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Abstract 

Four novel cylinder-ligament honeycombs are described, where each cylinder has 3 

tangentially-attached ligaments to form either a hexagonal or re-entrant hexagonal 

cellular network. The re-entrant cylinder-ligament honeycombs are reported for the first 

time. The in-plane linear elastic constants and out-of-plane bending response of these 

honeycombs are predicted using Finite Element (FE) modelling and comparison made 

with hexagonal and re-entrant hexagonal honeycombs without cylinders. A laser-crafted 

re-entrant cylinder-ligament honeycomb is manufactured and characterized to verify the 

FE model. The re-entrant honeycombs display negative Poisson's ratios and synclastic 

curvature upon out-of-plane bending. The hexagonal and ‘trichiral’ honeycombs possess 

positive Poisson’s ratios and anticlastic curvature. The ‘anti-trichiral’ honeycomb (short 

ligament limit) displays negative Poisson’s ratios when loaded in the plane of the 

honeycomb, but positive Poisson’s ratio behaviour (anticlastic curvature) under out-of-

plane bending. These responses are understood qualitatively through considering 

deformation occurs via direct ligament flexure and cylinder rotation-induced ligament 

flexure. 

Keywords: A. Smart materials; B. Mechanical properties; C. Deformation; C. 

Elastic properties; C. Finite element analysis (FEA) 
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1. Introduction 

Honeycombs combine light weight with good through-thickness strength and stiffness 

properties and find use as the core material in sandwich panel composites for aerospace, 

automotive and marine applications. The linear elastic properties of conventional 

hexagonal honeycombs (Figure 1a) are described well by analytical expressions [1] 

based on beam theory [2], and this understanding of structure-properties relationships 

has enabled the development of novel re-entrant hexagonal honeycombs (Figure 1b) 

displaying in-plane negative Poisson’s ratio (auxetic [3]) response (e.g. [1,4,5].  

Auxetic materials can have enhancements in other useful physical properties, 

including energy absorption, plane strain fracture toughness and the ability to form 

synclastic (dome shape) curvatures under out-of-plane bending [6]. Consequently, the 

potential to use auxetic honeycombs in advanced sandwich panel composites has 

provided the impetus to develop alternative auxetic honeycombs for optimal mechanical 

response. An alternative example of an auxetic honeycomb is the chiral cylinder-

ligament honeycomb [7]. Cylinder-ligament honeycombs are attractive since the 

through-thickness shear response is enhanced by the ligaments [8] and the through-

thickness compressive modulus and buckling are enhanced by the presence of the 

cylinders [9]. Hence it is possible to optimize the through-thickness behaviour through 

careful selection of the cylinder and ligament dimensions.  

The first reported cylinder-ligament honeycomb comprised of an array of 

cylinders interconnected by ligaments: each ligament connecting two cylinders (located 

on opposite sides and ends of the ligament), with each cylinder having 6 ligaments 

tangentially attached to it at regular 60° intervals [7]. The system, therefore, has 6-fold 

chiral symmetry. More recently, alternative chiral connectivities have been reported, 

comprising cylinders having 3 or 4 tangentially-attached ligaments [10]. The 3-, 4- and 

6- connected systems are termed trichiral, tetrachiral and hexachiral honeycombs, 
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respectively. Cylinder-ligament honeycombs in which adjacent cylinders are located on 

the same side of the interconnecting ligament have also been reported for 3- and 4- 

connectivities, known as anti-trichiral and anti-tetrachiral honeycombs, respectively 

[10]. The in-plane and through-thickness linear elastic properties of the 3-, 4- and 6-

connected chiral and anti-chiral honeycombs have been reported [11,12]. The 

hexachiral, tetrachiral and anti-tetrachiral honeycombs are auxetic, but the trichiral 

honeycomb (Figure 1c) exhibits positive in-plane Poisson’s ratios. The anti-trichiral 

honeycomb (Figure 1e) possesses positive Poisson’s ratios in the long ligament limit, 

and undergoes a transition to negative Poisson’s ratio response in the short ligament 

limit.  

