network.  According to 

(5.9) m  involves the expansion of the inner product k
' . φ∇w , which requires n2  

operations.  The term 2
kk

' . φφ ∇∇w  is used to scale n  partial derivatives, 

jik w∂∂φ , which requires a further n3  operations.  Thus the total computational 

saving is n5  operations 

   

The inclusion of a tendency to move towards the origin can be a disadvantage in the 

later stages of training.  In cases where convergence does not occur quickly, the 

weight decay term 'w  may penalize more of the weights than necessary giving 

average weight sizes small enough to trap the network in the region of weight space 

nearby the origin.  A second improvement can be made by adding a small 
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randomising term x , [ ]1,1−∈jix , to the directional weight vector 'w .  When 

projected onto the tangent plane it will take the movement laterally along tangent 

planes in random directions.  Now, we only want this term to dominate 'w  when all 

the weights are small.  We can achieve this goal by scaling x  according to some 

monotonically decreasing function of the weights, say =0α bw  / w , where bw  is 

a small positive constant 

 

5.2  Implementation of the new procedure 

The following section is included to clarify the procedure for updating the weights of 

a network using the new iTPA algorithm 

 

1.   For each unit ju ,   

( )

( )
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=

∑−
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1

t
j

otherwisewxf

kjif1
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2.   For each weight jiw ,   
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θ
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∂
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3.   Calculate the squared norm of kφ∇  

∑ 










∂
∂
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2
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φ
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4.   Calculate the average of the absolute values of the weights 

∑=
i,j jiw

n
1w  

5.  Generate a random vector [ jix ] with 1<jix  
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6.   For each weight jiw ,   
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7.   Calculate the components of the vector m   
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8.   Calculate the squared norm of m  
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9.   For each weight jiw ,  add   
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w
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φ
δ
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where ( ) ( )k
1

k
1 fyf θδ −− −=  

 

5.3  Simulations and results 

Comparative tests were performed on the new iTPA algorithm and original tangent 

plane algorithm under a variety of different initial conditions.  The datasets used 

were regression and classification problems.  Classification problems involve a 

decision making task where the output fits into well-defined categories.  The 

classification task chosen was the two spiral problem as given in Fahlman [7].  

Regression problems involve the approximation of a continuous valued function.  

The regression tasks chosen are the henon map time series [9], which were made 

artificially by computer simulation, and the housing price estimation problem 

obtained from the UCI data repository [61]  
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The two spiral problem was used to determine the effect of the weight sensitivity 

parameters on the convergence properties of the new iTPA algorithm.  Since the 

tangent plane algorithm converges faster in oversized networks, a 2-30-30-1 

architecture was used rather standard architectures quoted elsewhere e.g. the 2-5-

5-5-1 architecture in [106].  For each test, 10 trials were performed with the 

classification error on the training set and the test set, mean number of epochs to 

converge, and number of successful trials recorded.  Network training was 

terminated using Fahlman’s 40-20-40 criteria [32] (e.g. for each pattern the output 

had to be less than 0.4 if the desired value was 0, or greater than 0.6 if the desired 

output was 1) for the purpose of comparison with [107]   

 

The henon map and house price estimation problem were used to determine the 

effect of the directional movement vector on the distribution of weight sensitivities in 

networks trained by the new iTPA algorithm.  The method used to estimate the 

importance of the weights was the autoprune [51].  Once again, an oversized 

network was used with the expectation that the weight decay term would 

automatically prune the network.  For each test, 20 trials were performed with the 

mean square error on the training set and test set recorded together with the mean 

number of steps to converge.  Network training was terminated when the error on 

the training set was reduced to below a preset value or the maximum number of 

permissible epochs was exceeded.   

 

5.3.1 Network initialization 

Both algorithms require parameters to be set manually.  Preliminary tests showed 

that the best results were obtained with the parameters set as follows.  First, the 

iTPA algorithm.  For the two spiral problem, βtan = 0.05.  The weight sensitivity 

parameters aw  and bw  were varied according to a grid search.  The input weights 
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were set to random values in the range [-2, 2].  For the henon map and house price 

estimation problems, βtan = 0.05, aw = 0.05, and bw = 0.2.  The input weights were 

set to random values in the range [-1,1].  Next, the second tangent plane algorithm.  

The angle parameter βtan = 0.05.  The input weights were set to random values in 

the range [-0.01, 0.01] 

 

5.3.2 Simulation problems 

The two spiral problem consists of two interlocking spirals, each made up of 97 data 

points.  The network must learn to discriminate the two spirals.  Traditionally this is 

known to be a very difficult problem for the back-propagation algorithm to solve.  

There are two inputs and one output.  The inputs are the x and y co-ordinates, and 

the output notifies which spiral the point belongs to.  For the points in the first spiral 

the output is set to +1, and for points on the other spiral the output is set to -1.   The 

number of training samples is 194.  A test set of 192 samples was generated by 

rotating the two spirals by a small angle.   

 

The henon map problem is a chaotic time-series prediction problem.  The time 

series is computed by  

 ( ) ( )( ) ( )121 1 −+ +−= ttt xbxcx  (5.12) 

 

where ( )tx  is the value at taken time t , and the parameters 3.0b = , and 4.1c = .  

Initial values for the time series are ( ) ( ) 63133545.0xx 01 == .  This point is called 

the fixed point of the time series.  In neural network simulations, four successive 

values of the time series are used in predicting the next value.  Thus, the number of 

inputs is four and the number of outputs in one.  The number of training samples is 

100, and testing samples is 100.  Data values were taken from the range [31,230] 
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The house price estimation problem is a real-world problem that estimates the price 

of houses in the suburbs of Boston based on some attributes of houses (e.g. 

location, crime rate, level of air pollution, etc.).  The number of inputs is 13, and the 

number of outputs is one.  The number of training and testing examples is 253.  The 

data sets used in the simulation were sampled randomly from the dataset provided 

by the UCI data repository with the outputs scaled down in the range [-1,1]. 

 

5.3.3 Error metrics used to determine convergence 

The error metrics used in the simulations were CERR (Classification ERRor) for 

classification problems, and NMSE (Normalized Mean Square Error) for regression 

problems e.g.   

 ( ) ( )∑ −=
i

kiki sgnysgn
m2
1CERR θ   (5.13) 

 and 

 ( )2

2

1 ∑ −=
i

kikiy
m

NMSE θ
σ

 (5.14) 

 

where m  is the number of training patterns, kiy  is the target output of the ith  input 

pattern, kiθ  is the ith  network output, sgn   is the sign function of a number ( i.e. if 

the number if negative, then the sgn  function returns -1, otherwise it returns +1), 

and 2σ  is the variance of the target output data.   

  

5.3.4 Discussion of results  

Two spiral problem.  The first test is a difficult non-linearly separable problem where 

a set of co-ordinates (x,y) is classified as belonging to one of two interwoven spirals.  

For the iTPA algorithm, the average number of steps to converge varied from 370 to 

810 epoch (mean = 566, std. dev. = 168) with the weight sensitivity parameters set 
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at aw = 0.02, and bw = 0.2.  One failed trial was excluded from the results.  The 

classification error on the test set was 1.69 x 10-2 (e.g. % test set learned is 98.3) 

with all the points on the training set correctly classified.  Using the original tangent 

plane algorithm, all trials converged in less than 710 epochs (mean = 529, std. dev.  

= 149).  The classification error on the test set was 1.63 x 10-2 (e.g. % test set 

learned is 98.4) with all the training points correctly classified.  The results compare 

favourably with those given by Linder et al [107] (Aprop: epochs = 67, % test set 

learned = 96.6; Rprop: epochs = 246, % test set learned = 65.6).  The network 

architecture used with Aprop was 2-100-100-1, giving a total of 31,000 weights.     

 

Table 5.1 demonstrates the effects of changing the weight sensitivity parameters aw  

and bw  of the new iTPA algorithm.  It was found that the classification error was not 

particularly sensitive to the exact value chosen for aw .  However, increasing the 

value of aw  had a deleterious effect on the convergence speed of the new algorithm 

and resulted in more failed trials.  Clearly larger values for aw  have driven more of 

the weights down to zero resulting in problems with local minima.  It was also found 

that increasing the value of bw  improved the speed of convergence speed.  

Including random movement along tangent planes into the weight update equation 

was sufficient to break out of local minima and permits the network to move in 

directions that are not available to the original algorithm 
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Fig 5.3 and 5.4 show some typical test curves for both algorithms on the two spiral 

problem.  Different sets of initial weights were used in each test.  The test curves of 

the new iTPA algorithm show some variation (Fig 5.3).  In many of the curves 

generated the convergence speed was found to be slow at the start of the training 

run with intermittent rises in the test error fairly typical (test 3).  When the new 

algorithm was close to a solution, the convergence speed was usually rapid (test 1 

and 3).  The test curves of the original algorithm also show wide variation in the 

error (Fig 5.4).  In the best curves the convergence speed was rapid with the 

network learning all the points on the test set (test 3).  Generally speaking the 

original algorithm had fewer problems with local minima.  There was very little 

evidence of overfitting observed in any of the test curves 

 

 

 

aw  bw  Cerr Cerr* Steps Succ 

0.02 0.5 0.0093 0.0017 566 10 
0.05 0.5 0.0096 0.0019 1101 10 
0.10 0.5 0.0096 0.0020 1716 10 
0.20 0.5 0.0097 0.0018 1604 5 
0.05 0.02 0.0097 0.0021 1319 9 
0.05 0.05 0.0095 0.0023 1030 10 
0.05 0.10 0.0095 0.0016 960 9 
0.05 0.50 0.0096 0.0019 1101 10 

Table 5.1.  Classification error on the training set (Cerr) and test set (Cerr*), mean 

number of steps to converge, and number of successful trials (Succ) for different 

values of the weight sensitivity parameters aw  and bw  
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Fig. 5.4.  Typical generalization behaviour of the second tangent plane 

algorithm on the two spiral problem 

Fig. 5.3.  Typical generalization behaviour of the new iTPA algorithm 

on the two spiral problem  
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Henon map time series.  The second test is a classical deterministic one-step-ahead 

prediction problem.  Once again, an oversized 2-20-20-1 network architecture was 

chosen in order to determine the degree to which the new algorithm would remove 

redundant weight connections.  For the iTPA algorithm, the number of steps to 

converge varied from 310 to 1150 (mean = 676, and std. dev. = 321) when the 

weight sensitivity parameters were set at aw = 0.02, and bw = 0.2.  The mean 

square error on the test set was 0.003, with standard deviation 0.001.  There was 

little evidence of overtraining.  Increasing the value of the parameter aw  had a 

beneficial effect on generalization behaviour but resulted in much slower 

convergence.  Using the original tangent plane algorithm, all trials converged in less 

than 1110 epochs (mean = 431, std. dev. = 259).  The final error on the test set was 

0.004 with standard deviation 0.006.  Gross overfitting was observed in many trials, 

which accounts for the large variance in the final error.   

 

Fig 5.5 and 5.6 show histograms of the importance coefficients of the weights for 

both algorithms on the henon map problem.  The importance coefficients were 

recorded from the same trial at epochs 100, 300 and 500.  The coefficient sizes 

were grouped in classes of width one and histograms plotted to show the distribution 

of the jiT  values at three different stages of training.  The new iTPA algorithm gave 

average coefficient sizes of 1.48, 1.46, and 1.46.  The original algorithm gave 1.70, 

1.96, and 2.25.  Notice the lengthening of the right tail of the histograms produced 

by the new algorithm (see Fig 5.5).  This result suggests that a small proportion of 

the weights have taken on increasingly important roles in the network as the 

learning continues.  Notice also the peak to the left of the main distribution (see Fig 

5.5).  This suggests that the weights of the network trained by the new algorithm are 

separating into two distinct groups.   
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Fig. 5.5  Importance coefficient histograms for the new iTPA algorithm (henon 

map problem). Horizontal axis: coefficient size grouped in classes of width 1. 

Vertical axis: absolute frequency of weights with this coefficient size.  

Fig. 5.6  Importance coefficient histograms for the second tangent plane algorithm 

(henon map problem). Horizontal axis: coefficient size grouped in classes of width 

1. Vertical axis: absolute frequency of weights with this coefficient size 
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Housing price estimation problem.   The final test is a real world problem that aims 

to estimate the price of housing in the suburbs of Boston.  Once again, an oversized 

13-20-20-1 network was used to determine the degree to which both algorithms 

could generalize in a network that contains redundant connections.  For the iTPA 

algorithm, the number of steps to converge varied from 310 to 1190 (mean = 519, 

and std. dev. = 334) when the weight sensitivity parameters were set at aw = 0.01, 

and bw = 0.1.  The mean square error on the test set was 0.13, with standard 

deviation 0.02.  There was little evidence of overtraining.  Using the original tangent 

plane algorithm, all trials converged in less than 1110 epochs (mean = 389, std. dev. 

= 305).  The final error on the test set was 0.17 with standard deviation 0.05.  Gross 

overfitting was observed in most trails.  These results compare favourably with the 

results given by Lahnajärvi et al [17] (CasCor: epochs = 496, generalization = 0.22; 

Rprop: epochs = 603, generalization = 0.23). 

 

Fig. 5.7 and 5.8 each show histograms of the importance coefficients for both 

algorithms on the housing price estimation problem.  The importance coefficients 

were recorded from the same trial at epochs 100, 300 and 500.  The coefficient 

sizes were grouped in classes of width one and histograms plotted to show the 

distribution of the jiT  values at three different stages of training.  The new iTPA 

algorithm gave average coefficient sizes of 2.24, 2.68, and 2.79 respectively.  The 

original algorithm gave 2.56, 3.33, and 3.81.  The histograms produced by the new 

algorithm show the same kind of behaviour as before, namely the lengthening of the 

right tail and the small peak to the left of the distribution (see Fig 5.7).  The 

histograms produced by the original algorithm show a distinctive drift to the right.  

This result shows that an increasing number of weights have evolved from the initial 

distribution about the origin (Fig 5.8) 
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Fig. 5.7  Importance coefficient histograms for the new iTPA algorithm (housing 

price problem). Horizontal axis: coefficient size grouped in classes of width 1. 

Vertical axis: absolute frequency of weights with this coefficient size 

Fig. 5.8  Importance coefficient histograms for the second tangent plane algorithm 

(housing price problem). Horizontal axis: coefficient size grouped in classes of 

width 1. Vertical axis: absolute frequency of weights with this coefficient size 
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5.3.5 Comparison of the different algorithms  

In order to determine whether the difference in the results is statistically significant, 

we perform some hypothesis tests.  The test used was a standard t-test with the 

iTPA sample of 20 test errors compared with the corresponding sample from the 

original tangent plane algorithm for each dataset used in the study.  A second test 

was carried out by comparing the results of weight growth and weight decay using 

the tangent plane algorithm to training a static network with early stopping.  The 

backpropagation algorithm (learning rate η = 0.01, momentum term α = 0.7) was 

used for this purpose.  For the correct application of the t-test, it was necessary to 

take the logarithm of the test errors (since the test errors have log-normal 

distribution) and remove any outliers, following the same procedure in [51].  The 

resulting samples were tested for normality using the Kolmogorov-Smirnov test. 

 

 
 
 
 
 
 
 
 
 
 
 
 
The results are tabulated in Table 5.2.  Dashes mean differences that are not 

significant at the 10% level i.e. the probability that the differences are purely 

accidental.  Other entries indicate the superior algorithm (e.g. iTPA algorithm - I, 

second tangent plane algorithm – T, backpropagation algorithm - B), and the value 

of the t statistic.  Column (a) gives a comparison between the new iTPA algorithm 

and the second tangent plane algorithm.  The results show that there is no 

Problem Training 
samples 

Test 
samples Inputs (a) (b) (c) 

Spiral 194 192 2 - B 3.03 B 1.89 
Henon 100 100 4 - - - 

Housing 150 103 13 I 2.76 B 1.97 B 4.60 

Table 5.2.  Results of a t-test comparing the mean test errors of the different algorithms.  

The entries show differences that are statistically significant on a 10% level and dashes 

mean no significance found.  Column (a): iTPA algorithm (“I”) vs. second tangent plan 

algorithm (“T”). Column (b): iTPA algorithm vs. backprop algorithm (“B”).  Column. 

(c): second tangent plane algorithm vs. backprop algorithm    
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significant difference in most of the benchmarks datasets used in the study.  This 

would suggest that the new iTPA algorithm produces networks with a similar 

proportion of inactive weights as the original second tangent plane algorithm.  The 

result in the housing estimation problem might be accounted for by a larger weight 

sensitivity parameter aw , which gives the cut-off value below which weights are 

forced to zero in the iTPA algorithm.  Column (b) and (c) gives a comparison with 

the backpropagation algorithm using early stopping.  The results show that early 

stopping is superior to weight growth and weight elimination using the tangent plane 

algorithm.  However this success was gained at the expense of prohibitively long 

runtimes (e.g. two spiral: epochs = 1600; henon: epochs = 1544; and housing: 

epochs = 449) 

 

5.4  Summary 

In this chapter, a new variant of the tangent plane algorithm referred to as iTPA is 

proposed for feed-forward neural networks.  This new algorithm includes two 

modifications to the existing algorithm.  Firstly, a directional movement vector is 

introduced into the training process to push the movement in weight space towards 

the origin.  This movement vector simulates weight decay, which is known to have a 

beneficial effect on generalization in back-propagation learning.  The directional 

movement vector is further modified to give a heavier weighting to weights with 

small weight values.  Secondly, a random sideways movement along tangent planes 

is introduced into the training process.  This improves the likelihood of finding a 

good solution with small weights values (which can help generalization).   

