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Abstract—Sensor networks operating in the 2.4 GHz band
often face cross-technology interference from co-located WiFi
and Bluetooth devices. To enable effective interference mitigation,
a sensor network needs to know the type of interference it
is exposed to. However, existing approaches to interference
detection are not able to handle multiple concurrent sources of
interference. In this paper, we address the problem of identi-
fying multiple channel activities impairing a sensor network’s
communication, such as simultaneous WiFi traffic and Bluetooth
data transfers. We present SpeckSense, an interference detector
that distinguishes between different types of interference using
a unsupervised learning technique. Additionally, SpeckSense
features a classifier that distinguishes between moderate and
heavy channel traffic, and also identifies WiFi beacons. In
doing so, it facilitates interference avoidance through channel
blacklisting. We evaluate SpeckSense on common mote hardware
and show how it classifies concurrent interference under real-
world settings. We also show how SpeckSense improves the
performance of an existing multichannel data collection protocol
by 30%.

I. INTRODUCTION

Low-power wireless sensor networks (WSN) operating in
the 2.4 GHz spectrum often face interference from other
wireless technologies that share the same frequency band.
Typically, IEEE 802.15.4-compliant sensor nodes compete
for channel access with an increasing number of WiFi and
Bluetooth devices such as laptops, smartphones, and tablet
PCs. This results in long contention delays and collisions that
degrade sensor network performance [1], [2].

Several mitigation approaches [1]–[4] have been proposed to
tackle the problem of external interference in sensor networks.
Knowing the type of interference enables a sensor node to
choose a suitable mitigation strategy [1], [5], [6]. In this regard,
interference classification is prerequisite towards mitigation.
Recent work on interference classification [6], [7] addresses
the problem by mapping RSSI observations or patterns of cor-
rupted packets to a known class of interference such as WiFi,
Bluetooth or microwave ovens. Such designs are intrinsically
constrained by a direct mapping of channel observations to
a fixed number of interference classes. In particular, they do
not address the predominant case of multi-source interference,
i. e., multiple device types and instances that transmit on a
channel. For example, a combination of WiFi and Bluetooth
interference on a channel is likely to be reported as either
WiFi or Bluetooth, depending on the dominant interferer. In
this regard, the detection of multiple interfering sources offers

interesting insights on channel utilization. The number of dis-
tinct interfering sources on a channel has a marked influence
on its utilization – for example, concurrent traffic over WiFi
and Bluetooth traffic has a greater interference impact than
either in isolation. Moreover, interfering channel traffic from
multiple sources can be independently inspected for temporal
patterns such as periodicity. This enables a wireless device to
identify periodic control signals on an active WiFi channel,
and blacklist it for sensor network operation. Lastly, multiple
interference detection enables wireless devices to disambiguate
external interference from in-network channel traffic. This pro-
vides a clearer context for motivating interference mitigation
mechanisms as in [1], [2].

We present SpeckSense, a service that enables nodes to
detect and classify multiple sources of interference in the
2.4 GHz band. In doing so, SpeckSense provides explicit
recommendations on which channels are good for use. In con-
trast to earlier work [6], [8], SpeckSense performs an explicit
interference detection step prior to classification. The detection
step uses RSSI values to account for channel observations, and
clusters them based on pre-determined RSSI intervals in which
they belong and also the time duration for which a sequence
of similar RSSI values persist. Each cluster thus represents a
distinct interference pattern, which is handed to a classification
algorithm.

SpeckSense is primarily designed for avoiding WiFi and
other forms of severe interference in indoor WSN deploy-
ments. To this end, SpeckSense performs two main operations
— distinguishing between different forms of data traffic (WiFi
beacons, periodic and non-periodic channel traffic) and iden-
tifying the number of sources transmitting periodic signals –
for example, WiFi access points. SpeckSense uses the average
time interval between recurring RSSI patterns to distinguish
between conditions of moderate (web browsing) and intense
(bulk data transfer) channel traffic. In doing so, SpeckSense
provides a channel utilization measure that determines whether
the channel is suitable for reliable communication. Further-
more, identifying beacons enables a sensor node to effectively
blacklist channels affected by WiFi interference.

We evaluate SpeckSense in an office corridor characterized
by many interference sources that include several WiFi and
Bluetooth-enabled devices. We show that SpeckSense distin-
guishes between the predominant sources of interference, and
in particular, identifies multiple WiFi access points in the
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Fig. 1. SpeckSense reads RSSI values and performs a detection step prior to
explicitly classifying multiple sources of interference.

presence of data traffic. We demonstrate the usefulness of
SpeckSense by adding it to a multichannel data collection
protocol [2]. We evaluate the combined solution on a large-
scale indoor testbed and observe a significant improvement in
data yield facilitated by avoiding interfered channels.

In this paper we make the following contributions:
• We design and develop SpeckSense, a new approach for

detecting and classifying multiple concurrent sources of
interference in the 2.4 GHz spectrum.

• We facilitate interference avoidance by distinguishing be-
tween different extremes of channel traffic (web browsing
vs. file transfers), and identifying periodic WiFi beacons.

