
Automatic Derivation of Platform

Noninterference Properties

Oliver Schwarz1,2 and Mads Dam2

1 SICS Swedish ICT, Kista, Sweden
2 KTH Royal Institute of Technology, Stockholm, Sweden

{oschwarz,mfd}@kth.se

Legal Notice. This is the author version of the correspondent paper
published in �Software Engineering and Formal Methods�, the proceed-
ings of SEFM 2016 (editors: Rocco De Nicola, Eva Kühn), Springer LNCS
9763. The publisher is Springer International Publishing Switzerland.
The �nal publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-41591-8_3.

Abstract. For the veri�cation of system software, information �ow prop-
erties of the instruction set architecture (ISA) are essential. They show
how information propagates through the processor, including sometimes
opaque control registers. Thus, they can be used to guarantee that user
processes cannot infer the state of privileged system components, such
as secure partitions. Formal ISA models - for example for the HOL4
theorem prover - have been available for a number of years. However,
little work has been published on the formal analysis of these models. In
this paper, we present a general framework for proving information �ow
properties of a number of ISAs automatically, for example for ARM. The
analysis is represented in HOL4 using a direct semantical embedding of
noninterference, and does not use an explicit type system, in order to (i)
minimize the trusted computing base, and to (ii) support a large degree
of context-sensitivity, which is needed for the analysis. The framework
determines automatically which system components are accessible at a
given privilege level, guaranteeing both soundness and accuracy.

Keywords: Instruction set architectures, ARM, MIPS, noninterference, infor-
mation �ow, theorem proving, HOL4

1 Introduction

From a security perspective, isolation of processes on lower privilege levels is one
of the main tasks of system software. More and more vulnerabilities discovered in
operating systems and hypervisors demonstrate that assurance of this isolation
is far from given. That is why an increasing e�ort has been made to formally
verify system software, with noticeable progress in recent years [10,14,16,6,1].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/301009733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-41591-8_3


However, system software depends on hardware support to guarantee isolation.
Usually, this involves at least the ability to execute code on di�erent privilege
levels and with basic memory protection. Kernels need to control access to their
own code and data and to critical software, both in memory and as content of
registers or other components. Moreover, they need to control the management of
the access control itself. For the correct con�guration of hardware, it is essential
to understand how and under which circumstances information �ows through
the system. Hardware must comply to a contract that kernels can rely on. In
practice, however, information �ows can be indirect and hidden. For example,
some processors automatically set control �ags on context switches that can
later be used by unprivileged code to see if neighbouring processes have been
running or to establish a covert channel [19]. Such attacks can be addressed by
the kernel, but to that end, kernel developers need machinery to identify the
exact components available to unprivileged code, and speci�cations often fail to
provide this information in a concise form. When analysing information �ow, it
is insu�cient to focus on direct register and memory access. Con�dentiality, in
particular, can be broken in more subtle ways. Even if direct reads from a control
�ag are prevented by hardware, the �ag can be set as an unintended side e�ect
of an action by one process and later in�uence the behaviour of another process,
allowing the latter to learn something about the control �ow of the former.

In this paper we present a framework to automate information �ow analysis
of instruction set architectures (ISAs) and their operational semantics inside the
interactive theorem prover HOL4 [11]. We employ the framework on ISA models
developed by Fox et al. [7] and verify noninterference, that is, that secret (high)
components can not in�uence public (low) components. Besides an ISA model,
the input consists of desired conditions (such as a speci�c privilege mode) and
a candidate labelling, specifying which system components are already to be
considered as low (such as the program counter) and, implicitly, which compo-
nents might possibly be high. The approach then iteratively re�nes the candidate
labelling by downgrading new components from high to low until a proper non-
interference labelling is obtained, reminiscent of [12]. The iteration may fail for
decidability reasons. However, on successful termination, both soundness and
accuracy are guaranteed unless a warning is given indicating that only an ap-
proximate, sound, but not necessarily accurate solution has been found.

What makes accurate ISA information �ow analysis challenging is not only
the size and complexity of modern instruction sets, but also particularities in se-
mantics and representation of their models. For example, arithmetic operations
(e.g., with bitmasks) can cancel out some information �ows and data struc-
tures can contain a mix of high and low information. Modi�cation of the models
to suit the analysis is error prone and requires manual e�ort. Automatic, and
provably correct, preprocessing of the speci�cations could overcome some, but
not all, of those di�culties, but then the added value of standard approaches
such as type systems over a direct implementation becomes questionable. By
directly embedding noninterference into HOL4, we can make use of machinery
to address the discussed di�culties and at the same time we are able to min-



imize the trusted computing base (TCB), since the models, the preprocessing
and the actual reasoning are all implemented/represented in HOL4. Previous
work on HOL4 noninterference proofs for ISA models [13] had to rely on some
manual proofs, since its compositional approach su�ered from the lack of suf-
�cient context in some cases (e.g., the secrecy level of a register access in one
step can depend on location lookups in earlier steps). In contrast, the approach
suggested in the present paper analyses ISAs one instruction at a time, allowing
for accuracy and automation at the same time. However, since many instruc-
tions involve a number of subroutines, this instruction-wide context introduces
complexity challenges. We address those by unfolding de�nitions of transitions
in such a way that their e�ects can be extracted in an e�cient manner.

Our analysis is divided into three steps: (i) rewriting to unfold and sim-
plify instruction de�nitions, (ii) the actual proof attempt, and (iii) automated
counterexample-guided re�nement of the labelling in cases where the proof fails.
The framework can with minor adaptations be applied to arbitrary HOL4 ISA
models. We present benchmarks for ARMv7 and MIPS. With a suitable labelling
identi�ed, the median veri�cation time for one ARMv7 instruction is about 40
seconds. For MIPS, the complete analysis took slightly more than one hour and
made con�guration dependencies explicit that we had not been aware of before.
We report on the following contributions: (i) a backward proof tactic to auto-
matically verify noninterference of HOL4 state transition functions, as used in
operational ISA semantics; (ii) the automated identi�cation of sound and accu-
rate labellings; (iii) benchmarks for the ISAs of ARMv7-A and MIPS, based on
an SML-implementation of the approach.