 

Comparative tests were carried out using the new iTPA algorithm and the second 

tangent plane algorithm.  The benchmark datasets used were two spiral, henon 

map, and housing price.  The results indicate that the new iTPA algorithm retains 
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the fast convergence speed of the original method.  Including a small amount of 

random movement along tangent planes into the weight update often helps the 

network break out of local minima that can slow down the convergence.  The results 

also show that the new algorithm gives improved generalization relative to the 

original algorithm in some problems (e.g. housing price), and comparable 

generalization in yet other problems (e.g. henon map).  Finally, the new iTPA 

algorithm does not appear to give any tangible benefits in terms of improved 

generalization relative to the backpropagation algorithm with early stopping 

 

In the next chapter, a new batch tangent plane algorithm is developed for training 

small parsimonious networks.  This new algorithm uses the gradient information and 

target values to construct a linear system, and solves this system by finding a least 

squares solution.  The newly developed algorithm is evaluated and compared with 

Rprop [28] on two benchmark datasets.  Rprop is a very fast locally adaptive 

learning algorithm that is very robust relative to the selection of its internal 

parameters.  The results show that the new batch tangent plane algorithm is very 

fast relative to Rprop.  Some limitations of the new algorithm are also identified.   

 

In chapter 7, two improvements are suggested to overcome the difficulties of the 

batch tangent plane algorithm.  The newly developed algorithm is evaluated and 

compared with two popular network constructive techniques on three neural network 

benchmark problems 
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Chapter 6 

 

A NEW BATCH TANGENT PLANE ALGORITHM FOR FEED-FORWARD 

NEURAL NETWORKS 

 

In chapter three, a sequential learning algorithm called the tangent plane algorithm 

was evaluated for function approximation and classification tasks.  This algorithm 

modifies the weights of a feed-forward neural network in the direction in which the 

error function decreases most rapidly.  Unlike the gradient descent backpropagation 

algorithm, it does not require a learning rate parameter to be set to adjust the step 

size.  Instead it uses the target data to define a surface in weight space.  The 

weights are then updated by moving to the tangent plane to this surface, taken at a 

convenient point.  The results show that the tangent plane algorithm is very fast 

relative to the standard backpropagation algorithm.  However this improvement in 

speed was observed in large network structures.  In small economical networks the 

convergence speed was found to be very slow and there were more failures to 

converge.  Collecting all the gradient information together before the weights are 

updated can help to avoid the mutual interference of weight changes that slow down 

the convergence speed.  Further, sequential methods may be slow in comparison to 

batch methods that use second-order information.  In this chapter, a batch 

implementation of the tangent plane algorithm is developed for training small 

parsimonious feed-forward networks.  This new algorithm uses the Gauss-Newton 

vector to guide the search toward the solution of a system of tangent plane 

equations.  It is shown that the new batch tangent plane algorithm is fast compared 

with the best first order learning algorithm 
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6.1  Improving convergence in small economical networks 

Previously, we have evaluated the tangent plane algorithm for three neural network 

benchmark tasks.  This tangent plane algorithm treats each target value as a 

constraint which defines a surface in weight space.  The weights are updated by 

moving to the tangent plane to this surface.  Unlike the backpropagation algorithm, it 

automatically calculates the correct step to be taken.  This is the principal strength of 

the tangent plane algorithm.  Compared with the back-propagation algorithm, the 

tangent plane algorithm is very fast and avoids problems like local minima.  

However, this improvement was observed in large networks that have a high 

dimensional weight space.  In small networks the convergence speed at best was 

comparable with more failures to converge. 

 

Another difficulty with the tangent plane algorithm is locally instability due to the 

large steps taken in weight space.  This was particularly noticeable with large 

datasets that contain one or more incorrect patterns.  In order to address this 

difficulty a progressive stiffening factor was introduced whereby the step size was 

progressively decreased as the weights become trained.  However, this strategy 

produced slower convergence relative to the backpropagation algorithm.  Further it 

requires setting a parameter that can be difficult to tune 

 

Collecting all the gradient information together before the weights are updated can 

help to avoid the mutual interference of weight changes that occur with large 

learning rates.  Furthermore, sequential methods may be slow in comparison to 

batch methods that use second-order information.  Thus it seems worthwhile 

investigating a batch implementation of the tangent plane algorithm for small 

economical networks.  In the next section we describe the derivation of the new 

algorithm referred to as GN-TPA     
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6.1.1 Derivation of the new GN-TPA algorithm 

A multi-layered feed-forward neural network of { ju } units is assumed where the 

connection from iu  to ju  is regulated by weight jiw .  jφ  and jθ  will be the input and 

output of ju  so that fj =θ ( jφ ) for some monotonic function f , and ∑= i ijij w θφ .  

Let ku  be the single output neuron with kθ  trained to mimic a target value ky .  The 

tangent plane algorithm determines a plane of suitable points to move to within 

weight space.  This suggests an attractive possibility for training in batch mode, 

which is to move to the intersection of each plane after the presentation of all the 

training patterns. 

 

Our starting place is a general equation for the movement from the present position 

to a point on the tangent plane to the surface ( )k
1

k yf −=φ .  Let '
jiw  be the current 

point in weight space, and let "
jiw  be a point on the constraint surface such that "

jiw  

differs from '
jiw  only in the value of the bias weight 0kw .  It follows that 

( ) ( )k
1

k
1 fyf θ−− −  is the distance along the axis corresponding to 0kw  from '

jiw  to 

"
jiw .  Let kφ∇  be the gradient vector at "

jiw .  The perpendicular distance w∆  from 

'
jiw  to the tangent plane at "

jiw  is given by 
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If nR∈∆w  denotes a vector from the current point to a point on the tangent plane, 

then the projection of w∆  onto kφ∇  is given by 

 

 [ kφ∇ ]T ( ) ( )kk fyf θ11 −− −=∆w  (6.2) 

 

Equation (6.2) defines a ( )1n −  plane of suitable points to move to, within the 

weight space nR .  In order to develop a batch tangent plane algorithm we construct 

a system of equations using the entire training set and solve for a suitable point to 

move towards.  For a set of input-output data {( ( ) ( )i
k

i y,x )} m
i 1= , equation (6.2) can be 

written as an nm×  system as follows 
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 (6.3) 

 

Alternatively, equation (6.3) can be written more concisely as  

 

 ( ) ( ) ( )k
1

k
1 ff θywwJ −− −=∆φ   

 

where =φJ [ ( ) ( )m
kk φφ ∇∇ ,,1  ]T, ( ) ni

k R∈∇φ , nm ≥ , is an nmR ×  Jacobian matrix, 

=ky [ ( ) ( )m
kk yy ,,1  ]T  is a vector of target values, and =kθ [ ( ) ( )m

kk θθ ,,1  ]T is a 

vector of model outputs 
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If the number of training samples m  equals the dimension of weight space n , then 

φJ  is square and the system (6.3) can be solved by matrix inversion provided that 

φJ  is non-singular (e.g. invertible).  However, for most real neural network problems 

nm >> , which makes the system overdetermined.  For such problems φJ  will not 

be square, so there may not exist a set of jiw∆  such that (6.3) is satisfied exactly.  

Instead, one may need to find specific jiŵ∆  such that 

 ( ) ( ) ( ) ( ) 2
k

2
k minˆ wewwJwewwJ

w
−∆=−∆

∆ φφ  (6.4) 

where ( ) =wek [ ( ) ( )k
1

k
1 ff θy −− − ] mR∈  represent a vector of errors.  Expanding 

the norm squared of the residuals, we have 

 

 
( ) ( ) ( ) ( )

( ) k
T
kk

TT
k

T
k

T
k

eeewJwJe

wJwJewJewJ

+∆−∆

−∆∆=−∆−∆

φφ

φφφφ

 (6.5) 

The two middle terms on the right-hand side of (6.5) are equal.  Differentiating and 

setting the result equal to zero, we arrive at the normal equations 

 k
TT eJwJJ φφφ =∆  (6.6) 

Equation (6.6) defines the new GN-TPA algorithm.  The training procedure is 

iterative and proceeds as follows.  Starting with some initial guess initialw  for the 

minimum, the weight update proceeds according to the iteration www ∆+= oldnew , 

where w∆  is the weight increment at time step n .  The iteration is terminated when 
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the error vector ( ) ( )k
1

k
1

k ff θye −− −=  is sufficiently small or the matrix φφ JJ T  

becomes rank deficient    

 

Let us next consider the convergence properties of the GN-TPA algorithm.  If 

( ) ( )kkk ff θye 11 −− −= , then kφ∇  equals ke∇−  or eJ− .  Using this in the right-

hand side of (6.6) yields k
T
e eJ− ,  which is the gradient of the error surface 

∑= i kik e2ε .  As far as the generation of a descent direction goes, the square 

matrix φφ JJ T  is always at least semi-positive definite, so 0k
TT ≥∆ eJw φ  or 

0k
T
e

T ≤∆ eJw   (e.g. w∆  is a descent direction for kε ).  However this does not 

guarantee that old
k

new
k εε <  as w∆  might be too large locating w well beyond the 

minima.  This problem is exacerbated by the choice of ( )xf 1− .  For example ( )xf 1−  

= ( )xtanh 1−  blows up as x  approaches 1±  

 

The only difficulty that can arise is φJ  being rank deficient and hence φφ JJ T  is 

singular.  The customary practice for dealing with a rank deficient φJ  is to add a 

diagonal matrix Iµ  to the term φφ JJ T , where 0≥µ  is a constant and I nnR ×∈  the 

unit matrix.  When 0=µ , w∆  is a least squares step.  As ∞→µ , the term Iµ  

increasingly dominates that of φφ JJ T  so that k
T1 eJw φµ −→∆ .  Finally, there 

remains the problem of finding the proper value of µ .  One approach might be use a 

line search, but the main objection here is that is it prohibitively slow.  Another 

approach might be to use a region of trust model.  In Fletcher [41], if the error 

surface is approximately quadratic, then the model is operating optimally and µ  is 

halved; otherwise µ  incremented by a factor ν  >  2 
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6.1.2 Solving the tangent plane normal equations  

The explicit formulation of the matrix [ φφ JJ T ]-1 T
φJ  from equation (6.6) is undesirable 

as it is prone to considerable round-off errors during its computation.  Instead we 

can solve the equation kewJ =∆φ  using a singular value decomposition (SVD) 

which is numerically more stable [109].  This method involves factorizing the matrix 

φJ  into an nm×  orthogonal matrix U , an nn×  orthogonal matrix V , and an nn×  

diagonal matrix Σ  comprising the singular values of φφ JJ T  along the leading 

diagonal with zero’s elsewhere 

 TVUJ Σ=φ  (6.7) 

If the columns iv  of the right orthogonal matrix V  are treated as eigenvectors of the 

symmetric matrix φφ JJ T , then the elements along the leading diagonal of Σ  are the 

positive square roots of the corresponding eigenvalues.  The columns iu  of the left 

orthogonal matrix U  correspond to the eigenvectors of T
φφ JJ .  Solving (6.3) using a 

singular value decomposition, we arrive at the standard result  

 =∆w ∑
=

n

i
i

i

k
T
i

1
v

eu
σ

 (6.8) 

where ke  is a vector of residuals (errors), which is this case are given by 

( ) ( )k
1

k
1 ff θy −− − , and iσ  are the singular values.  In the summation above the 

terms that correspond with relatively small singular values can be omitted to improve 

the robustness in the calculation of w∆ .  This situation arises whenever φJ  is 

close to being rank deficient 

  



Chapter 6 : a new batch tangent plane algorithm for feed-forward neural networks 

-122- 

6.1.3 Implementation of the procedure  

The following section is included to clarify the procedure for updating the weights of 

a network trained using the batch tangent plane algorithm.  For m  distinct training 

samples ( ( ) ( )i
k

i y,x ), where ( ) Ni R∈x  and ( ) Ry i
k ∈  

 

1.   Compute the unit outputs m
j R∈θ  

2.   Compute the components of the Jacobian nmR ×∈φJ  

3.   Compute the eigenvalues and orthonormal eigenvectors of the  

 symmetric matrix nnT R ×∈φφ JJ   

4.   Construct Σ nnR ×∈  as a square matrix whose diagonal elements iiσ  

 are the singular values of φJ  

5.   Set =V [ iv ] nnR ×∈  where the columns iv nR∈  are the eigenvectors  

 identified in step 3 

6.   Calculate VJU φ= Σ -1 

7.   Calculate =∆w ( )∑ =

n

1i iik
T
i veu σ  

8.   Test on the training set 

9.   If model adequate, then Stop 

 else Goto step 1 

 

6.2  Simulations and results 

Comparative tests were performed using the new GN-TPA algorithm and a fast first 

order learning algorithm, Rprop (resilient back-propagation) [28], under a variety of 

initial conditions and different network sizes.  The training sets used were regression 
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and classification problems.  Classification problems involve a decision making task 

where the output fits into well-defined categories.  The classification task chosen 

was the breast cancer diagnosis problem obtained from the Proben1 collection [34].  

Regression problems involve the approximation of a continuous valued function.  

The regression task was the additive function problem which was created artificially 

by computer simulation [22].   

 

For each test carried out a single hidden layer feed-forward neural network was 

trained 20 times using different starting values for the weights.  The number of steps 

to converge, and the normalised square error on the training set and test set were 

averaged over the 20 trials.  An upper limit was placed on the maximum permissible 

number of steps.  Network training was terminated using the method of early 

stopping as this method is known to help avoid overfitting [52].   

 

6.2.1 Network initialization 

The GN-TPA algorithm does not require any parameters to be set manually.  In 

preliminary tests it was found that the performance of the algorithm was sensitive to 

the initialization of the weights.  For the breast cancer problem, the input weights 

were set to random values in the range [-2, 2].  For the additive problem, the input 

weights were set to random values in the range [-1, 1] 

 

The parameters used with the Rprop algorithm are the step increment factor +η , the 

step decrement factor −η , the initial step size ( )0∆ , the maximum step size max∆ , 

and the minimum step size min∆ .  The step increment and decrement factors were 

chosen to be the same as in the original paper, i.e. 2.1=+η , 5.0=−η .  The initial 

step size is not critical, and was set to ( ) [ ]2.0,05.00 ∈∆ .  The maximum step size 
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was also chosen to be the same as in the original paper, i.e. 50max =∆ .  Finally, the 

minimum step size was set to 8
min 10x1 −=∆  to avoid overflow/underflow problems 

with floating point variables.  The input weights were set to random values in the 

range [-0.1, 0.1] 

 

6.2.2  The error metric used to determine convergence 

The error metrics used in the simulations were CERR (Classification ERRor) for 

classification problems, and NMSE (Normalized Mean Square Error) for regression 

problems e.g.   

 ( ) ( )∑ −=
i

kiki sgnysgn
m2
1CERR θ   (6.9) 

 and 

 ( )2

2

1 ∑ −=
i

kikiy
m

NMSE θ
σ

 (6.10) 

 

where m  is the number of training patterns, kiy  is the target output of the ith  input 

pattern, kiθ  is the ith  network output, sgn   is the sign function of a number ( i.e. if 

the number if negative, then the sgn  function returns -1, otherwise it returns +1), 

and 2σ  is the variance of the target output data.   

 

6.2.3 Simulations problems 

The cancer problem contains some diagnosis results for breast cancer.  Based on 

cell descriptions gathered by microscopic examination, a tumour is classified as 

benign or malignant.  The dataset was created based upon the breast cancer 

Wisconsin problem dataset from the UCI machine learning repository [61].  The 

output represents the classification result for the purpose of breast cancer diagnosis.  

The decision is based on nine input attributes which include cell thickness, the 
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uniformity of cell size, and cell shape.  The number of training samples is 200 and 

the number of testing samples is 167. 

 

The additive problem is a non-linear function approximation problem that was 

obtained from [22].  The function is computed by  

 

 u05.0e5.0
x1

x
x5.0xxx5.0z 21 xx

2
2

12
221

2
1 ++

+
++−−= −  (6.11) 

 

A small signal u  is added to the output with values uniformly distributed in the range 

[-1, 1].  Four hundred data points are generated.  The first 200 data points are used 

as training data whilst the remaining are used as test data.  The input values are 

uniformly distributed in the range [-1, 1].  All functional values or outputs are scaled 

down in the range [-1, 1] 

 

6.2.4  Discussion of results 

The first test utilized the additive function data.  The results are tabulated in Table 

6.1a.  It was found that the batch tangent plane algorithm gave significantly faster 

convergence relative to Rprop, and that the convergence speed improved with 

network size.  Both methods reached the minimum training error.  It was also found 

that the new GN-TPA algorithm gave comparable generalization relative to Rprop, 

except in the smallest network where it was slightly worse.  When failed trials were 

removed from the results, the performance of the batch tangent plane algorithm in 

the smallest network was significantly better (test error = 2 x 10-4, epochs = 18).  

The improvement in the Rprop algorithm in comparison was relatively small (test 

error = 1 x 10-4, epochs = 1873)   
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Fig 6.1 and 6.2 show the training curves for both algorithms.  The curves for the GN-

TPA algorithm drop quickly at first.  Thereafter two of the curves exhibit sharp 

bumps.  Convergence occurs rapidly within 15 epochs.  The sharp bumps suggest 

oscillatory behaviour caused by the step size overshooting the linear minimum.  The 

curves for Rprop show a sharp initial bump after one epoch.  Thereafter the curves 

are relatively flat illustrating linear convergence.  The first sharp bump is probably 

due to Rprop increasing the step size far too quickly in the initial weight space.  The 

subsequent bump illustrates the tendency of Rprop to overcompensate the step size 

when moving in a descent direction 

 

(a)   
   

 Batch tangent plane algorithm  
(GN-TPA) 

Resilient back-prop  
(Rprop) 

 Avg. validation set error using early 
stopping (NMSE x 102) 

Avg. validation set error using early 
stopping (NMSE x 102) 

Size Err Err* Steps Err Err* Steps 
10 0.03 0.04 811 0.02 0.02 1975 
15 0.01 0.02 25 0.02 0.02 1865 
20 0.01 0.01 30 0.02 0.02 1724 
       

(b)       
       

 Batch tangent plane algorithm 
(GN-TPA) 

Resilient back-prop  
(Rprop) 

 Avg. validation set error using early 
stopping (CERR x 102) 

Avg. validation set error using early 
stopping (CERR x 102) 

Size Err Err* Steps Err Err* Steps 
10 3.71 2.81 10 3.91 2.12 20 
15 3.54 2.01 12 3.91 2.69 17 
20 3.66 2.66 10 3.83 2.78 23 

 

Table 6.1.   Training set error (Err), test set error (Err*) and steps to converge for 

different size networks with training terminated using early stopping: (a) additive 

function approximation problem, (b) the breast cancer problem  
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Fig.6.1. Typical training curves generated by the new GN-TPA algorithm on the 

additive function approximation problem 

Fig.6.2. Typical training curves produced by the Rprop algorithm on the 

additive function approximation problem 
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The second test utilized the breast cancer dataset.  The results are tabulated in 

Table 6.1b.  It was found that the GN-TPA algorithm gave faster convergence 

relative to Rprop across a range of network sizes.  However, this improvement was 

paid for by much longer training times. It takes approximately 5 minutes for the 

batch tangent plane algorithm to train a network with 20 units 5 times using a 

Pentium IV (2.67 GHz).  Rprop takes approximately 10 seconds to finish the training 

process.  Clearly the computational burden of performing an SVD operation makes 

the batch tangent plane algorithm suitable only for small to medium sized networks.  

