
BEAMJIT – A Just-in-Time Compiling Runtime for Erlang

Frej Drejhammar Lars Rasmusson
Swedish Institute of Computer Science (SICS Swedish ICT)

frej@sics.se, lars.rasmusson@sics.se

Abstract
BEAMJIT is a tracing just-in-time compiling runtime for the Er-
lang programming language. The core parts of BEAMJIT are syn-
thesized from the C source code of BEAM, the reference Erlang
abstract machine. The source code for BEAM’s instructions is ex-
tracted automatically from BEAM’s emulator loop. A tracing ver-
sion of the abstract machine, as well as a code generator are synthe-
sized. BEAMJIT uses the LLVM toolkit for optimization and native
code emission. The automatic synthesis process greatly reduces the
amount of manual work required to maintain a just-in-time com-
piler as it automatically tracks the BEAM system. The performance
is evaluated with HiPE’s, the Erlang ahead-of-time native com-
piler, benchmark suite. For most benchmarks BEAMJIT delivers a
performance improvement compared to BEAM, although in some
cases, with known causes, it fails to deliver a performance boost.
BEAMJIT does not yet match the performance of HiPE mainly be-
cause it does not yet implement Erlang specific optimizations such
as boxing/unboxing elimination and a deep understanding of BIFs.
Despite this BEAMJIT, for some benchmarks, reduces the runtime
with up to 40%.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers, Optimization

Keywords JIT; Erlang; LLVM; Clang

1. Introduction
The Erlang programming language compiles (in the reference im-
plementation) to an abstract machine called BEAM. This paper
describes the implementation of a just-in-time compiling runtime
for Erlang called BEAMJIT in which the central parts of the just-
in-time compiler are synthesized from the C-source code of the
BEAM implementation. The LLVM compiler construction toolkit
is used for optimization and emission of native code, to reduce the
implementation effort.

BEAMJIT uses a tracing strategy for deciding which code se-
quences to compile to native code. It achieves an up to 40% reduc-
tion in benchmark runtime for benchmarks where the tracing strat-
egy selects a suitable code sequence for compilation to native code.
Analyzing benchmarks which do show degraded or unchanged per-
formance shows that this is due to a failure of the tracing strategy,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Erlang ’14, September 5, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3038-1/14/09.
http://dx.doi.org/10.1145/2633448.2633450

the current lack of Erlang-specific optimizations or excessive com-
pilation overhead rather than limitations in the synthesis process.

Although this paper describes the analysis of an abstract ma-
chine and synthesis of a code generator for BEAM, the methods
described make few assumptions on the underlying implementation
and can be applied to almost any abstract machine implemented in
C.

Extending an abstract machine implementation by synthesizing
the major parts of a just-in-time compiler from its C implementa-
tion has two advantages. Firstly, it becomes sufficient to maintain
only one implementation for the instructions, instead of two (one
for the emulator and one for the JIT compiler). Secondly, the JIT
compiled code will conform to the reference implementation even
if the instruction set is not documented, as is the case for BEAM.
Provided that the synthesis tool is correct, a synthesized implemen-
tation automatically stays up to date with the BEAM interpreter
and also preserves implementation quirks and bugs which deployed
software may rely on. During the development of BEAMJIT the
implementation has been forward-ported to one major and three
minor releases of Erlang with only minor changes to the synthesis
framework.

The Erlang reference implementation includes an ahead-of-
time compiler called HiPE [23]. BEAMJIT provides a number
of improvements not currently provided by HiPE. These include
cross-module optimization and target runtime independent BEAM-
modules. HiPE includes handcrafted optimizations for certain com-
mon instruction sequences.

The emergence of the LLVM compiler construction toolkit [16]
and its accompanying front-end for the C-family of languages,
Clang, has made it possible to eliminate much of the drudgery as-
sociated with implementing a Just-in-time compiler. The LLVM
toolkit operates on a language and target independent low-level in-
termediary representation, called IR. The toolkit contains a large
collection of optimizations which operate on the IR as well as code
generators which produce native code from the IR. Language spe-
cific front ends, such as Clang, produce IR which is then optimized
and emitted as target executable code. The libClang library is a C
interface to the Clang C compiler which allows programmatic ac-
cess to the abstract syntax tree (AST) of a parsed C module.

In the BEAMJIT system the C implementation of the BEAM
emulator loop is analyzed by a tool called the Emulator slicer
which builds a database describing the emulator. The Emulator
slicer uses the libClang library to extract the AST (Abstract Syntax
Tree) for the BEAM emulator. Using the AST for the BEAM inter-
preter loop, the source code implementing each instruction is bro-
ken up into basic blocks and a control flow graph for each BEAM
instruction is created and added to the slicer database. During this
process, local variables are identified and their uses and definitions
are added to the database. To simplify code generation and mode
switching each basic block in the emulator is also extended with
liveness information for each local variable.

61

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/301008603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Code generation uses as input an execution trace of basic block
identities and program-counter tuples, together with a collection of
pre-compiled IR fragments. The fragments replicate the semantics
of each basic block in the execution trace, and are generated by
the emulator slicer during the preprocessing stage at system build-
time. During preprocessing, the C source code for each basic block
is compiled to IR using Clang. During run-time code generation
the execution trace and liveness information from the Emulator
slicer are used to build an IR-function representing the recorded
execution trace. Finally the function is optimized and emitted as
native code using LLVM.

The next time the interpreter reaches the first instruction in
the trace it will execute the native code for the trace instead of
interpreting.

In the current implementation of BEAMJIT only code from
BEAM’s emulator loop is considered for native compilation. It
limits the optimizations that can be done by LLVM, such as inlining
of BIFs and boxing-unboxing eliding. Implementations of these
optimizations are planned for future versions of BEAMJIT.

Contributions
We show that the core parts of a just-in-time compiling runtime can
be synthesized from the C implementation of BEAM. The resulting
runtime shows promising performance and evident performance
problems are not related to the synthesis process.

By using a code transformation tool at system build time to gen-
erate the input to the JIT-compiler we avoid having to maintain two,
potentially diverging, implementations of the abstract machine’s in-
struction set.

BEAMJIT is able to automatically construct efficient deopti-
mization code, i.e. code that turns the native code’s state into an
equivalent state for BEAM. Deoptimization is needed whenever the
execution falls off/exits the trace. By analysing the liveness of the
variables in the abstract machine implementation at various points
in the source code, BEAMJIT creates a number of tailored deopti-
mization functions for each potential exit point.

Although BEAMJIT targets Erlang’s BEAM, the just-in-time
compiler synthesizer design and techniques are generic enough
to be applied to other abstract machines implemented in C/C++.
Likewise the automated extraction and synthesis processes could
be used for other purposes than just-in-time compilers, a possible
application is for producing an instrumented version of an abstract
machine.

