
Towards Software Assets Origin Selection
Supported by a Knowledge Repository

Antonio Cicchetti∗, Markus Borg†, Séverine Sentilles∗, Krzysztof Wnuk‡, Jan Carlson∗ and Efi Papatheocharous†
∗Mälardalen University,

Västerås, Sweden
Email: name.surname@mdh.se
†SICS Swedish ICT AB,

Kista, Sweden
Email: name.surname@sics.se

‡Blekinge Institute of Technology,
Karlskrona, Sweden

Email: krzysztof.wnuk@bth.se

Abstract—Software architecture is no more a mere system
specification as resulting from the design phase, but it includes the
process by which its specification was carried out. In this respect,
design decisions in component-based software engineering play
an important role: they are used to enhance the quality of
the system, keep the current market level, keep partnership
relationships, reduce costs, and so forth. For non trivial systems,
a recurring situation is the selection of an asset origin, that
is if going for in-house, outsourcing, open-source, or COTS,
when in the need of a certain missing functionality. Usually,
the decision making process follows a case-by-case approach, in
which historical information is largely neglected. This solution
avoids the overhead of keeping detailed documentation about
past decisions, but hampers consistency among multiple, possibly
related, decisions.

The ORION project aims at developing a decision support
framework in which historical decision information plays a
pivotal role: it is used to analyse current decision scenarios, take
well-founded decisions, and store the collected data for future
exploitation. In this paper, we outline the potentials of such a
knowledge repository, including the information it is intended to
be stored in it, and when and how to retrieve it within a decision
case.

I. INTRODUCTION

Software architecture is not only the final product of the
design efforts, but more and more is including the decision
history that brought to the system as it is finally specified [1].
One of the intended goals underlying this trend is, together
with designing the system architecture, preserving domain-
experts’ knowledge/reasoning, which is implicitly exploited to
reach the design solution and would be lost if not recorded
appropriately. However, in software architecture knowledge
management is a challenge [2], and recording the information
about a certain decision making process is an open research
question: on the one hand, the stored decision information
shall be detailed enough to turn out as useful for future de-
cision making scenarios, even in cross-application and cross-
domain situations; on the other hand, the efforts for recording
first, and for retrieving/analysing/maintaining past decision
data later, shall be reduced to the minimum [3].

Component-Based Software Engineering (CBSE) has been
recognised as an effective methodology to tackle development
complexity: it is based on the reuse of units of computation
called, indeed, components, appropriately assembled to build-
up the final system [4]. Lately, the concept of component has
been extended to include services, where the computational
unit can be plugged to the system on demand [5]. Therefore,
in this paper we refer more generically to software assets
(or simply assets) as the reusable units of computation that
are used to build-up a system. In this context, choosing
between assets origins is an architectural aspect that can have
important side effects in the future history of the system. In
particular, assets origins can be distinguished in: i) in-house
development, ii) outsourcing, iii) open source, iv) COTS. In
general, the choice of a particular origin may not be straight-
forward; on the contrary, it might be affected by a number
of functional and extra-functional requirements related to the
system. Even more intricate, in several decision scenarios
contextual factors (e.g. partnerships) might come into play,
making an apparent solution not optimal. In this respect, it is of
paramount important to carefully analyse the available choices
and their corresponding implications. Moreover, the rationale
underlying the final decision should be recorded both to keep
a certain degree of consistency among related decisions and
to trace back decisions outcomes.

The ORION project [6] aims at providing support in the
decision making process, when opting between one of the four
asset origins mentioned above, by coordinating the relevant
information that should be taken into account in order to take
a well-founded decision. In other words, the ORION solution
does not aim at automatically deriving the most suitable origin
alternative, rather it is meant to aid the necessary activities
targeting the collection of enough evidence for justifying a
certain asset origin choice. In this context, we believe that the
existence of a knowledge repository is a necessary condition.
In fact, it allows to query previous decision experience and
therefore explore what aspects were considered as relevant for
past choices.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/301009648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this paper we discuss how a knowledge repository can be
used in a decision process as the one proposed by ORION. In
particular, ORION is based on several phases in the decision
making process, and for each phase we illustrate what kind
of historical knowledge might be relevant. Moreover, we
investigate the necessary trade-offs between amount of stored
decision information and corresponding ways of exploiting
the available information for supporting current decisions [7].
Eventually, we also discuss some practical issues emerging
from the use of our decision support in cross-application and
even cross-domain scenarios.

