
Measuring Productivity in Agile Software Development
Process: A Scoping Study

Syed Muhammad Ali Shah
SICS Swedish ICT AB

syed.shah@sics.se

Efi Papatheocharous
SICS Swedish ICT AB

efi.papatheocharous@sics.se

Jaana Nyfjord
SICS Swedish ICT AB

jaananyfjord@hotmail.com

ABSTRACT
An agile software development process is often claimed to increase

productivity. However, productivity measurement in agile software

development is little researched. Measures are not explicitly defined

nor commonly agreed upon. In this paper, we highlight the agile

productivity measures reported in literature by means of a research

method called scoping study. We were able to identify 12 papers

reporting the productivity measures in agile software development

processes. We found that finding, understanding and putting into use

agile productivity definitions is not an easy task. From the

perspective of common roles in agile software development process

and existing knowledge workers’ productivity dimensions, we also

emphasize that none of the productivity measures satisfy these fully.

We recommend that future effort should be focused on defining

agile productivity in measurable, practicable and meaningful form.

Categories and Subject Descriptors
D.2.9 [Management]: Productivity

General Terms
Measurement

Keywords
Agile software development process, productivity, measurement

1. INTRODUCTION
In recent decades, the software engineering discipline has seen the

emergence of many new software development methods and

processes. The emergence of new methods and processes requires

relevant measuring methods for better visualization and control of

software development. Consequently, new metrics are basically not

needed in all areas, but only where the agile principles have an

impact on how the project is managed and where the agile process

is fundamentally different from a rich/classical process [1]. For

instance, there are different metrics used for measuring the size of

software entities. In the early 70’s, the International Organization of

Standards (ISO) standardized the first metric for measuring software

size called ‘function points’ (FP). Different variants emerged over

time such as COSMIC-FFP, IFPUG, MK II and NESMA, which

also became common measures of size [2]. Another very common

metric used by researchers and practitioners to determine the size of

software is ‘lines of code’ (LOC). Both aforementioned size metrics

have been criticized a lot by their users [3][4].

In 2001, a philosophy for developing software called ‘agile software

development’ was introduced. Agile software development is a

group of software development methods, based on a collection of

iterative and incremental concepts, principles and practices [5]. The

agile software development manifesto [6] defines the essential

principles of agile methods by valuing:

 Individuals and interactions over processes and tools,

 Working software over comprehensive documentation,

 Customer collaboration over contract negotiation,

 Responding to change over following a plan.

Agile comes up with a different philosophy of developing software

requiring a set of different measurement metrics and methods, e.g.,

story points and planning poker, for measuring the complexity of

requirements to satisfy the agile philosophy, and are different from

traditional software development methods.

Considering the agile manifesto one such requirement could be to

redefine productivity metrics in agile, as the agile software

development process depends on different roles, ways of working,

interactions and collaborations. Productivity in agile is a not yet a

well-studied domain [7]. Consequently, we performed a scoping

study to identify how productivity in an agile software development

process is defined and measured. The study has provided us with a

set of the productivity measurements and allowed us to have an early

view about the need to define, update or redefine the existing

productivity measures for an agile software development process.

The paper is organized as follows; Section 2 discusses the related

work. Section 3 presents the research design of the study. Section 4

presents the results. Finally, results are discussed in Section 5 and

the conclusion is presented in Section 6.

2. RELATED WORK
Productivity in traditional software development has been studied

intensely and remains a controversial issue [7]. Productivity usually

is the ratio of output (e.g., features, functions) to input (e.g., time,

effort), in other words it represents “what is required to produce”

[8].