2 Processor Models

2.1 ISA Models

In the recent years, Fox et al. have created ISA models for x86-64, MIPS, several
versions of ARM and other architectures [8,7]. The instruction sets are modelled
based on o�cial documentations and on the abstraction level of the program-
mer's view, thus being agnostic to internals like pipelines. The newest models
are produced in the domain-speci�c language L3 [7] and can be exported to the
interactive theorem prover HOL4. Our analysis targets those purely-functional
HOL4 models for single-core systems. An ISA is formalized as a state transition
system, with the machine state represented as record structure (on memory,
registers, operational modes, control �ags, etc.) and the operational semantics
as functions (or transitions) on such states. The top-level transition NEXT pro-
cesses the CPU by one instruction. While L3 also supports export to HOL4
de�nitions in monadic style, we focus our work on the standard functional rep-
resentation based on let-expressions. States resulting from an unpredictable (i.e.,
underspeci�ed) operation are tagged with an exception marker (see Section 7 for
a discussion).



2.2 Notation

A state s = {C1 := c1, C2 := c2, . . .} is a record, where the �elds C1, C2, . . .
depend on the concrete ISA. As a naming convention, we use Ri for �elds that
are records themselves (such as control registers) and Fi for �elds of a func-
tion/mapping type (such as general purpose register sets). The components of
a state are all its �elds and sub�elds (in arbitrary depth), as well as the single
entries of the state's mappings. The value of �eld C in s is derived by s.C. An
update of �eld C in s with value c is represented as s[C := c]. Similarly, function
updates of F in location l by value v are written as F [l := v]. Conditionals and
other case distinctions are written as C(b, a1, a2, . . . , ak), with b being the selec-
tor and a1, a2, . . . , ak the alternatives. A transition Φ transforms a pre-state s
into a return-value v and a post-state s′, formally Φs = (v, s′). Usually, a transi-
tion contains subtransitions Φ1, Φ2, . . . , Φn, composed of some structure φ of ab-
stractions, function applications, case distinctions, sequential compositions and
other semantic operators, so that Φs = φ(Φ1, Φ2, . . . , Φn)s. Transition de�nitions
can be recursively unfolded: φ(Φ1, . . . , Φn)s = φ(φ1(Φ1,1, . . . , Φ1,m), . . . , Φn)s =

. . . = ~φs, where ~φ is the completely unfolded transition, called the evaluated
form. For the transitions of the considered instruction sets, unfolding always
terminates. Note that '=' is used here for the equivalence of states, transitions
or values, not for the syntactical equivalence of terms. Below we give the de�ni-
tion of the ARMv7-NOOP-instruction and its evaluated (and simpli�ed) form:

dfn′NoOperation s
= BranchTo(s.REG RName_PC + C(FST (ThisInstrLength () s) = 16, 2, 4)) s
= ((), s[REG := s.REG[RName_PC := s.REG RName_PC + C(s.Encoding = Thumb, 2, 4)]])

NOOP branches to the current program counter (s.REG RName_PC) plus some
o�set. The o�set depends on the current instruction length, which in turn de-
pends on the current encoding. Here, FST selects the actual return value of the
ThisInstrLength transition, ignoring its unchanged post-state.

2.3 Memory Management

For simplicity, our analysis focuses on core-internal �ows (e.g., between regis-
ters) and abstracts away from the concrete behaviour of the memory subsystem
(including address translation, memory protection, caching, peripherals, buses,
etc.). Throughout the course of the - otherwise core internal - analysis, a contract
on the memory subsystem is assumed that then allows the reasoning on global
properties. The core can communicate with the memory subsystem through an
interface, but never directly accesses its internal state. The interface expects
inputs like the type of access (read, fetch, write, . . . ), the virtual address, the
privilege state of the processor, and other parameters. It updates the state of the
memory subsystem and returns a success or error message along with possibly
read data. While being agnostic about the concrete behaviour of the memory sub-
systems, we assume that there is a secure memory con�guration Pm, restricting
unprivileged accesses, e.g., through page table settings. Furthermore, we assume
the existence of a low-equivalence relation Rm on pairs of memory subsystems.



Typically, two memories in Rm would agree on memory content accessible in an
unprivileged processor mode. When in unprivileged processor mode and starting
from secure memory con�gurations, transitions on memory subsystems are as-
sumed to maintain both the memory relation and secure con�gurations. Consider
an update of state s assigning the sum of the values of register y and the memory
at location a to register x, slightly simpli�ed: s[x := s.y+ read(a, s.mem)]. Since
read - as a function of the memory interface - satis�es the constraints above, for
two pre-states s1 and s2 satisfying Pms1.mem ∧ Pms2.mem ∧Rm(s1.mem, s2.mem),
we can infer that read will return the same value or error. Overall, with pre-
conditions met, two states that agree on x, y, and the low parts of the memory
before the computation, will also agree after the computation. That is, as long
as read ful�ls the contract, the analysis of the core (and in the end the global
analysis) does not need to be concerned with details of the memory subsystem.

3 ISA Information Flow Analysis

3.1 Objectives

Consider an ISA model with an initial speci�cation determining some precondi-
tions (e.g., on the privilege mode) and some system components, typically only
the program counter, that are to be regarded as observable (or low) by some
given actor. If there is information �ow from some other component (say, a con-
trol register) to some of these initially-low components, this other component
must be regarded as observable too for noninterference to hold. The objective of
the analysis is to identify all these other components that are observable due to
their direct or indirect in�uence on the given low components.

