
University of Bolton
UBIR: University of Bolton Institutional Repository

IMRI: Journal Articles (Peer-Reviewed) Institute for Materials Research and Innovation

2008

Effect of different compatibilisers on nanoclay
dispersion, thermal stability, and burning behavior
of polypropylene–nanoclay blends.
Baljinder Kandola
University of Bolton, B.Kandola@bolton.ac.uk

G. Smart
University of Bolton, G.M.Smart@bolton.ac.uk

Richard Horrocks
University of Bolton, A.R.Horrocks@bolton.ac.uk

P. Joseph
University of Ulster

S. Zhang
Beijing University of Chemical Technology

See next page for additional authors

This Article is brought to you for free and open access by the Institute for Materials Research and Innovation at UBIR: University of Bolton
Institutional Repository. It has been accepted for inclusion in IMRI: Journal Articles (Peer-Reviewed) by an authorized administrator of UBIR:
University of Bolton Institutional Repository. For more information, please contact ubir@bolton.ac.uk.

Digital Commons Citation
Kandola, Baljinder; Smart, G.; Horrocks, Richard; Joseph, P.; Zhang, S.; Hull, T. R.; Ebdon, J.; Hunt, B.; and Cook, A. "Effect of
different compatibilisers on nanoclay dispersion, thermal stability, and burning behavior of polypropylene–nanoclay blends.." (2008).
IMRI: Journal Articles (Peer-Reviewed). Paper 64.
http://digitalcommons.bolton.ac.uk/cmri_journalspr/64

http://digitalcommons.bolton.ac.uk
http://digitalcommons.bolton.ac.uk/cmri_journalspr
http://digitalcommons.bolton.ac.uk/cmri
mailto:ubir@bolton.ac.uk


Authors
Baljinder Kandola, G. Smart, Richard Horrocks, P. Joseph, S. Zhang, T. R. Hull, J. Ebdon, B. Hunt, and A
Cook

This article is available at UBIR: University of Bolton Institutional Repository: http://digitalcommons.bolton.ac.uk/
cmri_journalspr/64

http://digitalcommons.bolton.ac.uk/cmri_journalspr/64
http://digitalcommons.bolton.ac.uk/cmri_journalspr/64


 1 

Effect of different compatibilisers on nanoclay dispersion, thermal 

stability and burning behaviour of polypropylene –nanoclay blends 

 

Baljinder K Kandola,1,∗ Gillian Smart,1 A Richard Horrocks,1 Paul Joseph,2 Sheng Zhang,3 

T Richard Hull,1  John Ebdon,4 Barry Hunt,4 Andy Cook4 

 
1
 Centre for Materials Research and Innovation, University of Bolton, Deane Road, Bolton, 

BL3 5AB, UK 

2 
FireSERT, School of Built Environment, University of Ulster at Jordanstown, 

Newtownabbey, Co. Antrim BT3 70QB, Northern Ireland, UK 

3 
College of Material Science and Engineering, Beijing University of Chemical 

Technology, Beijing, 100029, China 

4 
The Polymer Centre, Department of Chemistry, The University of Sheffield, Dainton 

Building, Brook Hill, Sheffield S3 7HF, UK 

 

ABSTRACT 

 

The dispersion of nanoclays in non-polar polypropylene (PP) is difficult without the use 

of a small fraction (1-3%) of modified grafted PP as a compatibiliser. This work reports 

the effect of different graft-modified polypropylenes on the dispersion of nanoclays in 

PP, and thermal stability and flammability of the blends. PP has been compounded in a 

Brabender compounder with a selection of modified PP polymers as compatibilisers. The 

grafts include maleic anhydride, N-ethylmaleimide, diethylmaleate, diethyl-p-

vinylbenzyl phosphonate and acrylic acid-2-[(diethoxyphosphoryl)methylamino] ethyl 

ester. Films were cast from the blends by compression moulding and the nanocomposite 

structures assessed using X-ray diffraction (XRD). Thermal characterisation was 

performed using DSC and TGA and the burning behaviour observed using limiting 

oxygen index measurements and samples exposed to 35 kW/m2 external heat flux using 

cone calorimetry. 
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1. INTRODUCTION 