• We show how an existing data collection protocol can
benefit from using SpeckSense to recommend WiFi-free
channels. Our experimental evaluation on a large testbed
comprising 85 nodes shows a 30% improvement in data
yield when using SpeckSense.

II. SPECKSENSE DESIGN

Indoor environments such as offices or residential areas
are witness to concurrent wireless activity across multiple
standards such as WiFi, Bluetooth and IEEE 802.15.4 de-
vices that operate in the 2.4 GHz spectrum. The resulting
channel interference is therefore a combination of multiple
transmissions that differ from each other in radio bit rate,
message size, transmit power, channel attenuation and timing
constraints [8]. As a result, their respective emissions exhibit
characteristic patterns in intensity, duration, and timing. For
example, emissions from a WiFi access point are distinctly dif-
ferent from a Bluetooth device’s emissions. The central idea of
SpeckSense is to disambiguate the concurrent emissions from
the interferers so that the present interferers can be identified.
To do so, SpeckSense accounts for collective emissions from
the interferers by sampling the received signal strength (RSSI),
i.e., the energy in the channel.

SpeckSense comprises two components, that perform in-
terference detection and classification in sequence. The in-
terference detection uses an RSSI sampler that captures the
emissions from all interferers as a series of RSSI bursts. Inter-
ference detection involves an unsupervised learning approach,
i. e., clustering, to distinguish the bursts from the different
interferers. The output of the interference detection component
is passed to a classification component that inspects each clus-
ter for periodicity. Doing so enables SpeckSense to identify
WiFi beacons on a given channel, as well as periodic traffic
from other sources besides WiFi routers. Additionally, the
classification component quantifies channel occupancy, which
enables blacklisting of channels that are severely interfered.

Unlike earlier work [6], [8], SpeckSense decouples inter-
ference detection from explicit classification. This decoupling
allows distinguishing the emissions from multiple interferers,
and also classifying them in isolation. We now describe
SpeckSense’s components in more detail.

III. INTERFERENCE DETECTION

SpeckSense’s interference detection consists of an RSSI
sampler and a clustering process, which are described in the
following subsections.

A. RSSI Sampler
The RSSI sampler captures the energy in the channel due

to the interferers’ emissions, e.g., WiFi beacons or Bluetooth
data packets. It continuously reads the RSSI register of the
sensor nodes’ radio chip. The readings are quantized, run-
length encoded, and so-called bursts, i. e., contiguous sequence
of high RSSI samples, are identified. The detected bursts are
then processed by the clustering component.

Quantization is motivated by two observations. First, the
emissions from a given interferer may vary slightly over time
in their strength. These minor variations are not relevant to
detecting the interferer, and hence they can be abstracted away
by quantizing the RSSI reading. Second, storing raw RSSI
readings is prohibitively memory-intense on a constrained
sensor node. Storing quantized readings in memory is a simple
means to reduce the memory requirement.

The number of quantization intervals represents a trade-off
between the number of distinctly observable RSSI patterns
and memory overhead. Using a higher number of intervals
allows to capture more distinct channel activities, but requires
more memory to store the observations. We establish power
level 1 for RSSI values below −90 dBm, and divide the RSSI
range above > −90 dBm evenly over the remaining number
of levels. For example, using four quantization intervals would
require defining the following power levels: power level 1
(RSSI ≤ −90 dBm), power level 2 (−90 dBm < RSSI
≤ −60 dBm), power level 3 (−60 dBm < RSSI ≤ −30 dBm),
and power level 4 (−30 dBm < RSSI).

The quantized RSSI readings are then run-length encoded
to further reduce the memory overhead. Run-length encod-
ing works by simply counting the number of subsequent
occurrences of a power level. For example, consider the
following RSSI sequence: −92, −91, −57, −58, −57, −29,
−28, −59, −59, −59, −94. Quantization and run-length
encoding produces the following sequence of 2D vectors:
(1, 2), (3, 3), (4, 2), (3, 3), (1, 1). The first component of each
vector denotes the power level, and the second component
denotes the duration of the observation.

Finally, the RSSI sampler extracts bursts of activity from
the quantized, run-length encoded vector sequence. A burst is
defined by a contiguous subsequence where the channel is not
idle, i.e., the power level is greater than 1. The RSSI sampler
represents the burst by the weighted mean power level and
the total duration of the subsequence. The previous example
contains the non-idle subsequence (3, 3), (4, 2), (3, 3), which



corresponds to the RSSI burst: ( 3×3+4×2+3×3
3+2+3 , 3 + 2 + 3) =

(3.25, 8).
SpeckSense’s interference classification relies on the tempo-

ral patterns of an interferer’s emissions, so it is important that
processing a sample on a sensor node takes a constant amount
of time. Otherwise, the duration value in an RSSI burst would
be misleading. In our implementation, processing an RSSI
sample (reading it, quantizing it, and performing run-length
encoding) takes 47 µs on average, giving a sampling rate of
21 KHz. This allows the detection of energy levels from WiFi
beacons and Bluetooth data packets that have transmission
times several magnitudes higher than 47 µs [8], [9]. More
crucially, the variance in the processing delay is 0.04 µs, which
is low enough to assume practically constant sampling speed.
As per the suggestions by Boano et al., the RSSI sampler
is implemented to avoid saturation in the radio transceiver’s
automatic gain control [10].