It was also found that the batch tangent plane algorithm gave comparable 

generalization relative to the Rprop algorithm, and that generalization was 

independent of network size.   

 

Figures 6.1 and 6.2 show some typical training curves for both algorithms.  The 

training curves for the new GN-TPA algorithm are very different.  The first curve 

drops fairly sharply within the first five epochs.  Thereafter it is relatively flat 

illustrating linear convergence.  The second curve exhibits sharp bumps during the 

first 8 epochs, and then the behaviour is similar to the first curve.  The sharp bumps 

suggest oscillatory behaviour due to the large steps taken overshooting a solution 

point.  The last curve drops sharply and then stalls at 10 epochs.  This is probably 

an effect of an (almost) singular Jacobian matrix.  The curves for the Rprop 

algorithm drop rapidly within the first 5 or so epochs.  However, these curves differ 

by converging to a deep minimum.  One curve performs steep gradient ascent 

before converging on a solution.  Note that these curves follow the same general 

trend.  This result is not surprising given the starting values of the weights are within 

a much smaller region in the weight space 
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Fig.6.3. Typical training curves produced by the new GN-TPA algorithm on the 

breast cancer problem 

Fig.6.4. Typical training curves produced by the Rprop algorithm on the breast 

cancer problem 
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6.2.5 Problems with the new GN-TPA algorithm 

There are a number of difficulties with the GN-TPA algorithm.  These difficulties can 

be summarised as follows 

 

• First, a good initial guess is required if convergence is to occur.  The GN-TPA 

algorithm is a local minimizer of the error (or cost) function kε .  A necessary 

condition for local convergence is that the initial guess must be sufficiently 

close to a solution *w , that is  kε ( *w ) ≤  kε ( w )  for δ<− *ww  where δ  

is a small positive constant.  Local convergence is likely to cause problems 

with stability and convergence, and where the error function has more than 

one minimum.   

• Secondly, the computational overhead of performing a generalized inverse 

operation causes the computer to crash.  The computational complexity of a 

generalized inverse operation of a nm ×  matrix will vary depending on the 

method used.  Under an SVD operation this is equal to 322 n9mn8nm4 ++ , 

where m  is the number of patterns to be learned, and n  the number of 

weights.  For a given training set with m  patterns to be learned, the 

computational cost increases as 3n , which can be quite significant in large 

networks with many weights.   

• Finally, the computation of the generalized inverse operation is prone to 

numerical errors.  This is due to the Jacobian matrix φJ  becoming rank 

deficient.  For example, at the minimum *w  the vector k
T eJφ , being 

proportional to the gradient vector, must be zero.  Therefore, if ke ( *w ) 0≠ , 

then it follows that φJ ( *w ) is rank deficient.   
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Chapter 7 

 

BATCH LEARNING BY APPROACHING TANGENT PLANES IN THE 

EXTREME LEARNING MACHINE 

 

In chapter six, a new batch tangent plane algorithm was developed for small 

parsimonious networks.  This new algorithm utilizes the Gauss-Newton vector to 

guide the search toward the error minimum.  Comparative tests were performed 

using the new batch tangent plane algorithm and a fast locally adaptive learning 

algorithm, Rprop (resilient back-propagation) [28] under a variety of different initial 

conditions and network sizes.  The benchmark datasets used were breast cancer 

obtained from the UCI machine learning repository [61], and the additive function 

problem obtained from [22].  The results show that the new batch tangent plane 

algorithm gives improved convergence speed and comparable generalization 

performance relative to the Rprop algorithm.  However, the batch tangent plane 

algorithm suffers from a number of problems.  Firstly, the algorithm is locally 

convergent, meaning that a good initial starting condition is required for 

convergence to a local good minimum to occur.  Secondly, the computational 

overhead of performing a generalized inverse operation after each learning step is 

very large making runtimes very long.  Finally, the computation of the generalized 

inverse matrix is prone to numerical errors.  This is due to the Jacobian matrix 

becoming rank deficient.  In this chapter, the newly developed batch tangent plane 

algorithm is applied to a novel network structure called an extreme learning machine 

to overcome the difficulties with this algorithm, namely local convergence and the 

high computational overhead.  Studies [76,110,111] have shown that the extreme 

learning machine (ELM) is very fast and efficient  
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7.1  Improving the convergence behaviour and efficiency of the new batch 

tangent plane algorithm  

Previously, we have described a new learning algorithm based on tangent plane 

algorithm targeted at small parsimonious networks.  This new algorithm relaxes the 

requirement of the original method for movement to the nearest point on the tangent 

plane to a constraint surface, but instead moves to a general point on the tangent 

plane.  Further a system of equations is constructed for the entire training set and 

solved using a singular value decomposition.  The resulting movement is a Gauss-

Newton (GN) step toward the minimum training error.  Unfortunately this strategy 

can produce some big weight updates leading to oscillatory behaviour for certain 

starting conditions of the weights.  In Huang et al [110,111], a new learning 

algorithm was described for single hidden layer feed-forward neural networks 

(SLFN) called the Extreme Learning Machine (ELM).  In this method, the input 

weights of the hidden units are initialized to random values and fixed.  The learning 

process is then treated as a linear problem with the weights of the output unit 

optimized through a generalized inverse operation.  Studies [111,112] have shown 

that ELM is very fast and efficient.  Thus a strategy to improve the convergence of 

the batch tangent plane algorithm would be to use a SLFN with input weights set to 

random values 

 

7.1.1 A brief introduction to the ELM algorithm  

Traditionally gradient descent based learning methods and variations such as the 

back-propagation algorithm have been used to train the weights of feed-forward 

neural networks.  It is generally known that these methods are very slow due to the 

improper choice of step size and problems with convergence to local minima.  Also, 

many epochs or presentations of the entire dataset are required to learn the training 

data making gradient descent based methods very slow.        
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Recently it has been shown that single hidden layered neural networks (with N 

hidden units) with input weights chosen arbitrarily can learn N distinct observations 

[113,114].  Unlike more traditional methods that tune all the parameters, the input 

weights of the first hidden layer do not have to be adjusted at all.   Study results 

[110] show that this method not only makes learning extremely fast but also 

produces good generalization.  Recently it has been further proved that single 

hidden layered neural networks with arbitrarily assigned input weights can 

approximate any continuous function on any compact dataset.  After the input 

weights of the hidden layer units are randomly chosen, a single hidden layered 

neural network can be treated as a linear system and the output weights determined 

analytically through a generalized inverse operation of the hidden layer outputs.  

From the foregoing discussion, we show that a SLFN with m  units can learn m  

distinct samples   

 

For m  arbitrary distinct samples ( )ii y,x , where [ ] NT
iNii Rxx ∈= ,,1 x , and 

Ryi ∈ , the output of a SLFN is ( )∑= i iikik ,w wxθθ , where kiw  is ith  weight of 

output unit ku , iθ  is the output of hidden unit iu , [ ] NT
iNii Rww ∈= ,,1 w  are the 

input weights of iu .  If hidden unit iu  has activation f , then ( )xwT
ii f=θ .  For a 

set of inputs ix , m,i 21= , the output of iu  can be treated as an m  dimensional 

vector m
i R∈θ .  If the input weights { ijw  : ki ≠ } are set to arbitrary values and 

fixed, then the outputs  m
i R∈θ , n,i 21=  form a random set of vectors that span 

a subspace of mR .  Provided that mn < , then with probability one these vectors are 

linearly independent [111].  As mn → , the outputs m
i R∈θ , n,,2,1i = , will be 

extended to form a spanning set of mR .  Thus, for a specific set of weights { kiŵ }, 
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any point m
k R∈y  can be reached by a single hidden layered neural network with 

input weights fixed at arbitrary values.       

 

Based on the foregoing analysis, we evaluate the newly developed GN-TPA 

algorithm for the Extreme Learning Machine.   

 

7.1.2 Derivation of the new GN-TPA algorithm 

For m  distinct samples ( ( ) ( )i
k

i y,x ), where ( ) =ix [ ( ) ( )i
N

i x,,x 1 ]T NR∈  and ( ) Ry i
k ∈ , 

a single layer feed-forward neural network with n  hidden units and activation 

function f  is given by 

 ( +0kwf ( ) )∑
=

n

1i

j
ikiw θ ( )j

kθ= ,  m,,2,1j =  (7.1) 

 ( ) ( += 0i
j

i wfθ ( ) )∑
=

N

1l

j
lil xw  (7.2) 

The method assumes a single layer feed-forward neural network with input weights 

iw , ni ,,2,1 =  chosen arbitrarily.  For such a system, the batch tangent plane 

algorithm is defined by the following matrix equation 

 

 [ ( )tθ ] ( ) ( ) ( )( )t
kk

t
k

T ff θyw 11 −− −=∆  (7.3) 

In equation (7.3), ( ) =tθ [ ( ) ( )t
n

t
1 ,, θθ  ]T, ( ) mt

i R∈θ , is a matrix of outputs from 

hidden layer units iu  at time step t , ( ) nt
k R∈∆w  is a vector of weight changes to 

the final unit, m
k R∈y  is a vector of desired outputs, and ( ) mt

k R∈θ  a vector of 

outputs from the neural network.   
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Expanding the left-hand side of (7.3),  

 

 [ ( )tθ ]T [ ( ) ( )t
k

1t
k ww −+ ] ( ) ( )( )t

k
1

k
1 ff θy −− −=  (7.4) 

But ( )( ) =− t
kf θ1 [ ( )tθ ] T ( )t

kw ,  so we arrive at 

 

 [ ( )tθ ] T ( ) =+1t
kw [ ( )tθ ] T ( ) ( ) −+ −

k
t

k f yw 1 [ ( )tθ ] T ( )t
kw  

 ( )kf y1−=  (7.5) 

For convenience, we drop the notation for the time step t .  If nm >> , then θ  will 

not be square, so there may not exist a set of kiw  such that (7.5) is exactly satisfied.  

Instead, one may need to find specific kiŵ  such that 

 

 ( ) ( )k
1

k
T

R
k

1
k

T fminfˆ
n

ywθywθ
w

−

∈

− −=−  (7.6) 

Let J  represent a nm×  matrix with columns m
i R∈θ , so J  = [ n1 ,, θθ  ].   For 

the general case where nm >> , the solution of the above linear least squares 

problem is given by 

 [ ] ( )k
1T1T

k fˆ yJJJw −−
=  (7.7) 

Equation (7.7) defines the GN-TPA algorithm applied to the ELM paradigm.  It 

solves the optimization problem in a single step.   

 

Consider the different terms in (7.7).  The term [ J T J ]-1 J T is recognised as the 

Moore-Penrose generalized inverse of J , that is +J = [ J T J ]-1 J T.   A theorem [108] 
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tells us that if there exists a matrix B  such that YB  is a minimum norm least 

squares solution of the linear system YAX = , then it is necessary and sufficient 

that += AB , the Moore-Penrose generalized inverse of A .  Thus the special 

solution kŵ  is the solution with the minimum norm least squares, meaning that the 

minimum training error can be reached by this solution.   

 

Next, the term 1f − ( ky ) is the target vector mapped backward to give the desired 

input to the final unit.  1f − ( ky ) will tend to favour solutions with a large norm of 

weights, which is known to be harmful to generalization.  Introducing a regularisation 

term Iλ  ( 0≥λ ) into the pseudo-inverse [ J T J ]-1 J T will help to discourage 

overtraining in the network [135]  

 

7.1.3 Solving the tangent plane normal equations 

Using a singular decomposition to compute the pseudo-inverse can be 

computationally expensive, especially when the network is scaled up.  An alternative 

method, solving the tangent plane normal equations ( )k
1T

k
T f yJwJJ −=  using a 

thin QR factorization, is computationally simple [109].  The method is based on the 

orthogonal decomposition of J  into 

 [ ]n21 RRRJ =  























nn

n222

n11211

a

aa

aaa







 (7.8) 

where =R [ nRR ,,1  ] nmR ×∈  is orthogonal and =A [ jia ] nnR ×∈  is upper right 

triangular.   If J  has full column rank, then the columns of R  will form an orthonormal 

basis for span ( J1 … Jn  ).     
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From equation (7.6), we need to find a specific kw  such that the norm 

( )kk f ywJ 1−−  is minimised.  To proceed, we note that an arbitrary vector y  is 

invariant under multiplication by an orthogonal matrix Z  e.g. 

 

 ( ) ( ) yyyyZZyyZ === 2
1

2
1

TTT  (7.9) 

 

Therefore, from equation (7.8) 

 

 ( )k
1

k f ywJ −−    =   (TR ( )k
1

k f ywJ −− )   

 ( )k
1T

k
T f yRwARR −−=  (7.10) 

But R  is orthogonal, so 

 

 ( ) ( )k
T

kkk ff yRwAywJ 11 −− −=−  (7.11) 

 

If A  has non-zero elements in the leading diagonal (e.g. J  is non-singular), the least 

squares solution kŵ  that minimises the norm ( )k
1

k f ywJ −−   can be found by 

back substitution in  

 ( )k
T

k f yRwA 1−=  (7.12) 

 

A great computational saving can be made if we choose a method that computes 

the QR factorisation of J  iteratively so that the jth  column of R  is generated after 

the jth  step.  If the hidden units are added one by one, then any increase in 

computational complexity is solely due to the next jR .  Since the Gram-Schmidt 
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algorithm [116] generates each jR  as a linear combination of 1j1 −θθ  , m
i R∈θ , it 

makes sense to choose this algorithm.  When the Gram-Schmidt process is 

implemented on a computer rounding-off errors can cause significant loss of 

orthogonality.  For this reason, the process is said to be unstable.  The process can 

be stabilised with a small modification.  The nth  iteration of the stabilized Gram-

Schmidt process can be summarized as follows 

  

 

( ) nnnnnnn

jjnnnj
T
njn

aa

njaa

θRθ

RθθRθ

1,

1,2,1,,

==

−=−←= 

 (7.13) 

 

According to equation (7.13), n1a  is calculated by multiplying two m -dimensional 

vectors, nθ  and 1R , which requires m2  computations.  The projection of nθ  

orthogonally onto 1R  also requires m2  computations.  Thus, the number of 

operations is m4 .  There are totally ( )1n −  of jR .  Therefore, the number of 

operations is ( )1nm4 − .  Finally, nR  is calculated by normalizing nθ , which 

requires m2  computations.  Therefore, the total number of operations at is 

( ) mnm 214 +− .  Summing over all jR , there are totally ∑ =

n

j
jm

1
4 ∑ =

−
n

j
m

1
14  

∑ =
+

n

j
m

1
12  = 2nm2  operations 

 

A simple mechanism to avoid numerical ill-conditioning in the matrix J  can be built 

into the Gram-Schmidt procedure.  A very small nna  implies that the vector nθ  is a 

linear combination of 1n1 −θθ  .  Therefore, if nna  is less than a certain threshold 

value, a new nθ  should be generated by randomizing the weights niw .  The 

procedure is then repeated for the nth step.   
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7.1.4 The stopping criteria 

The stopping criteria used to terminate training is the Akaike Information Criteria 

(AIC) [117].  The AIC is an effective measure of the trade-off between the model 

accuracy and model complexity, and has been used elsewhere as stopping criterion 

in related models [22,45].  The AIC criteria can be written as  

 

 ( ) ( ) χχ kelogNAIC +=  (7.14) 

 

where N  is the number of training data, e  is the variance of the model residuals 

(errors), k  is the number of hidden units, and χ  is the critical value of the 2χ  

distribution with one degree of freedom for a given significance level.   

 

7.1.5  Implementation of the procedure 

The following section is included to clarify the procedures for updating the weights of 

a network using the algorithm outlined in this chapter.  Given a set of training data 

{( kii y,x ) : m,,2,1i,Ry,R ki
N

i =∈∈x } 

 

Step 1 

Initialise the constant output vector m
1 R∈θ  

Compute the norm 111a θ=  

Compute first orthonormal vector ( ) 1111 a1 θR =  

Next n  

Step n  

Initialise the weight vector N
n R∈w  

Compute the output vector m
n R∈θ  
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For 1=j  to 1−n  

Compute the inner product j
T
njna Rθ=   

Set jjnnn a Rθθ −←   

Compute the norm nnna θ=   

Compute nth orthonormal vector ( ) nnnn a θR 1=  

If δ<nna , then Goto Step n  

Solve ( )k
1T

j
n

1i kiji fwa yR −
=

=∑ , n2,1j =   

If model adequate, then Stop  

Next n  

Goto Step n  

 

7.1.6 Relationship with existing methods 

The GN-TPA algorithm presented in this thesis shares some similarities with the 

orthogonal sequential training technique developed by Zhang and Morris [22].  The 

orthogonal sequential training technique adds new hidden units one by one to a 

single hidden layer feed-forward neural network.  When adding a new unit the new 

information introduced by this unit is caused by that component of its output that is 

perpendicular to the space spanned by the outputs from the previously added units.  

The new units are trained to minimise the error in the contribution they make to the 

overall error.  Learning is terminated when the network error is sufficiently small.  