Organization of this Paper
This paper is organized as follows: In Section 2 we give an in-
troduction to abstract machine and just-in-time compiler imple-
mentation techniques. In Section 3 we give an introduction to the
BEAMJIT implementation before going into details in Section 4.
The performance of BEAMJIT is evaluated in Section 5 before cov-
ering related work and applicability to other languages in Section 6
and Section 7 respectively. The paper concludes with a discussion
of the results and future work in Section 8.

2. Background
This section gives an overview and background of abstract machine
and just-in-time compiler implementation techniques.

When implementing the inner instruction execution loop of an
abstract machine one of three standard techniques tends to be used:
a switch statement, directly threaded code or indirectly threaded
code. Section 2.1 describes these implementation techniques. Just-
in-time compilation is an implementation technique for abstract
machines where frequently executed code is, at runtime, compiled
to the target platform’s native instruction set. Just-in-time compi-
lation systems are further covered in Section 2.2. To decide on

which parts of the abstract machine code to compile, a strategy
called tracing may be used. With tracing, a log is created, contain-
ing the exact path taken during execution. The log will contain the
most frequently encountered parts that are worth compiling. Trac-
ing is explained in Section 2.3. After having decided on what to
compile, optimized native code is produced corresponding to the
selected part(s) of the abstract machine program. Section 2.4 gives
an overview of the different choices available to the implementer
of a native code emitter.

2.1 Abstract Machine Implementation Techniques
Before delving into just-in-time compilation, there are three main
techniques to consider for implementing the inner instruction de-
coding and execution loop in an abstract machine: A switch state-
ment, direct threading and indirect threading. BEAM, by default,
uses direct threading but can fall back to a switch-based interpreter
if direct threading is not supported by the target compiler. The fol-
lowing sub-sections explain the three different techniques.

2.1.1 Switch Statement
The simplest way to implement an instruction decoding and exe-
cution loop in an abstract machine is shown in Figure 1. Here the
program counter, PC, is simply dereferenced in a switch statement
to select and execute the code implementing the instruction.

uint_t the_program[] = {0, Imm0 , Imm1 , 1,...};
Instr* PC = the_program;
while (1) {

switch (*PC) {
opcode_0: {

/* Perform the actions of opcode_0 */
PC += 3; /* Skip past immediates */
break;

opcode_1:
...
break;

}
}

Figure 1: Using a switch-statement for the inner instruction decod-
ing and execution loop.

2.1.2 Direct Threading
A drawback with the method described in Section 2.1.1 is that it is
not very fast. Most compilers will translate the switch statement to a
range check followed by a jump-table look up. The extra overhead
for the range check followed by the look up can be removed by
making use of a technique called direct threading [5], an example
of which is shown in Figure 2.

Direct threading makes use of first-class labels which is a C-
extension provided by GCC and other compilers. Opcodes are, in
memory, instead of a number represented by the address of the
machine code which implements them. The cost for the dispatching
to the next instruction is merely an indirect jump.

2.1.3 Indirect Threading
A drawback with both a switch statement, as described in Sec-
tion 2.1.1, and direct threading, as described in Section 2.1.2, is
that they make it hard to efficiently change instruction implemen-
tations at runtime. Changing instruction implementations is useful
for functionality such as tracing and other forms of instrumentation
that need to be enabled and disabled while the program is running.

A technique called indirect threading adds an indirection to the
instruction dispatching. In the example in Figure 3, we can switch
between execution modes by just reassigning the mode pointer.

62



uint_t the_program[] = {&&opcode_0 , Imm0 , Imm1 , ...};
Instr* PC = the_program;
goto **PC;
while (1) {

opcode_0:
/* Perform the actions of opcode_0 */
PC += 3; /* Skip past immediates */
goto **PC;

opcode_1:
...
goto **PC;

}

Figure 2: In direct threading opcodes are replaced with the address
of the native code which implements that opcode.

Switching between two execution modes is still fast, but costs one
extra memory load. Usually the load can be serviced from the
cache.

uint_t the_program[] = {0, Imm0 , Imm1 , ...};
ISet modeA[] = {&&opcode_0_A , && opcode_1_A , ...};
ISet modeB[] = {&&opcode_0_B , && opcode_1_B , ...};
ISet* mode = modeA;
Instr* PC = the_program;
goto *mode[*PC];

while (1) {
opcode_0_A:

/* Perform the actions of opcode_0 */
goto *mode[*PC];

opcode_0_B:
/* Perform the actions of opcode_0 */
/* Do something extra for variant B */
goto *mode[*PC];

opcode_1_A:
...
goto *mode[*PC];

}

Figure 3: Indirect threading: When the dispatch is made via a look
up table switching between two execution modes is fast.

2.2 Just-in-time Compilation
Just-in-time compilation is an implementation technique for ab-
stract machines where frequently executed code is compiled to the
target platform’s native instruction set at runtime.

Turning an abstract program representation into machine code
at run-time was mentioned as early as in McCarthy’s LISP pa-
per [18]. A historical survey of just-in-time compilation can be
found in [2].

Just-in-time compilation is commonly used in languages that
can load or create new code at run time. It is also useful for
dynamically typed languages, and languages with macros, as a just-
in-time compiler can create specialized versions of the program for
the types actually encountered during execution.

Popular language implementations for Java, Lua, ECMAScript
(JavaScript, ActionScript) today come with built-in just-in-time
compilation support. Most common is to compile individual func-
tions as they are encountered. Such per-method compilation is done
for Java by HotSpot [15], for JavaScript by JägerMonkey, IonMon-
key, V8, etc., by Julia [6] and CLR [19], by Cog for Squeak [21].

2.3 Tracing Just-in-time Compilation
A tracer records partial traces of the program execution, as it goes
in and out of functions, modules/libraries and system calls. For
maximum efficiency, the aim is to only record the hot path. The

trace is optimized by removing redundant checks and branches. The
tracing just-in-time compiler turns the trace into native machine
code, rather than compiling the individual functions separately.
Multiple traces with the same entry point can be compiled together
to form a trace tree. The leaves of the trace tree are jumps back to
the root of the tree.

Tracing for runtime optimization was first implemented in
Dynamo [3]. Some popular implementations with tracing are
Java’s HotpathVM [10] and Dalvik [8], JavaScript has TraceMon-
key1, ActionScript has Tamarin-tracing [7], Lua has LuaJIT [22],
Haskell has Lambdachine [26], and Python has PyPy. A modified
HotSpot [13] and a CIL2 implementation [4] also support tracing.

PyPy [24] differs from tracing byte-code interpreters (HotSpot,
CLR, etc.) by tracing programs written in RPython (a restricted
subset of Python) rather than tracing the emulator loop. Typically
the RPython program being traced is an interpreter for Python.