B. Clustering Algorithm
The clustering component groups together RSSI bursts that

are likely to come from the same interferer. In a later step, the
clusters can then be analyzed independently from each other
to classify the interferer.

Prior to clustering, the RSSI bursts are normalized. Note that
the mean power level of a burst can be at most 4, whereas
the duration of a burst can take much larger values. Thus,
normalization is required to avoid burst duration having a
dominating influence on the clustering. Considering that the
emissions could take 10 ms (microwave oven emissions), we
scale up the average power level for all bursts by a factor of
16.

SpeckSense uses the k-means algorithm to group a set of
normalized RSSI bursts B into clusters. k-means clustering is
a general algorithm to group a set of observations into clusters
such that similar observations belong to the same cluster [11].
We briefly describe the algorithm’s operation.

Assume the bursts in B are to be grouped into k clusters.
The cluster i is represented by a 2D vector µi called its cluster
center. The vector’s first component represents the average
power level of bursts in the cluster, and the second component
represents the average duration. Initially, the k cluster centers
are chosen at random from the RSSI bursts in B. Then,
the algorithm repeatedly assigns RSSI bursts to clusters and
updates cluster centers until a termination condition is met.

Cluster assignment: Each RSSI burst is assigned to the
cluster that has the closest center. More specifically, an RSSI
burst bi ∈ B is assigned to the cluster j whose center has
the minimal Euclidean distance to bi. We denote the cluster
center to which bi is assigned by m(bi), defined as m(bi) =
argminµj‖bi − µj‖.

Cluster center update: After the cluster assignment, the
cluster centers are recomputed. Let Mj be the set of bursts
that were assigned to the jth cluster in the preceding step.
Then, the cluster center µj is updated to be the average of all
bursts in Mj . Specifically, µj = 1

|Mj |
∑
b∈Mj

b.

Termination: The preceding two steps are repeated until
a cost function (which is evaluated after each update step)
converges, i. e., decreases by less than a fixed threshold. The
cost function C describes how close the bursts are to the
centers of their assigned clusters, and thus intuitively reflects
the quality of the clustering: C = 1

|B|
∑
bi∈B‖bi −m(bi)‖2.

We have empirically found that a threshold of 0.001 gives
good clustering performance.

The described algorithm groups the RSSI bursts into k
clusters. However, the number of clusters k, which is related
to the number of interferers, is not known a priori. Therefore,
SpeckSense iteratively executes the algorithm for different
values of k. Starting from k = 1, the cost function at
termination is noted and k is increased by one. When the
difference in cost at termination for k and k + 1 is less than
0.001, the algorithm terminates.

In summary, the clustering component arranges the RSSI
bursts into groups such that bursts that are similar in duration
and power level are assigned to the same group. The underly-
ing intuition is that similar bursts are likely to come from the
same interferer. The clustering component outputs the number
of clusters k that yielded the best clustering, the center clusters
µ1, . . . , µk, and which burst was assigned to which cluster.

IV. EVALUATING INTERFERENCE DETECTION

This section presents the preliminary results of Speck-
Sense’s multi-source interference detection in a controlled RF
setting. The underlying objective is to verify that SpeckSense
distinguishes between the emissions from multiple interferers
and that the clustering component correctly identifies one
cluster of RSSI bursts per interferer. The experiments are
carried out in an anechoic chamber to avoid external inter-
ference and multipath fading. Running experiments in the
anechoic chamber allows a complete control which interferers
are present, which is necessary to assess the validity of
SpeckSense’s output.

The experimental setup comprises five TelosB nodes, two
WiFi access points, a laptop and a smartphone. The WiFi
access points are used to create WiFi channel activity. The
laptop and the smartphone are used to create Bluetooth channel
activity. The sensor nodes record the interferers’ emissions
using the RSSI sampler as described in Sec. III-A. The
RSSI bursts are then grouped into clusters by the clustering
component described in Sec. III-B.

Multiple experiments were performed with different combi-
nations of interferers, and each experiment was repeated five
times. The sensor nodes were programmed to listen on the
802.15.4 channels 11, 13, 15, and 17, which overlapped with
both the WiFi and Bluetooth interferers’ channels. The follow-
ing describes three representative runs of these experiments.
Experiment 1: Only one WiFi Access Point. In this exper-
iment, only WiFi access point 1 (AP 1) was active and sent
beacons, while the sensor nodes were running SpeckSense.
The output of the clustering component for this experiment
is shown in Fig 2(a). Each marker represents an RSSI burst.
The marker’s color and shape indicate which cluster the burst
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Fig. 2. Clusters detected by SpeckSense in the anechoic chamber for different interference scenarios. Each marker represents an RSSI burst, and the marker’s
shape and color indicate which cluster the burst was assigned to. The number of clusters found by SpeckSense corresponds to the number of interferers.

was assigned to. The figure shows that SpeckSense correctly
identifies that there is one cluster and thus assigns all RSSI
bursts to the cluster. As no other interferer was active during
this run, it can be asserted that the bursts in the cluster
correspond to channel activity from AP 1.
Experiment 2: Concurrent WiFi and Bluetooth Interfer-
ence. In the next experiment, the smartphone transferred a
20 MB file to the laptop via Bluetooth, while the WiFi access
point AP 1 was active.