The 3-coordinated cylinder-ligament honeycombs are attractive from a light 

weight perspective since they contain fewer ligaments and cylinders than the 4- and 6- 

connected systems. In order to develop 3-coordinated systems with the added benefits 

associated with auxetic response, we report here for the first time two new 3-connected 

cylinder-ligament honeycombs based on the re-entrant hexagonal cell structure. The 

linear elastic in-plane and out-of-plane bending responses of these new honeycombs are 

compared with those of the existing trichiral and anti-trichiral honeycombs which are 

both based on a conventional hexagonal cell structure, and the conventional and re-

entrant hexagonal honeycombs (i.e. the 3-coordinated systems in the limit of zero 

cylinder radius). The responses are considered in terms of the major deformation 

mechanisms acting in these honeycombs. 

 

2. Honeycomb geometries 

The 3-coordinated honeycombs are shown in Figure 1. The previously reported 

conventional hexagonal, re-entrant hexagonal, trichiral and anti-trichiral honeycombs 

are depicted in Figs. 1a, 1b, 1c and 1e, respectively. The new 3-connected cylinder-

ligament honeycombs based on the re-entrant hexagonal cell structure are shown in 
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Figs. 1d and 1f, and are achieved by locating the tangentially attached ligaments at 60° 

intervals on each cylinder. The honeycomb containing cylinders located on opposite 

sides of the connecting ligament (Fig. 1d) is called the re-entrant trichiral system in 

recognition that the honeycomb is a hybrid of the trichiral and re-entrant hexagonal 

honeycombs. Similarly, the honeycomb containing cylinders connected on the same 

side of the connecting ligament (Fig. 1f) is called the re-entrant anti-trichiral system. 

The off-axis ligaments have length L1, the ligaments aligned along/towards the y 

axis have length L2, the circular nodes have radius r, and the nodes and ligaments have 

common wall thickness t and depth d (Figure 1). Four dimensionless parameters are 

defined: α = L1/r, β = t/r, γ = d/r [11] and δ = L2/L1. 

 

3. Finite Element model development 

Simulations were performed using the ANSYS FE package, version 10.0. 

 

3.1 In-plane mechanical properties 

PLANE2 (linear elastic, solid) elements were employed in the simulations of the in-

plane mechanical properties. Simulations were performed for small strains in the linear 

elastic region on arrays of several (typically 7×7 to 11×11) unit cells. x-directed forces 

were applied to the ligament nodes on the right-hand edge which were also constrained 

from displacement in the y direction. Nodes on the bottom and left-hand edges were 

constrained from in-plane rotation and translation normal to the edge direction, but were 

allowed to translate along the edge direction. This simulates the uniaxial test employed 

experimentally, and is shown for the trichiral honeycomb subject to tensile loading in 

Fig. 2a. The aspect ratio of the honeycomb in Fig. 2a could lead to the presence of Saint 

Venant effects in the simulations (for loading along x) but was chosen since it 

approximates the sample aspect ratio achievable experimentally. Forces in the y 

direction were applied to the ligament nodes on the top edge which were also 
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constrained from displacement in the x-direction. Nodes on the bottom and left-hand 

edges were constrained from in-plane rotation and translation normal to the edge 

direction, but were allowed to translate along the edge direction. 

Strain in the i (= x or y) direction (εi) was calculated from the average relative 

displacement in the i direction of all pairs of ligament nodes on opposing edges having 

the same j (= y or x) coordinate, edge effects being minimized by the choice of suitably 

large arrays. Total stress (σ) was given by the sum of the nodal reaction forces on the 

edge to which compression was applied divided by the cross sectional area of the 

respective edge. The Poisson’s ratios and Young’s moduli were then calculated from the 

standard definitions:
i

j

ij ε

ε
ν −=  and 

i

i

iE
ε
σ

= , where i is the loading direction. 

 

3.2 Out-of-plane bending 

SHELL93 elements were employed in arrays of at least 7×5 unit cells in order to 

visualize the curvatures adopted by the honeycombs under out-of-plane bending. No 

mechanical property predictions were made in the out-of-plane bending simulations. 

Out-of-plane bending was simulated by constraining the nodes in the centre of each 

array from movement in all directions and applying a unit displacement normal to the 

plane to the central nodes of the two opposing edges aligned along the y direction. This 

is equivalent to bending of a honeycomb by hand at the edges, commonly used to 

demonstrate drapeability. Similar out-of-plane bending responses were obtained by 

applying a force rather than displacement to the edges. Figure 2b shows the loading 

conditions applied to the trichiral honeycomb, by way of example.  