Different techniques have been used to decide when to start trac-
ing. I.e. RPython programs are explicitly annotated where tracing
should start. Interpreters written in RPython are usually annotated
to start tracing at the top of the interpreter loop. The tracing variant
of HotSpot [13] annotates the byte code by inserting a virtual in-
struction to trigger tracing before loops. Other tracers measure the
frequency of backward jumps towards a program point, and starts
tracing when it is beyond some threshold frequency.

2.4 Native Code Generation Back-ends
A just-in-time compiler needs a back-end able to produce machine
code for the specific machine it runs on. Maintaining several back-
end tends to be costly. Therefore several languages with purely
interpreter-based reference implementations have alternative im-
plementations that target a runtime system with just-in-time compi-
lation support. Python, Smalltalk, Java, Clojure, Scala, Ada, Ruby,
PHP, C#, Erlang (Erjang [27]), and many more have alternative im-
plementations that run on the JVM, Microsoft CLR, PyPy, etc. This
way, the language will get just-in-time compilation support and a
machine code back-end for free from the runtime system. There are
also several examples of one language implementing another lan-
guage for running on a third language’s VM, to indirectly provide
just-in-time compilation support to the implementation.

An intermediate step between implementing a custom back-end
and using another language’s virtual machine is to use a back-end
library for generating machine code. Compiler back-end libraries
such as LLVM [16], libgccjit [17] and GNU lightning [11] have
made it increasingly easy to add a native code back-end to a lan-
guage.

Of particular interest in this paper is LLVM [16] which is the
back-end selected for BEAMJIT. The LLVM project calls itself a
“collection of modular and reusable compiler and toolchain tech-
nologies”. LLVM provides a low-level assembly-like program rep-
resentation called LLVM-IR on which the LLVM toolkit operates.
LLVM contains state of the art optimization passes operating on
LLVM-IR and also native code generation back-ends for many tar-
gets.

LLVM-using Julia [6] is a dynamic language with macros and
introspection. It uses LLVM to compile functions created at run-
time and specialize them with respect to the argument types en-
countered. Other languages with implementations that use LLVM
include Octave, Python Numba, etc. LLVM is not tracing in itself,

1 Mozilla replaced TraceMonkey by JägerMonkey as de-
fault just-in-time compiler because the cost of falling off
the trace was too large. https://hacks.mozilla.org/2010/03/
improving-javascript-performance-with-jagermonkey/
2 CIL is the instruction set of Microsoft CLR

63

https://hacks.mozilla.org/2010/03/improving-javascript-performance-with-jagermonkey/
https://hacks.mozilla.org/2010/03/improving-javascript-performance-with-jagermonkey/


but can be used to optimize and compile traces collected by a trac-
ing interpreter.

3. An Overview of BEAMJIT
BEAMJIT adds just-in-time compilation to BEAM by extending
the base system with support for profiling, tracing, native code
compilation and support for switching between the three corre-
sponding execution modes: profiling, tracing, and native. During
execution the runtime system measures the execution intensity (fur-
ther described in Section 4.1) of special profile-instructions inserted
into the instruction stream by the compiler. If the execution inten-
sity rises above a threshold, tracing is started (Section 4.4). During
tracing the execution path is recorded and when the runtime system
determines that a representative trace is found it is compiled to na-
tive code (Section 4.5). To reduce latency, native code generation is
performed asynchronously in a separate OS-level thread. Such off-
loading has previously been used in IBM’s WebSphere Real Time
Java [9].

The BEAM instructions are high-level, causing the imple-
mentation code to contain many if-statements. To take maximum
advantage of the recorded execution trace it is therefore benefi-
cial to trace at the granularity of basic-blocks in the interpreter’s
opcode implementation, and not only at the level of individual
BEAM-instructions. To support such detailed tracing efficiently,
BEAMJIT’s build process constructs a functionally equivalent ver-
sion of the interpreter which includes basic block tracing. Later on,
the just-in-time compiler needs the source code of every recorded
basic block in order to generate the LLVM-IR for the native code.

The LLVM project includes a C compiler called Clang, avail-
able both as a stand-alone binary and as the library libClang. lib-
Clang provides access to the abstract syntax tree (AST) of a C mod-
ule. BEAMJIT uses libClang to analyze the C source of the BEAM
abstract machine. The analysis includes extracting the interpreter
control flow graph (CFG), and is further described in Section 4.2.

Four implementation components are generated from the AST:
1) a tracing version of the interpreter; 2) C-source stubs for mode
switching between native and other modes, to be inserted into the
BEAM interpreter using the preprocessor macros; 3) C-fragments
which are compiled to LLVM-IR by Clang and embedded in the
runtime system for the code generation; 4) a second version of the
interpreter, called a Cleanup-interpreter, used to execute until the
next instruction boundary.

The need for a special Cleanup-interpreter is motivated by per-
formance degradation observed in early experiments when a single
interpreter was generated to handle both profiling and tracing. The
reason for the degradation in performance was that the compiler
was forced to generate code under the very conservative assump-
tion that native code could return to the interpreter at any basic
block. This assumption forced the compiler to allocate most tem-
poraries on the stack which was disastrous for performance. With
the Cleanup-interpreter execution returns to the interpreter only at
BEAM instruction boundaries, see Section 4.4.

At runtime the BEAMJIT abstract machine executes in one
of the modes shown in Figure 4. From the profiling mode it ei-
ther starts tracing or executes already generated native code. If
tracing or native code execution stops at an instruction bound-
ary profiling is immediately resumed, otherwise the Cleanup-
interpreter executes until profiling can be resumed, at the start
of the next BEAM-instruction. To support efficient mode switching
the directly threaded BEAM interpreter is modified to use indirect
threading. Indirect threading allows for changing the implementa-
tion of opcodes by just changing the base pointer of the indirection
table as described in Section 2.1.3.

BEAMJIT uses LLVM for native code generation. During code
generation LLVM-IR fragments representing the basic blocks in

Profiling Tracing Native Cleanup

Figure 4: The four execution modes of the BEAMJIT abstract
machine.

beam_emu.c CFG

fragments.c

jit_emu.c Trace

LLVM optimizer Native codeBitcode IR generator

Figure 5: Native code generation in BEAMJIT.

the trace are joined together to form a unique LLVM-IR function
for the entire trace. The IR-code is optimized with LLVM’s opti-
mization passes, and native code is emitted with LLVM’s back-end.
Figure 5 shows a schematic view of this process.

4. The BEAMJIT Implementation
BEAMJIT is implemented as extensions and modifications to the
reference BEAM implementation. Some extensions are automati-
cally synthesized from the C source code of BEAM, some are im-
plemented by hand. The BEAMJIT implementation also requires
support from the Erlang compiler in order to support profiling.