A labelling L assigns to each atomic component (component without subcom-
ponents) a label, high or low. 3 It is sound if it does not mark any component
as high that can in�uence, and hence pass information to, a component marked
as low. In the re�nement order the labelling L′ re�nes L (L v L′), if low com-
ponents in L are low also in L′. The labelling L is accurate, if L is minimal in
the re�nement order such that L is sound and re�nes the initial labelling.

Determining whether a labelling is accurate is generally undecidable. Suppose
C(P (x), s.C, 0) is assigned to a low component. Deciding whether C needs to be
deemed low requires deciding whether there is some valid instantiation of x,
such that P (x) holds, which might not be decidable. However, it appears that
in many cases, including those considered here, accurate labellings are feasible.
In our approach we check the necessity of a label re�nement by identifying an
actual �ow from the witness component to some low component. We cannot
guarantee that this check always succeeds, for undecidability reasons. If it does
not, the tool still tries to re�ne the low equivalence and a warning that the �nal
relation may no longer be accurate is generated. For the considered case studies
the tool always �nds an accurate labelling, which is then by construction unique.

3 We have not found a use for ISA security lattices of �ner granularity.



Labellings correspond to low-equivalence relations on pairs of states, relations
that agree on all low components including the memory relation Rm and leave
all other components unrestricted. Noninterference holds if the only components
a�ecting the state or any return value are themselves low. Formally, assume the
two pre-states s1 and s2 agree on the low-labelled components, expressed by a
low-equivalence relation R on those states. Then, for a given transition Φ and
preconditions P, noninterference N (R,P, Φ) holds if after Φ the post-states are
again in R and the resulting return values are equal:

N (R,P, Φ) := ∀s1, s2, v1, v2, t1, t2 :
((v1, t1) = Φs1) ∧ ((v2, t2) = Φs2) ∧R(s1, s2) ∧ Ps1 ∧ Ps2
⇒ R(t1, t2) ∧ (v1 = v2)

Preconditions on the starting states can include architecture properties (ver-
sion number, present extensions, etc.), a secure memory con�guration and a
speci�cation of the privilege level. In our framework the user de�nes relevant
preconditions and an initial low-equivalence relation R0 for an input ISA. The
goal of the analysis is to statically and automatically �nd an accurate re�ne-
ment of R0 so that noninterference holds for Φ = NEXT. The analysis yields the
�nal low-equivalence relation, the corresponding HOL4 noninterference theorem
demonstrating the soundness of the relation, and a noti�cation of whether the
analysis succeeded to establish a guarantee on the relation's accuracy. The proof
search is not guaranteed to terminate successfully, but we have found it robust
enough to reliably produce accurate output on ISA models of considerable com-
plexity (see Section 5). We do not treat timing and probabilistic channels and
leave safety-properties about unmodi�ed components for future work.

3.2 Challenges

Our goal is to perform the analysis from an initial, user-supplied labelling on a
standard ISA with minimal user interaction. In particular, we wish to avoid user
supplied label annotations and error-prone manual rewrites of the ISA speci�-
cation, that a type-based approach might depend on to eliminate some of the
complications speci�c to ISA models. Instead, we address those challenges with
symbolic evaluation and the application of simpli�cation theorems. Since both
are available in HOL4, and so are the models, we verify noninterference in HOL4
directly. This also frees us from external preprocessing and soundness proofs,
thus minimizing the TCB. Below, we give examples for common challenges.

Representation The functional models that we use represent register sets as
mappings. Static type systems for (purely) functional languages [9,17] need to
assign secrecy levels uniformly to all image values, even if a mapping has both
public and secret entries. Adaptations of representation and type system might
allow to type more accurately for lookups on constant locations. But common
lookup patterns on locations represented by variables or complex terms would
require a preprocessing that propagates constraints throughout large expressions.



Semantics Unprivileged ARMv7 processes can access the current state of the
control register CPSR. The ISA speci�es to (i) map all subcomponents of the
control register to a 32-bit word and (ii) apply the resulting word to a bitmask.
As a result, the returned value does actually not depend on all subcomponents
of the CPSR, even though all of them were referred to in the �rst step. For
accuracy, an actual understanding of the arithmetics is required.

Context-sensitivity Earlier work on ISA information �ow [13] deals with ARM's
complex operational semantics in a stepwise analysis, focusing on one subpro-
cedure at a time. This allows for a systematic solution, but comes with the
risk of insu�cient context. For example, when reading from a register, usually
two steps are involved: �rst, the concrete register identi�er with respect to the
current processor mode is looked up; second, the actual reading is performed.
Analysing the reading operation in isolation is not accurate, since the lack of
constraints on the register identi�er would require to deem all registers low. In
order to include restrictions from the context, [13] required a number of manual
proofs. To avoid this, we analyse entire instructions at a time, using HOL4's
machinery to propagate constraints.

4 Approach

We are not the �rst to study (semi-)automated hardware veri�cation using the-
orem proving. As [5] points out for hardware re�nement proofs, a large share of
the proof obligations can be discharged by repeated unfolding (rewriting) of def-
initions, case splits and basic simpli�cation. While easy to automate, these steps
lead easily to an increase in complexity. The challenge, thus, is to �nd e�cient
and e�ective ways of rewriting and to minimize case splits throughout the proof.
Our framework traverses the instruction set instruction by instruction, managing
a task queue. For each instruction, three steps are performed: (i) rewriting/un-
folding to obtain evaluated forms, (ii) attempting to prove noninterference for
the instruction, (iii) on failure, using the identi�ed counterexample to re�ne the
low-equivalence relation. This section details those steps. After each re�nement,
the instructions veri�ed so far are re-enqueued. The steps are repeated until
the queue is empty and each instruction has successfully been veri�ed with the
most recent low-equivalence relation. Finally, noninterference is shown for NEXT,
employing all instruction lemmas, as well as rewrite theorems for the fetch and
decode transitions. Soundness is inherited from HOL4's machinery. Accuracy is
tracked by the counterexample veri�cation in step (iii).

