
Component Integrity Guarantees in Software-Defined
Networking Infrastructure

Daniel Girtler
dagi5259@student.su.se

Department of
Computer and Systems Sciences

Stockholm Universiy

Nicolae Paladi
nicolae.paladi@ri.se

Security Lab
SICS RISE

Abstract—Operating system level virtualization containers are
commonly used to deploy virtual network functions (VNFs) which
access the centralized network controller in software-defined net-
working (SDN) infrastructure. While this allows flexible network
configuration, it also increases the attack surface, as sensitive
information is transmitted between the controller and the virtual
network functions. In this work we propose a mechanism for
bootstrapping secure communication between the SDN controller
and deployed network applications. The proposed mechanism
relies on platform integrity evaluation and execution isolation
mechanisms, such as Linux Integrity Measurement Architecture
and Intel Software Guard Extensions. To validate the feasibility of
the proposed approach, we have implemented a proof of concept
which was further tested and evaluated to assess its performance.
The prototype can be seen as the first step into providing users
with security guarantees regarding the integrity of components
in the SDN infrastructure.

Keywords—SDN, NFV, SGX, IMA, Docker, security

I. INTRODUCTION

A growing reliance on server virtualization and cloud com-
puting mandate a revision of traditional network architecture
models [1]. Enterprise data centers and carrier infrastructures
require flexible and scalable network resource provisioning [2].
Software-defined networking (SDN) aims to address these
needs by decoupling the data plane from the control plane,
thus providing a more dynamic, manageable and adaptable
architecture [3]. However, the SDN approach introduces novel
vulnerabilities unaddressed by earlier best practices [4], [5].
While several approaches have been proposed to both detect at-
tacks on SDN infrastructure [6] and secure the communication
between the control plane and the virtual network functions
(VNFs) [7], verification of the integrity of VNFs has not been
addressed in much detail so far [8]. Thus, in the event of a
compromise of a VNF, the adversary can communicate directly
to the controller, impersonate legitimate VNFs and exploit
vulnerabilities in its application programming interface. Fur-
thermore, in the context where an SDN controller is accessed
by VNFs executing on multiple remote platforms, it is essential
to prevent the enrollment of malicious VNFs and only allow
communication once the VNF has been explicitly enrolled.

In this work, we address the current lack of mechanisms
to establish the trustworthiness of VNFs and protect their au-
thentication credentials. We describe a mechanism to bootstrap
trust in VNFs deployed on remote platforms and maintain
control over the sensitive data, such as VNF authentication

credentials, in the face of a powerful adversary. Thus, the SDN
controller may monitor the trustworthiness of the VNF and
provision or revoke VNF authentication credentials, depending
on the monitoring results. The proposed mechanism builds on
recent advances in hardware-assisted isolated execution envi-
ronments and prevents attacks on the integrity of the VNFs, as
well as integrity and confidentiality of communication between
the VNFs and network controllers.

a) Contribution: Our contribution is as follows: we
describe, implement and evaluate a comprehensive mechanism
allowing to attest the integrity of the remote system, measure
and monitor the integrity of the application and protect the
authentication credentials provisioned to enrolled VNFs.

b) Structure: The remaining of the paper is structured
as follows: following a review of the system model in §II,
we define the adversary model §III, describe the system
design in §IV as well as detail a fully functional prototype
of the designed system §V. Finally, we evaluate the proposed
mechanism in §VI, review the related work in §VII, point out
future work directions and conclude in §VIII.

II. BACKGROUND

We briefly review the system model and introduce the
building blocks used in the proposed security mechanism.

a) Software-Defined Networking: The SDN architec-
ture model decouples the data plane from the control plane,
to improve flexibility and manageability. According [3], SDN
is defined by the following characteristics: (1) separation of
control and data planes; (2) flow-based (rather than destination
based) forwarding decisions, based on matches in a predefined
filter, which allows for a unification of network devices, such
as firewalls, switches, and routers; (3) the control logic defining
the flow mechanisms operates on a distinct entity, a so-called
SDN controller; (4) virtual network functions deployed of the
controller can program the network;