There are some studies [9][10][11] that have used productivity

metrics related to traditional software development process, i.e.

lines of code, function points etc., to measure productivity in agile

software development process. For instance, Petersen’s work [12]

on productivity mentions that agile ways of working is completely

different from the traditional software development process and

thus, using productivity measures from traditional software process

is not very promising. Measuring productivity in agile is not harder

or easier, but what is important is what to consider in the changed

ways of working in agile when defining the agile measurement

metrics [12].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSSP’15, August 24–26, 2015, Tallinn, Estonia
c© 2015 ACM. 978-1-4503-3346-7/15/08...$15.00

http://dx.doi.org/10.1145/2785592.2785618

102

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/301009372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:shah@sics.se
https://www.sics.se/user/980/
https://www.sics.se/user/614/
mailto:jaananyfjord@hotmail.com

Considering related work in agile software development, the

concept of productivity is not very clear. Melo et al, performed an

interview-based study with different agile teams regarding the

concept of productivity. They found that in most of the cases, the

traditional definition of productivity was quite different from the

perceived one. More specifically, ‘Timeliness’, ‘Quantity’ and

‘Quality’ were perceived as factors for measuring productivity. In

addition, ‘Customer Satisfaction’ was also identified as a criterion

of measuring productivity [13]. Lui and Chan [14] performed a

controlled experiment called repeat-programming which can

facilitate the understanding of relationships between human

experience and programming productivity, and found that

productivity in ‘pair programming’ achieved higher quality within

minimum time.

Summarizing the related work it is evident that productivity

measures are either taken from the traditional software development

process or are developed under subjective viewpoints depending on

the context. Hence, it is not well-known, what are the appropriate

productivity measures in agile software development. In addition, to

the best of our knowledge, no systematic study exists investigating

this topic. Thus, we identify a need of conducting an early study,

defining the scope of this currently very little investigated area of

agile software development.

3. RESEARCH DESIGN
For conducting this research, different research methods were

considered, i.e., mapping studies [15], literature reviews [16] and

scoping studies [17]. However the aim of this research was to review

the literature which to date has received little attention to identify

gaps in the evidence base. We chose to carry out a scoping study.

The methods of mapping study and systematic literature review

could be applicable, but concerns with the large study structure, e.g.,

in a mapping study trying to build a classification scheme and

structure, and in literature reviews adopting a precise, transparent

and explicit approach which includes a series of phases to ensure

extraction of all relevant evidences, resulted in avoiding these

methods. We followed the framework of Arksey and O’Malley for

conducting our scoping study [17], which takes the process of

dissemination one step further by drawing conclusions from existing

literature regarding the overall state of research. We consider this

instrument to be the most suitable in our case to investigate an area

that has received little attention so far. There are five stages in the

framework. We present the first four stages of the study in the

current subsections, while the fifth stage, containing the results, is

presented in Section 4.

3.1 Stage 1: Research Question Definition
Our aim is to identify productivity measures in agile software

development in literature. Therefore we formulated one research

question.

RQ1: How is productivity measured in the agile software

development process?

Increased productivity is the most advocated benefit agile brings

with it [18][19]. Hence, there may be multiple metrics to measure

productivity in agile software development process. We aim at

finding some evidence in terms of productivity measures.

3.2 Stage 2: Relevant Paper Identification
We considered papers published from 2000 to 2014. The search

string used was (“Agile” AND “Productivity”). The search was

applied through ‘Science Direct’, ‘Springer Link’, ‘IEEE Xplore’

and ‘ACM’ digital library. These are recommended software

engineering research databases [16] and we believe they would

mostly cover the search we were aiming for.

The website search function “search in abstract” was used. The

number of papers collected per phase is shown in Table 1. As

indicated, there are a number of “not available” papers. There could

be many reasons for having such “not available” papers, such as, the

paper is not freely available and requires purchasing of it, the paper

is in another language than English or the paper only allows limited

access (to look inside etc.).

Table 1 Distribution of papers

Source Found Downloaded Not

available

Included

IEEE

Xplore

93 86 7 8

ACM 28 20 8 1

Springer

Link

20 11 9 1

Science

Direct

9 7 2 2

Total 150 124 26 12

3.3 Stage 3: Study Selection
We scanned all downloaded papers to find evidence in literature of

measuring productivity in agile software development processes.

This led to a selection of 12 papers in total, out of 124. The inclusion

and exclusion criteria employed is defined below.