 

4. Analytical model for comparator conventional and re-entrant hexagonal 

honeycombs 
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Analytical expressions have been developed previously for the in-plane linear 

elastic properties of conventional and re-entrant hexagonal honeycombs assumed to 

deform by flexure of the ligaments [1] and also concurrent flexing, hinging and 

stretching of the ligaments [4,5]. The concurrent model has been found to give good 

agreement with FE simulations [5]. As an example, equation (1) is the expression for 

the in-plane Poisson’s ratio for x direction loading of a hexagonal honeycomb 

deforming by concurrent flexing, hinging and stretching of the ligaments [4,5]. 
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where the geometrical parameters are defined in Figure 1a. Kf, Kh and 
( )1L

sK  are force 

constants governing the flexing, hinging and stretching deformation mechanisms, 

respectively, and take the following forms [4,5]: 
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where Es, Gs and νs are the Young’s modulus, shear modulus and Poisson’s ratio of the 

ligament material which is assumed to be isotropic. From the definitions of α and β for 

the cylinder-ligament systems, we have: 
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Substituting equations (2a)-(2c) and (3) into (1), and assuming νs = +0.25, enables 

comparison of the hexagonal honeycombs with the cylinder-ligament honeycombs 

through the following relationship: 
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Similarly, the expression for Ex is adapted from [5]: 
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and equivalent expressions for νyx and Ey are also readily obtained from [5]. 

 

5. Experimental 

5.1 Honeycomb fabrication 

A laser-crafted re-entrant antitrichiral honeycomb was manufactured from an acrylic 

sheet (mechanical properties specified by manufacturer: Es = 2.5GPa and νs = 0.25) 

using a 40W laser crafting machine (World Lasers model: LR1612). The geometrical 

parameters of the test samples were r = 3mm, L1 = 15mm, L2 = 30.5mm, t = 1.35mm 

and d = 2.1mm (i.e. α = 5, β = 0.45, γ = 0.7 and δ = 2.03).  

 

5.2 Mechanical properties characterisation 

The honeycomb was tested in compression along the in-plane x direction in an Instron 

4303 universal testing machine (25kN load cell and strain rate of 1mm/min), whilst 

simultaneously undertaking in-plane axial and transverse strain measurements from the 

movement of fiducial markers placed on the honeycomb using a MESSPHYSIK ME 46 

videoextensometer. Figure 3 shows the test set-up for the sample (including fiducial 

markers). Several tests up to typically 1% applied strain were performed and the 
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average value of Poisson’s ratio (νxy) and Young’s modulus (Ex) evaluated from the 

slopes of the transverse strain vs axial strain and axial stress-strain curves, respectively. 

 

6. Results 

6.1 Poisson’s ratios  

Figure 4 shows transverse strain versus axial strain data for one compression test of the 

re-entrant antitrichiral honeycomb, clearly demonstrating this honeycomb displays 

auxetic behaviour. A Poisson’s ratio of νxy = -0.775 is determined from the negative of 

the slope of the least squares best fit line to the data, and an average over 5 compression 

tests yielded a value of νxy = -0.768±0.005. This is in excellent agreement with the FE 

model prediction of νxy = -0.765 – see Table 1. 

The model Poisson’s ratio predictions for all the honeycomb configurations 

considered in this paper are shown as a function of α in Figure 5. The predicted values 

for the trichiral and anti-trichiral honeycombs are consistent with those reported from 

FE models using a representative volume element (RVE) with periodic boundary 

conditions [11]: νxy = νyx for both systems; the trichiral honeycomb displays positive 

Poisson’s ratios for all values of α considered; and the anti-trichiral system undergoes a 

transition from positive (high α) to negative (low α) Poisson’s ratio response. The re-

entrant trichiral and re-entrant anti-trichiral systems, on the other hand, both display 

negative Poisson’s ratios over all values of α considered. Further, for these latter 

systems νxy ≠ νyx. For the re-entrant trichiral system |νxy| ~ |νyx| + 0.1 and both Poisson’s 

ratios increase in magnitude with increasing α. In the case of the re-entrant anti-trichiral 

system, |νyx| > |νxy| and the two Poisson’s ratios tend towards convergence at large α. 