 
The properties and low cost of polypropylene gives it the advantage over other polymers 

for use in engineering plastic and fibre applications. However, it burns easily giving rise 

to flaming drips with no char formation.1  It has been found that the addition of layered 

silicates (nanoclay) to the polymer to yield a nanocomposite structure, can have positive 

effects on both the flammability and physical properties of polypropylene and in 

particular, modulus, strength and heat resistance.2 The most commonly used layered 

silicate is montmorillonite which is made up of several stacked silicate layers with a 

regular gap or gallery between each. Nanocomposites can be either intercalated or 

exfoliated. Intercalation occurs when a small amount of polymer enters the gallery 

spacing and may separate the layers slightly but fails to separate the layers completely. 

Exfoliation (or delamination) happens when the clay platelets are pushed apart and 

distributed homogenously throughout the polymer matrix.3  However, because the clay is 

hydrophilic, it makes exfoliation in a hydrophobic polymer such as PP difficult, therefore 

the surfaces of the clay layers have to be modified with a surface treatment to make them 

similarly hydrophobic. The clay can be organically modified by ion-exchange reactions 

using cationic surfactants.4,5 While the use of either a twin-screw or Brabender 

compounder may melt blend functionalised clays with polar polymers such as nylon 

(PA6), polymethyl methacrylate (PMMA) and polystyrene (PS), the low polarity of 

polypropylene makes a homogeneous dispersion of the nanoclay very difficult.  

  

In our previous work we have compounded polypropylene (PP) with nanoclays and melt 

extruded the products into fibres, but observed that in order to improve the dispersion of 

the clay in polymer matrix it is necessary to add a compatibiliser.6 While the full 

exfoliation of clay platelets is not necessary for successful fibre production, it is 

important that the clay is well dispersed or production of melt spun fibres will not be 

possible. Dispersion can be improved with the addition of maleic anhydride-grafted 

polypropylene. It would appear that the optimum levels for increasing the interlayer 

spacing are between 5% and 15% compatibiliser. Above 15% levels, no further 



 3 

significant increase in the interlayer spacing is observed.4 However, high loadings of 

maleic anhydride-grafted PP are detrimental to the mechanical properties, especially in 

the case of filament formation; therefore it is necessary to find the lowest level that will 

give reasonable dispersion.7 We have observed the optimal values between 1 – 3% for 

filament production.6 Furthermore, the cyclic anhydride structures in PP grafted with 

maleic anhydride are prone to slow adventitious hydrolysis eventually leading to 

intramolecular cross linking of the polymer chains. In the present work we have tried a 

variety of alternate compatibilisers, some novel, which are more hydrolytically stable 

than maleic anhydride and optionally containing flame retardant groups.  

 

The mechanisms involved in clay dispersion and intercalation would also appear to be 

dependent on type of clay used and the functionalised intercalant. If the thermal stability 

of the intercalant is not good then thermal degradation occurring during melt processing 

can result in the collapse of any dispersed clay platelet structure which might appear in 

XRD patterns as an apparent exfoliated structure.8 Much of the literature discussing the 

use of a compatibiliser discusses maleic anhydride-modified PP with nothing about the 

use of any other compatibiliser. Here we discuss the use of maleic anhydride-modified 

PP and polypropylene modified with other grafting agents. 

 

 

2. EXPERIMENTAL 

 

2.1 Samples 

 

2.1.1 Materials 

 

Polypropylene : Fibre grade Polypropylene chips, Moplen HP561R, Basell 

Polyolefins  

Grafted polypropylene:  

1. Polybond 3200 (Pb), Chemtura Corporation (former Crompton Corporation), 

USA : maleic anhydride (MA) grafted polypropylene with a maleic anhydride 

graft level of 1% (w/w)  
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2. Four grafting agents were used to modify polypropylene in house, two of which 

were specially synthesised: 

(i) N-ethylmaleimide (EMI), Sigma-Aldrich 

(ii) Diethylmaleate (DEM), Sigma-Aldrich 

(iii) Diethyl-p-vinylbenzyl phosphonate (DEP)  

(iv) Acrylic acid-2-[(diethoxyphosphoryl)methylamino] ethyl ester (ADEP). 

 

The syntheses of DEP and ADEP are reported in detail elsewhere9-11 .The chemical 

structures of the grafting agents are given in Figure 1. 