The structure of the work is as follows: next section
introduces the basic concepts related to the decision process
proposed by ORION, together with related research in archi-
tectural knowledge representation. Subsequently, Section III
introduces the intended contribution of this paper, that is,
proposing a decision support for software assets origin selec-
tion based on a knowledge repository. In turn, the repository
exploits a well-defined vocabulary to define all the necessary
details about a certain decision scenario, presented in a cor-
responding ontology in Section IV. Section V investigates a
number of technical issues that should be taken into account
when dealing with a decision support systems for software
engineering, knowledge representation, storage, analysis, and
maintenance. Eventually, the paper culminates with conclu-
sions about the investigations presented in this work and
describes the plans for the upcoming research directions.

II. BACKGROUND

A. The ORION Project

The ORION project envisions a decision process as the
one shown in Figure 1. Each decision is initiated by one (or
more) of its stakeholders, who establish the set of suitable
asset origins together with one or more goals. A goal is a
generic, possibly long-termed, objective a company is willing
to achieve: therefore, goals have to be “instantiated” into
corresponding selection criteria and priorities to be assigned to
the goodness of the properties taken into account1. Once this
basic information has been set-up, it is necessary to describe
the context in which the decision is going to be taken. In
particular, details about the company, its application domain,
competitors, and so forth, need to be carefully documented.
This latest activity will help in understanding the rationale
behind decisions both inside and outside the company: it is
not a coincidence that the context is exploited as pivotal
information to retrieve past experience and feed back the
decision process.

Notably, based on similar cases it is possible to check
that all the relevant stakeholders have been involved, that
appropriate origins have been taken into account, and that
selection criteria and priorities are consistent with the initial
decision goals as well as with the properties that will be
evaluated accordingly. Eventually, property values and their

1In this respect, a goal might embed requirements, architectural choices
lifecycle aspects, and so forth.

weights are given as input to a specific decision method which
will output a decision. It is worth noting that the decision
method has not to be necessarily automatic, rather it could
rely on expert opinions. In any case, once the final decision
is taken, the whole collection of data related to the current
decision process is saved in the knowledge repository.

B. Related works

The why behind design decisions culminating in a software
architecture has been gaining more and more importance,
even over the architecture specification itself [1]. This has
caused a growing need of storing architectural knowledge in
an effective way, i.e. finding a good balance between effort
required in storing and maintaining architectural details and
level of support in future architecting activities [7], [8].

A relevant corpus of literature has been devoted to inves-
tigating solutions for storing architectural knowledge, and a
review of the approached is beyond the scope of this work. The
interested reader is referred to [2], [9], [10] for detailed surveys
on the subject. For the purpose of this paper, it is important
to remark that (semi-)automated knowledge reasoning is still
scarcely supported, because it typically requires a preliminary
encoding of knowledge [2]. Such a preliminary encoding is
done through the ontology discussed in Section IV. A similar
approach is adopted in [11], where the authors address the
management of risk knowledge related to technology sus-
tainability, and create a corresponding ontology for encoding
sustainability risks.

Tang et al. [7] discuss the issues raising in defining an
ontology for software architecture documentation and propose
a lightweight solution. In this respect, the ontology proposed
in this paper is quite extensive due to the need of creating
a common comparison platform for decision knowledge pos-
sibly cross-application and cross-domain. Nevertheless, it is
partitioned by six key entities and related sub-categories, by
which the knowledge storage can be made smoother.

Historical information can provide valuable assistance dur-
ing the decision making process. Therefore, it should be
structured in a form of knowledge representation containing
as rich description of past cases as possible. For decision
makers, the main benefits of a well-structured knowledge
representation are 1) avoiding making the same suboptimal
decisions, 2) highlighting rationales for making past choices,
and 3) enabling comparisons across decision scenarios. The
expected benefits of tailored knowledge representations are
based on the hypothesis that many architectural decisions
are reoccurring and therefore, if properly stored, can form
valuable lessons learned. Moreover, aggregating the history
of several decisions based on a given criteria may reveal
interesting insights about strategic decision making directives.
Software architectural knowledge, i.e. architectural design and
architectural design decisions, need to be stored and man-
aged, otherwise it becomes tacit and erodes with personnel
turnover [12]. Finally, knowledge is useful when making
compromises and decisions under uncertainty [13].



Fig. 1. The ORION decision making process [6].