4.1 Rewriting towards an Evaluated Form

The evaluated form of instructions is obtained through symbolic evaluation.
Starting from the de�nition of a given transition, (i) let-expressions are elimi-
nated, (ii) parameters of subtransitions are evaluated (in a call-by-value man-
ner), (iii) the subtransitions are recursively unfolded by replacing them with



their respective evaluated forms, (iv) the result is normalized, and (v) in a few
cases substituted with an abstraction. Normalization and abstraction are de-
scribed below. For the �rst three steps we reuse evaluation machinery from [7]
and extend it, mainly to add support for automated subtransition identi�cation
and recursion. Preconditions, for example on the privilege level, allow to reduce
rewriting time and the size of the result. Since they can become invalid during
instruction execution, they have to be re-evaluated for each recursive invocation.
Throughout the whole rewriting process, various simpli�cations are applied, for
example on nested conditional expressions, case distinctions, words, and pairs,
as well as conditional lifting, which we motivate below. For soundness, all steps
produce equivalence theorems.

Step Library The ISA models are provided together with so-called step li-

braries, speci�c to every architecture [7]. They include a database of pre-
computed rewrite theorems, connecting transitions to their evaluated forms.
Those theorems are computed in an automated manner, but are guided man-
ually. Our tool is able to employ them as hints, as long as their preconditions
are not too restrictive for the general security analysis. Otherwise, we compute
the evaluated forms autonomously. Besides instruction speci�c theorems, we use
some datatype speci�c theorems and general machinery from [7].

Conditional Lifting Throughout the rewriting process, the evaluated forms of
two sequential subtransitions might be composed by passing the result of the �rst
transition into the formal parameters of the second. This often leads to terms
like γ(s) := C(b, s[C1 := c1], s[C2 := c2]).C3. However, in order to derive equality
properties in the noninterference proof (e.g., [s1.C3 = s2.C3] ` γ(s1) = γ(s2)) or
to check validity of premises (e.g., γ(s) = 0), conditional lifting is applied:

γ(s) = C(b, s[C1 := c1], s[C2 := c2]).C3 lifting

= C(b, (s[C1 := c1]).C3, (s[C2 := c2]).C3) simplifying

= C(b, s.C3, s.C3) merging

= s.C3

To mitigate exponential blow-up, conditional lifting should only be applied where
needed. For record �eld accesses we do this in a top-down manner, ignoring �elds
outside the current focus. For example, in γ(s) there is no need to process c1 at
all, even in cases where c1 itself is a conditional expression.

Normalization With record �eld accesses being so critical for performance,
both rewriting and proof bene�t from (intermediate) evaluated forms being nor-
malized. A state term is normalized if it only consists of record �eld updates to
a state variable s, that is, it has the form

s[C1 := c1, . . . , Cn := cn, R1 := s.R1[C1,1 := c1,1, . . . , C1,k := c1,k], . . .].



For a state term τ updating state variable s in the �elds C1, . . . , Cn with the val-
ues c1, . . . , cn, we verify the normalized form in a forward construction (omitting
subcomponents here and below for readability; they are treated analogously):

τ = τ [C1 := τ.C1, . . . , Cn := τ.Cn] (1)

= s[C1 := τ.C1, . . . , Cn := τ.Cn] (2)

= s[C1 := c1, . . . , Cn := cn] (3)

We signi�cantly improve proof performance with the abstraction of complex
expressions by showing (1) independently of the concrete τ and (2) independently
of the values of the updates, both those inside τ and those applied to τ . We obtain
c1, . . . , cn by similar means to those shown in the lifting example of γ above.

In [7], both conditional lifting and normalization are based on the precom-
putation of datatype speci�c lifting and unlifting lemmas for updates. Our pro-
cedures are largely independent of record types and update patterns. However,
because of the performance bene�ts of [7], we plan to generalize/automate their
normalization machinery or combine both approaches in future work.

Abstracted Transitions Even with normalization, the speci�cation of a tran-
sition grows quickly when unfolding complex subtransitions, especially for loops.
We therefore choose to abstract selected subtransitions. To this end, we substi-
tute their evaluated forms with terms that make potential �ows explicit, but
abstract away from concrete speci�cations. Let the normalized form of transi-
tion Φ be ~φs = (β(s), s[C1 := γ1(s), . . . , Cn := γn(s)]). The values of all primitive
state updates γ1(s), . . . , γn(s) on s and the return value β(s) of Φ are substituted
with new function constants f0, f1, . . . , fn applied to relevant state components
actually accessed instead of to the entire state:

Φs = ~φs = (f0(s.C0,1, . . . , s.C0,k0),
s[C1 := f1(s.C1,1, . . . , s.C1,k1

), . . . , Cn := fn(s.Cn,1, . . . , s.Cn,kn
)])

Except for situations that suggest the need for a re�nement of the low-equivalence
relation, f0, . . . , fn do not need to be unfolded in the further processing of Φ.
Low-equivalence of the post-states can be inferred trivially:

[(s1.C1,1 = s2.C1,1) ∧ . . .] ` f1(s1.C1,1, s1.C1,2, . . .) = f1(s2.C1,1, s2.C1,2, . . .))

To avoid accuracy losses in cases where ~φ mentions components that neither
return value nor low components actually depend on, we unfold abstractions as
last resort before declaring a noninterference proof as failed.