The model robustness was improved by modifying the cost function to include a 

novel regularisation term  

 

Both the GN-TPA algorithm and the orthogonal sequential training technique build 

neural networks in a constructive way.  They eliminate the need to guess in advance 

the size of the network.  However the GN-TPA differs from the orthogonal sequential 



Chapter 7 : Batch learning by approaching tangent planes in the extreme learning machine 

-141- 

training technique in two respects.  Firstly, the GN-TPA algorithm sets the input 

weights and biases of new hidden units to arbitrary values and fixes them; only the 

output layer weights are trained.  The orthogonal sequential training technique uses 

error minimization to train the new hidden units and output connections.  This 

suggests that the orthogonal sequential training technique is likely to produce 

smaller more economical networks.  Secondly, the solution of the GN-TPA algorithm 

is the solution with the smallest least squares, meaning that the smallest training 

error can be reached by this solution.  The orthogonal sequential training technique 

attempts to minimise the cost function using a gradient descent based algorithm 

which is prone to getting stuck in local minima.   

 

7.2  Simulations and results 

Comparative tests were performed using three network-building techniques; the GN 

-TPA algorithm, the orthogonal sequential training technique [22], and the cascade 

algorithm [8,9].  These are methods that start with a small network and insert 

additional units and connections until the network can represent the required 

function.  The orthogonal sequential training technique inserts new units and 

connections one by one into a single hidden layer feedforward neural network.  The 

new hidden units are trained to minimise the contribution they make to the overall 

network error.  The learning rule used to train the new units is the standard back-

propagation algorithm.  The cascade algorithm inserts new units and connections 

one by one, each into a different hidden layer of a cascade neural network.  After a 

new hidden unit is inserted, its output connections are trained by error minimization.  

The learning rule used for candidate training is the Rprop (resilient back-

propagation) algorithm [28].  Rprop is a very fast gradient descent based learning 

rule that uses the signs of the current and previous partial derivatives of the error 

function to adapt the weights.   
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The results presented in this investigation were averaged over 20 trials.  For each 

trial carried out, the error on the training set and test set were recorded together with 

the number of units inserted into the network.  The best results on the test set were 

also recorded.  The method of early stopping was used to terminate each stage of 

network training.  Overall network training was terminated when the Akaike 

Information Criterion reached its minimum.  Hidden unit training was terminated 

when the generalization loss on the test set was significant, and there was little 

progress made on the training set [44].      

 

7.2.1 Network initialization 

The GN-TPA algorithm and the sequential orthogonal training technique are 

methods that build single hidden layer neural networks.  In all simulations, the 

weights of the new units were initialised to random values in the range [-2, 2].  The 

choice of network architecture for the cascade algorithm is not critical.  Prechelt [8] 

investigated the effect of cascading hidden units versus not cascading hidden units 

for six members of the CasCor family.  He concluded that in most cases there was 

no significant difference.  We will use a cascade network in this investigation as the 

performance of the cascade algorithm has been well documented for this type of 

network.  The weights of the hidden units were initialised to random values in the 

range [-0.1, 0.1], which according to Lahnajarvi [9] gives the best results for the 

problems used in this investigation.   

 

The Rprop algorithm and the back-propagation algorithm require parameters that 

need to be set manually.  First, the Rprop algorithm.  The parameters used with 

Rprop are the step increment factor +η , the step decrement factor −η , the initial 

step size ( )0∆ , the maximum step size max∆ , and the minimum step size min∆ .  The 

step increment and decrement factors were chosen to be the same as in the original 
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paper, i.e. 2.1=+η , 5.0=−η .  The initial step size is not critical, and was set to 

( ) 30 10x5 −=∆ .  The maximum step size was also chosen to be the same as in the 

original paper, i.e. 50max =∆ .  Finally, the minimum step size was set to 

8
min 10x1 −=∆  to avoid overflow/underflow problems with floating point variables.  

Second, the back-propagation algorithm.  The learning rate η  was set to 1.0=η .  A 

small value for the learning rate was chosen to avoid oscillatory behaviour, the 

training stage of candidate units being very turbulent.  In any event the convergence 

speed of the learning algorithm is not critical   

 

7.2.2 The error metric used to determine convergence 

The error metric used in the simulations is NMSE (Normalized Mean Square Error).  

NMSE is given by 

 ( )2

i
kiki2 y

m
1NMSE ∑ −= θ
σ

 (7.15) 

 

where m  is the number of training patterns, kiy  is the target value of the ith  input 

pattern, kiθ  is the ith  network output, and 2σ  the variance of the target data.    

 

7.2.3 Simulations problems 

The training sets used in all the simulations were regression problems, which are 

problems that involve the approximation of a continuous valued target function.  The 

regression tasks chosen are the additive problem [22], the housing price estimation 

problem [61], and the Henon map chaotic time series [9].     

 

The house price estimation problem is a real-world problem that estimates the price 

of houses in the suburbs of Boston based on some attributes of houses (e.g. 
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location, crime rate, level of air pollution, etc.).  The number of inputs is 13, and the 

number of outputs is one.  The number of training and testing examples is 253.  The 

data sets used in the simulation were sampled randomly from the dataset provided 

by the UCI data repository with the outputs scaled down in the range [-1,1]. 

 

The additive problem is a non-linear function approximation problem that was 

obtained from [22].  The function is computed by  

 

 u05.0e5.0
x1

x
x5.0xxx5.0z 21 xx

2
2

12
221

2
1 ++

+
++−−= −  (7.16) 

A small signal u  is added to the output with values uniformly distributed in the range 

[-1,1].  Four hundred data points are generated.  The first 200 data points are used 

as training data whilst the remaining are used as test data.  The input values are 

uniformly distributed in the range [-1,1].  All functional values or outputs are scaled 

down in the range [-1,1] 

 

The henon map is a time series prediction problem.  The chaotic time series data is 

computed as follows 

 ( ) ( )( ) ( )1t2t1t xbxc1x −+ +−=  (7.17) 

 

where ( )tx  is the value at time t , while 3.0b =  and 4.1c =  are parameters.  Initial 

values for the time series are ( ) ( ) 63133545.0xx 01 ==  [95].  In neural network 

simulations, four successive values are used to predict the next value.  Thus, the 

number of inputs is four, and the number of outputs is one.  The number of training 

and testing samples is 200, and the used data values are taken from the time step 

range [31, 230].  Since maxx = 1.272967 and minx = -1.284657, the input values were 

scaled in the range [-1,1].   
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7.2.4 Discussion of results 

Additive function.  The first test is a non-linear function approximation problem 

obtained from [22].  The results are tabulated in Table 7.1a.  It was found that the 

GN-TPA algorithm gave the best results on the test set (Err* = 1.4 x 10-4), and the 

cascade algorithm the worst (Err* = 3.5 x 10-4).  However, the best results in terms 

of the network size were obtained by the cascade algorithm which constructed the 

smallest networks (e.g. between 15 and 32 units), and the GN-TPA algorithm the 

worst (e.g. between 21 and 40 units).  This result is not surprising as the GN-TPA 

algorithm does not optimize the new hidden units, so the amount of new information 

they introduce into the network may be very small.  Fig. 7.1, 7.2 and 7.3 display the 

variation in the error on the training and test sets unit by unit, for each of the three 

algorithms.  The training curves for both the GN-TPA algorithm and cascade 

algorithm are quite smooth whereas the curve for the orthogonal sequential training 

technique contains two small kinks.  There is very little evidence of overtraining in 

any of the generalization curves.  This suggests that each of the three algorithms is 

perfectly capable of constructing a network that can perform an accurate mapping of 

the simulation data.  Note that the generalization curve produced by the orthogonal 

sequential training technique is a good match with Zhang’s results in [22].  Figure 

7.4 shows the variation in the AIC, unit by unit, for the GN-TPA algorithm.  It was 

found that the AIC stopped decreasing after using 30 units.  This result is in good 

agreement with the average size of the network constructed by the GN-TPA 

algorithm (e.g. 29.1 units).  Note that the general trend of the AIC curve is similar to 

the results reported by Zhang [22]. 
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(a)   

   

 Best test set error using  
early stopping (NMSE x 102) 

Avg. test set error using  
early stopping (NMSE x 102) 

Problem Size Err Err* Min-Max Err Err* 

Additive 21 0.001 0.001 21-40 0.009 0.014 

Henon 19 1.070 1.347 14-30 1.063 2.680 

Housing 17 4.871 14.030 06-21 9.147 19.417 

       
(b)       

       

 Best test set error using  
early stopping (NMSE x 102) 

Avg. test set error using  
early stopping (NMSE x 102) 

Problem Size Err Err* Min-Max Err Err* 

Additive 27 0.001 0.012 13-29 0.012 0.035 

Henon 12 1.559 2.131 09-23 3.190 4.880 

Housing 13 4.838 11.322 07-16 5.842 15.617 

       
(c)       

       

 Best test set error using  
early stopping (NMSE x 102) 

Avg. test set error using  
early stopping (NMSE x 102) 

Problem Size Err Err* Min-Max Err Err* 

Additive 25 0.003 0.005 15-32 0.026 0.024 

Henon 40 0.467 1.476 10-40 2.975 4.046 

Housing 15 8.793 10.552 05-22 9.667 12.252 

 

 

 

 

 

Table 7.1. Training set error (Err) and test set error (Err*) for three problem domains 

using: (a) GN-TPA algorithm, (b) Cascade algorithm, and (c) Orthogonal sequential 

training technique      
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Fig.7.1. Typical training and generalization curves produced by the GN-TPA 

algorithm on the additive problem 

Fig.7.2. Typical training and generalization curves produced by the Cascade 

algorithm on the additive problem 
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Fig.7.3. Typical training and generalization curves produced by the sequential 

training technique on the additive problem 

Fig.7.4. The AIC at each training step for the GN-TPA algorithm on the 

additive function problem 
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Henon map time series.  The second test is a deterministic one-step-ahead 

prediction problem.  The results are tabulated in Table 7.1b.  It was found that the 

GN-TPA algorithm gave the best results on the test set (Err* = 2.68 x 10-2), and the 

Cascade algorithm the worst (Err* = 4.88 x 10-2).  The best results in terms of the 

network size were obtained by the Cascade algorithm, which constructed the 

smallest networks (e.g. between 9 and 23 units).  The orthogonal sequential training 

technique constructed the largest networks (e.g. between 10 and 40 units) and not 

the GN-TPA algorithm as expected.  The results for the cascade algorithm are 

similar to those obtained by Lahnajarvi [9].  Figure 7.5 shows the model output 

produced by the GN-TPA algorithm for the Henon map data.  The test data used 

was taken from the time step [100,130].  As can be seen, the network produces a 

good representation of the target data.  Figures 7.6, 7.7 and 7.8 show the training 

and test curves for the GN-TPA algorithm, cascade algorithm, and orthogonal 

sequential training technique respectively.  The results for the GN-TPA algorithm 

and the orthogonal sequential training technique are very similar.  Both methods 

produce very smooth training curves.  Mild overtraining occurred in both test curves 

after 25 units.   In the case of the orthogonal sequential training technique this is 

probably due to poorly conditioned R  and θ  matrices used to train the output unit.  

As pointed out by Zhang [22], the likelihood of two or more columns in θ  being very 

nearly parallel increases as more units are inserted into the network and trained to 

minimise the residual model error.  The Cascade algorithm performed less well as 

seen from Figure 7.7.  The training curve gradually tapers off after five units 

resulting in long runtimes.  It was during the later stages of training that gross 

overfitting occurred.  This result is typical of the generalization behaviour found in 

cascade networks [8] 
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Fig.7.5. Plot of the model output generated by the GN-TPA algorithm on the 

Henon map problem 

Fig.7.6. Typical training and generalization curves produced by the GN-TPA 

algorithm on the Henon map problem 
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Fig.7.7. Typical training and generalization curves produced by the Cascade 

algorithm on the Henon map problem 

Fig.7.8. Typical training and generalization curves produced by the sequential 

training technique on the Henon map problem 
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Housing price estimation.  The third test is a regression problem that predicts the 

price of houses in the suburbs of Boston based on some attributes.  The results are 

tabulated in Table 7.1c.  This was a far more challenging test for the GN-TPA 

algorithm (Err = 9.15 x 10-2, Err* = 19.42 x 10-2).  The size of the networks 

constructed contained between 6 and 21 units.  The cascade algorithm performed 

much better giving Err = 5.84 x 10-2, Err* = 15.62 x 10-2.  As expected, the cascade 

algorithm constructed the smallest networks containing between 7 and 16 units.  

These results are similar to those obtained by Lahnajarvi [9].  Finally, the orthogonal 

sequential training technique gave Err= 9.67 x 10-2, Err* = 12.25 x 10-2.  The size of 

the networks constructed contained between 5 and 22 units.   Figures 7.9, 7.10 and 

7.11 show the training and test curves for the GN-TPA algorithm, cascade algorithm, 

and orthogonal sequential training technique respectively.  The training curve for the 

orthogonal sequential training technique tapers off gradually resulting in very long 

runtimes.  The test curve exhibits mild overtraining over the full range of hidden 

units.  This suggests that the individual contributions of new hidden units must be 

very small resulting in slow convergence.  Very small jR  will lead to ill conditioned 

R  and θ  matrices, which in turn will contribute to poor generalization performance.  

The training curve for the cascade algorithm drops off steeply at first giving good 

convergence.  The test curve dips quickly to a clearly defined minimum after seven 

units and thereafter rises sharply.  This is fairly typical behaviour for the cascade 

algorithm and has been observed elsewhere (e.g. Henon map problem).  The 

training curve for the GN-TPA algorithm also drops off steeply at first giving good 

convergence.  The test curve quickly dips to a flat plateau after 5 units.  There is 

very little evidence of overtraining in the test curve.  This is the principal strength of 

the GN-TPA algorithm. 
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Fig.7.10. Typical training and generalization curves produced by the Cascade 

algorithm on the housing estimation problem 

Fig.7.9. Typical training and generalization curves produced by the GN-TPA 

algorithm on the housing estimation problem 
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7.3  Summary 

In this chapter, the newly developed batch tangent plane algorithm referred to as 

GN-TPA is evaluated for a novel network structure called the extreme learning 

machine.  This extreme learning machine is a single hidden layer neural network 

(SLFN) with input weights fixed at arbitrary values.  The SLFN is then treated as a 

linear system with the output layer weights determined analytically.  The smallest 

training error can be achieved using this method.  The new algorithm is modified in 

order to improve its computational efficiency by using the QR decomposition.  The 

outputs of the hidden units are projected one by one orthogonally onto the hidden 

layer output space.  This means that any increase in the computational cost is solely 

due to the next hidden unit.  Network training is terminated when the model 

performance is satisfactory.  The procedure is very fast and stable and avoids 

problems like ill conditioning 

Fig.7.11. Training and generalization curves produced by the sequential training 

technique on the housing estimation problem 
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Comparative tests were carried out using the GN-TPA algorithm, the cascade 

algorithm, and the orthogonal sequential training technique.  The benchmark 

datasets used in the study were the additive function, henon map, and housing 

price.  The results show that the GN-TPA algorithm gives the best training and test 

set errors relative to the other algorithms on two of the datasets.  The GN-TPA 

algorithm does not suffer from the same computational difficulties as the orthogonal 

sequential training technique, namely numerical ill-conditioning in the orthogonal 

matrix.  Generalization appears to be independent of network size.  The principal 

weakness of the GN-TPA algorithm is that it constructed the large networks 

compared with the other algorithms; although this does not appear to degrade 

generalization performance. 

 

In the next chapter we investigate multi-classification problems in the bioinformatics 

area using gene expression data.  Two cancer classification problems are 

investigated that have proven difficult for conventional neural network techniques to 

solve, GCM [118] and Lymphoma [119].  The new iTPA and GN-TPA tangent plane 

algorithms developed in this thesis are applied to multi-category cancer 

classification problems, and compared with other current classification methods, a 

support vector machine (SVM) and two newly developed algorithms called 

subsequent ANN (SANN) and FGAP-RBF.   
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Chapter 8 

 

MULTI-CATEGORY CANCER CLASSIFICATION USING THE TANGENT PLANE 

ALGORITHM 

 

The artificial neural network (ANN) has been well established as a classifier for its 

unique capability to represent non-linear mappings between the input and output data.  

It can perform complex non-linear mappings by encoding the input patterns into a high 

dimensional feature space.  In this feature space the input patterns can be mapped 

directly into a number of different classes.  It is this ability of ANN to map the input 

data directly into a number of classes that has seen their increasing use as intelligent 

alternatives to more established classifiers such as support vector machines in the 

area of cancer classification.   

 

The first application of ANN for diagnostic classification of cancer using gene 

expression data was done by Khan et al [79].  In this paper a two hidden layered 

neural network was used to classify small, round blue-cell tumours into 4 diagnostic 

categories.  The ANN method correctly classified all the samples which often present 

difficulty in clinical diagnosis.  Stratnikov et al [78] presents a comparison of multi-

classification methods for gene expression cancer diagnosis problems.  In this paper 

several methods are compared such as SVM, k-nearest neighbour, weighted voting 

and back-propagation neural networks.  The benchmark datasets used were 11-

Tumours [121], GCM [118], 9_Tumours [122], Brain_Tumour1 [123], Brain_Tumour2 

[124], Leukemia [70], MLL [125], Lung cancer [126], SRBCT [79], Prostrate_Tumour 

[127], and DLBCL [128].  The results show that the SVM based classifiers are the best 

performers, whilst k-nearest neighbour and weighted voting are the worst.  Neural 

networks rank in the middle.   

 



Chapter 8 : Multi-category classification using the tangent plane algorithm 

-157- 

In order to improve classification accuracy, several ANNs can be combined either by 

using ensembles of networks or cascading ANNs.   When ANNs are trained for 

different subtasks instead of the same task, those approaches are combined into a 

mixture of experts.  For example, Qian and Sejnowski [129] have used a two-level 

ANN to predict the secondary structure of protein.  In this scheme the output of the 

first ANN was used as the input for the second ANN.  Employing a consecutive 

structure network obtained a 2% increase in prediction accuracy.  Linder et al [77] 

have developed a novel neural network algorithm for multi-category classification 

using micro-array gene expression data.  This subsequent ANN (SANN) uses a 

simple ANN to perform a pre-selection.  At the first stage the two most preferred 

classes are selected.  After that a subsequent ANN stage makes the final decision 

based upon the two most preferred classes.  The benchmark dataset used was GCM 

[118].  The results show that the SANN approach displayed higher classification 

accuracy than a simple ANN for the range of selected genes [74].  However, this 

improvement was paid for by a big increase in network complexity causing a great 

computational burden and very long run-times in terms of the number of epochs 

trained and the computation time. 