Knowledge representations regarding architectural decisions
have evolved over the years from “boxes and arrows” to
the international standard ISO/IEC/IEEE 42010 [14], and to
comprehensive architectural methods, e.g. RUP and capturing
design rationales [15]. Kruchten divides architectural decisions
into: 1) ontocrises - existence decisions about what structure
and behavior a system should have, 2) anticrises - what
elements should not be included in a system, 3) diacrises -
what should the quality of the system be and 4) pericrises -
executive decisions about the business environment, processes,
tools etc. Moreover, Kruchten listed the following attributes of
architectural design decisions: 1) epitome (the decision itself),
2) rationale (“why” or justification), 3) scope (by default
the decisions are universal but there could also be limited
scope decisions) 4) state (idea, decided, approved), 5) author,
timestamp and history, 6) categories, 7) cost, 8) risk, 9) related
decisions and 10) relationships with external artifacts (includ-
ing traces from and traces to). The “related decision” attribute
is particularly relevant for building knowledge representations
and is decomposed into the following types of relationships:
1) constrains, 2) forbids, 3) enables, 4) subsumes, 5) conflicts,
6) overrides, 7) comprises, 8) is bound to, 9) is an alternative
to, 10) is related to.

Tang and van Vliet listed the following types of design
concerns: 1) purposes and goals, 2) functional requirements,
3) non-functional requirements, 4) business environment, 5)
information system environment, 6) technology and IT envi-
ronments and 7) design (the chosen design has some influence
on the rest of the architecture) [16]. Design concerns 1), 2),
3) and 4) are related to Kruchten’s attributes of architectural
design decisions. Tyree and Akerman suggested a template
for architecture decisions that includes: issue, decision, status,
group, assumptions, constraints, positions, argument, implica-
tions, related decisions, related requirements, related artifacts,
related principles and notes [17].

Ali Babar et al. introduced a model of organizing ar-
chitectural knowledge that includes architecturally significant
requirements associated with patterns, scenarios and architec-
ture. This model also emphasizes architecture description as
means to capturing architecture design decisions and focuses
on capturing decision rationale [12]. Capilla et al. suggested
a meta-model of architectural design decisions that also in-

clude functional and non-functional requirements supported by
architecture. They recognize a decision model that involves
queries, constraints and dependencies but do not provide
further details. Decisions in their model have style, patterns
and variation points and can be taken in iterations [18].

van Vliet et al. present a model of architectural knowledge
that focuses around architectural design decisions related to
artifacts, stakeholders, activities and concerns [19]. No pat-
terns, requirements or associations to previous decisions or
other decisions are mentioned in this model.

Falessi et al. [20] presented a characterization schema for
decision-making techniques that divide them into problem
space (that describe quality attributes requested by various
stakeholders and their importance) and solution space (that
describe fulfilment that each alternative offers and uncertainty
that it has). This schema is enriched by a ranking table and
applied to fifteen decision making techniques for COST se-
lection. Finally, they emphasize the lack of comprehensive de-
scription of quality attributes for decision-making techniques
and mapped the identified challenges onto the characterization
schema.

Ontologies were used for representing decision making by
several authors, i.e. data models that represent concepts in
decision making as well as their relations. For example, Ko-
rnyshova and Deneckere introduced a decision-making ontol-
ogy for information system engineering [21]. Their ontology
includes decisions grouped in decision making situations and
described by criteria. Decision consequences, alternatives, and
stakeholders are also included. While there is indirect value
in the learning process involved in creating an ontology,
Schneider stresses that benefits are realized first when an
ontology is actually used [13, pp. 127].

III. CONTRIBUTION: TOWARDS A TAXONOMY-SUPPORTED
KNOWLEDGE REPOSITORY

For the purpose of this work, it is important to notice
that each phase of the decision process can benefit from
inputs/feedbacks coming from past knowledge. In particular,
the knowledge repository can serve as support for defining a
detailed context (number 6 in Figure 1), to retrieve similar
cases and hence explore past experiences (number 7) to refine
the set of candidate component origins and the selection



Fig. 2. The GRADE taxonomy.

itself (2 and 3 respectively), for getting feedbacks on both
the tentative and final selections (11 and 12, respectively),
and to eventually store the final selection decision. It is also
worth noting that ORION does not prescribe any automated
component selection mechanism: in fact, the knowledge is
meant to be exploited to take a more informed decision, and to
carefully document the process that brought to such outcome,
in full compliance with the more recent notion of software
architecture [1]. Even if the importance of historical data is
clear, it would be of no use without a common understanding
about decision information. In particular, without a consistent
vocabulary across different decisions, past cases would be
difficult (and even misleading) to analyse and exploit in an
effective way both internally and externally to the company.
In this respect, it is necessary to define a common taxonomy
by which all the decision elements can be carefully taken
into account and described. Therefore, hand-in-hand with
ORION we proposed the GRADE taxonomy [22], which
indeed introduces a common base of reasoning with respect to
each particular decision. Notably, as shown in Figure 2, each
decision can be characterised by multiple aspects pertaining
to the overall goal of a certain decision, the roles involved
in the decision making process, the properties of the involved
assets, the adopted decision method, and information about
the context in which the decision is taken.