4.2 Backward Proof Strategy

Having computed the evaluated form for an instruction Φ, we proceed with
the veri�cation attempt of N (R,P, Φ) through a backward proof, for the user-
provided preconditions P and the current low-equivalence relation R. The sound
backward proof employs a combination of the following steps:



� Conditional Lifting: Especially in order to resolve record �eld accesses
on complex state expressions, we apply conditional lifting in various scopes
(record accesses, operators, operands) and degrees of aggressiveness.

� Equality of Subexpressions: Let F be a functional component and n and
m be two variables ranging over {0, 1, 2}. The equality

C(n = 2, 0, s1.F (C(n, a, b, c))) + s1.F (C(m, a, b, a))
= C(n = 2, 0, s2.F (C(n, a, b, c))) + s2.F (C(m, a, b, a))

can be established from the premises s1.F (a) = s2.F (a) and s1.F (b) =
s2.F (b) by lifting the distinctions on n and m outwards or - alternatively
- by case splitting on n and m. Either way, equality should be established
for each summand separately, in order to limit the number of considered
cases to 3 + 3 instead of 3 × 3. Doing so in explicit subgoals also helps in
discarding unreachable cases, such as the one where c would be chosen. We
identify relevant expressions via pre-de�ned and user-de�ned patterns.

� Memory Reasoning: Axioms and derived theorems on noninterference
properties of the memory subsystem and maintained invariants are applied.

� Simpli�cations: Throughout the whole proof process, various simpli�ca-
tions take e�ect, for example on record �eld updates.

� Case Splitting: Usually the mentioned steps are su�cient. For a few harder
instructions or if the low-equivalence relation requires re�nement, we apply
case splits, following the branching structure closely.

� Evaluation: After the case splitting, a number of more aggressive simpli�ca-
tions, evaluations, and automatic proof tactics are used to unfold remaining
constants and to reason about words, bit operations, unusual forms of record
accesses, and other corner cases.

4.3 Relation Re�nement

Throughout the analysis, re�nement of the low-equivalence relation is required
whenever noninterference does not hold for the instruction currently consid-
ered. Counterexamples to noninterference enable the identi�cation of new com-
ponents to be downgraded to low. When managed carefully, failed backward
proofs of noninterference allow to extract such counterexamples. However, back-
ward proofs are not complete. Unsatis�able subgoals might be introduced despite
the goal being veri�able. For accuracy, we thus verify the necessity of downgrad-
ing a component C before the actual re�nement of the relation. To that end, it
is su�cient to identify two witness states that ful�l the preconditions P, agree
on all components except C, and lead to a violation of noninterference in respect
to the analysed instruction Φ and the current (yet to be re�ned) relation R. We
refer to the existence of such witnesses as N :

N (R,P, Φ, C) := ∃s, x1, x2, v1, v2, t1, t2 :
((v1, t1) = Φ(s[C := x1])) ∧ ((v2, t2) = Φ(s[C := x2]))
∧P(s[C := x1]) ∧ P(s[C := x2]) ∧ (¬R(t1, t2) ∨ (v1 6= v2))



If such witnesses exist, any sound relation R′ re�ning R will have to contain
some restriction on C. With the chosen granularity, that translates to ∀s1, s2 :
R′(s1, s2) ⇒ (R(s1, s2) ∧ s1.C = s2.C). We proceed with the weakest such
relation, i.e., R′(s1, s2) := (R(s1, s2)∧s1.C = s2.C). As discussed in Section 3.1,
it can be undecidable whether the current relation needs re�nement. However,
for the models that we analyzed, our framework was always able to verify the
existence of suitable witnesses. The identi�cation and veri�cation of new low
components consists of three steps:

1. Identi�cation of a new low component. We transform subgoal G on
top of the goal stack into a subgoal false with premises extended by ¬G.
In this updated list of premises for the pre-states s1 and s2, we identify a
premise on s1 which would solve the transformed subgoal by contradiction
when assumed for s2 as well. Intuitively, we suspect that noninterference is
prevented by the disagreement on components in the identi�ed premise. We
arbitrarily pick one such component as candidate for downgrading.

2. Existential veri�cation of the scenario. To ensure that the extended
premises alone are not already in contradiction, we prove the existence of a
scenario in which all of them hold. We furthermore introduce the additional
premise that the two pre-states disagree on the chosen candidate, but agree
on all other components. An instantiation satisfying this existential state-
ment is a promising suspect for the set of witnesses for N . The existential
proof in HOL4 re�nes existentially quanti�ed variables with patterns, e.g.,
symbolic states for state variables, bit vectors for words, and mappings with
abstract updates for function variables (allowing to reduce ∃f : P (f(n))
to ∃x : P (x)). If possible, existential goals are split. Further simpli�cations
include HOL4 tactics particular to existential reasoning, the application of
type-speci�c existential inequality theorems, and simpli�cations on word and
bit operations. If after those steps and automatic reasoning existential sub-
goals remain, the tool attempts to �nish the proof with di�erent combina-
tions of standard values for the remaining existentially quanti�ed variables.

3. Witness veri�cation. We use the anonymous witnesses of the existential
statement in the previous step as witnesses for N . After initialisation, the
core parts of the proof strategy from the failed noninterference proof are
repeated until the violation of noninterference has been demonstrated.

In order to keep the analysis focused, it is important to handle case splits before
entering the re�nement stage. At the same time, persistent case splits can be
expensive on a non-provable goal. Therefore, we implemented a depth �rst proof
tactical, which introduces hardly any performance overhead on successful proofs,
but fails early in cases where the proof strategy does not succeed. Furthermore,
whenever case splits become necessary in the proof attempt, the framework
strives to diverge early, prioritizing case splits on state components.