Figure 2(b) shows the output of the clustering component.
The RSSI bursts are grouped into two clusters. The first cluster
is similar to the cluster detected in the previously described
experiment. Thus, it is safe to conclude that it represents the
emissions from AP 1. The bursts in the second cluster have a
lower power level. These are likely to come from the Bluetooth
devices. Each cluster thus maps to a specific type of channel
traffic.

SpeckSense’s interference detection can distinguish the
emissions from Bluetooth and WiFi because they differ in both
power level and duration. Bluetooth emissions are weaker in
signal strength and shorter in duration than the emissions from
the WiFi access point. The following experiment considers the
case in which the interferers’ emissions are similar in burst
duration.
Experiment 3: Two WiFi Access Points. In this experiment
both WiFi access points were active. This case represents
a common scenario in indoor environments, where multiple
WiFi access points are visible.

The detected RSSI bursts and cluster assignments are shown
in Fig. 2(c). SpeckSense detects two distinct clusters. Cluster 1
is similar to the cluster detected in the first experiment, and
therefore the RSSI bursts in the cluster are likely to represent
channel activity from AP 1. The second cluster contains
channel activity from AP 2. While most RSSI bursts in the
second cluster have a duration of around 1.1 ms, note that
there is an outlier with much shorter duration (≈ 0.1 ms).
Manual inspection of this burst revealed that it arose due to
an artifact in sampling: the emission from a WiFi access point
was only partially captured, because it was ongoing when the
sensor nodes started recording channel activity.

Even though emissions from both access points are similar
in burst duration (since they both represent beacons), Speck-

Sense distinguishes the emissions from the interferers due to
their difference in power level.

The experiments in the anechoic chamber show that it is
possible to detect and distinguish multiple types of interference
at the physical level. The following section presents a detailed
classification scheme of SpeckSense that is based on the
temporal patterns of channel activity exhibited by different
interference clusters. The classification algorithm of Speck-
Sense can identify periodic channel traffic, and also distinguish
bursty traffic from sporadic channel activity.

V. INTERFERENCE CLASSIFICATION

SpeckSense classifies interference by inspecting each de-
tected cluster for temporal patterns in RSSI bursts. In doing so,
SpeckSense informs link-layer protocols whether the observed
channel activity is periodic, bursty or a combination of both.
This facilitates a meaningful assessment of channel quality
and enables nodes to make informed decisions on channel
selection. In this regard, SpeckSense deviates from earlier
classification work such as SoNIC [6] that maps channel
observations to specific labels such as WiFi, Bluetooth and
microwave. This section elaborates on two aspects of interfer-
ence classification, namely distinguishing different extremes of
prevalent 2.4 GHz data traffic and identifying periodic signals
such as WiFi beacons.

A. Distinguishing Channel Traffic
Interference in the 2.4 GHz spectrum is largely attributed

to concurrent traffic over WiFi and Bluetooth, as well as
electromagnetic emissions from microwave ovens. The impact
from channel interference on a wireless network application is
determined by several factors such as device usage patterns,
application data requests as well as underlying communication
protocols in use. Therefore, it is reasonable to expect that cer-
tain applications contribute to a greater degree towards channel
interference than others – for example, a file download over
WiFi causes more channel interference than web browsing.
SpeckSense distinguishes between diverse applications at the
physical layer based on their characteristic contribution to
channel traffic. Specifically, SpeckSense computes the average
inter-burst separation for each interference cluster, and checks
whether it is below a predetermined threshold. If so, the



0 100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1.0

Interval between bursts (ms)

C
D

F

 

 

Size:0.16ms
Size:3.33ms

(a) Bluetooth file transfer

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1.0

Interval between bursts (ms)

C
D

F

 

 

Size:0.18ms
Size:1.12ms
Size:1.75ms

(b) Web browsing over WiFi

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1.0

Interval between bursts (ms)

C
D

F

 

 

Size:0.18ms
Size:0.26ms
Size:0.68ms
Size:1.21ms
Size:2.02ms

(c) WiFi-enabled file download
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(d) WiFi-enabled video streaming
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Fig. 3. Empirical CDFs of the inter-burst separations per detected cluster, for different interference scenarios. SpeckSense distinguishes between different
extremes of channel traffic, using a 100 ms threshold on the observed average inter-burst separation. SpeckSense can also identify periodic emissions in the
form of WiFi beacons (Figures 3(b), 3(d) and 3(e), as well as microwave bursts (Figure 3(f).

channel is said to be severely interfered and hence blacklisted
for sensor network operation.