Again, the role played by the knowledge repository is to
support a more conscious decision process:

• Goals are mapped towards corresponding evaluation cri-
teria. In this respect, the past knowledge can serve to
extend/refine the set of criteria derived from a certain
goal, and hence to adopt suitable acceptance criteria;

• Roles refer to a decision stakeholders: in every scenario,
it is important that all the relevant stakeholders are
considered in the decision process, in terms of both
inputs and outputs of a certain decision. Therefore, the
knowledge repository can help in keeping track of whom
should be involved in the decision process;

• Assets entail a number of implicit and explicit conse-
quences related, for instance, to the desired functional and
extra-functional properties for the system under develop-
ment and the application domain in which the selection
has to be made. Moreover, historical evaluations might
be useful in future decisions involving the same asset
origins;

• Decision refers to the collection of relevant criteria
(properties) and the evaluation of the most convenient
alternative. Properties are characterised by corresponding
estimation and/or evaluation methods. Moreover, the se-
lected decision method might be to exploit experience of
the decision makers, to adopt some mathematical optimi-
sation approach, and so on. The knowledge repository
can support both the selection of appropriate estima-
tion/evaluation methods for property measurements, and
the choice of a suitable decision method to be used to
take the final decision;

• Environment groups the set of “background” information,
called context in ORION, which can play an important
role in selecting the feasible origin alternatives. Context
information becomes extremely relevant when trying to
understand the rationale behind a certain decision, as it
can affect the criteria derived from the decision goals,
the stakeholders, the feasible origin alternatives, and the
selected properties and evaluation methods as well. As
a consequence, a knowledge repository can improve the
comprehension of the decision scenario and the effects
of it on the decision process.

In the following section, it is illustrated a deeper investiga-
tion about a possible taxonomy, corresponding to the concepts
defined in GRADE, appropriate to adequately represent the
necessary knowledge about a certain decision in software
assets origin selection.

IV. ARCHITECTURAL KNOWLEDGE REPRESENTATION

Figure 3 shows the initial version of the ontology intended
for use in the decision support system under development in
the ORION project, in the form of an ER model. The ontology
extends the GRADE taxonomy [22] by refining entities and
introducing their inter-relations. The ontology revolves around
the Decision entity, the centerpiece of the decision process
under study in the ORION project. The Decision can be
intended to be used privately or publicly (e.g., across organi-
zational boundaries/limits). The Decision is composed of six
key entities on the first level, from left to right: Environment
Aspect, Value Perspective, Asset Usage, Role Level, Decision
Level, and Method Family. The full details of the ontology is
being prepared in a separate publication, but we continue by
providing an overview description.



Fig. 3. The ontology proposed for the decision support system under development, presented as an ER diagram. The cardinality of the relationships is
presented using the “Information Engineering” style [23].

The Environment Aspect, composed of a number of Envi-
ronment Specifics, describes the contextual situational informa-
tion in which the decision process is ongoing. It includes for
example organization, market and business information. Prop-
erly describing the context of the phenomenon under study
is critical in software engineering [24], and fundamental to
providing actionable decision support. For our particular focus
of selecting asset origins, we have so far identified 80 specifics
that can be used to characterize the context, organized into
five separate dimensions: organization, product, stakeholders,
development methodologies, and market & business.

The Value Perspective represents the goal an organization
(or individual as decision maker) wants to achieve in relation
to the decision process, and includes also the requirements in-
volved in the decision. Further distinction between the internal
and external perspectives is carried out by separating the two
entities Specific Goals or Requirements and External Goals or
Requirements. Significant input to how the Value Perspective
of the goals are categorized is the software value map, value
perspectives identified for software-intensive product develop-
ment by Khorum et al. [25]. A total of 34 unique goals are
identified that can be targeted by a development organization,
e.g. extending functionality of an existing product, improving
customer satisfaction, and increasing modularity.