The analytical model Poisson’s ratios of the conventional and re-entrant hexagonal 

honeycombs are insensitive to α: νxy = νyx = +1 and νxy = νyx = -1, respectively. The 

Poisson’s ratios of the trichiral and anti-trichiral honeycombs tend to the conventional 
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hexagonal honeycomb values at high α, and those of the re-entrant trichiral and re-

entrant anti-trichiral honeycombs tend to those of the re-entant hexagonal honeycomb at 

high α. Variation of β (ligament and cylinder wall thickness) was found to have little 

effect on the Poisson’s ratios in the range 0.05<β<0.25 considered in this paper. 

 

6.2 Young’s moduli 

Figure 4 also includes stress-strain data (note the different plotting frequencies for the 

stress-strain and strain-strain data are due to different sampling rates of the universal 

testing machine and videoextensometer, respectively). The slope of the stress-strain data 

yields a Young’s modulus for the test sample of Ex = 1.79MPa, and the average value 

from 8 tests was 1.78±0.08MPa. This is in good agreement with the value of Ex = 

1.89MPa predicted from the FE model employing Es = 2.50GPa (see Table 1). 

The Young’s moduli for all honeycombs are plotted as functions of α and β in 

Figures 6 and 7, respectively. The Young’s moduli increase with decreasing α and 

increasing β. Ex ~ Ey for the hexagonal, re-entrant hexagonal, trichiral and anti-trichiral 

systems. The curves for the hexagonal and re-entrant hexagonal honeycombs overlap, 

and these systems have the highest Young’s moduli for any given value of α or β. The 

trichiral honeycomb displays higher Young’s moduli than the antitrichiral honeycomb. 

The re-entrant trichiral system also adheres reasonably well to Ex ~ Ey (Ex is 

slightly higher than Ey), but not the re-entrant anti-trichiral system for which Ey is 

predicted to be higher than Ex (inserts in Figures 6 and 7). The re-entrant trichiral 

honeycomb has higher Young’s moduli than the re-entrant anti-trichiral honeycomb Ex, 

but lower than the re-entrant anti-trichiral honeycomb Ey. 

All the honeycombs studied are predicted to obey the condition of a symmetric 

compliance matrix (νxyEy = νyxEx). 

 

6.3 Out-of-plane bending 
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The FE model simulations of honeycomb curvature when subject to out-of-plane 

bending deformation are shown for all honeycombs considered in this paper in Figure 8. 

The hexagonal and trichiral honeycombs possessing positive in-plane Poisson’s ratios 

both undergo anticlastic (saddle-shape) curvature (Figs. 8a and 8c), whereas the 

negative in-plane Poisson’s ratio re-entrant hexagonal, re-entrant trichiral and re-entrant 

anti-trichiral honeycombs adopt synclastic (dome-shape) curvature (Figs. 8b, 8e and 8f). 

Interestingly, the short ligament anti-trichiral honeycomb possesses negative in-plane 

Poisson’s ratio response for in-plane loading (νxy ~ νyx ~ -0.47) yet is predicted to adopt 

anticlastic curvature (positive Poisson’s ratio response) when subject to out-of-plane 

bending (Fig. 8d). 

 

7. Discussion 

The Poisson’s ratios of the trichiral and anti-trichiral honeycombs tend towards those 

for the conventional hexagonal honeycomb at high α (Figure 5), reflecting the fact that 

in the long ligament limit, the trichiral and antitrichiral systems transform into the 

conventional hexagonal honeycomb (i.e. the cylinder node radius becomes negligible) 

[11]. Similarly, the re-entrant trichiral and re-entrant anti-trichiral honeycombs 

increasingly approximate the re-entrant hexagonal honeycomb as α increases, and so 

the Poisson’s ratios for the re-entrant systems converge at high α. 