 

Grafting procedure: The full procedure has been described in our previous paper12 and is 

summarised here. The substrate (PP chips) and the solvent o-dichlorobenzene (o-DCB) 

were reacted with monomer and the initiator, di-tert-butylperoxide (DTBPO) under 

argon and reflux at a fixed temperature of 150 or 160 °C for 1.5 h. The grafted 

polypropylene was recovered by precipitating the reaction contents (whilst hot) into 

acetone, washed with acetone, and dried in a vacuum oven at 60 oC for several hours 

before further examination. Experimental conditions and yields for various grafting 

reactions are given in our previous publication.12  

 

Charactrerisation of grafted polypropylene :  

NMR: 1H, 13C and 31P spectra of starting materials, various reagents and monomers were 

recorded in deuterated solvents (CDCl3
 and d6-DMSO) on Bruker spectrometers, 

operating at 250 or at 400 MHz, at ambient probe conditions. For polypropylene based 

polymers, d2-1,1,2,2-tetrachloroethane was used as the solvent and  the spectra were 

recorded at elevated temperatures (ca. 80-100 oC). The spectra were processed using 

WIN-NMR software after being calibrated using standard residual signals for proton or 

the main solvent signals for carbon spectra. For 31P spectra, an external calibrant was 

employed (85% orthophosphoric acid). 

 

The chemical structure and purity of small molecules and monomers were mainly 

inferred from 1H and 31P spectra. For grafted polymers, the chemical compositions (i.e., 

mole fractions of the grafted units present) were deduced from proton spectra by 

comparing the integral areas of appropriately assigned signals.  
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FT-IR: Infra red spectra were recorded using a Perkin Elmer Paragon 1000 spectrometer 

(absorbance mode). Liquids were used as such whereas solids were made into KBr 

pellets for spectral measurements. For polypropylene samples, films made by hot 

pressing (temperature ~ 180oC, and at a pressure of about 10 tons for ca. 3 minutes) were 

used to obtain the spectra. An appropriate proprietary software was employed for detailed 

analysis and plotting of spectra. 

 

Elemental analysis: 

Combustion method: Elemental analyses for C, H and N were done on a Perkin Elmer 

2400 CHNS/0 series II elemental analyser that uses a combustion method in a pure 

oxygen environment to oxidise the elements to their respective oxides. After reduction by 

passing over pure copper, the mixture of gases were separated by a chromatographic 

column, and the amounts estimated using a thermal conductivity detector (a tolerance of 

0.3% is set for organic samples). For most of the samples, the analysis was done in 

duplicate) 

 

Inductively coupled plasma/optical emission spectroscopy (ICP/OES): The phosphorus 

contents of grafted PPs were obtained by this method employing a ICP-OES- Spectro 

Ciros Plasma spectrometer. The polymeric samples were first digested with a mixture of 

conc. HNO3 and conc. HClO4 for about 4 hours to facilitate the conversion of P into 

aqueous phosphates, and then made up to a known volume, before analysis. 

 

The characterization data of all grafted polypropylene samples is given in Table 1. 

 

Nanoclays: The following two commercial clays modified with dimethyl, 

dehydrogenated tallow quaternary ammonium ions have been used : 

1. Cloisite 20A (20A), Southern Clay Products, USA   

2. Elementis Bentone  107 (E107), Elementis Specialities Inc.   

 

and the different formulations used are given in Table 2. 

 

2.1.2. Compounding   

The polypropylene and other additives were hand mixed in a plastic container prior to 

compounding. A Brabender W50E chamber fitted with cam blades was used to 
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compound the polypropylene with grafted polypropylene and nanoclays at a rotor speed 

of 60 rpm, a set temperature of 190 oC and with a 6 min mixing time. 

 

2.1.3. Film formation by compression moulding 

Films (ca. 0.3 mm thickness) were cast from the blends by compression moulding with 

spacer plates, between aluminium foil-coated steel plates at a set plate temperature of 190 
oC. 

 

2.2. X-ray diffraction 

X-ray diffraction analysis of compounded samples was carried out with a Siemens D500 

X-ray diffractometer with Cu-Kα radiation. The diffractometer was equipped with a 

diffracted beam graphite monochromator, tuned to Cu-Kα radiation, and a scintillation 

detector. Diffraction patterns were collected in reflection-mode geometry from 2θ = 2° to 

20°, at a rate of 2° per min. The samples for XRD analysis were cut from the film 

samples and had a thickness of 0.3 mm. 