In this work we focused on the application plane, consisting
of VNFs accessing the control plane. We aim to protect the
security-sensitive data transferred during such access, in order
to create a trust relationship between the SDN controller and
a VNF enrolled in the SDN deployment.

b) Network Function Virtualization (NFV): The type of
VNFs deployed in the application plane is deployment-specific
and may include firewalls, proxies, or DHCP servers. Rather

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/301010694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


than deploying custom-built hardware components, network
function virtualization implements network services in soft-
ware, such that they can be run on commodity platforms [9].
NFV enables flexible and dynamic infrastructures, allowing
applications to be launched and torn down as needed. In some
implementations, VNFs are integrated within the controller. A
different approach – also chosen as the system model in this
work – is to deploy them on a discreet platform communicating
remotely with the controller.

c) Operating-system virtualization: Operating system
virtualization allows to concurrently execute multiple isolated
execution environments, referred to as containers [10]. Con-
tainers rely on the functionality of a common kernel, which
ensure the isolation between containers1. Containers can be
created and destroyed on demand, allowing thus flexibility and
resource efficiency. VNFs can be deployed inside such isolated
containers, leading to a flexible way of deploying and operating
network services.

d) Linux IMA: The first step in assessing the trust-
worthiness of a remote platform is to verify its integrity. To
accomplish this, we enable platform integrity measurements
using Linux IMA2, which allows to detect if files have been
accidentally or maliciously altered, by comparing a file’s
measurement against an expected value. For each file to be
measured, a SHA-256 hash is calculated and stored in a list. To
ensure that this measurement list is not modified at any point,
it can be stored in a dedicated security hardware module, e.g.
a Trusted Platform Module [11]. Trustworthiness is assessed
following a remote attestation protcol, where the integrity
measurements are transferred to the attester which assesses
platform integrity by comparing them to pre-calculated ex-
pected measurements.

e) Software Guard Extenstion (SGX): Intel SGX [12] is
a technology for creating hardware-assisted isolated execution
environments (termed enclaves). Its functionality allows to
protect both the integrity and confidentiality of code and data
in the enclaves. SGX is implemented based on an extension of
the Instruction Set architecture and changes to memory access,
allowing to create enclaves located inside an application’s
address space, inaccessible to the underlying operating system
and BIOS. Code executed in enclaves runs in user space and
relies on the underlying operating system for I/O operations
and system calls. SGX also includes functionality for remote
attestation, allowing to remotely assess the integrity of an
enclave. However, remote attestation of enclaves relies on
communication with an additional component – the Intel
Attestation Service (IAS) – to verify that enclave integrity
measurements are signed with valid (i.e. not revoked) keys.

III. ADVERSARY MODEL

We defined an adversary model based on the Dolev-Yao
model [13], which states that the adversary can intercept,
eavesdrop and tamper with messages. In addition to these abil-
ities, the adversary can disrupt or degrade network traffic [14].
Further adversary abilities are grouped as follows:

1Docker project: https://docs.docker.com
2https://sourceforge.net/p/linux-ima/wiki/Home

a) Networking: The adversary can record, intercept and
replay messages sent over the network. This is restricted
to communication between the controller host and the VNF
host and does not include network communication between
applications residing on the controller platform. This ability is
further constrained by any applied cryptographic functions.

b) Remote system: The adversary is able to gain access
to the remote VNF host by exploiting vulnerabilities in the
operating system and has control of all software running on
the host. On the hardware level, we assume the CPU is
implemented correctly and that the physical security of the
platform is maintained. All remaining hardware, including the
memory, can be tempered by the adversary.

IV. SYSTEM DESIGN

We next review the core principles of the system design.

a) Phase one: Measurement scheme: In the first step of
the attestation process we verify that the remote host has not
been compromised. To establish a trust relationship between
the SDN controller and the remote VNF, we design a specific
Linux IMA policy to measure a restricted set of files critical
for the secure execution of the VNFs on the remote host (i.e.
its trusted computing base).

b) Phase two: Integrity assessment: Evaluating the
measurements of the trusted computing base allows to detect
VNF compromise and halt the protocol execution. In this
phase, the measurements collected in phase one are transferred
to the controller and compared to an expected value, to thereby
determine whether the trusted computing base of the remote
host has been been compromised. Execution proceeds only if
the measurements match the expected values.