The Young’s moduli and Poisson’s ratios predicted for the hexagonal and re-

entrant hexagonal systems are consistent with previous studies on these honeycombs 

[1,4,5]. Similarly, the in-plane mechanical responses of the trichiral and anti-trichiral 

honeycombs predicted by the FE extended honeycomb array models employed in this 

work are consistent with the predictions from FE models using a RVE with periodic 

boundary conditions approach (with the exception that the RVE model predicts a 

transition from positive Poisson’s ratio to negative Poisson’s ratio as β decreases below 
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a critical value for the anti-trichiral honeycomb, whereas the extended array model 

predicts positive Poisson’s ratios throughout) [11]. 

The in-plane linear elastic responses of the trichiral and anti-trichiral 

honeycombs have been explained previously through consideration of the deformation 

mechanisms predicted to occur in these systems [11]. The cylinder-ligament 

honeycombs deform predominantly by a combination of direct flexing of the ligaments, 

and flexing of the ligaments due to rotation of the cylinders in response to the applied 

load. In the trichiral system, direct flexing and cylinder rotation-induced flexing of the 

ligaments both lead to the same flexing mode (described as a ‘full wave’ deformed 

ligament shape [11]). For the anti-trichiral system, on the other hand, cylinder rotation 

induces a lower energy ‘half wave’ mode which, when combined with the full wave 

direct flexing mode, leads to lower Young’s moduli for the anit-trichiral system with 

respect to the trichiral system for any given value of α or β (Figures 6 and 7). The full 

wave deformation mode produces positive Poisson’s ratio behaviour for these systems, 

whereas the half wave deformation associated with cylinder rotation in the anti-trichiral 

honeycomb leads to auxetic behaviour. Hence, in the short ligament limit (low α), 

where cylinder rotation dominates the mechanical response, the anti-trichiral 

honeycomb is auxetic (Figure 5). 

Consider, now, the re-entrant cylinder-ligament systems introduced in this work 

for the first time. For a tensile load applied in the x direction to the re-entrant anti-

trichiral honeycomb (Figure 9), the off-axis (diagonal) ligaments experience direct 

flexure due to the applied load and undergo full wave flexural deformation. Flexure of 

ligaments in a re-entrant system is known to lead to auxetic behaviour [1]. A torque is 

also applied to each cylinder due to the applied external load, leading to rotation of the 

cylinders. For the re-entrant anti-trichiral system, connected cylinders rotate in opposite 

directions, and consequently the moments induced on the ligaments by the cylinders 

cause them to bend in a half wave manner. Pure half wave bending under tension 
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produces a lengthening of the cylinder-cylinder distance without changing the 

orientation of the connected cylinders with respect to each other. An increase in the 

cylinder-cylinder distance for those cylinders connected by off-axis ligaments leads to 

an increase in strain along the loading (x direction) but a decrease in strain along the 

transverse (y) direction. For those cylinders connected by ligaments aligned along the y 

direction, an increase in cylinder-cylinder distance leads to an increase in strain along y 

(to counteract the decrease in strain along this direction due to the off-axis ligaments) 

and no contribution to strain along the x direction. Consequently, the combined strain 

contributions due to cylinder rotation-induced half-wave flexure of off-axis and vertical 

ligaments lead to an increase in the total strain along x and only minor modification to 

the total strain along y. Similar arguments hold for a tensile load applied along the y 

direction, although in this case cylinder rotation is diminished due to the off-axis 

ligaments being under axial compression in a re-entrant system subject to tension along 

y and, therefore, applying a torque on each cylinder in opposition to that applied by the 

vertical ligaments (Figure 9). Consequently, the addition of cylinder rotation-induced 

strains to the direct ligament flexure strains leads to enhanced total strain along x and, 

therefore, |νxy| decreases and |νyx| increases with respect to the direct flexure-only (re-

entrant hexagonal) honeycomb, particularly at low α where cylinder rotation effects are 

most pronounced (Figure 5). Similarly, the enhanced strain along x and the diminished 

role of the lower energy half-wave flexing mode for loading along y lead to Ex < Ey for 

this system (Figures 6 and 7). 