 

In this chapter we present two newly developed algorithms based on the tangent 

plane algorithm for multi-category cancer classification.  The problems used in the 

investigation are described in the first section.  The second and third sections 

describe the two algorithms and the fourth section the simulation results.  Finally a 

comparison of the two algorithms is presented in section five 
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8.1  The multi-category classification problems 

The first dataset comes from a study of microarray data for snap-frozen human 

tumour and normal tissue samples, spanning 14 different tumour classes were 

obtained from four different hospitals.  Initial diagnosis was made at university hospital 

referral centres by using available clinical and microscopic histopathological 

information.  All tumours were biopsy specimens were obtained from primary sites 

obtained before any treatment and were enriched in malignant cells.  Normal tissue 

RNA was taken from snap-frozen autopsy specimens.  Hybridization targets were 

prepared with RNA taken from whole tumours by using published methods [70].  

Targets were hybridized sequentially by using oligonucleotide micro-arrays containing 

a total of 16,063 genes.  Expression values for each gene were calculated by using 

Affymetrix GENCHIP analysis software.  Of 314 tumour samples, and 98 normal 

tissue samples processed, 218 tumours and 90 normal tissue samples passed quality 

control criteria and were used for subsequent data analysis.  Ramaswamy et al. [74] 

made this dataset available as a reference for micro-array gene expression profiling at 

[118] offering several files for download.   

 

• GCM_Training.res (training set: 144 primary tumour samples) 

• GCM_Test.res (test set: 46 primary, 8 metastatic) 

• GCM_PD.res (poorly differentiated adenocarcinomas: 20 samples) 

• GCM_Total.res (training set + test set + normals (90): 280 samples) 

 

In each dataset above, columns represent gene profiles, rows represent samples, and 

the values are raw averaged real number values output from the Affymetrix package 
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The data from the above mentioned file GCM_Training.res contains gene expression 

profiles comprising 16,063 genes and 144 primary tumour samples spanning 14 

common tumours.  The detailed information of the number of patterns in each class of 

tumour used for training and testing is given in Table 8.1.  All the input attributes were 

normalised to remove any bias in the mean values  

 

Tumour Type Abbr. Sample 
Size 

Training 
Set 

Test 
Set 

Breast BR 8 6 2 

Prostrate PR 8 6 2 

Lung LU 8 6 2 

Colorectal CO 8 6 2 

Lymphoma LY 16 13 3 

Bladder BL 8 6 2 

Melanoma ML 8 6 2 

Uterus-Adeno UT 8 6 2 

Leukaemia LE 24 19 5 

Renal RE 8 6 2 

Pancreas PA 8 6 2 

Ovary OV 8 6 2 

Mesothelioma ME 8 6 2 

CNS CNS 16 13 3 

 

 

 

 

For the purpose of comparison, we use the same gene selection method as in Zhang 

[110], Linder et al. [77] and Ramsawamy et al [74], which is the recursive feature 

elimination method.  In Ramsawamy et al [74], an SVM-OVA classifier was used for 

gene expression profiling on multi-category classification micro-array data.  Each 

SVM-OVA classifier produces a hyper-plane in the input space defined by a weight 

vector w , which is a vector of n  elements each corresponding to a particular gene.  

Table 8.1.  Partitioning of the GCM_training.res dataset into training 

and test samples.  
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The absolute magnitude of each element in w  can be considered as a measure of 

the importance of the corresponding gene.  In the recursive feature elimination 

method, each SVM-OVA classifier is first trained with all the genes, and then the 

bottom 10% genes with the smallest iw  are removed.  Each classifier is then re-

trained.  The process is repeated iteratively and a rank of all genes obtained for each 

class of tumour.  The most significant 14, 28, 42, 56, 70, 84, and 98 genes selected 

by this method can be found in the file OVA_MARKERS.xls.  It also gives the most 

significant genes for each of the 14 classes of tumour.   

 

The second dataset comes from a study of gene expressions for the most prevalent 

adult lymphoid malignancies: B-cell chronic lymphocrytic leukaemia (B-CLL), follicular 

lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL) obtained from [119].  

Gene expression levels were measured using a special cDNA micro-array containing 

genes preferentially expressed in lymphoma cells.  In each hybridization, fluorescent 

cDNA targets were prepared from tumour mRNA samples (fluorescent dye Cy5) and 

a reference sample derived from a pool of nine different lymphoma cell lines 

(fluorescent dye Cy3).  The cell lines in the common pool were chosen to represent 

diverse expression patterns.  The lymphoma dataset contains 62 samples each 

consisting of 4,062 genes which include 42 cases of DLBCL, 9 cases of FL, and 11 

cases of B-CLL.   The gene expression data is summarised by an 62 x 4062 matrix 

=X [ jix ] where jix  denotes the base 2 logarithm of the Cy5/Cy3 background 

corrected fluorescence intensity ratio for gene j  in lymphoma sample i . 
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For the Lymphoma dataset, the microarray data contained a number of genes with 

fluorescent intensity too low to be recorded and flagged as missing.  The mean 

percent of missing data in the array is 6.6%.  The missing data was imputed using a k 

nearest neighbour algorithm as in [72,76].  For each gene expression profile with 

missing data, k other gene expression profiles that are most similar are found and 

then the weighted average of the corresponding attributes used to estimate the 

missing attribute.  The metric used to determine the k nearest neighbours is the 

Euclidean distance.   A value of k = 5 was used as in [72].   

 

Many genes exhibit near constant expression levels across tumour samples.  In this 

study a preliminary selection of genes based on the ratio of their between-group to 

within-group sum of squares is used to sort the genes in a descending order of 

importance as in [72,76]  e.g.  
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where jx̂  and kjx̂  represent the average expression level of gene j  across all 

tumour samples i , and across tumour samples belonging to class k .  The function I   

returns the value 1 when the sample class label iy  equals k , otherwise it returns 0. 

 

Tumour Type Abbr. Sample 
Size 

Training 
Set Test Set 

Diffuse Large B-cell Lymphoma DLBCL 42 35 7 

Follicular Lymphoma FL 9 7 2 

B-cell Chronic Lymphoma B-CLL 11 8 3 

Table 8.2.  Partitioning of the Lymphoma dataset into training and 

test samples.   
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8.2  The sequential learning algorithm - iTPA-OVA  

In chapter five, a new algorithm referred to as iTPA algorithm was developed to 

overcome the drawbacks of the second tangent plane algorithm.  Compared with the 

original algorithm, this new iTPA algorithm produces the desired separation of active 

and inactive weights for good generalization to occur.  However, the new iTPA 

algorithm may face difficulties in applications that have multiple outputs as the weights 

need to be adjusted to satisfy several constraints.  Consider a network with r  outputs, 

each of which is trained to recognise a target output.  On the presentation of an input 

pattern, each target output would define a ( 1n − ) surface in the weight space nR .  A 

powerful convergence method would be to adjust the weights by moving to the 

intersection of the tangent planes to these r  surfaces.  However, this would produce 

a great computational overload as it requires a system of r  equations to be solved for 

each input pattern.    

 

Recently support vector machines (SVM) have been widely used for cancer 

classification problems [73,74,75].  Some combinatory schemes have been used to 

modify SVM for multi-category classification.  Ramsawamy [74] have used a one-

versus-all (OVA) scheme to perform multi-classification using SVM.  For a k  

classification problem, k  binary classifiers would be used to distinguish one class 

from all others.  Ramaswamy applied this method to the GCM dataset.  The results 

show that SVM using an OVA scheme is best suited for classification.  The method 

adopted here uses a similar approach.  Instead of training a single ANN on one task, 

several ANN are trained on separate sub-tasks 

 

The method assumes a modular network structure.  Within the modular architecture 

each module represents a single hidden layer ANN.  Each ANN is trained to 

discriminate one particular class from all others (OVA).  1-of-c encoding is used for the 
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target outputs.  Upon the presentation of an input pattern, the ANN corresponding to 

the input class has its output set to +1; all other outputs are set to -1.  The new 

algorithm referred to as iTPA-OVA uses the target output encodings to define a set of 

( 1n − ) surfaces in the weight space of the modular ANN.  The weights are adjusted 

by moving to a point on the tangent planes to these surfaces, each taken at a 

convenient point. 

 

The principal benefit of using a modular network is that it dichotomises a multi-class 

problem into a set of two class problems.  Binary classification is a much easier task 

for ANN than multi-category classification and classification accuracy is much higher.  

A further benefit is that the one-versus-all scheme is scalable.  A k  class problem will 

require only k  modular ANN to be trained.  An alternative method, which is to use a 

one-versus-one scheme, requires k ( 1k − ) / 2  ANN to be trained which will produce 

a great computational overload as k  increases 

 

8.3  The batch learning algorithm - ELM-TPA  

The new GN-TPA algorithm is attempted for multi-category classification.  1-of-c 

encoding is used for the target outputs.  The number of output units is equal to the 

number of classes in the problem.  The index of the output unit with the highest output 

activity indicates the class label of the corresponding input.  In the ELM architecture, 

the input weights are chosen arbitrarily and fixed so that they do not change.  Huang 

et al [108,109] have shown that the outputs from the hidden units will form a spanning 

set in mR  as the number of outputs n  approaches m , the number of training 

examples.  Each output unit is trained to discriminate one class from all others using 

the new GN-TPA algorithm.  Since the inputs to the final units form a linear 

combination of the spanning set, we expect the outputs from the final units to match 

exactly the target values of the corresponding inputs. 
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8.4  Discussion of results for the individual algorithms  

The classification performance of the iTPA-OVA algorithm and the GN-TPA algorithm 

are evaluated for multi-category classification problems using micro-array gene 

expression data, namely the GCM dataset [118] and the Lymphoma dataset [119].  

The results obtained were compared with the best results for other classification 

methods found in the literature; SANN, SVM OVA, SVM OVO [74], and FGAP-RBF 

[110].  All the results for SANN, SVM OVA, SVM OVO, and FGAP-RBF are taken 

from the literature 

 

In our simulations, 10 trials were carried out with the mean classification accuracy 

recorded for the most significant genes in each dataset.  For the GCM dataset the 

most significant 14, 28, 42, 56, 70, 84 and 98 genes can be found in the file 

OVA_MARKERS.  For the Lymphoma dataset the genes were sorted according to the 

ratio of their “between group” to “within group” sum of squares and the top 10, 20, 50, 

100, 200, 400 and 800 genes selected as in [110].  The Lymphoma dataset also 

required missing genes to be calculated.  A k-nearest neighbour algorithm was used 

for this purpose with k = 5.  Multi-fold cross-validation was used on the sample data as 

the number of training samples is relatively small.  The sample data was split into two 

subsets, a training set and test set, according to the ratio 4:1 as in Linder et al [77] 

with different shuffles of the data used in each trial.    

 

8.4.1 Error metrics used in the simulations  

A simple measure is used to determine the classification accuracy.  For each problem, 

the number of output units in the network corresponds to the number of classes of the 

problem.  The index position of the output unit with the highest output corresponds to 

the class of the input data.  Thus the classification accuracy is the percentage of 

correct responses on the test data.   
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8.4.2 The iTPA-OVA algorithm 

In our simulations, all the input attributes were normalised.  1-of-c encoding was used 

to label each class category.  The number of outputs is equal to the number of class 

categories.  The output of the neuron with the highest value indicates class 

membership of the corresponding input.  The size of each module was restricted to 10 

units to save on computation size.  The weights were initialized to random values in 

the range [-1,1].  iTPA requires three parameters to be set.  Preliminary tests showed 

that the best results were obtained with the parameters set as follows.   

 

For the Lymphoma problem; βtan = 0.5, aw = 0.5, and bw  = 0.5 respectively.  The 

angle parameter βtan  is preferred to be small so that it does not disturb the training 

process too much.  However, a few trials of values in [0.0, 0.2] would cause the 

network to overfit the training data, so a larger value had to be used.  aw  and bw  

depend upon the initial values of the weights.  The learning algorithm was not 

particularly sensitive to the exact value chosen  

 

For the GCM problem; βtan = 0.2, aw = 0.5, and bw  = 0.5.  The learning algorithm 

was not particularly sensitive to the exact value chosen for the angle parameter 

βtan .  aw  and bw  were preferred to be large so that the weights were pushed 

quickly towards the origin before convergence occurred.  In that way the algorithm 

could search more thoroughly for a solution with small weight values.      

 

8.4.2.1 The lymphoma problem 

The performance of iTPA was evaluated for the lymphoma dataset.  The results are 

presented and compared with other classification methods found in the literature, 

namely SVM-OVO [76].  All the results are tabulated in Table 8.3.  It was found that 

iTPA performed well when fewer genes were selected.  However, the classification 
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accuracy tended to decline with increasing number of genes.  With 400 selected 

genes, misclassifications were due to one sample, DLBCL-0009.  This sample tended 

to be classified as an FL case, perhaps reflecting tissue sampling.  The FL cases 

were generally harder to classify.  This was due to the larger classes (DLBCL, and B-

CLL) being chosen in preference to the smaller classes (FL).  Clearly as the number 

of genes was increased, less important genes perhaps not relevant to cancer 

distinction have added noise to the training data.  These genes will compromise 

classification accuracy and increase the computational burden.  This suggests that the 

real issue to be addressed is the selection of marker genes.  A better choice for the 

number of genes might be achieved by imposing a cut-off on BW [72] 

 

 

 

 

 

 

 

 

 

 

Convergence occurred rapidly for smaller gene numbers, typically within 2 epochs, 

but declined slightly for the largest gene number. This result is to be expected as 

there are more patterns to be learned. The results are comparable with SVM OVO 

which also achieves high classification accuracies across the range of selected 

genes. 

 

 

 

Genes iTPA 
OVA 

SVM 
OVO 

10 100.0 98.3 
20 99.6 99.7 
50 100.0 100.0 
100 100.0 100.0 
200 100.0 100.0 
400 99.2 100.0 
800 98.3 100.0 

Table 8.3.  Classification accuracy on the Lymphoma dataset for 

different algorithms  



Chapter 8 : Multi-category classification using the tangent plane algorithm 

-167- 

8.4.2.2 The GCM problem 

The performance of iTPA was evaluated for the GCM benchmark dataset.  The 

results are presented and compared with other classification methods found in the 

literature; SANN [77], and FGAP-RBF [110].  All the results are presented in Table 

8.4.  It was found that iTPA out performs SANN and FGAP-RBF for each selected 

gene number.  The most significant gains were made when fewer genes were 

selected.  The poor performance of FGAP-RBF on fewer gene numbers may be due 

to the decoupling effect of the DEKF method used for parameter selection which 

undermines model accuracy [110].   

 

 

 

 

 

 

 

 

 

 

Convergence occurs rapidly, typically within 15 epochs.  The convergence speed 

improves with more genes selected.  Runtimes take approximately 5 minutes on a 

Pentium IV (2.67 GHz).  The situation with SANN is far worse. SANN requires up to 

1000 epochs to finish the training process.  Here runtimes can take up to two hours.  

FGAP-RBF converges in one epoch.  Runtimes take only a few seconds, making this 

algorithm the most efficient with iTPA a good second best.  No doubt the poor 

performance of SANN results from the network complexity.  In SANN there are one 

ANN and 91 SANN to be trained, each ANN consisting of 10 hidden units.  Networks 

are organised into ensembles of 5 modules making a total of 4600 units to be trained.  

Genes iTPA 
OVA 

FGAP 
RBF SANN 

14 81.2 65.5 68.6 
28 85.8 69.1 71.5 
42 86.1 75.2 72.9 
56 88.8 79.4 79.2 
70 89.7 80.3 76.4 
84 89.1 82.1 80.6 
98 88.8 82.4 77.1 

Table 8.4.  Classification accuracy (%) on the GCM dataset for different 

algorithms  
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 The classification accuracy of iTPA on each individual tumour class was investigated.  

The dataset used was GCM with the most significant 84 genes selected as in [8].  The 

classification accuracy is taken as the number of hits on the test data using 5-fold 

cross validation.  The results are displayed in Fig. 8.1.  It was found that iTPA 

performed equally well in most tumour classes.  The tumour classes with the largest 

samples were all classified correctly; Lymphoma, Leukaemia, and CNS. The number 

of misclassifications in the other tumour classes was less than 25% of the sample size 

(e.g. 1 in 4) except in Breast, Bladder and Ovary where it was worse.  SANN 

performed the worst in most tumour classes, showing distinct preference for some 

classes than others.  Classification accuracies for the different algorithms were 

particularly poor in the Ovary class making Ovary a difficult class to predict.   