c) Phase three: Verifying VNFs: Following a successful
completion of phase two, the controller would establish a
communication channel with the VNF deployed on the remote
system. A complication arises if the VNF is running on a host
under the control of the adversary and that has previously not
been verified (a so-called cuckoo-attack [15]). We address this
by ensuring that the VNF executes on the verified remote
host. The VNF may access the SDN controller only after
successfully verifying that the target’s respective VNF resides
on an attested platform.

d) Phase four: Content trust of images: Container
images can be either created on a local system or obtained
from remote image repositories. In the first case, the owner
is solely responsible for their correct configuration. However,
this does not apply to images from remote repositories. Instead,
the content of such images must be integrity verified against
measurements of valid image configurations.

V. IMPLEMENTATION

We next describe the implementation of the proposed
design. For the prototype implementation we used Ubuntu
16.04LTS with kernel version 4.4.0-51-generic for both con-
troller and the VNF host. For operating system virtualization
management, we used Docker v1.12.2, a popular container
management software [16]. An open-source SDN controller,
Floodlight version 1.2, was chosen due to its support for differ-
ent security modes for the REST API, non-secure (plain vanilla



HTTP), HTTPS and trust-based HTTPS 3. For serialization
of network-communicated data we use language and platform
neutral protocol buffers4.

A. Implementation of the system design

To limit the measurements collected with Linux IMA,
we measure only core Docker assets, focusing on Docker
related executables in the /usr/bin/ directory and security
policy related files used by AppArmor in /etc/apparmor.d/.
Furthermore, images and metadata used by Docker were
incldued into the integrity measurements to guarantee their
integrity – both as a whole and of single layers of images.

The next step requires transferring the measurement list
from the VNF host to the SDN controller for validation. This is
achieved by leveraging the SGX remote attestation mechanism,
namely by using the Diffie-Hellman Key Exchange (DHKE)
protocol provided by SGX to create secure keys for the
data encryption. A software component is deployed in an
SGX enclave executing on the VNF host, which retrieves the
measurement file and sends it to the controller performing
the validation process. To reduce the prototype complexity,
we stored the measurement list on the file system. We used
mbedtls-SGX5 TLS protocol suite to establish a secure channel
for the transfer of measurements to the controller.

Validating that the VNF is running on the attested host
can be done by creating a non-migratable HMAC key K [17],
stored in a hardware security model on the VNF host (e.g. a
Trusted Platform Module, TPM). We send K and a nonce n1 to
the remote system’s enclave. The enclave software calculates
a hash-based message authentication code (HMAC) of n1 and
K and returns the resulting HMAC to the controller. The
controller will first verifies the HMAC received from the VNF
host and if valid, generate a nonce n2, and send it to the target
VNF. The VNF is able to access the previously stored key K in
the TPM, if it resides on the same platform. Next the HMAC of
n2 and K is computed inside the VNF enclave and returned to
the controller. Since only a co-residing VNF can have access to
the TPM were K was stored and calculate the correct HMAC, it
can be determined that the VNF is indeed running on the same
host platform. Next, authentication certificates are generated
and signed for successfully attested VNFs, to enable client
authentication. The validity of the signed certificates is verified
by the SDN controller prior establishing a TLS communication
channel. Attempts for insecure communication sessions are
refused by the SDN controller.

We leverage Docker functionality for image verification
and integrity checking, known as Docker Content Trust (DCT).
DCT ensures that the VNF host only runs trusted images –
i.e. that the host is only able to pull, run or build signed
new images. Prior to establishing a communication channel
between the VNFs and the network controller, the VNF host
must prove that DCT is enabled. This is done by including the
DCT environment variable into the measurement list, verified
in the earlier stages.

3Trust-based HTTPS means that client authentication is required.
4Google Protocol Buggers https://developers.google.com/protocol-buffers/
5https://github.com/bl4ck5un/mbedtls-SGX

B. System workflow

We introduce a Verification Manager to perform the attes-
tation tasks. It handles the necessary communication with the
IAS, generates the HMAC key and nonces, as well as certifi-
cates for client authentication. The controller is connected via
a TLS channel to the VNF host and the VNFs deployed in
containers. We next describe the system workflow (Figure 1).