2.3 Scanning electron microscopy 

Scanning electron microscopic (SEM) images were obtained using a Cambridge 

Stereoscan 200 SEM having a tungsten electron gun with accelerating voltage capacity 

0.5-30kV and magnification ranges between 30X to 300,000X at 30 kV providing 

resolution down to 60 Å. All images were obtained at 10 kV. Films were etched with 

chromic acid before gold sputtering in order to attempt to develop any underlying 

structural texture.  

 

2.3. Thermal analysis 

 

Differential scanning calorimeteric (DSC) experiments were conducted using a Polymer 

Laboratories (PL-DSC) instrument, under flowing nitrogen (10 ml/min) and a heating 

rate of 10 oC/min from room temperature to 350 oC. About 2.5 mg of sample was taken in 

each case and all the thermograms were then normalised to 1.0 mg for comparison. 

Thermogravimetric analyses were undertaken using a Polymer Laboratories TG 1000 
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instrument under flowing air (10 ml/min) with a heating rate of 20 oC/min. 

Approximately 6 mg of sample was used in each case. 

 

2.4. Flammability testing  

 

Limiting oxygen index (LOI) values were determined on selected samples using a 

standard procedure.13 

Cone calorimetric tests were carried out on a Fire Testing Technology (UK) cone 

calorimeter, and all the tests were conducted according to the test methods defined in 

ISO 566014 using an incident heat flux of 35 kW/m2. Samples were supported by 

aluminium foil to contain molten polymer during testing. 

 

 

3 RESULTS AND DISCUSSION 

 

In order to enhance the compatibility of PP and clays, the base polymer was chemically 

modified with polar groups. This was achieved through grafting reactions of carefully 

chosen grafting agents with PP, in solution at elevated temperatures, under radical 

initiation. The grafting agents employed in the present study include maleic anhydride 

(MA in commercially available sample, Polybond 3200 (Pb)), N-ethyl maleimide (EMI), 

diethyl maleate (DEM), and P-containing unsaturated compounds such as diethyl-p-

vinylbenzyl phosphonate (DEP) and acrylic acid-2-[(diethoxyphosphoryl)methylamino] 

ethyl ester), (ADEP). The choice of the grafting agents was primarily based on the 

grafting efficiency (i.e. the reactivity of the olefinic group), polarity, hydrolytic stability 

(especially of EMI and DEM as compared to MA), flame retardant properties10,11 (eg., in 

the case of DEP and ADEP). All grafting reactions were found to be quite straight 

forward resulting in appreciable yields of the products. The yields, quoted as weight 

percentages,12 were based on weights of the recovered products after thorough 

purification (by washing several times with acetone, a good solvent for the unreacted 

grafting agents, and through drying of the washed products, in a vacuum oven kept at 

60oC, to constant weight). 
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It is fairly well established fact that in the case of PP, under similar experimental 

conditions, the grafting reactions primarily occur at the tertiary carbon atoms of PP 

backbone. Furtheremore, in the case of 1,2-unsaturated cylic anhydride (MA) and its 

derivatives (EMI and DEM), the grafts consist of predominantly monomeric units. 

However, the P-containing agents (DEP and ADEP), owing to their strong tendency to 

homopolymerize, the possibility of formation of oligomeric grafts cannot be completely 

ruled out. The detailed analyses of the exact position(s) of attachment or the true 

chemical nature of the grafts onto the PP chains were not attempted in the present study. 

However, 1H and 13 C NMR of the purified products, recorded at both 250 MHz and 400 

MHz in d2-1,1,2,2-tetrachloroethane at elevated temperatures (ca. 80-100 oC), furnished 

unequivocal evidence for the presence of grafted units in the PP chains. This was also 

supported by the examination of the corresponding FT-IR spectra recorded on films of 

the modified polymers (indicative signals from the carbonyl and phosphonate ester 

groups resulting from the grafts were prominent in the spectra). Quantitative information 

regarding the amount of grafted units was obtained from 1H NMR and/or through micro-

elemental analyses (for N and/or P as the case may be). The results obtained by both 

methods compared favourably as can be seen from Table 1. 