To empirically determine the threshold inter-burst separa-
tion, we conduct experiments involving controlled interfer-
ence, in which SpeckSense gathers RSSI samples for different
scenarios that included a Bluetooth file transfer, WiFi file
download, WiFi web browsing, video streaming over WiFi,
WiFi repeater traffic, and microwave oven emissions. Figure 3
shows the cumulative distribution of the inter-burst separation
for different clusters for the aforementioned cases. We observe
that for cases where bursty traffic is involved, such as in
Figures 3(c), and 3(e), 80% of the inter-burst separations
are below 100 ms. Note that channel activity bursts owing
to Bluetooth transfers and WiFi-enabled web browsing are
not as frequent as WiFi file download and repeater traffic.
This is attributed to factors such as Bluetooth frequency
hopping that effectively schedules packet transmissions over
non-overlapping channels, as well as temporally sparse pat-
terns in web browsing. Further, a reduced average inter-
burst separation is correlated to an increase in the number of
detected clusters. Table I lists the mean inter-burst separation
values, showing that channel activity bursts owing to Bluetooth
transfers and WiFi-enabled web browsing are not as frequent
as WiFi file download and video streaming.

Based on these observations, SpeckSense uses an average
inter-burst separation threshold of 100 ms, which has shown
good results in distinguishing conditions of light channel
traffic (cf. Figures 3(a), and 3(b)) from severe interference
(cf. Figures 3(e), and 3(f)).

B. Identifying Periodic Beacons
Concurrent traffic over WiFi constitutes a major part of

cross-technology interference in the 2.4 GHz ISM band [1].
Therefore it is necessary that a sensor node avoids operating
on channels that overlap with WiFi activity. While usage
patterns of WiFi may vary over time depending on varying
user needs, there is a stable pattern in control signaling on the

(a) Periodic WiFi beacons interspersed by
probe messages.

(b) Periodic WiFi beacons from two ac-
cess points

Fig. 4. WiFi beacons may be interspersed by probe messages or beacons
from other access points, making their identification non-trivial.

WiFi channels. Predominant IEEE 802.11 management frames
include WiFi beacons, probe responses from access points,
and probe requests from WiFi clients. Particularly, beacon
messages are sent at a default periodic interval of 100 ms.
Identifying them can thus be regarded as an indication of
WiFi presence. Towards this end, SpeckSense uses the results
from its multi-source interference detector, and classifies a
clustered sequence of periodically recurring RSSI bursts as
WiFi beacons. This is, however, a non-trivial problem and
entails addressing the following challenges. WiFi management
frames such as probe requests and probe responses may
have similar on-air transmission times as beacons, and are
also transmitted over non-periodic intervals (see Figure 4(a)).
Moreover, beacons from multiple WiFi access points within
interference range may have similar on-air transmission times
and RSSI values (see Figure 4(b)), and get clustered together.
The random occurrences of WiFi probes and beacons from
multiple APs collectively represent a challenge in identifying
periodic patterns.

Accounting for these challenges, SpeckSense employs an
algorithm (see Algorithm 1) that is run once for each cluster
obtained from the interference detection outlined in Sec-
tion III-B. In every run, the input to the algorithm is a temporal
sequence of RSSI bursts from a cluster. Let ti denote the time
at which the ith burst in the cluster was recorded by the node,
where 1 ≤ i ≤ n. The inter-burst separation is denoted by the
sequence dT = (t1 − t0, t2 − t1, . . . , tn − tn−1).



Bluetooth file WiFi file WiFi web WiFi video WiFi repeater Microwave
transfer transfer browsing streaming traffic

Avg. inter-burst separation (ms) 253 23 146 63 50 32
Avg. number of clusters 1.4 3.6 2.5 3.5 5 5

TABLE I
SPECKSENSE DISTINGUISHES BETWEEN DIFFERENT FORMS OF CHANNEL ACTIVITY, BASED ON THE AVERAGE INTER-BURST SEPARATION AND THE

NUMBER OF DETECTED INTERFERENCE CLUSTERS.

Algorithm 1 Algorithm to detect periodic bursts
1: Inputs
2: . n is the number of RSSI bursts over time T
3: . dT = (d1

t , d
2
t . . . d

n−1
t ) is the sequence of inter-burst separa-

tions
4: Outputs
5: . P (dτ ) is the confidence value for every dτ ∈ L
6: . tp is the detected periodicity of the sequence
7:
8: L← ∅
9: for dit ∈ dT ADDTOSET(L, dit) end for

10: for dit ∈ (d1
t , d

2
t . . . d

n−1
t ) do

11: s← dit
12: for djt ∈ (di+1

t , di+2
t . . . dn−1

t ) do
13: s← s+ djt
14: UPDATESET(L, s)
15: end for
16: end for
17: for each dτ ∈ L do
18: nτ ← b Tdτ c
19: P (dτ ) = 2C(dτ )/(nτ (nτ + 1))
20: end for
21: tp = argmaxdτP (dτ )

The algorithm populates a set L with values denoting time
periods at which RSSI bursts are captured. This is performed
by inspecting every inter-burst separation value in the sequence
dT , and checking to see whether they are already included
in the set L (Procedures 2, line 2 in AddToSet). Specifically,
the check takes the form of a modulus operation, such that
an inter-burst separation of kdτ is not added to L, if dτ
has already been included. The modulo operation allows a
certain variance εδ to account for factors such as clock speed
variations of the node recording RSSI, as well as channel
backoffs by the interfering source. Setting εδ to 7 RSSI
sampling intervals allows a jitter of 2εδ ≈ 0.4 ms, which we
have found to empirically give good results.