Floodlight Network

Controller

IA
S

VNF Host

VNF 

Container IML

2

3

45

6

Enclave

1Verification

Manager

Attestation

Enclave

Attestation

Application

Controller Host

Fig. 1. Workflow of the developed system

The workflow starts at the verification manager (1) which
initiates the remote attestation of the VNF host; this involves
the DHKE message exchange during which the IAS is con-
tacted (2). Following a successful remote attestation, the mea-
surement list is sent for verification from the VNF host to the
verification manager, which then generates a key and a nonce
sent back to the VNF host along with the attestation result. In
turn, the VNF host calculates the HMAC and sends it back to
the verification manager. After the remote system attestation
has been completed successfully, the manager attests the in-
tegrity of the VNF enclave (3), which requires a second contact
with the IAS (4). Following the completion of the DHKE,
the verification manager sends a second nonce to the VNF,
which returns the computed HMAC. After the verification of
this HMAC, the manager generates the certificate and private
key and distributes them to the controller and the VNF (5).
Once the VNF receives the certificate and private key, it can
start the TLS communication with the controller (6). Note that
the current implementation of the prototype does not use a
hardware root of trust (e.g. a TPM) yet. Support for TPM is
currently in progress and when complete will be used to store
the measurement list and the HMAC key.

VI. PERFORMANCE EVALUATION

We evaluated the implemented prototype on a Thinkpad
T460s with SGX support as VNF host and a Thinkpad E540
running Floodlight and the verification manager. We used curl
for HTTP connections between the two machines; HTTPS
and trusted HTTPS connections were established by using the
mbedtls library.

The connection from within the SGX enclave was estab-
lished by using a version of mbedtls with SGX support, with
a measurement based on 50 samples. As shown in Figure 2,
the HTTP request has the lowest execution time (49 ms on
average). The average of the HTTPS and the trusted HTTPS
is about 77 ms higher than HTTP, completing at 127 ms. The
mbedtls version with SGX support was faster than HTTPS and
trusted HTTPS, completing on average in 101 ms.

Figure 3 illustrates the execution time of the attestation pro-
cess, which completes in 3512 ms. Most of this time is spent on



Fig. 2. Executions times of connecting to the Floodlight REST API

Fig. 3. Parts of overall execution time

the attestation of SGX enclaves (1390 ms), generation/storage
of the certificates for the client authentication (905 ms),
transfer/validation of the measurement list (763 ms) and the
generation/validation process of the HMAC key (353 ms). In
contrast with the above time-consuming tasks, the connection
to Floodlight requires only about 101 ms.

VII. RELATED WORK

Initial work for bootstrapping trust in SDN infrastructures
using SGX was done in [18], which presents a framework
for isolating network endpoints in SGX enclaves attested and
verified before establishing secure communication channels.
Shih et al [19] proposed to protect sensitive components of
intrusion detection systems using Intel SGX. However, in this
case SGX had been used for very specific NFVs with a limited
application field. SGX is a novel technology under continuous
development and intense security research scrutiny.
[20] exposes vulnerability exploits synchronization bugs to
circumvent the security guarantees of SGX and to hijack the
control flow of the enclave code or even bypass access control
mechanisms. In [21], Buhren et al described a so-called fault
attack, allowing an attacker to change the contents of the RAM
encrypted area. The adversary might not know which of the
encrypted values have been changed or what the impact of
it is, but the paper addresses the question, if encryption is
a dependable protection mechanism in practice. In addition
to this, a proof-of-concept was developed which shows the
process of the fault attack and eventually led to the extraction
of the private RSA key of a GnuPG user.
While the above named vulnerabilities indicate that much work
is left to improve the security of Intel SGX, it is nevertheless
a promising technology for protection of code and data on
remote platforms.