3.1  Effect of grafts on structural properties of polypropylene –nanoclay blends  

3.1.1. X- ray diffraction (XRD) 

Figure 2 shows the XRD results for films of PP control, ungrafted and grafted PP with 

20A and E107 samples. The peaks between 3~4° (2θ) are characteristic of the clay. No 

diffraction peaks are observed for the control sample (see Figure 2(a)) as expected since 

PP polymer crystal diffraction does not occur at 2θ < 10o.  

 

The data recorded in Table 2 shows significant changes in the XRD peak at 2θ of the 

nanoclay in the presence of the compatibiliser. There is a reduction in peak angle from 

3.65 o in sample 1 (ungrafted) to 3.4o for sample 2 (Pb-grafted) compounded with 

Cloisite 20A (see Figure 2(a)). Sample 3 with E107 clay with no compatibiliser, shows a 

peak at 3.3o but on addition of compatibiliser to the mix, the XRD peak shifts to the 

lower angle of 3.0o for sample 4 (Figure 2(b)). This shows that Pb-grafted 

polypropylene’s effect on both 20A and E 107 in terms of shifting the angle to lower 2θ 

is similar.  The shift in peak to a lower angle indicates an increase in interlayer spacing 
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which is evidence of, at least, an intercalated structure if not a fully exfoliated 

structure.4,15 Compared to Pb graft, the DEP graft has similar effect, with 2θ angle at 3.0o 

in sample 7 (Figure 2(c)), whereas, EMI, DEM and ADEP have shifted it to 2.95o in 

samples 5,6 and 8 (Figure 2(c)). The decrease in peak height of the sample with 1% DEP 

grafted polypropylene (sample 7) and 3% E107 suggests exfoliation, but could also result 

from deformation of the clay layers. These results indicate that grafts EMI, DEM, DEP, 

ADEP can be used similar to maleic anhydride in improving dispersion of the nanoclays. 

This can be attributed to the strong polar effects exerted by the imide functionality (of 

EMI) and by the ester groups (in DEM, DEP and ADEP) in the base polymer matrix. The 

strongly polar phosphonate ester groups (in DEP and ADEP) could also greatly facilitate 

exfoliation of the clay layers.  

 

3.1.2. Scanning electron microscopy 

The scanning electron microscopic images of PP with nanoclay and different 

compatabilisers  are shown in Figure 3. Generally it can be seen that the relatively coarse 

surface texture of Sample 1 which contains dispersed clay alone reduces with the 

addition of compatibiliser (Figure 3(b). A similar reduced texture occurs when Polybond 

(containing MA) compatibiliser is added to a E107 clay-containing PP in Figure 3(d). In 

both Figures 3(a) and (c) clay particles are evident whereas in all other micrographs in 

which a grafted PP matrix is present, generally these are less clear. Hence the addition of 

the laboratory-synthesised grafted polypropylenes has generally reduced the coarseness 

of surface texture in the presence of this same clay (Figures 3(e)-(g)) thereby 

corroborating other evidence that clay particle dispersion has been improved following 

PP grafting. 

 

3.2  Effect of grafts on thermal stability of polypropylene –nanoclay blends  

 

Table 3 lists the fusion minima temperature or the melting temperatures. It can be seen 

that addition of clay and graft has minimal effect on the melting point of the 

polypropylene.  

 

TGA results shown in Figure 4 and listed in Table 3 show that onset temperature for 

decomposition (temperature where the mass loss starts, measured from DTG curves (not 
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shown here)) is 232oC for PP, which is not changed by presence of Cloisite 20A clay in 

samples 1 and 2. E 107 clay has increased this temperature to 246 oC in sample 3. The 

grafts have minimal additional effect on the onset temperature with values ranging from 

243 to 246 oC in samples 4-8.  Although the addition of comaptibiliser seems to have no 

effect on the onset temperatures there is an effect on the thermal degradation behaviour 

of the samples in that while the clay increases the mass residue at any particular 

temperature, including the compatibiliser in the mix raises it even further. This can be 

seen from Figure 3 and also from mass residue values at different temperatures given in 