Inclusion Criteria: The inclusion criteria were applied at three

subsequent levels. First, the titles were screened. They were selected

if the title contained ‘agile’ and ‘productivity’. Second, we analyzed

the abstracts of the papers where it had to demonstrate some

experience in agile software development concerning productivity

compared to other factors, such as quality, cost and schedule. As a

third step, we thoroughly read the papers and included only those

studies which described/discusses at least one of the following:

 agile software development process

 productivity

 method to calculate productivity, or productivity metrics

Exclusion Criteria: The studies that did not satisfy any of the

inclusion criteria were excluded.

3.4 Stage 4: Charting the Data
We used the simplest form of ‘tables’ for the data extraction and

charting. First, we charted the selected papers that we obtained from

the process as shown in Table 2. Next, we extracted the relevant

productivity metrics from the selected papers as shown in Table 3.

103

Table 2 List of selected studies

 ID Publications

J1 Layman, L.; Williams, L.; Cunningham, L., Motivations

and measurements in an agile case study, Journal of

Systems Architecture, Volume 52, Issue 11, November

2006, Pages 654-667, ISSN 1383-7621

J2 Tarhan, A.; Yilmaz, S. G., Systematic analyses and

comparison of development performance and product

quality of Incremental Process and Agile Process,

Information and Software Technology, Volume 56, Issue

5, May 2014, Pages 477-494, ISSN 0950-5849,

J3 Moser, R.; Abrahamsson, P., Pedrycz, W., Sillitti, A., and

Succi, G., “A Case Study on the Impact of Refactoring

on Quality and Productivity in an Agile Team,” in

Balancing Agility and Formalism in Software

Engineering, vol. 5082, B. Meyer, J. Nawrocki, and B.

Walter, Eds. Springer Berlin Heidelberg, 2008, pp. 252–

266.

J4 Parrish, A.; Smith, R.; Hale, D.; Hale, J., "A field study

of developer pairs: productivity impacts and

implications," Software, IEEE , vol.21, no.5, pp.76,79,

Sept.-Oct. 2004

J5 Athanasiou, D.; Nugroho, A.; Visser, J.; Zaidman, A.,

"Test Code Quality and Its Relation to Issue Handling

Performance," Software Engineering, IEEE Transactions

on , vol.40, no.11, pp.1100,1125, Nov. 1 2014

C1 Ramasubbu, N.; Balan, R. K., 2009. The impact of

process choice in high maturity environments: An

empirical analysis. In Proceedings of the 31st

International Conference on Software

Engineering (ICSE '09). IEEE Computer Society,

Washington, DC, USA, 529-539.