This section describes different aspects of the BEAMJIT im-
plementation. The compiler support for profiling implemented in
the Erlang compiler is described in Section 4.1. The preprocessing
of the BEAM C source code that is common to all automatically
synthesized components is described in Section 4.2. Section 4.3
describes the runtime profiling support. The tracing version of the
BEAM interpreter is described in Section 4.4 and native code gen-
eration is described in Section 4.5.

4.1 Compiler Supported Profiling
In BEAMJIT the profiler is supported by the compiler. The Erlang
compiler inserts BEAMJIT-specific jit profile instructions into
the instruction stream to mark locations from where a trace is likely
to record a frequently executed instruction sequence. These loca-
tions are called anchors. The compiler inserts jit profile in-
structions at the top of loops and at the start of event handling se-
quences, which in the following discussion are called streaks. A
streak is a a frequently executed trace ending with the process be-
ing scheduled out.

Erlang has no explicit looping construct3 apart from tail-
recursion. Therefore the compiler inserts a jit profile instruc-
tion at the start of each function. When a tail-recursive function
calls itself the anchor will be encountered and the loop detected.

Streaks are a consequence of BEAMJIT’s tracer which does not
trace across processes and the desire to ensure that event handler
loops can be traced and compiled to native code. In Erlang an event
handler loop is written as a tail-recursive function which contains a
receive-statement. If a process is fed a steady stream of messages
so that the process never suspends inside receive, and control is
switched to another process, the tracer will record the loop. If on
the other hand the process frequently receives messages, but not
often enough to avoid being scheduled out inside receive, trac-
ing will never start until the message is handled and the handler

3 List-comprehensions are compiled to recursive functions

64



function recursively calls itself. Tracing will then almost imme-
diately be aborted when the process is scheduled out inside the
receive-statement as no pending messages exist. To enable trac-
ing of streaks the compiler also inserts jit profile instructions
after receive-instructions. The inserted jit profile instruction
will guarantee that tracing can start as soon as possible.

4.2 Analyzing the BEAM Source Code
The analysis of the BEAM source code is done in two steps. First
the C source code is analyzed to locate and extract the main inter-
preter loop and to identify individual instructions. This is described
in Section 4.2.1. When individual instructions have been identified
they are broken up into basic blocks and liveness information is cal-
culated for all variables. This process is described in Section 4.2.2.
The tool which does the analysis is called the Emulator Slicer and
is an Erlang program using a binding to the libClang library.

In this and the following sections we will use examples from a
simplified BEAM implementation to illustrate the covered con-
cepts. We focus on a single instruction, cndbr, a conditional
branch.

4.2.1 Identifying Abstract Machine Instructions
In the source code for the BEAM implementation, the entry point
for each instruction is defined by a C preprocessor macro. Fig-
ure 6 shows how the BEGIN INSTRUCTION macro is used for the
cndbr-instruction. The use of C preprocessor macros makes it pos-
sible to compile the BEAM either as a switch-based interpreter
loop (see Section 2.1.1) or as a directly threaded interpreter (see
Section 2.1.2). BEAMJIT leverages these macros for its build pro-
cess. When the Emulator Slicer analyzes the BEAM source code,
the entry point macros are overridden to include calls to dummy
marker functions. This enables the slicer to unambiguously iden-
tify instruction entry points.

#define BEGIN_INSTRUCTION(Name) Name
BEGIN_INSTRUCTION(condbr_instr): {

int arg_reg = (int)PC[1];

if (regs[arg_reg] != 0) {
PC = PC[2]
dispatch_to_opcode_at(PC);

}
PC += 3;
dispatch_to_opcode_at(PC);

}

Figure 6: Pseudo-C for the implementation of a con-
ditional branch instruction: cndbr <register-index>
<immediate-address>. Control will be transferred to
<immediate-address> if the register with <register-index>
is non-zero.

4.2.2 Building the Control Flow Graph (CFG)
When the instruction entry points have been identified, the Emula-
tor Slicer traverses the abstract syntax tree for each instruction and
builds a Control Flow Graph, CFG for each instruction. High-level
C control flow constructs, such as for, while and do..while, are
converted to simple if- and switch-statements which branch to
explicitly named blocks using gotos. A side-effect of building the
CFG is that local variables which are declared inside C-blocks
are renamed and moved to the outermost nesting level. When the
CFG has been built each basic block is given an unique identity.

When the CFG has been built, a liveness analysis on all C-level
variables is performed to determine the use, def, live-in and live-
out sets for each basic block in the implementation of the BEAM

instructions. For the running example of the cndbr-instruction, it
produces the CFG shown in Figure 7.

# use: PC, regs
# def: arg_reg
# live-in: PC, regs
# live-out: PC, regs
condbr_instr:
arg_reg = (int)PC[1];
pred = regs[arg_reg] != 0;
if (pred)
goto condbr_instr_true;
else
goto condbr_instr_false;

# use: PC, regs
# def: PC
# live-in: PC, regs
# live-out: PC, regs
condbr_instr_true:
PC = PC[2];
dispatch_to_opcode_at(PC);

# use: PC, regs
# def: PC
# live-in: PC, regs
# live-out: PC, regs
condbr_instr_false:
PC += 3;
dispatch_to_opcode_at(PC);

Figure 7: The portion of the Emulator Slicer’s CFG which corre-
sponds to the cndbr instruction.

4.3 Runtime Profiling
To identify frequently executed BEAM code to turn into native
code, BEAMJIT estimates the execution intensity of each anchor
using a lightweight profiler. Tracing is started when the execution
intensity field exceeds a configurable threshold.

The anchors are at locations in the instruction stream identi-
fied by the compiler (Section 4.1) designated by jit profile-
instructions. The jit profile-instruction contains a pointer to a
data structure associated with the anchor, and it contains counters
used during profiling.

The implementation of the jit profile instruction is writ-
ten by hand, not by automatic extraction from the BEAM source
code. jit profilemeasures the execution intensity using a global
timestamp counter. It is incremented each time an anchor is encoun-
tered. The anchor’s data structure contains a local timestamp-field
recording the global timestamp counter-value of the last time the
anchor was visited and an intensity-field. The jit profile in-
struction checks the timestamp field and only increments the in-
tensity field if the previous timestamp is recent enough, otherwise
the intensity is reset to zero. Finally, the anchor’s timestamp is set
to that of the global timestamp.

4.4 Tracing
The trace is recorded in a trace buffer of fixed size. A trace buffer
entry records the basic block identity and the BEAM instruction
pointer value, or marks a fork-point (see below).