5 Evaluation

We applied our framework to analyse information �ows on ARMv7-A and MIPS-
III (64-bit RS4000). For ARM, we focus on user mode execution without security
or virtualization extension. Since unprivileged ARM code is able to switch be-
tween several instructions sets (ARM, Thumb, Thumb2, ThumbEE), the infor-
mation �ow analysis has to be performed for all of them. For MIPS, we consider
all three privilege modes (user, kernel, and supervisor). The single-core model
does not include �oating point operations or memory management instructions.

ISA mode initial relation �nal relation
ARMv7-A user mode program counter user registers; control register CPSR (all �ags);

�oating point registers of FP.REG and FP.FSPCR;
TEEHBR register (coprocessor 14); Encoding
ghost component; system control register
SCTLR (coprocessor 15, �ags: EE, TE, V, A, U, DZ)

MIPS-III user or kernel
or supervisor
mode

program counter;
BranchTo; BranchDelay;
CP0.Count; exception
marker; CP0.Status.KSU;
CP0.Status.EXL;
CP0.Status.ERL

all modelled system components

MIPS-III restricted user
mode

general purpose register set; LLbit; lo; hi;
CP0.Config.BE; CP0.Status.RE; CP0.Status.BEV;
exceptionSignalled

Table 1. Identi�ed �ows (model components might deviate from physical systems)

Table 1 shows the initial and accurate �nal low-equivalence relations for the
two ISAs with di�erent con�gurations. All relations re�ne the memory relation.
The �nal relation column only lists components not already restricted by the cor-
responding initial relations. For simplicity, the initial relation for MIPS restricts
three components accessed on the highest level of NEXT. The corresponding table
cell also lists components already restricted by the preconditions. Initially un-
aware of the privilege management in MIPS, we were surprised that our tool �rst
yielded the same results for all MIPS processor modes and that even user pro-
cesses can read the entire state of system coprocessor CP0, which is responsible for
privileged operations such as the management of interrupts, exceptions, or con-
texts. To restrict user privileges, the CU0 status �ag must be cleared (see last line
of the table). While ARMv7-processes in user mode can not read from banked
registers of privileged modes, they can infer the state of various control registers.
Alignment control register �ags (CP15.SCTLR.A/U in ARMv7) are a good example
for implicit �ows in CPUs. Depending on their values, an unaligned address will
either be accessed as is, forcibly aligned, or cause an alignment fault. Table 2
shows the time that rewriting, instruction proofs (including relation re�nement),
and the composing proof for NEXT took on a single Xeonr X3470 core. The �rst
benchmark for MIPS refers to unrestricted user mode (with similar times as
for kernel and supervisor mode), the second one to restricted user mode. Even
though we borrowed a few data type theorems and some basic machinery from
the step library, we did not use instruction speci�c theorems for the MIPS veri-
�cation. Both ISAs have around 130 modelled instructions, but with 9238 lines



ISA rewrite instr. NEXT total
ARMv7 29,829 46,146 2,171 78,146 (21 h, 42 min)
MIPS (1) 537 1,790 1,594 3,921 (1 h, 5 min)
MIPS (2) 537 1,216 562 2,315 (38 min)

Table 2. Proof performance (in seconds)

step min median mean max
rewrite 1 25 167 2,384
instr. (success) 1 15 96 3,605
instr. (fail) 3 26 72 1,544
re�nement 7 50 89 1,326

Table 3. Performance ARMv7 proof

of L3 compared to 2080 lines [7], the speci�cations of the ARMv7 instructions
are both larger and more complex. Consequently, we observed a remarkable
di�erence in performance. However, as Table 3 shows, minimum, median, and
mean processing times (given in seconds) for the ARM instructions are actually
moderate throughout all steps (rewriting, successful and failed noninterference
proofs, and relation re�nement). Merely a few complex outliers are responsible
for the high veri�cation time of the ARM ISA. While we believe that optimiza-
tions and parallelization could signi�cantly improve performance, those outliers
still demonstrate the limits of analyzing entire instructions as a whole. Combin-
ing our approach with compositional solutions such as [13] could overcome this
remaining challenge. We leave this for future work.

6 Related Work

While most work on processor veri�cation focuses on functional correctness
[4,5,21] and ignores information �ow, we survey hardware noninterference, both
for special separation hardware and for general purpose hardware.

Noninterference Veri�cation for Separation Hardware Wilding et al. [24] verify
noninterference for the partitioning system of the AAMP7G microprocessor. The
processor can be seen as a separation kernel in hardware, but lacks for example
user-visible registers. Security is �rst shown for an abstract model, which is later
re�ned to a more concrete model of the system, comprising about 3000 lines of
ACL2. The proof appears to be performed semi-automatically.

SAFE is a computer system with hardware operating on tagged data [2].
Noninterference is �rst proven for a more abstract machine model and then
transferred to the concrete machine by re�nement. The proof in Coq does not
seem to involve much automation.

Sinha et al. [20] verify con�dentiality of x86 programs that use Intel's Soft-
ware Guard Extensions (SGX) in order to execute critical code inside an SGX en-
clave, a hardware-isolated execution environment. They formalize the extended
ISA axiomatically and model execution as interleaving between enclave and en-
vironment actions. A type system then checks that the enclave does not contain
insecure code that leaks sensitive data to non-enclave memory. At the same
time, accompanying theorems guarantee some protection from the environment,
in particular that an adversary can not in�uence the enclave by any instruction
other than a write to input memory. However, [20] assumes that SGX manage-
ment data structures are not shared and that there are no register contents that



survive an enclave exit and are readable by the environment. Once L3/HOL4
models of x86 with SGX are available, our machinery would allow to validate
those assumptions in an automated manner, even for a realistic x86 ISA model.
Such a veri�cation would demonstrate that instructions executed by the en-
vironment do not leak enclave data from shared resources (like non-mediated
registers) to components observable by the adversary.