Table 3. The results show that Polybond (MA graft) has increased thermal stability with 

both clays. Using EMI (sample 5), DEM (sample 6) or ADEP (sample 8) the effect on 

mass loss, and hence rate of decomposition is less than Polybond (sample 4), whereas 

with DEP (sample 7) the increase is similar to that of Polybond.. In general, the presence 

of graft increases the final decomposition temperatures for all samples, slows down the 

rate of decomposition and extends the decomposition temperature over a larger 

temperature range, with best results shown for Pb and DEP grafts with E 107 clay. From 

this study it can be anticipated that samples containing E107 clay and compatibilser Pb 

(sample 4) and DEP (sample 7) should show lower flammability than other samples 

 

3.3 Effect of grafts on flammability of polypropylene-nanoclay blends  

 

3.3.1. Limiting Oxygen Index (LOI) 

The LOI test results for the PP control sample and for films of PP containing nanoclays 

20A and E107 are given in Table 3. The results indicate that LOI values are very similar 

and within the experimental error range. However, some generic trends can be seen. All 

the samples with clay have slightly higher LOI values than that of the PP control sample. 

For 20A-containing samples, the poorly dispersed sample with 20A has an LOI value of 

17.2, which with addition of Polybond-grafted PP has increased to 17.6 in sample 2. For 

E107-containing samples, the sample with clay only has an LOI value of 17.2; while the 

addition of DEP, DEM and Pb increases it to 17.4 - 17.7, introduction of EMI and ADEP 

grafts produced no effect. The results are in accordance with thermal analytical results, 

where best results were shown with Pb and DEP grafts. This suggests that the type of 

graft used can influence the burning behaviour of the blend.  

 

3.3.2. Cone calorimetry 



 11 

The cone results of all the samples are reported in Table 4 and selected results are shown 

in Fig. 4. Previously reported work has shown that when sample masses are below 5g, 

errors in cone results are rarely less than ± 10%.16 Furthermore, observation of the 

polypropylene film samples as they burned showed considerable bubbling and flowing of 

the polymer during burning which, although contained by aluminium foil, still caused 

anomalies in the weight losses recorded by the mass balance. As a consequence, in the 

data shown in Table 4, while there are significant variations in each set of replicate 

samples, a general trend can still be discerned. It can be seen that there is no significant 

effect on time-to-ignition (TTI) with addition of grafted polypropylene with nanoclay 

although a slight increase is recorded for samples 2, 4 containing Polybond  (MA graft) 

and sample 7 containing DEP grafted PP compared to the respective ungrafted samples 

(samples 1 and 3). It is well known that the nanoclays in general do not effect the TTI 

and in some cases even lower it compared to polymer only.17 The slight increase in TTI 

for samples 2, 4 and 7 samples indicates the positive effect of Pb and DEP grafts, which 

was also observed by TGA and LOI studies. The burning time varies for different 

samples and is especially noteworthy in Figure 3 (a).  

 

Heat release rate is the heat generated per unit time by the burning sample divided by the 

surface area of the sample. Hence, it is a measure of the heat release rate to the 

surroundings per unit surface area of the burning material. The important parameters for 

assessing the fire performance of a material are the maximum or peak heat release 

(PHRR) and total heat release rates (THR). HRR curves as a function of time for all 

samples are given in Figure 5(a) and (b). As can be seen from the curves and the values 

reported in Table 4, the peak heat release rate (PHRR) is unaffected in some samples; 

however, sample 4 containing E107 and polybond, and sample 7, containing E107 and 

DEP grafted polypropylene, show comparatively low values. Total heat release for 

sample 7 is also lower compared to those of the other samples. This again indicates that 

DEP graft contributes in reducing the flammability of the polypropylene-nanoclay blend, 

which is expected since DEP contains a phosphonate group and the presence of 

phosphorus, even in small amounts in the polymer structure, can influence its 

flammability.  

 

Since the char retained after burning a polymer is also a measure of its flammability, the 

mass loss curves give insight into the fire performance of the samples. The mass loss 
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curves for all samples and their residual char retained after completion of the test are 

given in Figure 5 (c, d) and Table 4, respectively. Mass loss behaviour of sample 2 

containing 1% Pb and 20A clay is quite different than sample 1 with clay only (see 

Figure 5(c)). For samples containing E107 clay, grafts Pb (sample 4) and DEP (sample 7) 

show slower mass loss rate (see Figure 5(d)) and higher charred residue (see Table 4) 

compared to those containing EMI (sample 5), DEM (sample 6) and ADEP (sample 8). 