Tracing starts as a result of the profiler discovering an intensely
executed anchor. Switching to the tracing version of the interpreter
requires the currently live local variables in the profiling interpreter
to be transferred to the tracer. This is done by synthesized C frag-
ments which are inserted into the profiling interpreter by redefining
the C preprocessor macro (described in Section 4.2.1) which de-
fines the entry point for each BEAM instruction. The synthesized
C fragments store all live variables in a structure from which the
tracing interpreter initializes its local variables. Tracing continues
until one of three things happen: The trace overflows; The process
is scheduled out; The trace has not grown during the last N itera-
tions, measured by an iteration-field in the anchor.

Traces may fork and turn into trace-trees. When, the execution
reaches the initial anchor tracing continues in a different mode.
Instead of adding new entries to the trace, the tracer follows along

65



the already existing entries. If execution diverges from the recorded
trace a special trace entry called a fork-point is recorded, and
normal tracing continues, adding new entries to the trace. When
entries are added to the trace, the iteration-field in the anchor is
cleared. If the trace outgrows the trace buffer, tracing is aborted
and the trace buffer is restored to its previous state.

Tracing is accumulative, i.e. a trace can be started and grow
until the process is scheduled-out. When the process is scheduled-
in tracing continues. Each time the initial anchor is visited the
iteration-field in the anchor is incremented. When the iteration-
field rises above a threshold (N) the trace is considered stable and
native compilation commences.

Some anchors fail to produce good traces, to avoid repeated
tracing from a badly chosen anchor BEAMJIT implements anchor
black-listing. In order adapt to changing runtime behavior of the
running program, black-listed anchors are forgotten after a time.
Anchors are black-listed when a trace started from the anchor
repeatedly overflows its trace buffer.

The tracing interpreter itself is synthesized by the Emulator
Slicer from the CFG. It differs from the profiling interpreter in
that it only uses gotos together with if and switch for flow-
control and all local variables are in a single scope. The parts of
the tracing interpreter handling the cndbr-instruction is shown in
Figure 8. Each basic block of the tracing interpreter starts with a
call to a library function which records the basic block identity
and the current BEAM instruction pointer. If the library function
signals an error, due to an overflowing trace buffer, and the tracing
should be stopped, the generated tracing interpreter calls a special
Cleanup-interpreter which continues execution to the next BEAM
instruction boundary.

tracing_condbr_instr:
if (record_trace(PC , tracing_condbr_instr)) {

cleanup_tracing_instr_condbr(regs , PC,
&live_vars);

return;
}
arg_reg = (int)PC[1];
pred = regs[arg_reg] != 0;
if (pred)

tracing_condbr_instr_true; /* pred == 0 */
else

tracing_condbr_instr_false; /* pred == 1 */

tracing_condbr_instr_true:
if (record_trace(PC , tracing_condbr_instr_true)) {

cleanup_tracing_condbr_instr_true(regs , PC,
&live_vars);

return;
}
PC = PC[2];
dispatch_to_opcode_at(PC);

tracing_condbr_instr_false:
if (record_trace(PC , tracing_condbr_instr_false)) {

cleanup_tracing_condbr_instr_false(regs , PC ,
&live_vars);

return;
}
PC += 3;
dispatch_to_opcode_at(PC);

Figure 8: Pseudo-C for the tracing implementation of the cndbr
instruction.

The Cleanup-interpreter is also generated from the CFG . The
Cleanup-interpreter is structured as a set of tail-recursive functions,
one for each basic block, which as arguments take the variables
which are live-in at that particular basic block. When the function
has performed the operations in its basic block, it tail-recursively
calls one of its successor blocks according to the flow-control infor-

mation embedded in the CFG until a BEAM instruction boundary
is reached. Leaf nodes in the CFG which are the last basic blocks in
the implementation of a BEAM instruction build a small structure
containing the value of the interpreter variables which are live at
this point. Before execution is resumed in the profiling interpreter
Emulator Slicer-generated stubs are used to move the live vari-
ables from the structure to the local variables of the interpreter. The
Cleanup-interpreter-parts resulting from the cndbr-instruction are
shown in Figure 9.

void cleanup_tracing_condbr_instr(
int regs[],
Instr *PC,
live_out_0_t *out)

{
int arg_reg = (int)PC[1];
int pred = regs[arg_reg] != 0;
if (pred) {

cleanup_tracing_condbr_instr_true(regs ,PC,out);
return;

} else {
cleanup_tracing_condbr_instr_false(regs ,PC,out);
return;

}
}

void cleanup_tracing_condbr_instr_true(
int regs[],
Instr *PC,
live_out_0_t *out)

{
PC = PC[2];
out ->PC = PC;
/* regs: The emulator slicer is smart enough to see

that the pointer to regs never changes */
}

void cleanup_tracing_condbr_instr_false(
int regs[],
Instr *PC ,
live_out_0_t *out)

{
PC += 3;
out ->PC = PC;

}

Figure 9: Pseudo-C for the Cleanup-interpreter parts for the cndbr
instruction.

4.5 Native Code Generation
To support runtime native code generation the Emulator Slicer gen-
erates a C module containing a CFG database which can be queried
by the runtime code generator. The database stores, for each basic
block: the use and def variable sets; the live-in and live-out vari-
able sets; the successor basic block(s). The database also includes
the edges in the CFG. Edges are annotated with flow-control infor-
mation, the information records if the edge represents a conditional
or non-conditional branch. For conditional branches the informa-
tion also includes a pointer to the local variable the if- or switch-
statement operates on and which value the edge corresponds to.

In addition to generating the CFG database, the Emulator
Slicer produces a C module with template functions. The C mod-
ule is compiled to IR bitcode4 using Clang. The template function
IR is used by the runtime code generator to construct the IR for a
recorded trace.

The Emulator Slicer creates a template function for each basic
block in the CFG. The template function is a nullary function which
starts with a preamble which declares all variables used by the body
of the basic block (given by the union of the use and def sets). The

4 a binary representation of LLVM-IR

66



int tmpl_tracing_condbr_instr(void)
{

Instr *PC;
int *regs;
int arg_reg = (int)PC[1];
int pred = regs[arg_reg] != 0;
return pred;

}

void tmpl_tracing_condbr_instr_true(void)
{

int *regs[];
nstr *PC;
PC = PC[2];

}

void tmpl_tracing_condbr_instr_false(void)
{

int *regs[];
nstr *PC;
PC += 3;

}

Figure 10: Pseudo-C for the templates used as input for the Clang-
based LLVM-IR generation process for the cndbr instruction.