In the case of the re-entrant trichiral honeycomb under tensile loading along x, 

deformation modes include direct and cylinder rotation-induced flexing of the off-axis 

and ‘vertical’ (oriented almost parallel to y) ligaments (Figure 10 shows the deformation 

modes for loading along x by way of example). For the re-entrant trichiral honeycomb 

all cylinders rotate in the same direction and so cylinder rotation induces full wave 

flexing. The predicted Poisson’s ratio and Young’s moduli trends for the re-entrant 
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trichiral honeycomb can be explained using similar reasoning to that employed above 

for the re-entrant antitrichiral honeycomb. The mode of vertical rib flexure for the re-

entrant trichiral honeycomb is not available to the re-entrant anti-trichiral honeycomb 

(vertical ribs are aligned parallel to the y axis) explaining why Ey (lower energy half-

wave mode diminished) for the re-entrant anti-trichiral is greater than Ex for the re-

entrant trichiral. The hexagonal and re-entrant hexagonal honeycombs display higher 

Young’s moduli than the cylinder-ligament honeycombs for any given value of α or β. 

The additional deformation modes associated with the cylinders reduce the moduli in 

the cylinder-ligament systems compared to the non-cylinder containing honeycombs 

having fewer degrees of freedom. 

Turning, now, to the out-of-plane bending responses (Figure 8). The predicted 

anticlastic and synclastic curvatures for the hexagonal (Figure 8a) and re-entrant 

hexagonal (Figure 8b) honeycombs, respectively, reproduce well the curvatures known 

for these systems [6] and expected from plate theory for positive and negative values of 

the in-plane Poisson’s ratio, respectively [13]. The positive Poisson’s ratio trichiral 

honeycomb undergoes the expected anticlastic curvature (Figure 8c), and the auxetic re-

entrant trichiral (Figure 8e) and re-entrant anit-trichiral (Figure 8f) honeycombs display 

the expected synclastic curvature.  

However, interestingly, the short ligament limit anti-trichiral honeycomb 

possessing negative in-plane Poisson’s ratios is predicted to exhibit anticlastic curvature 

expected for positive Poisson’s ratio honeycombs when bent out of plane (Figure 8d). 

The explanation lies in consideration of the deformation mechanisms identified 

previously for this honeycomb [11]. The auxetic behaviour arises due to cylinder 

rotation-induced half wave flexing of the ligaments which, in the short ligament limit, 

dominates the concurrent non-auxetic direct full wave flexing of the ligaments. When 

subject to out-of-plane bending deformation the top surface of the honeycomb is placed 

under axial tension and the bottom surface under axial compression. Hence the torque 
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applied to each cylinder on the top surface opposes the torque applied on the bottom 

surface, leading to a cancellation of the cylinder rotation mechanism responsible for the 

auxetic response. Since the cylinder rotation mechanism is, then, redundant for out-of-

plane bending, the in-plane Poisson’s ratio of the system will tend towards that given by 

equation (4) (i.e. νxy = νyx → +1) and hence the predicted anticlastic curvature. The anti-

trichiral honeycomb is an example of a material/structure which possesses negative 

Poisson’s ratio response when subject to in-plane deformation, but positive Poisson’s 

ratio response when subject to out-of-plane bending. A composite 3-ply laminate 

displaying this unusual mechanical response has also been recently reported [14]. 

The results presented in this paper extend the range of cylinder-ligament 

honeycombs, and include the development of the first hybrid re-entrant hexagonal 

cylinder-ligament systems. As such, the range of alternative honeycomb geometries to 

the commonly used conventional hexagon is expanded, and the ability to tailor the 

mechanical response due to the new geometries has been demonstrated (including 

auxetic response). The model results for a hybrid system have been validated against 

experimental data in this paper. FE model data for the trichiral and antitrichiral systems 

are in good agreement with single-cell periodic boundary condition FE model data 

presented and validated against experimental data in a companion paper [11], 

demonstrating the robustness of the results. Auxetic honeycombs have significance 

since they lead to the potential to produce curved structures for use in sandwich panels 

for aerospace, automotive and marine applications. The cylinder-ligament architecture 

provides means to enhance and optimize through-thickness compression (cylinder) [9] 

and shear (ligament) [8] response, and also provides a host structure for embedded 

sensor and actuator elements for structural health monitoring and other smart/active 

materials applications. 