C2 Abrahamsson, P.; Koskela, J., "Extreme programming: a

survey of empirical data from a controlled case

study," Empirical Software Engineering, 2004. ISESE

'04. Proceedings. 2004 International Symposium on ,

vol., no., pp.73,82, 19-20 Aug. 2004

C3 Hu Guang-yong, "Study and practice of import Scrum

agile software development," Communication Software

and Networks (ICCSN), 2011 IEEE 3rd International

Conference on , vol., no., pp.217,220, 27-29 May 2011

C4 Williams, L.; Brown, G.; Meltzer, A.; Nagappan, N.,

"Scrum + Engineering Practices: Experiences of Three

Microsoft Teams," Empirical Software Engineering and

Measurement (ESEM), 2011 International Symposium

on , vol., no., pp.463,471, 22-23 Sept. 2011

C5 Abrahamsson, P., "Extreme programming: first results

from a controlled case study," Euromicro Conference,

2003. Proceedings. 29th , vol., no., pp.259,266, 1-6 Sept.

2003

C6 de Souza Carvalho, W.C.; Rosa, P.F.; dos Santos Soares,

M.; Teixeira da Cunha Junior, M.A.; Buiatte, L.C., "A

Comparative Analysis of the Agile and Traditional

Software Development Processes

Productivity," Computer Science Society (SCCC), 2011

30th International Conference of the Chilean , vol., no.,

pp.74,82, 9-11 Nov. 2011

C7 Sutherland, J.; Viktorov, A.; Blount, J.; Puntikov, N.,

"Distributed Scrum: Agile Project Management with

Outsourced Development Teams," System Sciences,

2007. HICSS 2007. 40th Annual Hawaii International

Conference on , vol., no., pp.274a,274a, Jan. 2007

Table 3 Productivity metrics

Study Productivity Metrics Knowledge Worker

Force

J1 Lines of executable code /

staff day

Team

J1 Function Points / staff month Team

J2 Lines of code / person-hour Team

J3 Lines of code / hours Team

J4 Average number of

unadjusted function points

completed per unit of time

Development team of

2 developers

J5 Resolved issues / month Per developer

C1 Lines of code / person-hours Team

C2 Lines of code / hour Team

C3 Lines of code Team

C4 Lines of code Team

C5 Lines of code / hour Development team of

4 developers

C6 Functional size / effort Team (scrum)

C7 Function points / months Per developer

4. STAGE 5: RESULTS
RQ1: How is productivity measured in the agile software

development process?

Table 2 presents the selected papers from the surveyed literature.

The primary studies included 7 conference papers and 5 journal

papers. Table 3 presents state of the art productivity measures in the

agile software development process. Table 3 column 1 presents the

index of relevant scientific studies from which the metrics are

extracted, column 2 presents the extracted agile productivity

measure, and column 3 presents the knowledge worker focus group

that relates with the metric, i.e., knowledge work force role ranging

from team to pairs to individual roles. We have identified in total 12

studies that have used productivity measures in the context of agile

software development. The metric ‘lines of code’ is extensively used

in the surveyed literature and outperform in terms of frequency any

other productivity metric for the agile software development

process. From the total of 12 studies, 7 studies have used ‘lines of

code’ as a productivity measure, where 3 studies have used ‘function

points’. One study (J1) has used both ‘lines of code’ and ‘function

points’ as productivity measures. The remaining one study (J5) has

used ‘resolved issues’ as productivity measure. It is strongly evident

that the aforementioned identified measures are the ones mostly

used for measuring the team’s productivity in agile development

processes.

5. DISCUSSION
From the surveyed literature, we identify the following trends of

measuring productivity in an agile software development process:

 The scientific literature included in this scoping study discusses

productivity, but has not defined it in a measurable form (out of

124 studies we only identified 12 studies in which productivity is

defined in a measureable form).

 Lines of code are mostly used in relation to all other metrics

followed by function points for measuring productivity in agile

software development processes. Surprisingly, ‘lines of code’ and

‘function points’ are used extensively for measuring agile team

productivity.

104

It is evident that in order to better control and manage an agile

software development process there is a need to define agile metrics

in a measureable form. Concerning the use of ‘lines of code’ and

‘function points’ as prominent metrics for measuring productivity,

we hypothesize that such metrics do not depict the true meaning of

productivity. More specifically, it is not apparent that how much

time or effort in planning, thinking and information etc., is acquired

to develop one line of code or function point. Moreover, refactoring,

an important practice in agile, usually results in reducing the lines

of code [20], therefore more lines of code do not mean better

productivity [21]. Consequently, considering the agile software

development process where individuals work in a team for a

common artifact, individual performance needs to be aggregated on

the team level. In a process like Scrum for example, a team is

defined as a set of people consisting of four main roles such as team

lead (scrum master), members (analyst, developer, and tester),

product owner and stakeholder (user, manager etc.) [22].

Mostly agile practitioners pride to be highly productive, responsive

and more collaborative, therefore productivity to them is of real

concern [23]. Current agile productivity measures are not suitable

for all roles and they only concentrate on coding (development)

[24]. One should better strive for balance on what should be

measured and how much value the measure brings up. Moreover,

roles in agile context are defined as highly ‘knowledgeable’ [13].