Asset Usage and its related entities form one of the most
complex group of entities in the proposed ontology, consisting
of Origin Options (that have related Origin Suboptions),
Element Type (related with Element), and Asset Type (related

with Asset Attributes). The Origin entity includes the four asset
origins under study in ORION, i.e. in-house development,
outsourcing, open source, and COTS, whereas the Origin Sub-
options details further aspects such as who the subcontractor
is or if development is crowd-sourced. The Element Type
and its sub-entities characterize the asset from a technical
perspective, i.e. whether it is a software asset (source code),
a system element (combination of hardware and software), an
information element (document) etc. In total we have identified
a set of 15 possible element types. Individual elements are then
further detailed by Asset Attributes. We reuse these attributes
from the ISO/IEC 25010 standard [26], covering 42 attributes,
representing both functional aspects and qualities.

The Role Level relates with Role Function of a specific
Roletype with a certain Role Perspective. This part of the
ontology is used to describe the different people involved
in the decision making process, e.g., requirements engineers,
product managers, architects and senior developers. Combined
with the possible perspectives, we hope that the ontology cap-
tures everyone involved in decisions regarding asset origins.
Based on our initial studies of decision making in industry,
we have identified 23 different role descriptions, and these
were validated via the roles found in SWEBOK [27] and
the BAPO model [28] (Business, Architecture, Process, and
Organization).

The Decision Level describes whether a decision is strategic,
tactical or operational, representing the scope and time frame
of its effects. Furthermore, the Decision Level relates to of one



or more Decision Criteria Types: functionality, quality, time
to market, financial and risk, and they are even more specified
in the Decision Criteria entity. This entity represents the
properties (e.g. effort, performance) that need to be evaluated
to be used as important criteria in the decision process.

The final first-level entity in the ontology is the Method
Family, consisting of different Decision Methods. We have
identified four main families of decision support methods, for
evaluating the criteria, partly based on work by Trendowicz
and Jeferry [29]: 1) information from experts or past projects
(data), 2) expert-based methods that rely on the expert judg-
ments of one or more expert, 3) data-driven methods that
depend on large amounts of data, and 4) hybrid methods that
combine the first three methods. By reviewing literature, we
have identified 55 different decision methods.

While our ontology shares many aspects with suggestions
by other researchers, there are also differences. The main dif-
ference between our ontology and related works on ontologies
and models for storing architectural knowledge and decisions
is that we do not introduce explicit relationships between
decisions from separate cases. Instead we aim at providing
such cross-case comparisons in the knowledge repository of
our decision support system by formulating queries to an
underlying graph database, an approach further described in
the following section.

V. TECHNICAL CONSIDERATIONS

A. Decision Support Systems in Software Architecture

Knowledge based decision support has been successfully ex-
ploited in areas as diagnostics support in the medical domain.
It therefore seems worthwhile to investigate to what extent
existing approaches from these domains are applicable also
for the domain of software architecture decisions. However,
contrarily to other domains such as medicine, experts in
software development often provide better conclusions by
themselves when compared to situations in which models or
previous gained knowledge are used [30]. This comes from
1) a high amount of specific and tacit domain knowledge that
is hard to capture in a model (e.g., that particular developers
working in the project are likely to produce high quality code),
and 2) the existing reasoning models do not accurately reflect
the reality of software development due to the limited real-
case studies they are based on. This contributes to a situation
in which decision support in software development seldom
capitalises on previous knowledge to derive new informed
decisions.

The medicine field has a long tradition of using evidence-
based and case-based reasoning to support the decision pro-
cess and corroborate the conclusions. In particular, the use
of decision support systems is based around a knowledge
repository in order to reduce errors due to misinformed
knowledge (e.g., bias, obsolete facts) and increase efficiency
and quality of the decisions. The precondition is having a well-
defined understanding of the attributes/characteristics/artefacts
to record, as well as the processes to take decisions, which
can be unambiguously digitalised [31].

Another domain which uses knowledge repositories is cog-
nitive computing, which combines artificial intelligence with
widely-available database sources to derive answers to specific
questions [32]. In particular, the system relies on a knowledge
corpus consisting of offline downloaded digital documents
(e.g., Wikipedia, IMDB, dictionaries, textbooks, guidelines
and manuals) and knowledge of previous cases to be able to
provide the correct response to the provided clues.

Contrasting this, the domain of software architecture deci-
sions is characterised by a much more limited set of cases
contributing to the previous knowledge. Moreover, there is
often no straightforward way to automatically gather detailed
information from previous cases to build the repository, ex-
cept explicitly requesting it to be manually entered. Some
information could be automatically harvested from e.g., code
repositories and bug reporting tools, but this is very limited
when compared to, e.g., the medical domain, where much in-
formation is already available electronically for other purposes,
e.g., in form of medical records.