After populating L, the algorithm maps every dτ ∈ L to
a counter value C(dτ ). C(dτ ) is a measure of how periodic
the RSSI sequence is in dτ . Intuitively, the algorithm checks
over a time window T, whether there are RSSI bursts at times
dτ , 2dτ , 3dτ . . . kdτ , where k = b Tdτ c. Since the entries in L
are determined from dT , this step is performed by scanning
every value dit ∈ dT in sequence. For every dit, the algorithm
adds the inter-burst separations from di+1

t to dn−1
t , and checks

at each step, whether the partial sum is periodic in any dτ ∈ L
(Procedures 2, line 8 in UpdateSet). If not, the sum is added
to the list, and its count is set to 1 (Procedures 2, lines 11–12
in UpdateSet). In general, if nτ denotes the number of RSSI
bursts that are periodic in dτ over time T , then nτ = b Tdτ c.

Procedures 2 Updating entries in candidate set L
1: procedure ADDTOSET(L, dt)
2: if ∀dτ ∈ L, dt (mod dτ ) ∈ (εδ, dτ − εδ) then
3: L← L ∪ dt
4: C(dt)← 0
5: end if
6: end procedure
7: procedure UPDATESET(L, dt)
8: if ∃dτ ∈ L|dt (mod dτ ) 6∈ (ε∆, dτ − ε∆) then
9: C(dτ )← C(dτ ) + 1

10: else
11: L← L ∪ dt
12: C(dt)← 1
13: end if
14: end procedure

This results in a maximum of 1
2nτ (nτ + 1) summations that

are periodic in dτ , or equivalently, C(dτ ) ≤ 1
2nτ (nτ + 1).

Therefore, the fraction P (dτ ) = 2C(dτ )/(nτ (nτ + 1)) rep-
resents a normalized confidence measure for periodicity in
dτ . Possible values for P (dτ ) range from 0 and can also
exceed 1, especially when multiple RSSI bursts occur with
the same periodicity, as in Figure 4(b). The periodicity check
in UpdateSet is allowed a greater threshold, i. e., ε∆ > εδ , in
order to to account for accumulated variance over summing
up inter-burst separations. We find that setting ε∆ to 30
RSSI sampling intervals, or approximately 1.5 ms, gives good
results. SpeckSense uses round(P (dτ )) as a measure for the
number of different RSSI subsequences that are periodic in
dτ .

The period tp of the RSSI sequence is determined
to be argmaxdτP (dτ ), with the additional constraint,
round(P (dτ )) ≥ 1. The value of tp is approximately 100
ms for WiFi beacons, which is the default beaconing interval
on most WiFi access points. Algorithm 1, however, is also
generally applicable to detect RSSI bursts of any period, in
contrast to other approaches [9], [12] that explicitly check for
predetermined values. This makes it a viable option to detect
and classify other forms of interference that include periodic
transmissions in 802.15.4 networks [13] as well as microwave
bursts.

VI. EVALUATION

We implement SpeckSense on the Tmote Sky hardware
featuring a CC2420 radio transceiver. There are, however,
no special features that prevent porting SpeckSense to other
sensor node hardware platforms that allow fast RSSI sampling.
The code for SpeckSense is implemented using the Contiki
operating system and fits within 21 KB of program memory.
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Fig. 5. Experimental setup in the office corridor. We evaluate SpeckSense at
locations A, B and C in the presence of WiFi and Bluetooth interference.

The overall RAM usage is contained within 6 KB, of which
the clustering algorithm takes only about 4 KB of program
memory and a total of less than 800 bytes of RAM.

We evaluate SpeckSense’s ability to distinguish between
multiple sources of interfering traffic, and its ability to identify
the presence of WiFi access points in the 2.4 GHz band.
We conduct our experiments in two indoor environments: an
office corridor and a 85-node indoor testbed that spans three
floors. These environments represent challenging conditions
for SpeckSense because they induce strong multipath fading.
We present our results in the following order. First, we
showcase the multi-source interference detection results of
SpeckSense from the office corridor. Then, we show how
SpeckSense improves the data gathering performance of a
multichannel protocol [2] on a 85-node testbed.

A. Detecting Concurrent Interferers
Indoor environments represent challenging conditions for

SpeckSense due to non-line of sight between nodes that causes
multipath fading effects. The extent of these effects may also
vary over time, e.g., due to people moving, thereby increasing
the variance in received signal strength on a sensor node.
SpeckSense relies on RSSI observations to detect interference,
so it is important to characterize its performance in such an
environment.
Experimental Setup. The setup in the office corridor is shown
in Fig. 5. There are two WiFi access points (operating on WiFi
channel 1 and 11, respectively) a WiFi repeater (operating on
channel 1), as well as four Bluetooth devices. Sensor nodes
run SpeckSense at locations A, B and C. Nodes at location A
face interference from WiFi AP 1 and the WiFi repeater, as
well as sporadic Bluetooth interference. Nodes at location B
operate on a different channel and are exposed to Bluetooth
interference as well as beacons from WiFi AP 2. Nodes at
location C face interference from Bluetooth and WiFi data
transfers.