 

Table 8.5 shows the confusion matrix for iTPA on the GCM problem for each 

individual tumour class.  The elements on the leading diagonal give the percentage of 

correct classifications whilst those in the off-diagonal positions give the percentage of 

misclassifications.  It can be seen that the samples in the largest classes were all 

correctly classified.  This shows that increasing the sample size will improve 

classification accuracy.  The classification accuracy for Colorectal and Mesothelioma 

was also high.  Regarding misclassifications, it can be seen that the worst class was 

Ovary with iTPA showing a distinct preference for Breast, Uterus, and Bladder.  The 

classification accuracy for Bladder was also quite low with iTPA showing a distinct 

preference for Melanoma and Ovary 
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Fig 8.1.  Comparison of classification accuracy for different categories on the GCM dataset; breast, prostrate, lung, colorectal, 

lymphoma, bladder, melanoma, uterus adreno, leukaemia, renal, pancreas, ovary, mesothelioma, and cns  
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 BR(%) PR(%) LU(%) CO(%) LY(%) BL(%) ML(%) UT(%) LE(%) RE(%) PA(%) OV(%) ME(%) CNS(%) 

BR 65 10 20 0 0 0 0 0 0 15 5 10 5 0 

PR 5 70 0 0 0 0 5 0 0 0 0 0 0 0 

LU 5 20 70 0 0 5 0 0 0 0 5 0 0 0 

CO 0 0 0 95 0 5 0 0 0 0 0 0 0 0 

LY 0 0 5 0 100 0 0 0 0 0 0 0 0 0 

BL 0 0 0 0 0 60 5 0 0 5 5 10 0 0 

ML 5 0 5 0 0 15 75 10 0 0 0 0 5 0 

UT 5 0 0 0 0 0 10 75 0 0 0 15 0 0 

LE 0 0 0 0 0 0 0 0 98 0 0 5 0 0 

RE 5 0 0 0 0 0 0 0 0 65 5 10 0 0 

PA 5 0 0 0 0 0 0 5 2 0 80 0 0 0 

OV 5 0 0 0 0 10 0 10 0 15 0 45 0 0 

ME 0 0 0 5 0 5 0 0 0 0 0 0 90 0 

CNS 0 0 0 0 0 0 5 0 0 0 0 5 0 100 

Table 8.5. Confusion matrix obtained for iTPA on the GCM problem. The elements on the leading diagonal represent percentage 
correct classifications, and the elements on the off-diagonal positions percentage of misclassifications 
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8.4.3 The GN-TPA algorithm 

In our simulations, all the input attributes were normalised to remove any bias in the 

mean values.  1-of-c coding was used to label each class category.  The number of 

outputs is equal to the number of class categories.  The GN-TPA algorithm was 

implemented using an SVD operation.  GN-TPA requires two parameters to set 

manually.  Firstly, a gain parameter λ  was introduced into the activation function of 

the hidden units, which decides the flatness of the output.  According to Zhang et al 

[76,110], a flatter activation function gives better generalization on problems where 

the input data is sparsely distributed.  Observation of a few trials showed that small 

values of λ  caused a great improvement in generalization.  Secondly, the number of 

hidden units N also has to be specified.  Large values of N close to the input 

dimension of the sample data would cause gross overfitting on the training set.  The 

exact value of λ  and N was determined by grid search; ∈N  {5, 10, 15, …, 100}, and 

∈λ  {1.0, 0.1, 0.01, 0.001}.  Finally, the input weights and hidden unit biases were set 

to random values in the range [-1,1]   

 

8.4.3.1 The lymphoma problem 

The performance of the GN-TPA algorithm was evaluated for the Lymphoma 

benchmark dataset.  The results are presented and compared with other classification 

methods found in the literature; ELM and SVM-OVO in [76].  All the results are 

tabulated in Table 8.6.  It was found that GN-TPA achieved very high classification 

accuracies, except when the number of selected genes was 800.  With 800 genes, 

misclassifications were due to samples in the smaller FL class being classified as 

DLBCL cases.  Once again, one particular DLBCL sample, DLBCL-0009, tended to 

be misclassified as an FL case, perhaps reflecting tissue sampling.  It is clear that less 

important genes not relevant to cancer distinction have added noise to the training 

data.  These genes will compromise classification accuracy and increase the 
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computational burden.  This is probably due to the BW criteria being unable to identify 

genes that discriminate between all classes.  It is also possible that the initialization 

method used has rendered some genes useless to cancer distinction.  This would 

suggest further research is required on different initialization techniques and smarter 

gene selection methods.      

 

 

 

 

 

 

 

 

 

 

Convergence occurs rapidly in one epoch.  Runtimes take only a few seconds on a 

Pentium IV (2.67 GHz).  The situation with ELM and SVM OVO is the same.  

Runtimes take only a few seconds for a C++ implementation of SVM and a Matlab 

implementation of ELM on a similar platform. 

 

 
 
 
 
 
 

 

Genes GN-TPA ELM SVM 
OVO 

10 100.0 98.3 100.0 
20 100.0 99.7 99.2 
50 100.0 100.0 99.2 
100 100.0 100.0 100.0 
200 100.0 100.0 100.0 
400 100.0 100.0 100.0 
800 99.2 100.0 100.0 

Genes 10 20 50 100 200 400 800 
N 12 6 8 11 21 10 9 

λ 1.0 0.1 0.1 0.001 0.001 0.001 0.001 

Table 8.6.  Classification accuracy on the Lymphoma dataset for 

different algorithms  

Table 8.7.  Optimum values for the parameters of GN-TPA for each 

selected gene number  
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8.4.3.2 The GCM problem 

The performance of GN-TPA was evaluated for the GCM dataset.  The results are 

presented and compared with other classification methods found in the literature; 

SVM-OVO and ELM [76].  The most significant 14, 28, 42, 56, 70, 84, and 98 genes 

selected as in [74].  Different combinations of ( )λ,N  were used for each gene 

number.  The maximum number of hidden units was set to 100 as there are only 111 

samples used at any time in the training data.  The results for the best ( )λ,N  are 

recorded in Table 8.8.  The optimum network size and gain parameter for each 

selected gene number is given in Table 8.9.  It was found that the classification 

accuracy of the GN-TPA algorithm grows with the number of genes selected.  The 

results are better than SVM OVO, which is the best SVM classifier, but slightly worse 

than ELM (i.e. typically < 1%).  The inferior performance of the GN-TPA algorithm 

relative to ELM across the gene numbers may be due to the preparation of the input 

data, which was different in [76].  In the present study, all the input attributes were 

normalized, whereas in [76] they were scaled in the range [0,1].  Scaling the input 

values is equivalent to scaling the columns in the hidden layer output matrix.  Pre-

conditioning strategies such as scaling, reordering and shifting are known to affect the 

condition number of linear equations [130] 

 

      

 

 

 

 

 

 

Genes GN-TPA ELM SVM 
OVO 

14 74.5 74.3 70.2 
28 77.6 78.5 74.5 
42 79.7 80.6 75.1 
56 80.9 81.9 75.7 
70 80.9 83.4 77.9 
84 83.6 84.1 77.9 
98 82.6 83.4 79.2 

Table 8.8. Classification accuracy on the GCM dataset for different 

algorithms  
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In the second test the classification accuracy of the GN-TPA for each individual 

tumour category was investigated.  The dataset used was GCM with the most 

significant 84 genes selected.  The results are illustrated in Fig 8.2.  It was found that 

the GN-TPA performed equally well in most tumour categories.  The tumour classes 

with the most samples were classified correctly, namely lymphoma, leukaemia, and 

CNS.  For lung, colorectal, bladder, melanoma, uterus, renal, pancreas, and 

mesothelioma, misclassifications were less than 25% (i.e. 2 in 8).  For bladder, 

prostrate and ovary, misclassifications were less than 50% (i.e. 1 in 2).  These results 

differ to ELM in colorectal, bladder, melanoma and pancreas, which were better than 

expected, and in prostrate, ovary, and mesothelioma, which were slightly worse.  

Clearly an improvement in classification accuracy in one class has been paid for by 

more misclassifications in another class 

 

Table 8.10 shows the confusion matrix for GN-TPA on the GCM problem.  It can be 

seen that the samples in the largest classes were all correctly classified.  This shows 

that increasing the sample size will improve classification accuracy.  The classification 

accuracy for Colorectal and Mesothelioma was also high.  Regarding 

misclassifications, it can be seen that Ovary was the worst class with GN-TPA 

showing a distinct preference for Bladder, Uterus, Lymphoma and Renal   

Genes 14 28 42 56 70 84 98 
N 15 25 25 35 40 40 45 

λ 0.1 0.1 0.1 0.1 0.1 0.001 0.001 

Table 8.9.  Optimum values for the parameters of GN-TPA for each 

selected gene number  
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Fig 8.2.  Comparison of classification accuracy for different categories on the GCM dataset; breast, prostrate, lung, colorectal, 

lymphoma, bladder, melanoma, uterus adreno, leukaemia, renal, pancreas, ovary, mesothelioma, and cns  

0

5

10

15

20

25

Brea
st

Pros
tra

te
Lu

ng

Colo
rec

tal

Ly
mph

om
a

Blad
de

r

Mela
no

ma

Uter
us

 A
dr

en
o

Le
uk

em
ia

Ren
al

Pan
cre

as
Ova

ry

Mes
oth

eli
om

a
CNS

N
um

be
r 

of
 h

its

GN-TPA

SVM-OVO

ELM

Sample Size



Chapter 8 : Multi-category classification using the tangent plane algorithm 

-176- 

 

 

 BR(%) PR(%) LU(%) CO(%) LY(%) BL(%) ML(%) UT(%) LE(%) RE(%) PA(%) OV(%) ME(%) CNS(%) 

BR 65 15 0 0 0 5 5 0 0 0 5 5 0 0 

PR 0 70 0 0 0 0 0 0 0 0 0 0 0 0 

LU 5 15 85 0 0 0 0 0 0 5 0 0 0 0 

CO 0 0 0 90 0 0 5 0 0 0 0 0 0 0 

LY 5 0 0 0 100 0 0 0 0 0 0 10 0 0 

BL 5 0 15 0 0 70 0 0 0 0 5 10 0 0 

ML 0 0 0 0 0 10 70 5 0 0 20 5 0 0 

UT 0 0 0 0 0 0 15 80 0 5 0 15 0 0 

LE 5 0 0 0 0 0 0 0 100 10 0 0 0 3 

RE 5 0 0 0 0 0 5 0 0 70 0 10 0 0 

PA 5 0 0 0 0 0 0 0 0 0 65 5 0 0 

OV 0 0 0 0 0 10 0 15 0 10 5 40 0 0 

ME 5 0 0 10 0 5 0 0 0 0 0 0 100 0 

CNS 0 0 0 0 0 0 0 0 0 0 0 0 0 97 

Table 8.10. Confusion matrix obtained for GN-TPA on the GCM problem. The elements on the leading diagonal represent 
percentage correct classifications, and the elements on the off-diagonal positions percentage of misclassifications 
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8.5  Comparison of the different algorithms 

We have already seen that the GN-TPA algorithm creates larger network structures 

compared with other network building techniques.  However, the number of adjustable 

weights n  in the network is small; only the output weights are trained.  This raises the 

following question; “Does the tangent plane algorithm operating in batch mode 

actually produce better generalization results than in sequential mode?”  In order to 

answer this question, we carry out a statistical hypothesis test on the simulation 

results for the Lymphoma dataset in the last section.  The most significant genes were 

selected as in [74].  The values tested were the mean square error on the test set.  

The statistical hypothesis test used was a two-tailed t-test with Cochran-Cox 

approximation for the case of unequal variances.  The results were tested for 

normality using a Kolmogorov-Smirnov (KS) test.  For normality, the p-value 

associated with KS test should exceed 0.15.  A small number of tests (overall 14%) 

deviate substantially from a normal distribution, which under-estimates the 

significance of differences. 

 

8.5.1 Network initialization 

1-of-c encoding was used for each class label.  The number of output units is equal to 

the number of class categories.  The output activation with the highest activity 

indicates class membership of the corresponding input.  The parameters for GN-TPA 

were set as follows.  The number of hidden units was fixed at Ν  = 10, which is the 

same as the number of hidden units per module in the sequential learning algorithm, 

iTPA-OVA.  A gain parameter λ was introduced into the activation function giving a 

flatter output, which gives better generalization results when the ratio of the input 

dimension to the number of samples is high.  Different values of the gain parameter λ 

were used for each selected gene number.  The exact values for λ were determined 

by grid search: λ ∈ {1.0, 0.1, 0.001}.  The parameters for iTPA were set as follows; 
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βtan = 0.5, aw = 0.5, and bw  = 0.5.  tan β  is preferred to be large so that the network 

does not overfit the training data.  aw  and bw  depend upon the initial values of the 

weights.  The learning algorithm was not particularly sensitive to the exact value 

chosen for these parameters 

 

10 trials were carried out with the mean classification accuracy on the test set 

recorded.  Multi-fold cross-validation was used to test the network as the number of 

training samples per class is relatively small.  The mix of training and test data were 

kept fixed in the ratio 4:1 as in Linder et al [77].  Different shuffles between training 

and test data were used according to each trial.  Early stopping was used to terminate 

network training, which helps to prevent overtraining.   

 

8.5.2 Results and discussion 

We performed a statistical hypothesis test to answer our question; “Does GN-TPA 

generalize better than iTPA-OVA in small networks?“  The results are tabulated in 

Table 8.11.  Dashes mean differences that are not significant at the 5% level i.e. the 

probability that the differences are purely accidental.  Parenthesis means that the 

results are not precise because one test deviated from a normal distribution.  Other 

entries indicate the superior algorithm (e.g. GN-TPA - E, and iTPA-OVA - M), and the 

value of the t statistic.  For DLBCL: 7 times no significant difference.  For FL: 4 times 

no significant difference, 3 times iTPA-OVA better than GN-TPA.  For B-CLL: 7 times 

iTPA-OVA better than GN-TPA.   

 

iTPA-OVA significantly out-performs GN-TPA with one exception, the DLBCL dataset.  

This dataset contains the most training examples making it the easiest dataset to 

learn.  Otherwise, the results suggest that iTPA-OVA is the superior algorithm.  This 

result is not surprising as there are significantly more adjustable weights per module 
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in a SLFN than in the corresponding ELM network.  Fig. 8.3, 8.4, and 8.5 show the 

test curves of GN-TPA and iTPA-OVA for each tumour class.  The results suggest 

that although different algorithms are used, the trends of the curves are very similar 

for each tumour class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genes 10 20 50 100 200 400 800 
DLBCL (0.64) (0.32) - - - - - 
FL (0.10) - - M 3.24 M 4.19 M 4.42 - 
B-CLL M 7.00 M 6.56 M 4.02 M 2.67 M 5.64 M 4.88 M 3.35 

Table 8.11.  Results of a t-test comparing the mean test set errors for the two 

algorithms.  Dashes mean that differences are not significant at the 5% level, 

parenthesis mean that the results are imprecise.  Other entries indicate the superior 

algorithm: iTPA-OVA – M, GN-TPA – E 

Fig 8.3.  Comparison of classification errors on the DLBCL tumour 

class for each selected gene number 
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Fig 8.4.  Comparison of classification errors on FL tumour class for each 

selected gene number 

Fig 8.5.  Comparison of classification errors on B-CLL tumour class for 

each selected gene number 
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8.6  Summary 

Artificial neural networks have been well established for their unique capability to 

represent any non-linear input-output mapping.  Compared with SVM, neural 

networks try to map the input data directly into separate classes in feature space, 

while SVM tries to separate the data into two classes.  However, studies show that the 

classification accuracy of neural networks drops quickly as the number of classes 

increases.  Various combinatory schemes have been proposed for combining neural 

networks, but these schemes produce larger and more complex network structures, 

longer runtimes, and heavy computational burdens.  Therefore there is a need for fast 

and efficient algorithms to train them.  In this chapter, two neural network algorithms 

are investigated for multi-category classification using gene expression data, namely 

iTPA and GN-TPA.  Both algorithms are fast and efficient.  Studies show that they 

have good generalization properties on benchmark neural network tasks 

 

The iTPA algorithm is attempted for multi-category classification and compared with 

the latest results in the literature.  The method adopted here referred to as iTPA-OVA 

uses a modular network.  Within the modular network architecture, each module 

represents a single hidden layered ANN.  Each ANN is trained to discriminate one 

particular class from all others.  The benchmark datasets used were GCM [118] and 

lymphoma [119].  The results show that iTPA-OVA gives better overall classification 

accuracy relative to the FGAP-RBF and SANN algorithms, and comparable 

classification accuracy relative to SVM-OVO.  The classification accuracy in individual 

tumour categories is better than SANN, and at least as good as FGAP-RBF.  iTPA-

OVA does not favour one class over another, but gives a good overall balance among 

the various classes 

 

The GN-TPA algorithm is compared with the latest results in the literature on two 

benchmark multi-category cancer classification problems, the GCM dataset [118] and 
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the lymphoma dataset [119].  The results show that the GN-TPA gives comparable 

classification accuracy relative to the best SVM classifier, SVM OVO, and slightly 

worse classification accuracy relative to the ELM algorithm.  The performance of ELM 

depends to a large extent on the generation of a set of inputs to the final layer units.  

The larger the subspace spanned by these vectors, the better the classification 

accuracy.  Unfortunately these input vectors are not optimised to minimise the training 

set error, but generated randomly.  Thus, any improvement in classification accuracy 

is gained by utilizing more hidden units.   

 

The classification accuracy of iTPA-OVA and GN-TPA are sensitive to the number of 

genes required for accurate cancer classification.  Experimental results show that the 

overall classification accuracy drops when the number of genes approaches 1,000.  

This is probably due to the method of gene selection used for accurate cancer 

classification.  Many genes are irrelevant to cancer classification.  These genes 

increase computational complexity and introduce noise into the training data.  This 

problem is exacerbated by the relatively small sample sizes.  It is recognised that the 

higher the ratio of the training samples to the number of free parameters in the 

network, the better the generalization will be.  Micro-array data typically comprises 

very few samples (< 30) of many thousands of genes.  This suggests that smarter 

gene selection methods are needed to identify marker genes 
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Chapter 9 

 

CONCLUSIONS AND FUTURE WORK 

 

9.1  Conclusions 

In this thesis, we have investigated and developed sequential and batch learning 

algorithms based upon the tangent plane algorithm for artificial neural networks with 

applications from the bioinformatics area.   

 

In the first part of this thesis, the performance of sequential and batch learning 

algorithms based on the tangent plane algorithm are investigated  

 

• The convergence behaviour of the tangent plane algorithm is investigated and 

compared with the gradient descent back-propagation algorithm.  The results 

indicate that the tangent plane algorithm gives fast convergence relative to the 

back-propagation algorithm, except in small networks where the convergence 

speed was slower and there were more failed trials.  The principal strength of 

the tangent plane algorithm is that it does not require manually tuning a 

learning rate parameter, but instead automatically adjusts the learning rate to 

give the correct step size.   

 

• The stability of the tangent plane algorithm is investigated and compared with 

the gradient descent back-propagation algorithm using two different types of 

inexact data.  First, varying amounts of random “white” noise were added to 

the teaching values of the training data so that they vary from pattern 

presentation to pattern.  Second, single items of rogue data were occasionally 

fed into the network during training.  The results indicate that the tangent 
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plane algorithm is a relatively robust method of training neural networks.  

However, the big weight updates caused by noisy data frequently disrupt the 

training when the level of noise is high resulting in longer recovery times and 

more failed trails 

 

• The generalization performance of the second tangent plane algorithm is 

investigated and compared with the gradient descent back-propagation 

algorithm.  The results indicate that the second tangent plane algorithm gives 

improved generalization relative to the back-propagation algorithm in some 

task and comparable generalization in the others, except in the smallest 

networks where it was the same.  Generalization was found to be independent 

of network size.  This is the principal strength of the second tangent plane 

algorithm.  