That is, a role in agile is one who applies theoretical and analytical

knowledge, acquired via formal education and experience, to

develop new products or services [25]. Because knowledge is

complex and hard to evaluate, this may change the way we measure

and understand the productivity of agile knowledgeable roles and

what value it delivers [7]. In this concern, Ramirez and Nembhard

[26] summarized very important dimensions defining the

knowledge worker productivity and considering software

development. Melo et al. [13] also extracted nine highly-related

productivity dimensions as follows:

 Quantity. Accounts for outputs (quantities) and outcomes

(quantification of qualitative variables such as customer

and worker satisfaction).

 Cost. Accounts for profitability, costs, etc.

 Timeliness. Accounts for meeting datelines, overtime

needed to complete the work, and other time-related

issues.

 Autonomy. Accounts for independence and how many

things a worker can do simultaneously.

 Efficiency. Accounts for doing things right. Refers to any

task, even if it is not important to the job. The task is

completing meeting all the standards of time, quality, etc.

 Quality. Accounts for how good the work is.

 Effectiveness. Accounts for doing the right things. Refers

just to the tasks that are important to the job, even if they

are completed without meeting standards of time, quality,

etc.

 Project success. Accounts for overall result of work,

considering decision-making, team interaction,

communication, predictability, crisis management,

documentation, transferability of work, etc.

 Customer satisfaction. Accounts for the fact that the

product needs to add value to the customer’s business.

The agile software development process is a knowledge creating

process requiring a team effort with different competences

represented by many roles to develop a software artifact. Knowledge

is complex and difficult to evaluate, this may change the way we

measure and understand the productivity within an agile context [7].

The authors believe that this paper is the very first in nature to study

explicitly productivity in agile. However the next step is to connect

the paper results with existing agile measurements, e.g. story points,

t-shirt sizing, etc.

6. SUMMARY
In summary, we could state that the present productivity measures

are not efficient enough to satisfy the requirements for defining

productivity in agile software development. It is clear that defining

agile productivity measures must consider the knowledge

dimension. In the future, we have a twofold research direction, first

we aim at defining measureable productivity metrics for different

agile roles that would also satisfy the knowledge worker dimensions

and cover all aspects (from requirements to delivery of working

product to a customer) of agile development process.

7. REFERENCES
[1] A. Abran, A. Sellami, and W. Suryn, “Metrology,

measurement and metrics in software engineering,” Softw.

Metr. Symp. 2003 Proc. Ninth Int., pp. 2–11, Sep. 2003.

[2] J-M. Desharnais, A. Abran, and J. Cuadrado, “Convertibility

of Function Points to COSMIC-FFP: Identification and

Analysis of Functional Outliers,” 2006.

[3] B. Kitchenham and E. Mendes, “Software productivity

measurement using multiple size measures,” Softw. Eng.

IEEE Trans. On, vol. 30, no. 12, pp. 1023–1035, Dec. 2004.

[4] E.P. Morozoff, “Using a Line of Code Metric to Understand

Software Rework,” Softw. IEEE, vol. 27, no. 1, pp. 72–77,

Feb. 2010.

[5] J. Nyfjord, “Towards Integrating Agile Development and

Risk Management,” Stockholm University, PhD Thesis 08-

008, 2008.

[6] K. Beck, “Manifesto for Agile Software Development,”

http://agilemanifesto.org/, 2014. .

[7] A. Trendowicz and J. Münch, “Chapter 6 Factors Influencing

Software Development Productivity—State‐of‐the‐Art and

Industrial Experiences,” in Advances in Computers, vol.

Volume 77, Marvin V. Zelkowitz, Ed. Elsevier, 2009, pp.

185–241.

[8] C. Ebert and R. Dumke, Software Measurement: Establish -

Extract - Evaluate - Execute. Springer-Verlag New York,

Inc., 2007.

[9] W.C. de Souza Carvalho, P. F. Rosa, M. dos Santos Soares,

M. A. Teixeira da Cunha Junior, and L. C. Buiatte, “A

Comparative Analysis of the Agile and Traditional Software

Development Processes Productivity,” Comput. Sci. Soc.

