Performance and overhead evaluation of OSCOAP and DTLS

Martin Gunnarsson®, Tobias Andersson?, Ludwig Seitz!

L RISE SICS AB
Box 1263, Kista 16429, Sweden
{martin.gunnarsson, tobias.andersson, ludwig.seitz}@ri.se
October 2017

RISE SICS Technical Report T2017:05

RI
SE

Abstract. In this report we compare the OSCOAP protocol to CoAP over
DTLS-PSK to evaluate their performance in constrained devices. Keywords:
loT M2M Security OSCOAP DTLS CoAP Constrained Devices LLN

2

1 Introduction

In this report we analyse the OSCOAP[1] protocol in comparison to DTLS[2],
and a baseline implementation of CoAP[3], without any security mechanisms.
We have done this to evaluate the feasibility of supplementing and/or replac-
ing DTLS as the protocol of choice to secure communication in constrained
devices operating on Low power and Lossy Networks (LLN).

2 OSCOAP

This section aims to present OSCOAP, the purpose of the protocol and the
standards which it builds upon. OSCOAP is short for Object Security for the
Constrained Application Protocol. It is an IETF standards proposal from Er-
icsson and RISE SICS. OSCOAP builds on several existing IETF standards,
we will briefly explain them here. CBOR{citeRFC7049 - Compact Binary Ob-
ject Representation, is a standard that provisions a compact way to encode
data. It is meant as a replacement or supplement to existing data encod-
ing schemes. CBOR is especially suited to constrained devices since it of-
fers compact messages and simple processing. Building on CBOR is another
IETF standard, COSE[4] - CBOR Object Signing and Encryption. COSE uses
CBOR encoding to provide, among other things, encrypted and signed mes-
sages. OSCOAP ties this together by using COSE to protect CoAP messages.
There are several advantages to using this approach.

The CoAP messages can be selectively protected to protect sensitive parts
while keeping CoAP’s forward-proxy functionality working. Another benefit is
that by using CBOR to encode messages the per message overhead can be
minimized. CBOR encodes fields as compact as possible, this property avoids
sending redundant data. OSCOAP is currently under development and is
hosted on Github?, this document refers to an older version of the OSCOAP
draft, namely version 4, any further references in this document to OSCOAP
shall be interpreted as references to draft-ietf-core-object-security-04[1].

3 System Description

The comparisons are made for the cc2538dk development boards from Texas
Instruments, the boards feature a 32-bit ARM Coretex-M3 CPU and 32KB
of RAM and 512KB of flash memory (ROM)2. The cc2538 system on a chip
has hardware acceleration of SHA2 and AES-128, but these are not used in

! https://github.com /core-wg/oscoap
2 http://www.ti.com/product/CC2538 /datasheet

3

this comparison. We have compared a baseline system with Contiki-OS and
a CoAP server, a server with CoAP and DTLS (COAPS) and a server with
OSCOAP.

On each server there is a simple REST-resource that returns the string
"Hello World" to the client. The client will send a GET-message to that
server every 20s.

We have compared three set-ups in this report, a baseline system with
plain CoAP, a current best practise system with CoAP protected by DTLS[2],
often called COAPS, and OSCOAP.

The baseline system is the er-coap library shipped with Contiki-OS3. We
have made no alterations to the library and to Contiki-OS. The DTLS +
COAP system and OSCOAP system also uses Contiki-OS.

We have compiled tinydlts* without ECC and other extensions. DTLS
uses the profile " Datagram Transport Layer Security (DTLS) Profiles for the
Internet of Things”, this is a profile for usage of DTLS in constrained devices.
The only included TLS-cipher suite in our comparison is TLS_PSK_WITH_AES_128_CCM 8.

The OSCOAP library used is the SICS implementation®, it only supports
the mandatory to implement AES_CCM_64_64_128 algorithm. OSCOAP also
uses SHA2 for key derivation.

We have configured the nodes to use static keys, DTLS uses PSK and
OSCOAP uses keys derived from a static Master-Secret.

In this comparison we have compared OSCOAP as specified in draft-
ietf-core-object-security-04 and DTLS as specified in RFC6347[2] with the
following DLTS profile: " Transport Layer Security (TLS) Datagram Trans-
port Layer Security (DTLS) Profiles for the Internet of Things" [5]. This is a
profile ,for DTLS, that forcuses on constrained devices, the crypto algorithms
are limited and there are provisions to use PSK instead of a more resource
demanding RSA or ECC authentication.

4 Comparisons

4.1 Network Overhead

The per packet overhead for DTLS + COAP is made up of the DTLS-record
protocol. The DTLS-record protocol contains the fields shown with their
lengths in Table 1.

The per-message overhead for OSCOAP depends on the type of message,
request or response. Many parameters that are sent in the request are implicit

® https://github.com /contiki-os/contiki
* https://github.com /cetic/tinydtls
® https://github.com /Gunzter/contiki-oscoap

Table 1: DTLS-Record Layer per message overhead

Field

Size (Bytes)

Content Type
Version

Epoch

Sequence Number
Length

Nonce (Explicit)
ICV

1

0 o0 NONDN

Total:

in the response and do not have to be sent again thanks to the request
- response mapping. Several parameters are also encoded to the shortest
possible length. Table 3 show the fields in a OSCOAP request and their
minimal lengths. Sequence number, also called Partial 1V, and Key Id are

encoded in this way in the request. For

the responses these parameters are

known to the client implicitly and does not have to be retransmitted. In Table
4 we show the fields sent in a OSCOAP response and the length of the fields.