VIII. CONCLUSION

We presented a mechanism for verification of VNF in-
tegrity allowing to protect the VNF authentication creden-
tials. We outlined the design principles and described the
detailed design and implementation of the prototype. The
evaluation showed that the prototype does not introduce any
overhead beyond the initial bootstrap phase. By combining
Intel SGX and operating system-level measurement (Linux
IMA), we were able to build a more complex system with
advanced security guarantees. The proposed prototype is under
continuous development and we intend to add support for
multiple containers and for storing integrity measurements in
a hardware root of trust (e.g. TMP).

IX. ACKNOWLEDGEMENTS

This research has been performed within 5G-ENSURE
project (www.5GEnsure.eu) and received funding from the
European Unions Horizon 2020 research and innovation pro-
gramme under grant agreement No 671562.

REFERENCES

[1] SDN architecture. Technical Report ONF TR-50, Open Networking
Foundation, June 2014.

[2] E. Haleplidis et al. Software-Defined Networking (SDN): Layers and
Architecture Terminology. RFC 7426, RFC Editor, January 2015.

[3] D. Kreutz et al. Software-Defined Networking: A Comprehensive
Survey. Proceedings of the IEEE, 103:14–76, Jan 2015.

[4] D. Kreutz et al. Towards Secure and Dependable Software-defined
Networks. In Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13, pages
55–60. ACM, 2013.

[5] S. Scott-Hayward et al. A Survey of Security in Software Defined
Networks. IEEE Communications Surveys and Tutorials, 18(1):623–
654, 2016.

[6] M. Dhawan et al. SPHINX: Detecting Security Attacks in Software-
Defined Networks. In 22nd Annual Network and Distributed System
Security Symposium NDSS. The Internet Society, 2015.

[7] C. Banse and S. Rangarajan. A Secure Northbound Interface for SDN
Applications. In IEEE Trustcom/BigDataSE/ISPA, volume 1, pages
834–839, August 2015.

[8] R. Bonafiglia et al. Offloading personal security applications to a
secure and trusted network node. In Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft), pages 1–2. IEEE,
April 2015.

[9] T. Wood et al. Toward a software-based network: Integrating software
defined networking and network function virtualization. IEEE Network,
29:36–41, May 2015.

[10] S. Soltesz et al. Container-based Operating System Virtualization: A
Scalable, High-performance Alternative to Hypervisors. SIGOPS Oper.
Syst. Rev., 41:275–287, March 2007.

[11] Information technology-Trusted Platform Module-Part 1: Overview.
Standard, International Organization for Standardization/International
Electrotechnical Commission ISO/IEC 11889-1:2009(E), May 2009.

[12] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. In-
novative technology for CPU based attestation and sealing. In Proc.
2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, HASP ’13, page 10. ACM, June 2013.

[13] D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, 29(2):198–208, Mar 1983.

[14] N. Paladi, M. Aslam, and C. Gehrmann. Trusted geolocation-aware data
placement in infrastructure clouds. In Proc. 13th International Confer-
ence on Trust, Security and Privacy in Computing and Communications,
TrustCom ’14, pages 352–360. IEEE, September 2014.



[15] B. Parno. Bootstrapping Trust in a ”Trusted” Platform. In Proceedings
of the 3rd Conference on Hot Topics in Security. USENIX Association,
July 2008.

[16] Container and Kernel-Based Virtual Machine (KVM) Virtualization for
Network Function Virtualization (NFV). whitepaper, Intel Corp., Aug
2015.

[17] H. Krawczyk et al. HMAC: Keyed-Hashing for Message Authentica-
tion. RFC 2104, RFC Editor, February 1997.

[18] N. Paladi and C. Gehrmann. TruSDN: Bootstrapping Trust in Cloud
Network Infrastructure, pages 104–124. SecureComm 2016. Springer
International Publishing, 2017.

[19] M. Shih et al. S-NFV: Securing NFV States by Using SGX. In
Proceedings of the 2016 ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization, SDN-
NFV Security ’16, pages 45–48. ACM, 2016.

[20] N. Weichbrodt et al. AsyncShock: Exploiting Synchronisation Bugs in
Intel SGX Enclaves. In European Symposium on Research in Computer
Security, pages 440–457. Springer, 2016.

[21] R. Buhren et al. Fault Attacks on Encrypted General Purpose Compute
Platforms. In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, CODASPY ’17, pages 197–204.
ACM, 2017.