SCCC 2011 30th Int. Conf. Chil., pp. 74–82, 2011.

[10] A. Parrish, R. Smith, D. Hale, and J. Hale, “A field study of

developer pairs: productivity impacts and implications,”

Softw. IEEE, vol. 21, no. 5, pp. 76–79, 2004.

[11] J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov,

“Distributed Scrum: Agile Project Management with

Outsourced Development Teams,” Syst. Sci. 2007 HICSS

2007 40th Annu. Hawaii Int. Conf. On, p. 274a–274a, 2007.

[12] K. Petersen, “Measuring and predicting software

productivity: A systematic map and review,” Spec. Sect.

Softw. Eng. Track 24th Annu. Symp. Appl. Computer. Softw.

Eng. Track 24th Annu. Symp. Appl. Comput., vol. 53, no. 4,

pp. 317–343, Apr. 2011.

[13] C. Melo, D. S. Cruzes, F. Kon, and R. Conradi, “Agile Team

Perceptions of Productivity Factors,” Agile Conf. AGILE

2011, pp. 57–66, Aug. 2011.

105

[14] K. M. Lui and K. C. C. Chan, “Pair programming

productivity: Novice–novice vs. expert–expert,” Int. J.

Hum.-Comput. Stud., vol. 64, no. 9, pp. 915–925, Sep. 2006.

[15] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson,

“Systematic mapping studies in software engineering,” in

Proceedings of the 12th international conference on

Evaluation and Assessment in Software Engineering, Italy,

2008, pp. 68–77.

[16] B. Kitchenham, S. Charters, D. Budgen, P. Brereton, M.

Turne, M. Turner, S. Linkman, M. Jørgensen, E. Mendes,

and G. Visaggio, “Guidelines for performing Systematic

Literature Reviews in Software Engineering,” Software

Engineering Group School of Com puter Science and

Mathem atics Keele University and Department of Computer

Science University of Durham Durham, UK, EBSE-2007-01,

Jan. 2007.

[17] H. Arksey, and L. O’Malley, “Scoping studies: toward s a

methodological framework,” Nternational J. Soc. Res.

Methodol., vol. 8, no. 1, pp. 19–32.

[18] S. Ilieva, P. Ivanov, and E. Stefanova, “Analyses of an agile

methodology implementation,” Euromicro Conf. 2004 Proc.

30th, pp. 326–333, 2004.

[19] L. Layman, L. Williams, and L. Cunningham, “Exploring

 extreme programming in context: an industrial case study,”

Agile Dev. Conf. 2004, pp. 32–41, 2004.

[20] S. A. M. Rizvi and Z. Khanam, “A methodology for

refactoring legacy code,” Electron. Comput. Technol. ICECT

2011 3rd Int. Conf. On, vol. 6, pp. 198–200, Apr. 2011.

[21] M. Solla, A. Patel, and C. Wills, “New metric for measuring

programmer productivity,” Comput. Inform. ISCI 2011 IEEE

Symp. On, pp. 177–182, Mar. 2011.

[22] S.W. Ambler + Associates. “Roles on Agile Teams: From

Small to Large Teams,” 2014. .

[23] D.J.Anderson, “Stretching agile to fit CMMI level 3 - the

story of creting MSF for CMMI® process improvement at

Microsoft corporation,” Agile Conf. 2005 Proc., pp. 193–

201, Jul. 2005.

[24] R. unnalan, M. Shereshevsky, and H. H. Ammar, “Pseudo

dynamic mtrics [software metrics],” Comput. Syst. Appl.

2005 3rd ACSIEEE Int. Conf. On, p. 117, 2005.

[25] P. F Drucker, Adventures of a Bystander. Transaction

Publishers, 1994.

[26] Y. Ramirez and D. A. Nembhard, “Measuring knowledge

worker productivity,” J. Intellect. Cap., vol. 5, no. 4, pp.

602–628, 2004.

106