 

8. Conclusions 
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The linear elastic responses of hexagonal, re-entrant hexagonal, trichiral, anti-trichiral, 

re-entrant trichiral and re-entrant anti-trichiral honeycombs subject to in-plane uniaxial 

and out-of-plane bending loading have been investigated using an FE model extended 

array approach. The re-entrant trichiral and re-entrant anti-trichiral honeycombs have 

been introduced for the first time, and are hybrids of the re-entrant hexagonal 

honeycomb with the trichiral and anti-trichiral honeycombs, respectively. Experimental 

testing of a re-entrant anti-trichiral has been used to verify the FE model. The predicted 

in-plane linear elastic responses of the hexagonal, re-entrant hexagonal, trichiral and 

anti-trichiral honeycombs agree with previous studies. The new re-entrant trichiral and 

re-entrant anti-trichiral honeycombs both display in-plane negative Poisson’s ratios. 

Anticlastic curvature is predicted for the positive Poisson’s ratio hexagonal and trichiral 

honeycombs, and synclastic curvature is predicted for the negative Poisson’s ratio re-

entrant hexagonal, re-entrant trichiral and re-entrant anti-trichiral honeycombs. The 

anit-trichiral honeycomb displays negative Poisson’s ratios under uniaxial in-plane 

loading and positive Poisson’s ratio response for out-of-plane bending. Qualitative 

understanding of the Poisson’s ratios, Young’s moduli and out-of-plane bending 

curvatures has been developed based on the main deformation mechanisms acting in 

these systems: direct flexing and cylinder rotation-induced flexing of ligaments. 
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FIGURES 

 

Fig. 1 Honeycombs investigated in this study: (a) Hexagonal; (b) Re-entrant hexagonal; 

(c) Trichiral; (d) Re-entrant trichiral; (e) Anti-trichiral; (f) Re-entrant anti-trichiral.  
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Fig. 2 Loading and boundary conditions for the trichiral honeycomb undergoing (a) in-

plane uniaxial tension along x and (b) out-of-plane bending. 

 

 

Fig. 3 Uniaxial compression (along x) of the re-entrant anti-trichiral honeycomb, with 

fiducial markers attached for videoextensometer measurement. 
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Fig. 4 Experimental stress-strain (circles) and strain-strain (crosses) data for the re-

entrant anti-trichiral honeycomb under uniaxial compression. 
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Fig. 5 Model predictions for Poisson’s ratio (νxy = filled symbols and solid lines; νyx = 

empty symbols and dashed lines) as a function of α for the re-entrant anti-trichiral 

(diamond), re-entrant trichiral (squares), anti-trichiral (triangles), trichiral (crosses), 

hexagonal (stars) and re-entrant hexagonal (circles) honeycombs. β = 0.05 and γ = 5 for 

all cases; δ = 2 for the re-entrant systems, and δ = 1 for all other systems.
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Fig. 6 Model predictions for Young’s modulus (E/Es) vs α. Symbols as for Fig. 5. β = 

0.05 and γ = 5 for all cases; δ = 2 for the re-entrant systems, δ = 1 for all other systems. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Model predictions for Young’s modulus (E/Es) as a function of β. Symbols as for 

Fig. 5. α = γ = 5 in all cases; δ = 2 for the re-entrant systems, δ = 1 for all other systems. 
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Fig. 8 FE model out-of-plane bending predictions for (a) hexagonal (positive in-plane 

ν), (b) re-entrant hexagonal (negative in-plane ν), (c) trichiral (positive in-plane ν), (d) 

short ligament anti-trichiral (negative in-plane ν), (e) re-entrant trichiral (negative in-

plane ν) and (f) re-entrant anti-trichiral (negative in-plane ν) honeycombs. Shading 

corresponds to z-direction displacement. 

 

Fig. 9 Deformation mechanisms in the re-entrant anti-trichiral honeycomb under (a) 

loading along x and (b) loading along y. 
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Fig. 10 Deformation mechanisms in the re-entrant trichiral honeycomb under loading 

along x. 

 

Table 1: Experimental and FE model in-plane elastic constants (Young’s moduli and 

Poisson’s ratios) for the re-entrant antitrichiral honeycomb. 

 νxy Ex (MPa) 

Experiment -0.768±0.005 1.78±0.08 

FE model -0.765 1.89 
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