We perform over 100 experimental runs in sequence. In
each run, nodes perform RSSI sampling for 1 second, followed
by interference detection and classification. The RSSI sampler
uses four power levels to quantize signal strength information,
as described in Sec. III-A. Each detected interference cluster
is classified as follows: (i) WiFi beacons that have a period
of 100 ms, (ii) periodic traffic and (iii) non-periodic traffic.
To quantify SpeckSense’s performance, we define a detection
rate for every interference class. The detection rate for an
interference class is measured as the percentage number of
runs in which SpeckSense identifies it.

Data traffic from IEEE 802.15.4 compliant sensor nodes
also contributes to co-channel interference in the 2.4 GHz

Number of detected WiFi
access points (percentile)

802.15.4 Location A Location B Location C
traffic 50th 90th 50th 90th 50th 90th

No 3 4 1.5 4 1 3
Yes 1 3 2 4 1 2

TABLE II
SPECKSENSE CAN DETECT MULTIPLE WIFI ACCESS POINTS DEPLOYED
OVER DIFFERENT LOCATIONS ON THE OFFICE CORRIDOR. THE VALUES

(50th AND 90th PERCENTILE) INDICATE THAT SPECKSENSE CAN DETECT
WIFI ACTIVITY EVEN IN THE PRESENCE OF AMBIENT 802.15.4 TRAFFIC.

spectrum. To validate that SpeckSense can classify multiple
interferers even in the presence of WSN activity, we perform
our experiments under two scenarios, namely with and without
802.15.4 traffic. To generate the channel traffic, we add two
sensor nodes to the setup – one node sends packets every
125 ms, while the other receives them. In every setup, the
sender node is co-located with the node running SpeckSense,
and the receiver node is placed 6 m away from the sender. We
refer to these nodes as the 802.15.4 sender and the 802.15.4
receiver.

Results. Figure 6 shows the detection rates for SpeckSense
at different locations, both in the presence and absence of
802.15.4 traffic. Accounting for multipath fading effects that
inhibit a seamless classification, we aggregate the detection
rates over a window representing a sequence of runs. An
interference class is detected when it is observed at least
once over the window. The plots show the detection rate of
SpeckSense for different window sizes. SpeckSense achieves
a detection rate of over 90% in all cases when using a window
size of 3 or greater. Depending upon the specific interference
context described in the experimental setup, non-periodic and
periodic traffic relate to different sources of channel activity.
For example, periodic traffic in Figures 6(a), 6(b), and 6(c)
represents periodic TCP bursts in WiFi data transfers. In
contrast, periodic traffic in Figures 6(d), 6(e), and 6(f) also
comprises additional 802.15.4 traffic, which has a period of
125 ms. Non-periodic traffic at location A relates to WiFi data
transfers, and at locations B and C, relates to a combination
of WiFi and Bluetooth data traffic.

Channel activity in the office corridor also includes beacons
from additional WiFi APs outside of our control, such as the
university’s WiFi. Table II shows the 50th and 90th percentile
of WiFi access points that SpeckSense identifies at different
locations. In general, SpeckSense identifies fewer access points
in the presence of 802.15.4 traffic. We attribute this to an
artifact of our experimental setup – the periodic 802.15.4
acknowledgement frames from the 802.15.4 receiver have
burst durations similar to WiFi beacons. SpeckSense therefore
detects a cluster that has multiple, yet distinct periods, which
our approach (see algorithm 1) does not handle at present.
We plan to address this issue in future work. Nonetheless, the
results show that SpeckSense identifies multiple access points,
even in the presence of Bluetooth and 802.15.4 traffic.
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Fig. 6. Detection rates for the three locations in the office corridor. For window sizes of three and larger, SpeckSense’s detection rate exceeds 90%.

B. Improving Data Collection Performance

Data collection applications for indoor WSN deployments
suffer from degraded performance on account of WiFi in-
terference. To mitigate the effects of external interference,
multichannel protocols [2] coordinate node communication on
different radio channels. These approaches achieve resilience
against interference by either hopping through a fixed se-
quence of channels [14], [15], or by switching channels when
interfered [2]. However, they do not address the problem of
finding a relatively interference-free channel.

As a solution, we run SpeckSense independently on every
node to perform a deployment-time assessment of WiFi-
free radio channels. We evaluate SpeckSense as a link-layer
service for Chrysso [2], a multichannel protocol that adap-
tively switches radio channels on interfered nodes. Sensor
nodes independently run SpeckSense at network bootstrap and
blacklist channels in which SpeckSense detects WiFi beacons
or interfering channel activity with an average inter-burst
separation less than 100 ms.