BB=0
ip=0x4567

BB=1
ip=0x4567

BB=2
ip=0x4567

BB=3
ip=0x4568

BB=3
ip=0x4568

BB=4
ip=0x4569

BB=4
ip=0x4569

BB=0
ip=0x4567

BB=1
ip=0x4567

BB=2
ip=0x4567

BB=3
ip=0x4568

BB=4
ip=0x4569

Figure 11: Trace compression identifies and removes duplicated
trace segments (left), to produce a simplified trace (right).

template function continues with the body of the corresponding
basic block in the interpreter. Basic blocks which do not end in a
conditional branch are declared as void and return nothing. Basic
blocks which end with an if or a switch return the value of the
expression the if- or switch-statement operates on. Basic blocks
which end by dispatching to the next BEAM instruction return the
new instruction pointer. The templates for the cndbr-instruction
are shown in Figure 10.

The runtime system produces traces which represent loops or
streaks. If BEAMJIT has traced both branches of an if-statement
the trace will contain forking paths. BEAMJIT uses a simple trace
representation with very low recording overhead. Because of this,
it cannot detect path segments that are shared between branches.
To reduce the trace size before code generation, the trace is com-
pressed by identifying and merging common path segments. Com-
pression is performed by building a CFG where each node repre-
sents a unique trace entry. Figure 11 illustrates this process: On the
left we have a trace where following basic block 0, we can branch to
either block 1 or 2. Regardless of the chosen path, both paths have
a common tail of blocks 3 and 4. By using a hash table to identify
identical CFG nodes we can reduce the CFG to the simpler version
on the right.

IR-code generation for a trace starts by creating an IR-level
function, the trace function, with a signature matching the live-in
set of its entry basic block.

The second step is to traverse the trace while consulting the
CFG database to look up and form the union of all variables in

the use and def sets of the basic blocks in the trace. Variables
of matching types are then created as function-local variables,
variables which are live-in are set to the value of the corresponding
function argument.

The third step is to traverse the trace again and copy the bodies
of the template functions corresponding to each basic block into the
trace function while substituting the template’s local variables for
the variables in the trace function.

The fourth step adds flow-control edges between the copied ba-
sic blocks. While adding flow-control edges, the flow-control infor-
mation in the CFG database is used to build guards which check to
make sure that, at runtime, execution will stay on the recorded path.
Where the program may branch to a destination not in the trace,
a call to the Cleanup-interpreter is inserted. When flow-control
edges are added and the CFG contains a loop, BEAMJIT also in-
serts a flag to detect if the native code branches to the Cleanup-
interpreter without executing at least one iteration through the loop.
This flag is used to detect native code which no longer is represen-
tative and should be purged. A trace which includes the cndbr-
instruction is shown in Figure 12 and the resulting LLVM-IR is
shown as pseudo-C in Figure 13.

Basic block PC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 0xBEEA
condbr instr 0xBEEF
condbr condbr instr true 0xBEEF
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0xDEAD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 12: An example part of a recorded trace. The trace shows a
taken conditional branch.

void trace_fun(
/* Live -in variables */
...,
live_out_0_t *out)

{
int arg_reg;
int pred;

...
/* The body of the preceeding basic block */

arg_reg = (int)PC[1];
pred = regs[arg_reg] != 0;
if (!pred) {

cleanup_tracing_condbr_instr_false(regs ,PC,out);
return;

}
PC = PC[2];

/* The body of the succeeding basic */
...

}

Figure 13: Pseudo-C representing the unoptimzed LLVM-IR of the
trace in Figure 12.

Optimization of the produced IR-code is performed by LLVM’s
standard set of optimizations together with one additional BEAM-
specific optimization pass. The BEAM-specific optimization, called
load-from-code, runs in conjunction with constant propagation. It
is based on the observation that the BEAM interpreter tends to
load data from the BEAM-code area and BEAM-code is constant
during execution. If load-from-code can detect that a load is per-
formed using a constant pointer into the code area, it can perform

67



the load immediately and replace it with a constant. In many cases
load-from-code triggers further constant propagation which may
open up for new applications of load-from-code. The optimization
typically eliminates all loads related to the fetching of BEAM-
instruction immediate arguments. For the example in Figure 13 the
load-from-code optimization eliminates all loads from the BEAM-
code area as can be seen in Figure 14.

In a dynamically typed language like Erlang, many type tests
will translate to guards. The optimizer will therefore be able to
produce specialized native code for the particular type encountered
in the trace.

When the IR-code has been optimized by LLVM’s optimizers, it
is handed off to LLVM’s native code generation back-end, MCJIT.
MCJIT emits native code, maps it into the address space of the
BEAMJIT process and returns a function pointer to the code. The
pointer is stored in the anchor.

When the profiling interpreter encounters an anchor with a
function pointer, it calls the native code through a C fragment
generated by the Emulator Slicer and inserted into the profiling
interpreter using the same mechanism as was used when inserting
the fragments for calling the tracer.

void trace_fun(
/* Live -in variables */
...,
live_out_0_t *out)

{
int pred;

...
/* The body of the preceeding basic block */
pred = regs[13] != 0;
if (!pred) {

cleanup_tracing_condbr_instr_false(regs ,PC,out);
return;

}
PC = 0xDEAD;

/* The body of the succeeding basic block */
...

}

Figure 14: Pseudo-C representing the optimzed LLVM-IR of the
trace in Figure 12.

5. Evaluation
The performance of BEAMJIT was evaluated using the same
benchmark suite5 as traditionally used by HiPE. As BEAMJIT
currently does not support BEAM’s SMP6 mode, performance re-
sults are normalized against a unicore BEAM runtime7. The plain
BEAM runtime is chosen as the baseline instead of a HiPE-enabled
system as currently HiPE provides, for the selected benchmark
suite, such a large performance improvement to plain BEAM (Fig-
ure 15) that a comparison to BEAMJIT would be uninteresting.
The reason for HiPE’s large performance advantage is that it pro-
vides many low-level optimizations which are yet to be imple-
mented in BEAMJIT. Examples of optimizations which HiPE has
but BEAMJIT currently lacks are, for example: Understanding of
BIFs8 which allows many arithmetic and bit-string operations to
be optimized. HiPE can also avoid constructing a term on the heap

5 https://github.com/cstavr/erllvm-bench
6 Symmetric MultiProcessor
7 R16B03-1
8 Built-In-Function: A function exposed at the Erlang-level but imple-
mented in C and transparently invoked by the abstract machine

when a tuple is returned as the result of a called (local or inlined)
function, a very common pattern in Erlang programs. Replicating
these optimizations within the LLVM framework is planned future
work.

We have divided the benchmarks into two groups. In the first
group, Figures 16 and 17, the performance is reasonable compared
to the baseline as BEAMJIT’s execution time is between 60 percent
to just over 100 percent of BEAM. In the second group, Figures 18
and 19, the execution time is several times longer than BEAM. We
focus the performance analysis on explaining those results.