B. Knowledge Storage, Retrieval, and Maintenance

The problem of storing and analysing big amounts of
information is a research field per se [33]. Especially in the
latest years, more and more software applications adapt their
behaviour in order to fit a certain user profile, and most of the
profiling mechanisms are based on knowledge collected and
extracted through previous uses. The knowledge repository we
envision for ORION shares some of the characteristics and
issues faced in other data-intensive application domains, as
discussed in the remainder of this section.

The exploitation of a knowledge repository can be enhanced
by considering publicly available decision scenarios, since they
help in building up the confidence about a certain choice
(or the evidence, as we call it in ORION). On the one
hand, companies could have all the interest in being part of
such decision experience share, since others’ experience could
avoid erroneous choices. On the other hand, sharing decision
problems opens up a lot of issues related to confidential infor-
mation. Notably, a company would be reluctant in exposing
weaknesses of current products, and in general to favour com-
petitors to any extent. Therefore, for non disclosure reasons
it could be necessary a two layer knowledge repository, one
internal, possibly even with limited access to different roles
in the company itself, and one external, in which publicly
available cases are collected and can be used as evidence
to support a certain decision. This is the case, for example,
of airlines that own a private warehouse in which they store
sensitive information about the company and passengers. In
addition, airlines mine passengers’ data and behaviour from
publicly available information, such as airports statistics [34].

Another major issue to be taken into account when dealing
with potentially big amounts of data is performances. In the
case of ORION we envision the storage of disparate decision
information that might be interconnected by means of multiple
relationships, depending on each stakeholder’s point of view,
the application domain, the context, and so forth. In this



respect, trying to create a traditional relational database is not
a practicable solution: in fact, the data schema would be based
and optimised on a well-defined set of data queries, that would
result in bad performances in all the other cases. More in
general, querying a relational database would involve the join
of large tables, which would turn out in long computations.
Moreover, the underlying database schema would entail a well
defined data entry procedure, which could result not suitable
in different decision scenarios.

Therefore, we will opt for a graph database solution, in
which access time is kept reasonably good on average (in most
of the cases constant) [35]. Even more important, decision
information can include arbitrary relationships (starting from
the ontology defined by GRADE) that can be queried later on
for building up the necessary evidence supporting a certain
choice, which we consider as the distinguishing feature of
the decision knowledge management offered by ORION. A
potential drawback of this solution is that an appropriate
data entry interface is needed in order to collect data from
users and store them into the graph database accordingly.
Such an interface has to be knowledgeable of what kind of
relationships a stakeholder can state and update the repository
correspondingly.

If documenting decisions is hampered by its time consuming
consequences and low effectiveness, it is even less likely
that stakeholders are willing to maintain decision information
spontaneously [8]. In particular, ORION is interested in post-
decision analysis, which might turn out as extremely relevant
for future choices. In this respect, the knowledge repository
shall provide adequate support for decision maintenance. An
option could be to set “time-outs” for the stored knowledge,
such that decision stakeholders are queried, after a certain
period of time, about the outcome of a choice in the long
run. In this case, a potential issue might be determining the
appropriate life-span for an asset origin selection to have its
measurable effects, since it greatly depends on the context in
which the decision has been taken. Another possibility could
be to exploit the interconnections existing in the knowledge
repository itself, and let stakeholders declare sequences of
interconnected decisions. In this way, when a new decision
would be added to an existing sequence the system could
automatically query the stakeholder about the reason, notably
whether the subsequent decision was a consequence of the pre-
vious one(s) and in what sense (e.g., completion, refinement,
fix, etc.) [8], [9].

VI. CONCLUSION

Decision knowledge collection and analysis is a research
challenge: on the one hand, the amount of collected infor-
mation should be enough to guarantee a certain level of
confidence in future decisions as based of what is known
about past cases; on the other hand, collecting, retrieving, and
maintaining decision knowledge should be as transparent as
possible to the user. In this paper we discuss the investigations
done about providing a decision making process with an
adequate knowledge repository support. In particular, in the

ORION project we defined a decision process aiming at col-
lecting the necessary evidence needed to justify a certain asset
origin selection, among in-house, outsourcing, open-source,
or COTS options. The management of decision information
is done by means of a knowledge repository, which stores
previous decision cases in terms of a well-defined ontology.