Results for smoke production, expressed as m2/m2 in Table 4 show much variation and 

no real trend. In conclusion, maleic-anhydride (Pb) and DEP grafts, which indicated 

better performance by thermal analytical and LOI results, are seen to be effective in 

reducing the flammability of the polypropylene-nanoclay blends as observed by cone 

calorimetry by improving their dispersion and also contributing to the charring of the 

burning polypropylene.  

 

 This discussion shows that although nanoclays in presence of compatibilisers are 

effective in reducing flammability of polypropylene, but they do not do so to the same 

extent as seen for other polymer-nanocomposites systems. It must also be noted that 

these are thermally and physically thin samples and behave differently than bulk 

polymers, which are tested as thick plaques. It is believed that in polymer-nanoclay 

nano/micro composites, a carbonaceous-silicate char builds up on the polymer surface 

during burning, which insulates the underlying material and slows the mass loss rate of 

decomposition products, hence conferring flame retardant property to the polymer.17 The 

poor performance of the thinner samples may be explained in terms of a competition 

between the formation of a surface carbonaceous-silica shield and the volatilisation to 

fuel of surrounding polymer. In thicker polymer-nancomposite samples, the competition 

favours ceramic barrier formation while for thin composites, volatilisation dominates. 

This can be considered as the difference between so-called thick and thin thermal 

behaviour17 and so in similarly “thin” films or textile fabrics it is possible that the 

“shield-forming” mechanism observed for bulk polymer nanocomposites may be too 

slow for effective improvement in fire performance.  

 

 

4.CONCLUSIONS 
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The dispersion of clay in PP can be improved by the addition of grafted polypropylene. 

Some degree of exfoliation was achieved for the sample containing diethyl-p-vinylbenzyl 

phosphonate (DEP) grafted polypropylene. The grafts have minimal effect on melting 

points of the polymer but slightly enhance the thermal stability of the polymer below 400 
oC. Grafted polypropylene containing samples have slightly lower flammability than 

ungrafted polypropylene and the results shown by maleic anhydride (Pb) and diethyl-p-

vinylbenzyl phosphonate (DEP) grafted polypropylene are particularly encouraging.  

 

Based on the results of the work reported here, combinations of samples containing 20A 

and E107 with maleic anhydride (Polybond) and DEP grafted polypropylene have been 

selected for further study. These will be compounded using a twin-screw extruder and 

then melt spun into filaments with an overall aim of producing flame retardant synthetic 

nanocomposite fibres. 
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Captions for Figures 

 

Figure 1. Chemical structures of the grafts used for modifying polypropylene.  

 

Figure 2. XRD curves of a) PP control, ungrafted and grafted PP with 20A, b) E107 

clay, ungrafted and maleic-anhdride grafted PP with E107 and c) grafted PP with 

different grafts and E107 clay. 

 

Figure 3. SEM images of etched films at similar magnification levels. 

 

Figure 4.  TGA curves in air for control and grafted PP samples containing a) 20A and 

b) E107 clay. 

 

Figure 5. Cone calorimetric results for PP samples containing grafted PP and 20A and 

E107 clay: a) and b) HRR versus time ; c) and d) mass loss versus time at 35 kW/m2 heat 

flux 
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Table 1 Characterization data for modified polypropylene 
 

Grafted PP N 

(wt%) 

P 

(wt%) 

Graft 

units 

(mol fraction) 

Graft 

units 

(wt %) 

PP/gEMI 0.40 0.00 a0.01 
b0.01 

3.86 

3.86 

PP/gDEM 0.00 0.00 b0.01 4.89 

PP/gDEP 0.00 1.91 c0.03 17.90 

PP/gADEP ---- 4.80 c0.10 42.11 

 
a from nitrogen analysis (combustion method) 
b from NMR 
c from phosphorus analysis (ICP/OES) 
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Table 2 Formulation compositions and film thickness and XRD data 

 

 

Sample No. Sample ID Nanoclay 
(3%, w/w) 

Graft 
(1%, 
w/w) 