Figures 16 and 18 show two bars per benchmark. The height
of the bars is the elapsed wall clock time for running the bench-
mark with BEAMJIT divided by the elapsed time of running the
same benchmark with BEAM. This makes a bar below 1.0 sig-
nify that BEAMJIT is faster than BEAM. The left bar shows the
elapsed time for BEAMJIT when just-in-time compilation runs
synchronously with the benchmark, i.e. when tracing has found a
trace to compile execution stops until native code is available. The
right bar shows the time for the asynchronous case when compi-
lation is handed off to a separate thread and the abstract machine
continues interpreting until native code is available.

The red hatched area in Figures 16 and 18 shows the elapsed
time for running the benchmark in the stable state, i.e. when native
code is already available, and the green solid bar shows the aggre-
gated time to compile and time to run (from scratch, with a purged
code cache). The black bars are truncated to improve the readabil-
ity of the graph, as their height would otherwise dwarf the other
measurements.

Figure 18 shows the benefit of asynchronous compilation on
benchmarks aprettypr, decode, fannkuch, huff and partialsums
where synchronous compilation takes more than ten times as long.
Figure 19 shows that most of the time is spent compiling rather
than executing. With asynchronous compilation the compilation
overhead is masked as the emulator is able to continue making
progress in interpreting mode and finish the benchmark in about
twice the time compared to BEAM.

Several of the benchmarks are small and not relevant for testing
the performance of a just-in-time compiler. For instance barnes,
nestedloop and w estone are so small that the relative time to
compile is huge compared to the small time to finish the bench-
mark. This creates a very tall bar. The benchmarks heapsort,
decode and barnes run faster than BEAM in the steady state (the
red hatched area in Figure 16). We have chosen not to modify the
benchmarks to increase their size as that approach would allow
us to mask the true cost of native code generation by making the
benchmark arbitrarily large.

An interesting observation can be made on the benchmarks
call * and fun bm in Figures 16 and 18. They perform the same
number of function calls, one in a loop and in the other the loop
is unrolled. For BEAM unrolling speeds up execution because it
removes some loop tests. For BEAMJIT unrolling actually slows
down execution. This is because the tracer finds a very long trace
which is costly to compile, as is seen in figures 17 and 19. Inter-
esting to note is that although Figure 19 shows that we spend most
of our time in native code BEAMJIT is still slow, something we
attribute to the increased cache footprint of the native code.

Tracing is able to straddle module boundaries. This distin-
guishes BEAMJIT from HiPE, since the latter operates on indi-
vidual modules. The benchmarks call tail bm external and
call tail bm local both achieve a significant and equal speedup
compared to BEAM, see Figure 16.

6. Related Work
The unique aspect of the BEAMJIT is that it uses the emulator
C source code for an abstract machine to extract (using libClang)

68

https://github.com/cstavr/erllvm-bench


ap
re

tty
pr

ba
rn

es
bi

n
to

te
rm

bm
bi

na
ry

tre
es

bs
bm

bs
si

m
pl

e
bm

bs
su

m
bm

ca
ll

bm
ca

ll
ta

il
bm

un
ro

lle
d

ca
ll

ta
il

bm
ex

te
rn

al
un

ro
lle

d
ca

ll
ta

il
bm

ex
te

rn
al

ca
ll

ta
il

bm
lo

ca
l

un
ro

lle
d

ca
ll

ta
il

bm
lo

ca
l

ca
ll

ta
il

bm
ch

am
en

eo
s

ch
am

en
eo

sr
ed

ux
de

co
de

ex
ce

pt
fa

nn
ku

ch
fa

nn
ku

ch
re

du
x

fib fib
o

flo
at

bm
fr

eq
bm

fu
n

bm
un

ro
lle

d
fu

n
bm

ha
rm

on
ic

ha
sh

ha
sh

2
he

ap
so

rt hu
ff

le
ng

th
le

ng
th

c
le

ng
th

u lif
e

lis
ts

te
st

m
an

de
lb

ro
t

m
at

rix
m

ea
n

m
ea

n
nn

c
ne

st
ed

lo
op nr

ev
pa

rti
al

su
m

s
pi

di
gi

ts
ps

eu
do

kn
ot qs
or

t
re

cu
rs

iv
e rin

g
si

ev
e

sm
ith

st
ab

le
st

rc
at su
m ta
k

ta
kf

p
th

re
ad

rin
g

w
es

to
ne

ya
w

s
ht

m
l zi

p
zi

p3
zi

p
nn

c

0.0

0.5

1.0

1.5

2.0

Fr
ac

tio
n

of
tim

e
fo

rB
E

A
M

HiPE

Figure 15: Execution time of HiPE normalized to the execution time of BEAM. Black columns indicates benchmarks for which HiPE is ten,
or more, times slower than BEAM.

bi
n

to
te

rm
bm

bi
na

ry
tre

es

bs
bm

bs
si

m
pl

e
bm

bs
su

m
bm

ca
ll

ta
il

bm
ex

te
rn

al
ca

ll
ta

il
bm

lo
ca

l
ca

ll
ta

il
bm

fa
nn

ku
ch

re
du

x

fib fib
o

flo
at

bm

fr
eq

bm

fu
n

bm

ha
rm

on
ic

le
ng

th

le
ng

th
c

le
ng

th
u lif

e

lis
ts

te
st

m
an

de
lb

ro
t

m
at

rix

m
ea

n

m
ea

n
nn

c

nr
ev

pi
di

gi
ts

ps
eu

do
kn

ot qs
or

t

re
cu

rs
iv

e

si
ev

e

sm
ith

st
ab

le

su
m ta
k

ta
kf

p

ya
w

s
ht

m
l zi

p

zi
p3

zi
p

nn
c

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

ru
n-

tim
e

(w
al

lc
lo

ck
)

Cold
Hot

Figure 16: Execution time of BEAMJIT normalized to the execution time of BEAM. The left column is for synchronous compilation, and
the right column is for asynchronous compilation. The 1.0-line shows the performance of the unmodified emulator on a single core. The red
hatched area (hot) is the elapsed time for running the benchmark in the stable state when native code is already produced. The green solid
bar (cold) shows the elapsed time when the benchmark is run with no preexisting native code.

the bulk of the tracing interpreter and the abstract machine instruc-
tion implementations. For other parts it borrows heavily from tech-
niques found in other just-in-time compilers (as already covered in
Section 2).

BEAMJIT, just as Mozilla’s IonMonkey [1], Sun’s HotSpot [15]
as well as Google’s V8 Crankshaft [20] use an abstract intermediate
representation for code optimizations before generating machine
code. V8 also uses adaptive compilation, meaning that it creates an
initial native code version quickly, and only spends more time to
optimize the code if it runs often. BEAMJIT does not do adaptive

compilation, although it is possible to implement it by generating
the first native code with very few LLVM optimization passes
active. If the native code later on turns out to be very frequently
executed the trace can be recompiled using a higher optimization
level.