Noninterference Veri�cation for General Purpose Hardware Information �ow
analysis below ISA level is discussed in [18] and [15]. Procter et al. [18] present a
functional hardware description language suitable for formal veri�cation, while
the language in [15] can be typed with information �ow labels to allow for static
veri�cation of noninterference. Described hardware can be compiled into VHDL
and Verilog, respectively. Both papers demonstrate how their approaches can be
used to verify information �ow properties of hardware executing both trusted
and untrusted code. We are not aware of the application of either approach to
information �ow analysis of complex commodity processors such as ARM.

Tiwari et al. [23] augment gate level designs with information �ow labels,
allowing simulators to statically verify information �ow policies. Signals from
outside the TCB are modelled as unknown. Logical gates are automatically re-
placed with label propagating gates that operate on both known and unknown
values. The authors employ the machinery to verify the security of a combination
of a processor, I/O, and a microkernel with a small TCB. It is unclear to us how
the approach would scale to commodity processors with a more complex TCB.
From our own experience on ISA-level, the bottleneck is mainly constituted by
the preprocessing to obtain the model's evaluated form and by the identi�cation
of a suitable labelling. The actual veri�cation is comparatively fast.

In earlier work [13] we described a HOL4 proof for the noninterference (and
other isolation properties) of a monadic ARMv7-model. A compositional ap-
proach based on proof rules was used to support a semi-automatic analysis.
However, due to insu�cient context, a number of transitions had to be veri�ed
manually or with the support of context-enhancing proof rules. In the present
work, we overcome this issue by analysing entire instructions. Furthermore, our
new analysis exhibits the low-equivalence relation automatically, while [13] pro-
vides it as �xed input. Finally, the framework described in the present paper is
less dependent of the analysed architecture.

Veri�cation of Binaries Fox's ARMmodel is also used to automatically verify se-
curity properties of binary code. Balliu et al. [3] does this for noninterference, Tan
et al. [22] for safety-properties. Despite the seeming similarities, ISA analysis and
binary code analysis di�er in many respects. While binary veri�cation considers
concrete assembly instructions for (partly) known parameters, ISA analysis has
to consider all possible assembly instructions for all possible parameters. On the
other hand, it is su�cient for an ISA analysis to do this for each instruction
in isolation, while binary veri�cation usually reasons on a sequence (or a tree
of) instructions. In e�ect, that makes the veri�cation of a binary program an
analysis on imperative code. In contrast, ISA analysis (in our setting) is really



concerned with functional code, namely the operational semantics that describe
the di�erent steps of single instructions. In either case, to enable full automation,
both analyses have to include a broader context when the local context is not
su�cient to verify the desired property for a single step in isolation. As discussed
above, we choose an instruction-wide context from the beginning. Both [3] and
[22] employ a more local reasoning. In [22] a Hoare-style logic is used and con-
text is provided by selective synchronisation of pre- and postconditions between
neighbouring code blocks. In [3] a forward symbolic analysis carries the context
in a path condition when advancing from instruction to instruction. SMT solvers
then allow to discard symbolic states with non-satis�able paths.

7 Discussion on Unpredictable Behaviour

ISA speci�cations usually target actors responsible for code production, like pro-
grammers or compiler developers. Consequently, they are often based on the as-
sumption that executed code will be composed from a set of well-de�ned instruc-
tions and sound conditions, so that no one relies on combinations of instructions,
parameters and con�gurations not fully covered by the speci�cation. This allows
to keep instructions partly underspeci�ed and leave room for optimizations on
the manufacturer's side. However, this practice comes at the cost of actors who
have to trust the execution of unknown and potentially malicious third-party
code. For example, an OS has an interest in maintaining con�dentiality between
processes. To that end, it has di�erent means such as clearing visible registers
on context switches. But if the speci�cation is incomplete on which registers
actually are visible to an instruction with uncommon parameters, then there is
no guarantee that malicious code can not use underspeci�ed instructions (i.e.,
instructions resulting in unpredictable states) to learn about otherwise secret
components. ARM attempts to address this by specifying that �unpredictable
behaviour must not perform any function that cannot be performed at the cur-
rent or lower level of privilege using instructions that are not unpredictable�. 4

While this might indeed remedy integrity concerns, it is still problematic for non-
interference. An underspeci�ed instruction can be implemented by two di�erent
�safe� behaviours, with the choice of the behaviour depending on an otherwise se-
cret component. The models by Fox et al. mark the post-states of underspeci�ed
operations as unpredictable by assigning an exception marker to those states.
In addition, newer versions still model a reasonable behaviour for such cases,
but there is no guarantee that the manufacturer chooses the same behaviour.
A physical implementation might include �ows from more components than the
model does, or vice versa. A more conservative analysis like ours takes state
changes after model exceptions into account, but can still miss �ows simply not
speci�ed. To the rescue might come statements from processor designers like
ARM that �unpredictable behaviour must not represent security holes�. 5 In one

4 ARMv7-A architecture reference manual, issue C: http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.ddi0406c
5 ARMv7-A architecture reference manual, issue B

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c


interpretation, �ows not occurring elsewhere can be excluded in underspeci�ed
instructions. The need to rely on this interpretation can be reduced (but not
entirely removed) when the exception marker itself is considered low in the ini-
tial labelling. As an example, consider an instruction that is well-de�ned when
system component C1 is 0, but underspeci�ed when it is 1. The manufacturer
might choose di�erent behaviours for both cases, thus possibly introducing a �ow
from C1 to low components. At the same time, the creator of the formal model
might implement both cases in the same way, so that the analysis could miss
the �ow. But with a low exception marker, C1 would also be labelled low, since
it in�uences the marker. However, an additional undocumented dependency on
another component C2 that only exists when C1 is 1 can still be missed.