One of the peculiar characteristics of the solution we envi-
sion in this work is, indeed, the exploitation of a well-defined
ontology that discloses the opportunity of drawing similarities
with other decision cases, even pertaining to different system
developments and in other applicative domains. Moreover, the
exploitation of a graph database as technical implementation
of the repository allows a more flexible storage and retrieval
of decision knowledge.

Given the intrinsic characteristics of graph databases, the
intended knowledge repository solution needs to be fed with
decision cases in order to have a reliable validation of the
proposal. In this respect, future work will be devoted to create
the necessary user interfaces enabling data collection related
to past decision cases. Moreover, it will be necessary to
investigate deeper how to create a publicly available decision
knowledge repository, in which relevant experience could be
stored in a consistent and effective way.

ACKNOWLEDGMENT

This work is supported by a research grant for the ORION
project (reference number 20140218) from The Knowledge
Foundation in Sweden. We would also like to thank our
colleagues in the ORION project for fruitful discussions that
have helped improving the paper.

REFERENCES

[1] P. Kruchten, P. Lago, and H. van Vliet, “Building up and reasoning about
architectural knowledge,” in Proceedings of the Second International
Conference on Quality of Software Architectures, ser. QoSA’06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 43–58.

[2] Z. Li, P. Liang, and P. Avgeriou, “Application of knowledge-based
approaches in software architecture: A systematic mapping study,” Inf.
Softw. Technol., vol. 55, no. 5, pp. 777–794, May 2013. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2012.11.005

[3] O. Zimmermann, L. Wegmann, H. Koziolek, and T. Goldschmidt, “Ar-
chitectural decision guidance across projects - problem space modeling,
decision backlog management and cloud computing knowledge,” in Soft-
ware Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference
on, May 2015, pp. 85–94.

[4] T. Vale, I. Crnkovic, E. S. de Almeida, S. Neto, Y. C. Cavalcanti,
and S. R. de Lemos Meirad, “Twenty-eight years of component-based
software engineering,” Journal of Systems and Software, vol. 111, no. 1,
pp. 128–148, January 2016.

[5] H. Breivold and M. Larsson, “Component-based and service-oriented
software engineering: Key concepts and principles,” in 33rd EUROMI-
CRO Conference on Software Engineering and Advanced Applications,
(SEAA), Aug 2007, pp. 13–20.

[6] “ORION: Decision-Support for Component-Based Software
Engineering of Cyber-Physical Systems,” 2016. [Online]. Available:
http://www.orion-research.se

[7] A. Tang, P. Liang, and H. van Vliet, “Software architecture documenta-
tion: The road ahead,” in WICSA, 2011, pp. 252–255.

[8] U. Zdun, R. Capilla, H. Tran, and O. Zimmermann, “Sustainable
architectural design decisions,” IEEE Software, vol. 30, no. 6, pp. 46–53,
2013.



[9] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar,
“A comparative study of architecture knowledge management tools,”
J. Syst. Softw., vol. 83, no. 3, pp. 352–370, Mar. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.jss.2009.08.032

[10] W. Ding, P. Liang, A. Tang, and H. Van Vliet, “Knowledge-based
approaches in software documentation: A systematic literature review,”
Inf. Softw. Technol., vol. 56, no. 6, pp. 545–567, Jun. 2014. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2014.01.008

[11] A. Jansen, A. Wall, and R. Weiss, “Techsure - a method for assessing
technology sustainability in long lived software intensive systems.” in
37th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 2011, pp. 426–434.

[12] M. Babar, T. Dingsøyr, P. Lago, and H. van der Vliet,
Software Architecture Knowledge Management: Theory and
Practice. Springer Berlin Heidelberg, 2009. [Online]. Available:
https://books.google.se/books?id=Bj4wM lRMx8C

[13] K. Schneider, Experience and Knowledge Management in Software
Engineering. Springer Berlin Heidelberg, 2009. [Online]. Available:
https://books.google.se/books?id=z Gy6s63jE8C

[14] International Organization for Standardization, “ISO/IEC/IEEE 42010
Systems and Software Engineering - Architecture Description,”
ISO/IEC/IEEE, Tech. Rep., 2011.

[15] P. Kruchten, Software Architecture Knowledge Management: Theory
and Practice. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
ch. Documentation of Software Architecture from a Knowledge
Management Perspective – Design Representation, pp. 39–57. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-02374-33

[16] A. Tang and H. Vliet, Software Architecture Knowledge Management:
Theory and Practice. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, ch. Software Architecture Design Reasoning, pp. 155–174.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-02374-39

[17] J. Tyree and A. Akerman, “Architecture decisions: demystifying archi-
tecture,” Software, IEEE, vol. 22, no. 2, pp. 19–27, March 2005.