Table 2: OSCOAP per

Table 3: OSCOAP Request

message overhead

Table 4: OSCOAP Response

Field Size (Bytes)

Option 1-2 Field Size (Bytes)
Compressed COSE Header 1 Option 1
Partial IV (Seq) 1-7 Compressed COSE Header 1

Key Id >2 ICV 8

ICV 8 Total: 10
Total: >14

In summary we can see the results in Table 5.

Table 5: Message overhead comparison

Sequence Number:

'05' '1005' 10005’

DTLS 1.2 (Bytes)

OSCOAP Request (Bytes)
OSCOAP Response (Bytes)| 10

29 29 29
14 16 19
10 10

4.2 Memory Utilization

When comparing memory utilization of the different libraries a straight up
comparison of DTLS and OSCOAP, as done in Table 6, is not fair since DTLS
includes, apart from the DTLS-record protocol, also the DTLS-handshake
protocol. Table 6 details the fields of the executable on the device. A exe-
cutable program is divided into several parts called .text, .bss and .data. The
text segment .text is static memory and this segment contains among other
things code and static variables. The field .data is data that is initialized to
zero when the program starts, it will not take up any space on ROM but will
be stored in RAM when the program is running. This is used for a stack, if
present, and variables stored on the programs heap. Lastly the .bss segment,
this is data that is initialized to a value when the program starts, it thus needs
to be stored in ROM as well as in RAM. OSCOAP functions as the DTLS-
record protocol and is intended to be used with a handshake protocol such
as EDHOCI6]. DTLS also provides a variety of cipher suites, the OSCOAP
library is limited to the mandatory to implement AES-CCM-64-64-128 algo-
rithm. To make a comparison of the performance of the core functionality in
DTLS and OSCOAP we have elected to leave out the cipher functions, hash
functions and the DTLS record protocol, the functions removed are detailed
in Table 7.

Table 6: Memory utilization of CoAP, OSCOAP and COAPS, (Bytes)

[COAP OSCOAP COAP + DTLS (COAPS)

Client:

text |44534 51364 61244
.bss 505 634 597
.data | 9499 9751 11697
RAM |10004 10385 12294
ROM (45039 51998 61841
Server:

text [47535 54364 64309
.bss 505 2108 2073
.data | 9499 9515 11323
RAM |10004 11623 13396
ROM 48040 56472 66382

In Table 8 we show the net memory consumption.

Table 7: Ciphers, Hash functions and DTLS-Handshake protocol.
.t is short for .text, .d = .data, .b = .bss (Bytes)

‘ COAPS Server COAPS Client OSCOAP Server OSCOAP Client

Symmetric cipher .t: 5614 .t: 5614 .t 1448 .t: 1500
Hash algorithm .t: 830 .t: 830 .t: 860 D: 32 .t: 830, .d: 32
Handshake .t: 2968, .d: 12, .b: 225 .t: 2968, .d: 12 N/A N/A

Table 8: Memory utilization without DTLS-handshake, crypto- and hash-algorithms (Bytes)

\COAP OSCOAP COAP + DTLS (COAPS)

Client:

text |44534 49034 51832
.bss 505 602 585
.data [9499 9751 11697
RAM |10004 10385 12282
ROM (45039 49636 52417
Server:

text |47535 52056 54897
.bss 505 2078 2061
.data | 9499 9515 11098
RAM |10004 11591 11098
ROM 48040 54132 56958

5 Conclusions

We have concluded that OSCOAP provides advantages both in terms of
memory usage on the device and also in bytes saved when messages are
transmitted. This is mainly done by utilizing CBOR variable length fields
that can shorten messages. One example of this is that sequence numbers
can be encoded in as few bytes as possible. CBOR is also efficient to process,
so it does not impact the code size of libraries using it in a significant way.
Shortening the length of transmitted messages require less time for radio in
transmit mode, for a constrained device this can lead to saving power and
extending the usable time on a battery powered device.

References

1. G. Selander., J. Mattsson., F. Palombini.,, L. Seitz.: Object security of coap
(oscoap). Internet-Draft draft-ietf-core-object-security-04, IETF Secretariat (2017)
http://www.ietf.org/internet-drafts/draft-ietf-core-object-security-04.txt.

2. E. Rescorla., N. Modadugu.: Datagram transport layer security version 1.2. RFC 6347,
RFC Editor (2012) http://www.rfc-editor.org/rfc/rfc6347.txt.

3. Z. Shelby., K. Hartke., C. Bormann.: The constrained application protocol (coap). RFC
7252, RFC Editor (2014) http://www.rfc-editor.org/rfc/rfc7252.txt.

4. J. Schaad.: Cbor object signing and encryption (cose). RFC 8152, RFC Editor (2017)

5. H. Tschofenig., T. Fossati.: Transport layer security (tls) / datagram transport layer
security (dtls) profiles for the internet of things. RFC 7925, RFC Editor (2016)

6. G. Selander., J. Mattsson., F. Palombini.: Ephemeral diffie-hellman over cose
(edhoc). Internet-Draft draft-selander-ace-cose-ecdhe-07, IETF Secretariat (2017)
http://www.ietf.org/internet-drafts /draft-selander-ace-cose-ecdhe-07.txt.