 

• A number of limitations leading to slightly inferior performance are identified in 

the tangent plane algorithm 

 

o The convergence speed of the tangent plane algorithm is no better 

than the steepest descent back-propagation method in small 

parsimonious networks where generalization is known to be best.  The 

probability of a set of normals to constraint surfaces being nearly 

linearly dependent will be much higher in small networks with few 

adjustable weights leading to slow convergence.  

o The tangent plane algorithm frequently fails to converge when the 

training set is inexact or fuzzy.  The convergence of the algorithm was 

frequently disrupted by big weight updates in response to rogue data 

patterns that were occasionally fed into the network.  Further the 
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algorithm would not converge to a compromise solution when the 

teaching values were corrupted by a small amount of artificial noise.  In 

this case the algorithm would continue to oscillate between 

approximate solutions 

o The distribution of weight importance coefficients in networks trained 

by the second tangent plane algorithm was investigated.  The results 

indicate that the tangent plane algorithm does not produce a 

separation of active and inactive weights as expected, but the weights 

continue to grow from small initial values producing large network 

structures with wide distributions of weight values.    

 

• A new sequential learning algorithm referred to as TPA-RTRL is developed for 

fully recurrent neural networks.  It is shown that recycling information around 

the network can improve the stability of the tangent plane algorithm when the 

training set contains a small percentage of rogue data.  This is because the 

network learns to predict the correct response to an item of data in advance of 

receiving the input.  The new algorithm is investigated and compared with the 

original GD-RTRL algorithm on two sequence recognition tasks.  The results 

show that the new algorithm learns to predict temporal sequences faster than 

the original GD-RTRL algorithm.  The results also show that the new algorithm 

recovers quickly after the network is presented with spurious items of rogue 

data.  However the runtimes are significantly longer and increase with the size 

of the network.                         

 

• A new sequential learning algorithm referred to as iTPA is developed to 

improve the generalization performance of the second tangent plane 

algorithm.  In the new algorithm, an additional term is included that pushes the 
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weights along tangent planes in a direction that encourages weight 

elimination.  The new algorithm is investigated and compared with the original 

algorithm on two real world neural network problems.  The results show that 

the new algorithm gives improved generalization relative to the original 

algorithm in some problems, and comparable generalization in others.  The 

results also show that the new algorithm retains the fast convergence speed of 

the original method.  Including a small amount of random movement along 

tangent planes often helps the network break out of local minima that can slow 

down the convergence.   

 

• A new batch learning algorithm referred to as GN-TPA is developed to 

overcome the problem of slow convergence in small parsimonious networks 

where generalization is known to be best.   

 

o In the new algorithm, a system of tangent plane equations is 

constructed and solved using the method of least squares, which is an 

optimization technique used to find an approximate solution to a 

system of equations where no exact solution exists.  The new 

algorithm is investigated and compared with the Rprop algorithm on 

two neural network benchmark problems.  The results show that the 

new algorithm is very fast.  However some trials stalled due to 

oscillatory behaviour, showing that the step size was too large and that 

a good initial guess is needed for fast convergence to occur.  Also, 

some trials failed due to rank deficiency in the Jacobian matrix.    

o Two modifications are suggested to overcome the difficulties with the 

new batch algorithm, viz. convergence to local minima, and the 

computational cost of performing an SVD operation.  Firstly, a novel 
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network architecture called an extreme learning machine (ELM) is 

utilised, which is a single hidden layer feed-forward neural network 

(SLFN) with input weights chosen arbitrarily.  Secondly, the tangent 

plane normal equations are solved iteratively by using an orthogonal 

transformation.  This improves the computational efficiency of the 

algorithm and gives improved generalization when combined with early 

stopping.  Comparative tests were performed using the new GN-TPA 

algorithm, the cascade algorithm, and the orthogonal sequential 

training technique.  The results show that the GN-TPA gives improved 

generalization on some problems relative to the cascade algorithm and 

the orthogonal training technique.  There was little evidence of 

overtraining in any of the networks trained by the GN-TPA algorithm.  

The principal weakness of the GN-TPA algorithm is that it builds large 

networks.  However, this is only a minor issue as generalization 

performance does not appear to deteriorate with increasing network 

size  

 

In the later part of this thesis, a significant contribution is made to multi-category 

classification problems in the bioinformatics area    

 

• A new sequential learning algorithm referred to as iTPA-OVA is investigated 

and compared with SANN and FGAP-RBF on two cancer classification 

problems using gene expression data.  In order to improve classification 

accuracy several simple ANNs are combined using a one-versus-all (OVA) 

combinatory scheme.  The results show that the new iTPA-OVA algorithm 

gives better overall accuracy across a range of selected marker genes relative 

to SANN, and FGAP-RBF, and an overall accuracy at least as good as the 
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best SVM classifier.  Classification accuracy in individual tumour categories is 

better than SANN, and at least as good as FGAP-RBF.  The new sequential 

algorithm does not favour one class over another, but gives a good overall 

balance among the various classes.  Although the new algorithm gives better 

classification accuracy relative to the best classifier, FGAP-RBF, the training 

times are slightly longer, so an improvement in one process must be paid for 

by a deterioration in another 

 

• The new batch leaning algorithm GN-TPA is investigated and compared with 

SVM-OVO and the original ELM algorithm on two cancer classification 

problems using gene expression data.  In order to improve classification 

accuracy a gain parameter was introduced into the hidden unit activations 

giving a flatter output.  The results show that the new batch algorithm gives 

comparable overall accuracy across a range of selected marker genes relative 

to the best SVM classifier, SVM-OVO, and slightly worse performance relative 

to the original ELM algorithm.  The classification accuracy of the new algorithm 

in individual tumour categories is at least as good as the best SVM classifier.  

The new batch algorithm does not favour one class over other classes.   

 

• Study results show that the new GN-TPA algorithm constructs slightly larger 

networks than other popular network building techniques.  This raises the 

following question, “Does the new batch tangent plane algorithm generalize 

better than the new sequential tangent plane algorithm is smaller networks?”  

In order to answer this question, a statistical hypothesis test is carried out 

using the gene expression data.  The results show that there is a significant 

difference at the 5% level.  The new sequential algorithm gives better 

classification accuracy in smaller tumour classes across a range of selected 
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marker genes.  Both algorithms give comparable accuracy on the largest 

tumour class.   

 

• The classification accuracy of the new sequential and batch learning 

algorithms tends to drop with more selected marker genes (> 100).  This is 

probably due to the inability of the gene selection method to identify genes that 

discriminate between different classes rather than the performance of the 

individual algorithms 

 

9.2  Recommendations for future work 

Possible areas for future work that emerge from this thesis include  

 

• Study results show that the new TPA-RTRL algorithm takes more time to 

finish the learning process due to the high computational complexity of the 

algorithm.  Therefore methods to reduce the computational complexity of the 

algorithm can be investigated such as fixing some of the recurrent connections 

in MERTRL [93,94] or fixing a preset number of weights that are randomly 

chosen during each time step.   

 

• Speech enhancement remains a developing area in neural network research.  

Several researchers have used neural networks for speech enhancement 

[85,86].  Conventional ANNs cannot easily model the temporal behaviour of 

speech signals by using a windowed input [62].  One way to address this issue 

is using recurrent neural networks to deal with the varying length of speech.  

Therefore the new TPA-RTRL algorithm will be further developed for speech 

enhancement applications 
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• Traditionally the Extreme Learning Machine requires a high number of hidden 

units which may lead to ill conditioning on some problems.  Fei Han et al [130] 

have applied a modified particle swarm optimization method to select input 

weights and biases of hidden layer units giving better generalization and 

condition than other ELM methods.  Particle swarm optimization methods are 

known to converge rapidly in the initial stages of training around a global 

minimum [131].  However this strategy still requires the number of hidden units 

to be selected a-priori.  This suggests there is scope to further modify the 

sequential GN-TPA algorithm for the extreme learning machine using particle 

swarm optimization methods so that the most favourable new hidden units are 

selected for insertion into the network  

 

• Gene selection is of vital importance in molecular cancer classification using 

high dimensional gene expression data.  Carrying out feature selection 

reduces the curse of the dimensionality problem and improves prediction 

accuracy.  Wang et al [132] have compared established feature selection 

methods using eight gene expression datasets; Colon tumour, CNS tumour, 

DLBCL, Leukaemia 1, Lung cancer, Prostrate cancer, Leukaemia 2, and 

breast cancer.  The classification methods used were a probabilistic classifier 

(NB), K-NN and SVM.  Therefore a further development of this work is to 

compare the performance of ANN trained using the GN-TPA algorithm to 

benchmark the performance of neural network classifiers on the microarray 

datasets used in this study 

 

• Cancer cells possess traits similar to normal stem cells.  It is unclear however 

whether these similarities reflect the activity of common molecular pathways.  

Ittah Ben-Porath et al [133] all have analysed the enrichment patterns of 
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genes associated with embryonic stem (ES) cell identity in the expression 

levels of various human cancer types.  Recently developed gene expression 

analysis methods [134] were used to determine whether the expression 

signatures that define human ES cell identity are also active in human 

tumours.  The results indicate a novel link between ES cell identify and 

microscopic histopathelogical traits of tumours.  Therefore a further 

development of this work is to use neural network methods to benchmark the 

performance of neural networks in determining the link between human ES 

cells and tumour cells 
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APPENDIX A - PROGRAM DEVELOPMENT 

 

Hardware, software and platform 

The implementation of the programs used in the simulations was carried out on a 

Hewlett Packard Pavilion Pentium 4 2.67 CPU GHz with 512 MB of RAM running 

Windows XP Professional SP2.  The programs were written in Object Pascal using 

Borland Delphi Professional 6.   Delphi is a rapid application development tool (RAD) 

for developing Windows applications, dynamic linked libraries (DLLs), system control 

modules, console applications and web server applications.  Microsoft Excel was used 

to plot the graphs and charts included the thesis 

 

Modular structure 

A classical procedural paradigm was adopted to implement the algorithms.  The 

program design was broken down into discrete modules implementing strong 

cohesion and low coupling between modules.  Typical modules include 

 

build_net.   This procedure accepts the numbers of layers in the neural network and 

number of inputs and builds the corresponding network structure 

add_neuron.  This procedure accepts the layer and unit position and adds a neuron 

to the network 

init_weights. This procedure accepts the layer and unit position and initialises the 

weights in the weight table to random values  

set_inputs.  This procedure reads a row of data from the input buffer into the input 

layer of the network 

forward_prop.  This procedure forward propagates the activations from the input 

layer to the output layer 
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backward_prop.  This procedure calculates the local gradients of each individual unit 

in the network 

calc_grads.  This procedure calculates the gradient contribution of each individual 

weight in the network 

Update_weights.  This procedure calculates the adjustments to the weights in the 

neural network 

 

Data structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The programs used in the simulations utilised many advanced features of a modern 

programming language.  Specifically, dynamic data structures were used to store to 

store the unit activations, gradient information and weight values.  Using a data 

structure permitted units to be added to the network at runtime so that the memory 

requirements of the application were optimised to the runtime environment 

Fig A.1. The figure shows the layer structure used to model a collection 

of nodes with similar function. In this example the weight values of all 

input connections to the fourth unit u1 are stored sequentially in the w1,j 

array, connections to the second unit u2 in the w2,j array, and so on, 

enabling rapid sequential access to these values  
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The network structure consisted of a network node with pointers or references to layer 

nodes.  The layer notes in turn contained pointers or references to output tables, 

gradient and weight pointer nodes.  Finally the gradient and weight pointer nodes 

contained references to the data tables.  Fig A.1 shows part of the data structure used 

to implement a single layer in the neural network. 

 

Data transformation algorithms 

The individual programs used in this study share common routines for data 

processing, namely procedures to set the inputs, forward propagate activations, 

backward propagate local gradients, calculate the gradient vector and update the 

weights of the network.  Other modules specific to individual programs include 

functions to perform the SVD and QR decomposition 

 

Module: set_inputs(j) 

  FOR i <- 0 TO inputs  

    IN_layer^.output^[i] <- input_buffer[j].pattern[i] 

  target <- input_buffer[j].target 

END set_inputs 

 
Module: forward_prop 

 Module: forward_prop_layer (upper_layer, lower_layer) 

 FOR j <- 1 TO upper_layer^.units  

  FOR i <- 1 TO lower_layer^.units 

    a <- lower_layer^.output^[j] * upper_layer^.conn_w^[j]^[i] 

   upper_layer^.output^[j] <- tanh(a) 

 END forward_prop_layer 

 FOR k <- layers – 1 DOWNTO 1 

  upper_layer <- network^.layer [k] 

  Lower_layer <- network^.layer [k + 1] 

  forward_prop_layer (upper_layer, lower_layer) 

END forward_prop 

 
Module: back_prop 

 Module: back_prop_layer (upper_layer, lower_layer) 

 FOR j <- 1 TO lower_layer^.units  
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  FOR i <- 1 TO upper_layer^.units  

   lower_layer^.grads^[j] <- lower_layer^.grads^[j] +  

     upper_layer^.grads^[j] * upper_layer^.conn_w^[j]^[i] 

   lower_layer^.grads^[j] <- lower_layer^.grads^[j] *  

    (1 – sqr(lower_layer^.output^[j])) 

 END back_prop_layer  

FOR k <- 1 TO layers – 1 

  upper_layer <- network^.layer [k] 

  lower_layer <- network^.layer [k + 1] 

  back_prop_layer (upper_layer, lower_layer) 

END back_prop 

 

Module: calc_grad  

 FOR k <- 1 TO layers – 1 

  upper_layer <- network^.layer [k] 

  lower_layer <= network^.layer [k + 1] 

  FOR j <- 1 TO upper_layer^.units 

   FOR i <- TO lower_layer^.units 

    upper_layer^.conn_g^[j]^[i] <- upper_layer^.grads^[j] *  

     lower_layer^.output^[i]  

END calc_grad 

 
Module: adjust_weights 

 Module: adjust_layer (upper_layer, lower_layer) 

 FOR j <- 1 TO upper_layer^.units  

  FOR i <- 1 TO lower_layer^.units 

   upper_layer^.conn_w^[j]^[i] <- upper_layer^.conn_w^[j]^[i] +  

     nu * upper_layer^.conn_g^[j]^[i] 

 END adjust_layer 

 nu <- calc_learning_rate 

 FOR k <- 1 TO layers – 1 

  upper_layer <- network^.layer [k] 

  lower_layer <- network^.layer [k + 1] 

  adjust_layer (upper_layer, lower_layer) 

END adjust_weights 
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File organisation and record structure 

Most of the benchmark data used in the simulations has been made publically 

available on websites as text files.  Thus the file organisation is sequential.  This 

means that input attributes are accessed sequentially starting from the first item in the 

file, and reading the attributes one by one until the last item was reached.  The input 

attributes are either floating point or integer.   A typical text file would have 

corresponding data attributes organised in columns, the last column containing the 

target values.  Similarly the results of computations used to determine the 

performance of the algorithms was written item by item to a text file.  The output data 

was either floating point or integer 
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APPENDIX B – CLASS DIAGRAM OF DATA STRUCTURE 
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APPENDIX C – TESTING STRATEGY AND TEST DATA 

 

Testing strategy and test data 

The neural network benchmark datasets used to evaluate the newly developed 

algorithms have all been made publicly available on the UCI machine learning 

repository unless otherwise stated.  These datasets are divided up into training, 

validation and testing examples.  The training data is used to train the network.  The 

performance of the network on the test data estimates its effectiveness in practice.  

Therefore, the network should not see the test data during the training stage.  The 

training data of some datasets is further subdivided into actual training examples and 

validation examples.  The validation dataset is used to determine the performance of 

the network during training.  A detailed description of the datasets used in this thesis 

is given below  

 

cancer.  The cancer problem contains some diagnosis results for breast cancer.  The 

output represents the classification result for the diagnosis.  The decision is based on 

9 continuous valued input attributes.  The number of training examples is 200 and test 

examples is 167  

hearta1.  The hearta problem is an analogue version of the heart disease diagnosis 

problem.  The single continuous output predicts heart disease.  The decision is based 

on 13 continuous valued input attributes.  The number of training examples is 690 and 

test examples is 230 

housing.  The housing problem is real world problem that estimates the price of 

housing in the suburbs of Boston.  The number of inputs is 13 and the number of 

outputs one.  The number of training and test examples is 253 

henon map.  This problem is an artificially generated deterministic time series 

prediction task.  Four successive values are used to predict the next value.  Thus 
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there are four inputs and one output.  The number of training examples is 100 and 

test examples is 100 

two spiral.  The two spiral problem is an artificially generated dataset containing the 

(x, y) coordinates of two interlocking spirals.  For points in the first spiral the output is 

set to +1, and for points on the second spiral -1.  The number of training examples is 

194 and test examples in 192 

additive.  The additive problem is an artificially generated nonlinear regression task.  