We compare SpeckSense’s results against three other
strategies that differ on channel selection policy, namely
Chrysso default, Chrysso best channels, and Chrysso thresh-
old. Chrysso default employs a random channel selection
scheme over all 16 channels, whereas Chrysso best channels
performs a random selection over a restricted set of channels,
namely 15, 20, 25 and 26. The channels are chosen such that
they empirically exhibit the best packet reception rates among
all other channels on the testbed [15], and do not overlap
with commonly used WiFi channels 1, 6 and 11. Chrysso
threshold is closest in design and objective to SpeckSense

Data collection performance
Protocol Data Duty Energy per

yield cycle delivered packet
Chrysso default 73.3 % 2.9 % 4.22 mJ
Chrysso best channels 95.3 % 2.3 % 2.6 mJ
Chrysso + threshold 91.4 % 2.4 % 3.1 mJ
Chrysso + SpeckSense 94.8 % 2.3 % 2.9 mJ

TABLE III
DATA COLLECTION PERFORMANCE (AVERAGED OVER SIX RUNS) ON A
85-NODE TESTBED, HIGHLIGHTING THE ADVANTAGES DERIVED FROM
INTERFERENCE AVOIDANCE. SPECKSENSE WITH CHRYSSO PERFORMS
BEST COMPARED TO OTHER ALTERNATIVES ON AVOIDING INTERFERED

CHANNELS.

on interference avoidance, and ranks channels based on their
quality. The channel quality is computed as a ratio of the
number of channel idle RSSI samples (RSSI ≤ -90 dBm) over
the total number of RSSI samples, as suggested by Musăloiu-
E. et al. [16]. In our implementation, Chrysso threshold uses
the best four channels in decreasing order of channel quality.

We experimentally evaluate the aforestated strategies on
the Indriya WSN testbed [17], using a network of 85 nodes
including the sink. Every node generates one packet per minute
over a two-hour duration, and duty cycles its radio wakeup
over an interval of 125 ms, using the X-MAC protocol [18].
We perform six experimental runs for each variant of Chrysso
described above.

Table III contrasts data collection performance of the revised
Chrysso variants against its original implementation, Chrysso
default. In general, avoiding interfered channels improves both
the average data yield and the energy per transmitted packet for
Chrysso. Specifically, running SpeckSense with Chrysso in-
creases the average data yield (packets received by the sink) by



approximately 30% over Chrysso default. This improvement is
mainly attributed to avoidance of WiFi-interfered channels by
SpeckSense. To validate our claim, we find that SpeckSense
blacklists 802.15.4 radio channels that overlap with commonly
used WiFi channels 1, 6 and 11, in more than 80% of the
nodes. For the same reason, Chrysso SpeckSense performs
comparably with Chrysso best channels that explicitly avoids
the aforesaid WiFi channels. The 95% confidence intervals for
both Chrysso SpeckSense and Chrysso best channels overlap
on all three performance metrics. The overlap indicates that
neither variant outperforms the other, in accordance with rules
of analysis in [19]. However, SpeckSense presents a more
general solution that applies to indoor environments wherein
co-located WiFi networks may operate on channels other than
1, 6 and 11. Lastly, SpeckSense outperforms rssi threshold
on average data yield and duty cycle. This suggests that for
the same energy cost in RSSI sampling (334.6 mJ on average
per node), SpeckSense is more effective at avoiding WiFi-
interfered channels than a simple approach that computes
channel utilization using a threshold. In conclusion, the results
show that an existing multichannel protocol such as Chrysso
benefits from the interference classification output provided by
SpeckSense.

VII. RELATED WORK

As the number of wireless devices operating in the license-
free frequency bands is steadily increasing, the problem of in-
terference is receiving more attention. A few other approaches
are similar to ours in that they sample the RSSI. Zacharias et
al. [8] classify interference based on a fixed set of simple con-
ditions. In contrast to SpeckSense, their classification includes
processing of computationally expensive tasks such as FFTs
and execution on a PC rather than on motes. Also Boers et
al. [20] sample the spectrum for interferer classification but
they only target interference occurring at regular intervals.
Likewise, Zhou et al. [9], [12] propose an algorithm that is
restricted to detecting WiFi beacons from RSSI traces. Another
approach based on spectrum sampling is by Bloessl et al. [21].
In contrast to SpeckSense, their approach is limited to the
detection of single interference sources. Ansari et al. [22]
propose an approach to detect WiFi networks by using a syn-
chronized pair of nodes to scan adjacent channels. In contrast,
SpeckSense bases its observations of multiple interferers on a
single node. Rayanchu et al. [23] detect WiFi access points
and other non-WiFi devices using commodity WiFi hard-
ware. However, their approach relies on device-specific WiFi
features and involves computationally intensive processing,
making it infeasible for resource-constrained sensor nodes.
Hermans et al. [6] present SoNIC interference classification
without spectrum sampling relying only on the information
provided by corrupted packets. As their approach does not
rely on spectrum sampling it is less energy-consuming than
SpeckSense but it does not provide higher level information
such as the number of WiFi access points. There are efforts
for channel selection that use the average energy in a chan-
nel [16], [24], [25], or packet reception counts [26] as selection

criteria. In contrast to these approaches, we take the source of
interference into account.

VIII. CONCLUSION

In this paper we have presented SpeckSense, a detection
and classification scheme for concurrent multi-source
interference affecting wireless sensor networks. Experiments
in a real setting have shown that SpeckSense detects multiple
interferers in over 90% of the cases. We have also evaluated
SpeckSense as a low-layer service to recommend interference-
free channels for WSN data collection. Experiments
combining the results of SpeckSense with a multichannel
protocol have shown a significant improvement in data yield
at lower duty cycle.
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