8 Conclusions and Future Work

We presented a sound and accurate approach to automatically and statically
verify noninterference on instruction set architectures, including the automatic
identi�cation of a least restrictive low-equivalence relation. Besides applying our
framework to more models such as the one of ARMv8, we intend to improve
robustness and performance, and to cover integrity properties as well.

Integrity Properties We plan to enhance the framework by safety-properties
such as nonex�ltration [10,13] and mode switch properties [13]. Nonex�ltration
asserts that certain components do not change throughout (unprivileged) ex-
ecution. Mode switch properties make guarantees on how components change
when transiting to higher privilege levels, for example that the program counter
will point to a well-de�ned entry point of the kernel code. We believe that both
properties can be derived relatively easily from the normalized forms of the in-
structions.

Performance Optimization While our benchmarks have demonstrated that ISA
information �ow analysis on an instruction by instruction basis allows for a large
degree of automation, they also have shown that this approach introduces severe
performance penalties for more complex instructions. To increase scalability and
at the same time maintain automation, we plan to investigate how to combine
the compositional approach of [13] with the more global reasoning demonstrated
here. Furthermore, there is potential for improvements in the performance of
individual steps. E.g., our normalization could be combined with the one of [7].

Acknowledgments. Work supported by the Swedish Foundation for Strategic
Research, by VINNOVA's HASPOC-project, and by the Swedish Civil Contin-
gencies Agency project CERCES. Thanks to Anthony C. J. Fox, Roberto Guan-
ciale, Nicolae Paladi, and the anonymous reviewers for their helpful comments.



References

1. E. Alkassar, M. A. Hillebrand, W. J. Paul, and E. Petrova. Automated veri�cation
of a small hypervisor. In VSTTE, pages 40�54, 2010.

2. A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hriµcu,
D. Pichardie, B. C. Pierce, R. Pollack, and A. Tolmach. A veri�ed information-
�ow architecture. In Principles of Programming Languages, POPL, pages 165�178,
2014.

3. M. Balliu, M. Dam, and R. Guanciale. Automating information �ow analysis of
low level code. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS, pages 1080�1091, 2014.

4. S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and W. J. Paul. Putting it all
together � formal veri�cation of the VAMP. International Journal on Software
Tools for Technology Transfer, 8(4):411�430, 2006.

5. D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. E�ective theorem proving for
hardware veri�cation. In Theorem Provers in Circuit Design, pages 203�222, 1994.

6. M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz. Formal veri�-
cation of information �ow security for a simple ARM-based separation kernel. In
Computer and Communications Security, CCS, pages 223�234, 2013.

7. A. C. J. Fox. Improved tool support for machine-code decompilation in HOL4. In
Interactive Theorem Proving (ITP), pages 187�202, 2015.

8. A. C. J. Fox and M. O. Myreen. A trustworthy monadic formalization of the
ARMv7 instruction set architecture. In Interactive Theorem Proving (ITP), pages
243�258, 2010.

9. N. Heintze and J. G. Riecke. The SLam calculus: Programming with secrecy and
integrity. In Principles of Programming Languages, POPL, pages 365�377, 1998.

10. C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Applying formal methods to
a certi�ably secure software system. IEEE Trans. Softw. Eng., 34(1):82�98, 2008.

11. HOL4 project. http://hol.sourceforge.net/.
12. S. Hunt and D. Sands. On �ow-sensitive security types. In Principles of Program-

ming Languages, POPL, pages 79�90, 2006.
13. N. Khakpour, O. Schwarz, and M. Dam. Machine assisted proof of ARMv7 in-

struction level isolation properties. In Certi�ed Programs and Proofs (CPP), pages
276�291, 2013.

14. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
formal veri�cation of an OS kernel. In SOSP, pages 207�220, 2009.

15. X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and B. Hard-
ekopf. Caisson: A hardware description language for secure information �ow. In
Programming Language Design and Implementation, PLDI, pages 109�120, 2011.

16. T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein. seL4: From general purpose to a proof of in-
formation �ow enforcement. In Security and Privacy, pages 415�429, 2013.

17. F. Pottier and V. Simonet. Information �ow inference for ML. In Principles of
Programming Languages, POPL, pages 319�330, 2002.

18. A. Procter, W. L. Harrison, I. Graves, M. Becchi, and G. Allwein. Semantics driven
hardware design, implementation, and veri�cation with ReWire. In Languages,
Compilers and Tools for Embedded Systems, LCTES, pages 13:1�13:10, 2015.

19. O. Sibert, P. A. Porras, and R. Lindell. The Intel 80x86 processor architecture:
Pitfalls for secure systems. In Security and Privacy, SP, pages 211�222, 1995.

http://hol.sourceforge.net/


20. R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Verifying con�dentiality
of enclave programs. In Comp. and Comm. Security, pages 1169�1184, 2015.

21. M. Srivas and M. Bickford. Formal veri�cation of a pipelined microprocessor. IEEE
Softw., 7(5):52�64, 1990.

22. J. Tan, H. J. Tay, R. Gandhi, and P. Narasimhan. AUSPICE: Automatic safety
property veri�cation for unmodi�ed executables. In Working Conference on Veri-
�ed Software: Tools, Theories and Experimems (VSTTE), pages 202�222, 2015.

23. M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf, R. Kastner,
F. T. Chong, and T. Sherwood. Crafting a usable microkernel, processor, and
I/O system with strict and provable information �ow security. In International
Symposium on Computer Architecture, ISCA, pages 189�200, 2011.

24. M. M. Wilding, D. A. Greve, R. J. Richards, and D. S. Hardin. Formal veri�ca-
tion of partition management for the AAMP7G microprocessor. In D. S. Hardin,
editor, Design and Veri�cation of Microprocessor Systems for High-Assurance Ap-
plications, pages 175�191. Springer, 2010.


	Automatic Derivation of Platform Noninterference Properties