There are two continuous valued inputs uniformly distribute in the range [-1,1].  The 

single continuous output scaled in the range [-1,1].  The number of training examples 

is 200 and test examples in 200 
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APPENDIX D – IMPLEMENTATION OF iTPA ALGORITHM 

 
//******************************************************************************** 
// Improved tangent plane algorithm      * 
// Version: 1.0        * 
// Author: Paul May       * 
// Date:         * 
//******************************************************************************** 
// Description:        * 
// The following program implements the improved tangent plane algorithm (iTPA) * 
// in Object Pascal. Specific libraries used include UN012 which contains the * 
// data structures and UN022 which builds the neural network   * 
//******************************************************************************** 
// Usage:        * 
// The program runs in batch mode      * 
//   Input files - hearta1.txt      * 
//   Output files -       * 
//******************************************************************************** 
program M304; 
{$APPTYPE CONSOLE} 
uses 
  sysUtils, 
  UN012 in '..\Units\UN012.pas', 
  UN022 in '..\Units\UN022.pas'; 
 
const 
  b = 1.00; 
  c = 1.30; 
  n0 = 6.0; 
  w0 = 0.05; 
  w1 = 0.5; 
  tan_b1 = 0.05; 
  nu_max = 1.00; 
  nu_min = 1.00; 
  nu_zero = 1.00; 
  sig2_tr = 0.55; 
  sig2_val = 0.55; 
  err_min = 5.00; 
  layers = 4; 
  outputs = 01; 
  hidden_L1 = 20; 
  hidden_L2 = 20; 
  inputs = 13; 
  pk_max = 1.0; 
  vl_max = 1.0; 
  epoch_max = 5000; 
  epoch_min = 30; 
  start  = 001; 
  train  = 690; 
  pattern   = 920; 
  max_trial = 010; 
  strip_len = 010; 
  high_values = $FFFF; 
  low_values = $0000; 
  file_IN   = '..\..\data\hearta1.txt'; 
  file_OUT_1 = 'G:\hearta101.txt'; 
 
type 
  net_rec_type = record 
     pattern : array [1..inputs] of real; 
     target  : real; 
  end; 
  net_file_Type = file of net_rec_type; 
 
var 
  OUT_layer : layer_ptr; 
  IN_layer  : layer_ptr; 
 
  network : network_ptr; 
  net_record : net_rec_type; 
  net_IN     : Text; 
  net_OUT_1  : Text; 
 
  data : array[1..50] of integer; 
  data_buffer : array[1..pattern,1..15] of real; 
  input_buffer : array[1..pattern] of net_rec_type; 
 
  pk, vl, err_tr, err_val, err_val_min, target, cerr_tr, cerr_val, perr_tr, perr_val, 
  err_strip, err_tr_tmp, err_val_tmp, err_tr_avg, err_tr_last, err_val_avg, epoch_avg,  
  nu, wavg : real; 
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  epoch, epoch_tmp, neurons, i, n : integer; 
 
//attr0, attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8, attr9, attr10, attr11,  
//attr12, attr13 : integer; 
  attr0, attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8, attr9, attr10, attr11,  
  attr12, attr13 : real; 
 
function tanh(a : real) : real; 
begin 
  tanh := (exp(a) - exp(-a)) / (exp(a) + exp(-a)); 
end; 
 
function inv_tanh(a : real) : real; 
begin 
  inv_tanh := 0.5 * ln ((1 + a) / (1 - a)); 
end; 
 
function norm_t : real; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp : real; 
  i, j, k : integer; 
begin 
  temp := 0; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          temp := temp + sqr(UPPER_layer^.conn_t^[j]^[0]); 
          for i := 1 to LOWER_layer^.neuron do 
            temp := temp + sqr(UPPER_layer^.conn_t^[j]^[i]); 
        end; 
    end; 
  norm_t := sqrt(temp); 
end; 
 
function norm_s : real; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp : real; 
  i, j, k : integer; 
begin 
  temp := 0; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          temp := temp + sqr(UPPER_layer^.grads^[j]); 
          for i := 1 to LOWER_layer^.neuron do 
            temp := temp + sqr(UPPER_layer^.grads^[j] * LOWER_layer^.output^[i]); 
        end; 
    end; 
  norm_s := sqrt(temp); 
end; 
 
function norm_r : real; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp : real; 
  i, j, k : integer; 
begin 
  temp := 0; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          temp := temp + sqr(UPPER_layer^.conn_r^[j]^[0]); 
          for i := 1 to LOWER_layer^.neuron do 
            temp := temp + sqr(UPPER_layer^.conn_r^[j]^[i]); 
        end; 
    end; 
  norm_r := sqrt(temp); 
end; 
 
function calc_wavg : real; 
var 
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  UPPER_layer, LOWER_layer : layer_ptr; 
  temp : real; 
  i, j, k, num  : integer; 
begin 
  temp := 0; num := 0; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          num := num + 1; 
          temp := temp + abs(UPPER_layer^.conn_w^[j]^[0]); 
          for i := 1 to LOWER_layer^.neuron do 
            begin 
              num := num + 1; 
              temp := temp + abs(UPPER_layer^.conn_w^[j]^[i]); 
            end; 
        end; 
    end; 
  calc_wavg := temp / num; 
end; 
 
function calc_ws : real; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp : real; 
  i, j, k : integer; 
begin 
  temp := 0; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          temp := temp + UPPER_layer^.conn_w^[j]^[0] * UPPER_layer^.grads^[j]; 
          for i := 1 to LOWER_layer^.neuron do 
            temp := temp + UPPER_layer^.conn_w^[j]^[i] * UPPER_layer^.grads^[j] *  

     LOWER_layer^.output^[i]; 
        end; 
    end; 
  calc_ws := temp; 
end; 
 
procedure calc_r; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp1 : real; 
  temp2 : real; 
  i, j, k : integer; 
begin 
  temp1 := calc_ws; 
  temp2 := norm_s; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          UPPER_layer^.conn_r^[j]^[0] := UPPER_layer^.conn_w^[j]^[0] - temp1 *  

   UPPER_layer^.conn_s^[j]^[0] / sqr(temp2); 
          for i := 1 to LOWER_layer^.neuron do 
            UPPER_layer^.conn_r^[j]^[i] := UPPER_layer^.conn_w^[j]^[i] - temp1 *  

     UPPER_layer^.conn_s^[j]^[i] / sqr(temp2); 
        end; 
    end; 
end; 
 
procedure init_g; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  i, j, k, sgn : integer; 
begin 
  wavg := calc_wavg; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          for i := 0 to LOWER_layer^.neuron do 
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            begin 
              if random > 0.5 then 
                sgn := +1 
              else 
                sgn := -1; 
              UPPER_layer^.conn_g^[j]^[i] := (UPPER_layer^.conn_w^[j]^[i] / w0) / 

       (power((UPPER_layer^.conn_w^[j]^[i] / w0),n0) + 1) + sgn * random / (wavg / w1); 
            end; 
        end; 
    end; 
end; 
 
function norm_g : real; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp : real; 
  i, j, k : integer; 
begin 
  temp := 0; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          temp := temp + sqr(UPPER_layer^.conn_g^[j]^[0]); 
          for i := 1 to LOWER_layer^.neuron do 
            temp := temp + sqr(UPPER_layer^.conn_g^[j]^[i]); 
        end; 
    end; 
  norm_g := sqrt(temp); 
end; 
 
function calc_gs : real; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp : real; 
  i, j, k : integer; 
begin 
  temp := 0; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          temp := temp + UPPER_layer^.conn_s^[j]^[0] * UPPER_layer^.conn_g^[j]^[0]; 
          for i := 1 to LOWER_layer^.neuron do 
            temp := temp + UPPER_layer^.conn_s^[j]^[i] * UPPER_layer^.conn_g^[j]^[i]; 
        end; 
    end; 
  calc_gs := temp; 
end; 
 
function calc_gr : real; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp : real; 
  i, j, k : integer; 
begin 
  temp := 0; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          temp := temp + UPPER_layer^.conn_r^[j]^[0] * UPPER_layer^.conn_g^[j]^[0]; 
          for i := 1 to LOWER_layer^.neuron do 
            temp := temp + UPPER_layer^.conn_r^[j]^[i] * UPPER_layer^.conn_g^[j]^[i]; 
        end; 
    end; 
  calc_gr := temp; 
end; 
 
procedure calc_g; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp1, temp2, temp3, temp4 : real; 
  i, j, k : integer; 
begin 
  init_g; 
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  temp1 := calc_gs; 
  temp2 := calc_gr; 
  temp3 := norm_s; 
  temp4 := norm_r; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          UPPER_layer^.conn_g^[j]^[0] := UPPER_layer^.conn_g^[j]^[0] - temp1 *  

   UPPER_layer^.conn_s^[j]^[0] / sqr(temp3); 
          for i := 1 to LOWER_layer^.neuron do 
            UPPER_layer^.conn_g^[j]^[i] := UPPER_layer^.conn_g^[j]^[i] - temp1 *  

     UPPER_layer^.conn_s^[j]^[i] / sqr(temp3); 
        end; 
    end; 
end; 
 
procedure calc_grad; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  temp : real; 
  i, j, k : integer; 
begin 
  temp := 0; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      for j := 1 to UPPER_layer^.neuron do 
        begin 
          UPPER_layer^.conn_s^[j]^[0] := UPPER_layer^.grads^[j]; 
          for i := 1 to LOWER_layer^.neuron do 
            UPPER_layer^.conn_s^[j]^[i] := UPPER_layer^.grads^[j] * LOWER_layer^.output^[i]; 
        end; 
    end; 
end; 
 
procedure set_inputs(j : integer); 
var 
  i : integer; 
begin 
  IN_layer^.output^[0] := 1; 
  for i := 1 to inputs do 
    IN_layer^.output^[i] := input_buffer[j].pattern[i]; 
  target := input_buffer[j].target; 
end; 
 
procedure forward_prop; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  k : integer; 
  a : real; 
 
  procedure forward_prop_layer(var UPPER_layer, LOWER_layer : layer_ptr); 
  var 
    j, i : integer; 
    a : real; 
  begin 
    for j := 1 to UPPER_layer^.neuron do 
      begin 
        a := UPPER_layer^.conn_w^[j]^[0]; 
        for i := 1 to LOWER_layer^.neuron do 
          a := a + LOWER_layer^.output^[i] * UPPER_layer^.conn_w^[j]^[i]; 
        UPPER_layer^.output^[j] := tanh(a); 
      end; 
  end; 
 
begin 
  for k := layers - 1 downto 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      forward_prop_layer(UPPER_layer, LOWER_layer); 
    end; 
end; 
 
procedure backward_prop; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  k : integer; 
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  procedure backward_prop_layer(var UPPER_layer, LOWER_layer : layer_ptr); 
  var 
    i, j : integer; 
  begin 
    for j := 1 to LOWER_layer^.neuron do 
      begin 
        LOWER_layer^.grads^[j] := 0; 
        for i := 1 to UPPER_layer^.neuron do 
            LOWER_layer^.grads^[j] := LOWER_layer^.grads^[j] + UPPER_layer^.grads^[i] *  

     UPPER_layer^.conn_w^[i]^[j]; 
        LOWER_layer^.grads^[j] := LOWER_layer^.grads^[j] * (1 - sqr (LOWER_layer^.output^[j])); 
      end; 
  end; 
 
begin 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      backward_prop_layer(UPPER_layer, LOWER_layer); 
    end; 
end; 
 
procedure adjust_weights; 
var 
  UPPER_layer, LOWER_layer : layer_ptr; 
  eta, alpha1, temp1, temp2, temp3, temp4, temp5, temp6 : real; 
  k, sgn : integer; 
 
  procedure adjust_layer(var UPPER_layer, LOWER_layer : layer_ptr); 
  var 
    i, j : integer; 
  begin 
    for j := 1 to UPPER_layer^.neuron do 
      begin 
        for i := 0 to LOWER_layer^.neuron do 
          begin 
            UPPER_layer^.conn_t^[j]^[i] := nu * (eta * UPPER_layer^.conn_s^[j]^[i] / temp1 –  
        alpha1 * TAN_B1 * (UPPER_layer^.conn_g^[j]^[i] / temp5)); 
            UPPER_layer^.conn_w^[j]^[i] := UPPER_layer^.conn_w^[j]^[i] +  

     UPPER_layer^.conn_t^[j]^[i]; 
          end; 
      end; 
  end; 
 
begin 
  temp1 := norm_s; 
  temp2 := norm_r; 
  temp5 := norm_g; 
  eta := (inv_tanh(target) - inv_tanh(OUT_layer^.output^[1])) / temp1; 
  alpha1 := abs(inv_tanh(target) - inv_tanh(OUT_layer^.output^[1])) / temp1; 
  for k := 1 to layers - 1 do 
    begin 
      UPPER_layer := network^.layer[k]; 
      LOWER_layer := network^.layer[k + 1]; 
      adjust_layer(UPPER_layer, LOWER_layer); 
    end; 
end; 
 
procedure train_net; 
var 
  j : integer; 
begin 
  for j := start to train do 
    begin 
      set_inputs(j); 
      forward_prop; 
      backward_prop; 
      calc_grad; 
      calc_r; 
      calc_g; 
      adjust_weights; 
    end; 
end; 
 
procedure test_net; 
var 
  t_max, t_min : real; 
  j, x, y : integer; 
begin 
  err_tr := 0; 
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//err_tr := 1; 
  cerr_tr := 0; 
  t_max := LOW_VALUES; 
  t_min := HIGH_VALUES; 
  for j := start to train do 
    begin 
      set_inputs(j); 
      forward_prop; 
      if target > t_max then 
        t_max := target; 
      if target < t_min then 
        t_min := target; 
      err_tr := err_tr + sqr(target - OUT_layer^.output^[1]); 
//    err_tr := err_tr * sqr(target - OUT_layer^.output^[1]); 
      if target >= 0 then 
        y := 1 
      else 
        y := -1; 
      if OUT_layer^.output^[1] >= 0 then 
        x := 1 
      else 
        x := -1; 
      cerr_tr := cerr_tr + abs(y - x); 
    end; 
// percentage sum of square error 
  perr_tr := 100 * err_tr / (train * sqr(t_max - t_min)); 
// Classification error CERR x 100 
  cerr_tr := 100 * cerr_tr / (2 * train); 
// Normalised mean square error NMSE x 100 
  err_tr := 100 * err_tr / (train * sig2_tr); 
//err_tr := 100 * power(err_tr, 1 / train) * sig2_tr; 
//err_tr := err_tr / (train * sig2_tr); 
end; 
 
procedure validate_net; 
var 
  t_max, t_min : real; 
  j, x, y : integer; 
begin 
  err_val := 0; 
  cerr_val := 0; 
  t_max := LOW_VALUES; 
  t_min := HIGH_VALUES; 
  for j := train + 1 to pattern do 
    begin 
      set_inputs(j); 
      forward_prop; 
      if target > t_max then 
        t_max := target; 
      if target < t_min then 
        t_min := target; 
      err_val := err_val + sqr(target - OUT_layer^.output^[1]); 
      if target >= 0 then 
        y := 1 
      else 
        y := -1; 
      if OUT_layer^.output^[1] >= 0 then 
        x := 1 
      else 
        x := -1; 
      cerr_val := cerr_val + abs(y - x); 
    end; 
// Percentage sum of square error 
  perr_val := 100 * err_val / ((pattern - train) * sqr(t_max - t_min)); 
// Classification error CERR x 100 
  cerr_val := 100 * cerr_val / (2 * (pattern - train)); 
// Normalised mean square error NMSE x 100 
  err_val := 100 * err_val / ((pattern - train) * sig2_val); 
//err_val := err_val / ((pattern - train) * sig2_val); 
end; 
 
procedure net_input; 
var 
  i, j : integer; 
begin 
  assign(net_IN, file_IN); 
  reset(net_IN); 
  for j := start to pattern do 
    begin 
      for i := 1 to inputs do 
        begin 
          read(net_IN, attr1); 
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          input_buffer[j].pattern[i] := attr1 / b; 
        end; 
      readln(net_IN, attr0); 
      input_buffer[j].target := attr0 / c; 
    end; 
  close(net_IN); 
end; 
 
procedure train_strip; 
var 
  err_strip, err_strip_min : real; 
  j : integer; 
begin 
  err_strip := 0; 
  err_strip_min := high_values; 
  for j := 1 to strip_len do 
    begin 
      train_net; 
      test_net; 
      if err_strip_min > err_tr then 
        err_strip_min := err_tr; 
      err_strip := err_strip + err_tr; 
    end; 
  pk := 1000 * (err_strip / (strip_len * err_strip_min) - 1); 
end; 
 
procedure validate_val; 
var 
  j : integer; 
begin 
  validate_net; 
  if err_val_min > err_val then 
    err_val_min := err_val; 
  vl := 100 * ((err_val / err_val_min) - 1); 
end; 
 
begin 
 
  assign(net_OUT_1, file_OUT_1);  
  rewrite(net_OUT_1);  
 
  n := 0; 
  err_val_tmp := high_values; 
  err_val_avg := low_values; 
  err_tr_avg := low_values; 
  epoch_avg := low_values; 
  for i := 1 to max_trial do 
    begin 
      epoch := 0; 
      nu := nu_zero; 
      err_val_min := high_values; 
      err_tr_last := low_values; 
      new(network); 
      build_network(network, layers, inputs); 
      add_neuron(network, 1, outputs); 
      for neurons := 1 to hidden_L1 do 
        add_neuron(network, 2, neurons); 
      for neurons := 1 to hidden_L2 do 
        add_neuron(network, 3, neurons); 
      OUT_layer := network^.layer[1]; 
      IN_layer  := network^.layer[layers]; 
      OUT_layer^.grads^[1] := 1.0; 
      net_input; 
      init_weights(network, 1, outputs); 
      for neurons := 1 to hidden_L1 do 
        init_weights(network, 2, neurons); 
      for neurons := 1 to hidden_L2 do 
        init_weights(network, 3, neurons); 
      repeat 
        train_strip; 
        validate_val; 
        writeln(i:6, epoch:6, perr_tr:12:3, perr_val:12:3, vl:12:3, wavg:12:3); 
        epoch := epoch + strip_len; 
      until (epoch >= EPOCH_MAX) or ((err_tr <= ERR_MIN) and 
            (vl > VL_MAX)); 
      if (err_val < err_val_tmp) then 
        begin 
          err_val_tmp := err_val; 
          err_tr_tmp := err_tr; 
          epoch_tmp := epoch; 
        end; 
      dispose(network); 
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      if (epoch < EPOCH_MAX) then 
        begin 
          err_val_avg := err_val_avg + err_val; 
          err_tr_avg := err_tr_avg + err_tr; 
          epoch_avg := epoch_avg + epoch; 
        end; 
    end; 
 
  writeln('Training error   ', err_tr_tmp:9:2); 
  writeln('Validation error ', err_val_tmp:9:2); 
  writeln('Epochs           ', epoch_tmp:9); 
 
  writeln('Avg training error   ', err_tr_avg / n:9:2); 
  writeln('Avg validation error ', err_val_avg / n:9:2); 
  writeln('Avg epochs           ', epoch_avg / n:9:2); 
 
  close(net_OUT_1);  readln; 
 
end. 
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