[18] R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou, and J. M.
Küster, “An Enhanced Architectural Knowledge Metamodel Linking
Architectural Design Decisions to other Artifacts in the Software
Engineering Lifecycle BT - Software Architecture: 5th European
Conference, ECSA 2011, Essen, Germany, September 13-16, 2011.
Proceedings,” I. Crnkovic, V. Gruhn, and M. Book, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 303–318. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-23798-033

[19] H. van Vliet, P. Avgeriou, R. C. de Boer, V. Clerc, R. Farenhorst,
A. Jansen, and P. Lago, “The griffin project: lessons learned,” in Software
Architecture Knowledge Management. Springer, 2009, pp. 137–154.

[20] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making
techniques for software architecture design: A comparative survey,”
ACM Comput. Surv., vol. 43, no. 4, pp. 33:1–33:28, Oct. 2011.
[Online]. Available: http://doi.acm.org/10.1145/1978802.1978812

[21] E. Kornyshova and R. Deneckère, Conceptual Modeling – ER 2010:
29th International Conference on Conceptual Modeling, Vancouver,
BC, Canada, November 1-4, 2010. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, ch. Decision-Making Ontology for
Information System Engineering, pp. 104–117. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-16373-98

[22] E. Papatheocharous, K. Petersen, A. Cicchetti, S. Sentilles, S. M. A.
Shah, and T. Gorschek, “Decision support for choosing architectural
assets in the development of software-intensive systems: The GRADE
taxonomy,” in 1st International Workshop on Software Architecture Asset
Decision-Making (SAADM), Springer, Ed., September 2015.

[23] T. Jewell, I. Anderson, A. Chandler, S. Farb, K. Parker, A. Riggio, and
N. Robertson, “Electronic Resource Management - Report of the DLF
ERM Initiative,” Digital Library Federation, Washington, D.C., Tech.
Rep., 2004.

[24] K. Petersen and C. Wohlin, “Context in Industrial Software Engineering
Research,” in Proc. of the 3rd International Symposium on Empirical
Software Engineering and Measurement, 2009, pp. 401–404.

[25] M. Khurum, T. Gorschek, and M. Wilson, “The Software Value Map: An
Exhaustive Collection of Value Aspects for the Development of Software
Intensive Products,” Journal of Software: Evolution and Process, vol. 25,
no. 7, pp. 711–741, 2013.

[26] International Organization for Standardization, “ISO/IEC 25010 Soft-
ware Engineering - Software Product Quality Requirements and Evolu-
tion SQuaRE Quality Model,” ISO/IEC, Tech. Rep., 2008.

[27] P. Bourque and R. Fairley, “Guide to the Software Engineering Body of
Knowledge, Version 3.0,” IEEE Computer Society, Tech. Rep., 2014.
[Online]. Available: www.swebok.org

[28] F. van der Linden, J. Bosch, E. Kamsties, K. Känsälä, and H. Obbink,
“Software product family evaluation,” in Proc. of the 3rd Software
Product Line Conference, 2004, pp. 110–129.

[29] A. Trendowicz and R. Jeffery, Software Project Effort Estimation -
Foundations and Best Practice Guidelines for Success. Springer, 2014.

[30] M. Jørgensen, “A review of studies on expert estimation of
software development effort,” J. Syst. Softw., vol. 70, no. 1-2, pp.
37–60, Feb. 2004. [Online]. Available: http://dx.doi.org/10.1016/S0164-
1212(02)00156-5

[31] A. Berlin, M. Sorani, and I. Sim, “A taxonomic description of computer-
based clinical decision support systems,” Journal of biomedical infor-
matics, vol. 39, no. 6, pp. 656–667, 2006.

[32] R. High, “The era of cognitive systems: An inside look at ibm watson
and how it works,” IBM Corporation, Redbooks, 2012.

[33] “Challenges and Opportunities with Big Data. A community
white paper developed by leading researchers across the
United States,” 2012. [Online]. Available: http://cra.org/ccc/wp-
content/uploads/sites/2/2015/05/bigdatawhitepaper.pdf

[34] T. H. Davenport, “At the big data crossroads: turning
towards a smarter travel experience,” 2013. [Online]. Available:
http://www.bigdata.amadeus.com/assets/pdf/Amadeus Big Data.pdf

[35] I. Robison, J. Webber, and E. Eifrem, Graph Databases. OReilly Media,
2015.