Film 
thickness  
(mm) 

XRD 
peaks, 
2θ 

PP PP - - 0.38 ± 0.04  

1 PP + 20A 20A - 0.36 ± 0.06 3.65 

2 PP + Pb + 20A 20A Pb 0.43 ± 0.10 3.4 

3 PP + E107 E 107 - 0.43 ± 0.09 3.3 

4 PP + Pb + E107 E 107 Pb 0.40 ± 0.05 3.0 

5 PP + EMI + E107 E 107 EMI 0.36 ± 0.08 2.95 

6 PP + DEM + E107 E 107 DEM 0.40 ± 0.07 2.95 

7 PP + DEP + E107 E 107 DEP 0.45 ± 0.09 3.0 

8 PP + ADEP + E107 E 107 ADEP 0.35 ± 0.05 2.95 
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Table 3 Thermal and flammability data 
 

 
 

          TGA results 

Mass residue, % at temp   
 

Samp
le No. 

Sample ID DSC 
Peak 
maxim
a 0C 

Onset 
decomp 
temp 0C  

300 
oC 

 
350 
oC 
 

 
400 
oC 
 

 
450 
oC 

 
500 
oC 

LOI  
(%) 

PP PP 169 232 84.9 62.2 18.9 5.0 3.9 17.0 

1 PP + 20A 168 233 84.8 61.5 16.2 5.5 4.5 17.2 

2 PP +  Pb + 20A 170 232 89.3 74.3 38.5 5.2 3.9 17.6  

3 PP + E107 169 246 90.1 66.2 36.2 3.3 2.5 17.2 

4 PP + Pb + E107 168 243 90.7 76.0 44.0 4.3 3.6 17.7 

5 PP + EMI + E107 167 245 88.0 69.5 27.2 5.1 3.8 17.2  

6 PP + DEM + 
E107 

171 244 89.4 70.2 30.6 3.8 3.3 17.6 

7 PP + DEP + E107 166 246 89.8 75.3 42.2 5.0 4.4 17.2 

8 PP + ADEP + 
E107 

170 245 88.1 69.9 25.9 4.5 3.5 17.4 
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Table 4 Cone calorimetric results 
 

   S.No Sample ID  Mass 
(g) 

TTI 
(s) 

FO 
(s) 

PHRR 
(kW/m2) 

THR 
(MJ/m2) 

Mass 
residue 

(%) 

Smoke            
(m2/ m2) 

1 PP + 20A 2.9 15 81  499  11.1 1.9 223 

2 PP + Pb + 20A 3.5 23  121  498 12.1 4.8 257 

3 PP +  E107* 3.08 16 82     

4 PP + Pb + E107 4.0 22  95 392 12.9 4.7 350 

5 PP + EMI + E107 3 16  85  512 11.5 2.2 250 

6 PP + DEM + 
E107 

3.1 17  90  504 12 1.2 216 

7 PP + DEP + E107 3.4 23  96  463 10.9 3.8 222 

8 PP + ADEP + 
E107 

3.1 10 86   494 12.8 3.2 196 

 
Note: * = data couldn’t be saved for certain parameters due to software problem 
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Figure 1. Chemical structures of the grafts used for modifying polypropylene.  
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Figure 2. XRD curves of a) PP control, ungrafted and grafted PP with 20A, b) E107 

clay, ungrafted and maleic-anhdride grafted PP with E107 and c) grafted PP with 

different grafts and E107 clay. 
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a) Sample 1 : PP + 20A    b) Sample 2 : PP + Pb +  20A 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 c) Sample 3 : PP + E 107    d) Sample 4 : PP + Pb +  E 107 
 

 
e) Sample 5 : PP + EMI + E 107  f) Sample 6 : PP + DEM +  E 107 
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f) Sample 7 : PP + DEP + E 107  g) Sample 8 : PP + ADEP +  E 107 
  
 
Figure 3. SEM images of etched films at similar magnification levels.
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Figure 4.  TGA curves in air for control and grafted PP samples containing a) 20A and 

b) E107 clay. 
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Figure 5. Cone calorimetric results for PP samples containing grafted PP and 20A and 

E107 clay : a) and b) HRR versus time ; c) and d) mass loss versus time at 35 kW/m2 

heat flux 
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