Two virtual machines and tracing just-in-time compilers for
Java are very similar to BEAMJIT: Häubl and Mössenböck’s [13]
system, henceforth called TraceHotSpot; and Inoue et al. [14]’s
system, henceforth called J9Trace. Both TraceHotSpot and J9Trace
modifies an already existing Java just-in-time compiler, HotSpot [15]

69



bi
n

to
te

rm
bm

bi
na

ry
tre

es

bs
bm

bs
si

m
pl

e
bm

bs
su

m
bm

ca
ll

ta
il

bm
ex

te
rn

al
ca

ll
ta

il
bm

lo
ca

l
ca

ll
ta

il
bm

fa
nn

ku
ch

re
du

x

fib fib
o

flo
at

bm

fr
eq

bm

fu
n

bm

ha
rm

on
ic

le
ng

th

le
ng

th
c

le
ng

th
u lif

e

lis
ts

te
st

m
an

de
lb

ro
t

m
at

rix

m
ea

n

m
ea

n
nn

c

nr
ev

pi
di

gi
ts

ps
eu

do
kn

ot qs
or

t

re
cu

rs
iv

e

si
ev

e

sm
ith

st
ab

le

su
m ta
k

ta
kf

p

ya
w

s
ht

m
l zi

p

zi
p3

zi
p

nn
c

0.0

0.5

1.0

Fr
ac

tio
n

of
to

ta
l(

tim
e

or
in

st
ru

ct
io

ns
)

Bif
Native
Compiling
Tracing
Interpreting

Figure 17: Time spent in different execution modes. For each benchmark, the left column shows the fraction of wall clock time elapsed in
each execution mode, and the right column shows the fraction of BEAM instructions executed in the respective mode.

ap
re

tty
pr

ba
rn

es

ca
ll

bm
ca

ll
ta

il
bm

un
ro

lle
d

ca
ll

ta
il

bm
ex

te
rn

al
un

ro
lle

d
ca

ll
ta

il
bm

lo
ca

l
un

ro
lle

d
ch

am
en

eo
s

ch
am

en
eo

sr
ed

ux
de

co
de

ex
ce

pt

fa
nn

ku
ch

fu
n

bm
un

ro
lle

d
ha

sh

ha
sh

2

he
ap

so
rt hu

ff

ne
st

ed
lo

op
pa

rti
al

su
m

s rin
g

st
rc

at

th
re

ad
rin

g

w
es

to
ne

0

1

2

3

4

5

6

7

8

9

N
or

m
al

iz
ed

ru
n-

tim
e

(w
al

lc
lo

ck
)

Cold
Hot

Figure 18: Execution time of BEAMJIT normalized to the exe-
cution time of BEAM. The figure shows the benchmarks where
BEAMJIT fails to provide a performance improvement. They are
discussed in the text. Black columns indicates benchmarks for
which BEAMJIT is ten, or more, times slower than BEAM.The red
hatched area (hot) is the elapsed time for running the benchmark
in the stable state when native code is already produced. The green
solid bar (cold) shows the elapsed time when the benchmark is run
with no preexisting native code.

and J9/TR [12] respectively, to be trace based and reuses their
respective optimizer and native code emitter. Both system use
lightweight intensity based profiling to determine when tracing
should start, but in contrast to BEAMJIT they analyze the Java
bytecode in a preprocessing step to find anchors.

Of the two, TraceHotSpot uses a trace representation much
more advanced than BEAMJIT. TraceHotSpot restricts traces to
stay inside methods, when execution transfers to another method,

ap
re

tty
pr

ba
rn

es

ca
ll

bm
ca

ll
ta

il
bm

un
ro

lle
d

ca
ll

ta
il

bm
ex

te
rn

al
un

ro
lle

d
ca

ll
ta

il
bm

lo
ca

l
un

ro
lle

d
ch

am
en

eo
s

ch
am

en
eo

sr
ed

ux
de

co
de

ex
ce

pt

fa
nn

ku
ch

fu
n

bm
un

ro
lle

d
ha

sh

ha
sh

2

he
ap

so
rt hu

ff

ne
st

ed
lo

op
pa

rti
al

su
m

s rin
g

st
rc

at

th
re

ad
rin

g

w
es

to
ne

0.0

0.5

1.0

Fr
ac

tio
n

of
to

ta
l(

tim
e

or
in

st
ru

ct
io

ns
)

Bif
Native
Compiling
Tracing
Interpreting

Figure 19: Time spent in different execution modes. For each
benchmark, the left column shows the fraction of wall clock time
elapsed in each execution mode, and the right column shows the
fraction of BEAM instructions executed in the respective mode.

the traces are explicitly linked. The trace linking avoids construct-
ing large traces which must be compiled as a whole and cannot be
reused as parts of other traces.

Both TraceHotSpot and J9Trace emit native code which does
not maintain the stack of the interpreter. Therefore they both sup-
port rebuilding the interpreter stack when execution leaves the fast
path. TraceHotSpot uses HotSpot’s deoptimization framework to
dynamically rebuild the stack. J9Trace uses a native code sequence
generated at compilation time to rebuild the stack, a mechanism
very similar to BEAMJIT.

ErLLVM [25] is a modified version of HiPE in which HiPE’s
native code generation back-end is replaced with LLVM. The main

70



motivation for ErLLVM is to gain a state-of-the art native code
emitter which provides instruction selection, instruction scheduling
and can exploit SMD-extensions while retaining backwards com-
patibility. As ErLLVM only replaces the final stages of the HiPE
compiler it retains all of the HiPE drawbacks compared to a just-
in-time compiler.

7. Applicability to Other Language Runtimes
This paper describes a just-in-time compiler for Erlang where the
bulk of the tracing interpreter and the abstract machine instruction
implementations are extracted from the C source code of the ab-
stract machine, it could equally well be applied to other abstract
machine based programming languages where the abstract machine
is implemented in C.

The only hard requirement for applying the Emulator Slicer is
that it must be able to identify the entry point of abstract ma-
chine instructions. If a prospective target does not use a preproces-
sor mechanism to mark abstract instruction (as described in Sec-
tion 4.2.1), the Emulator Slicer could be extended to identify them
by, for example, recognizing the form of the C label marking in-
structions.

Worth noting is also that the Emulator Slicer’s analysis of the
abstract machine source code can be used for many things apart
from a just-in-time compiler. By extending the Emulator Slicer it
can easily be used for generating instrumented versions of an ab-
stract machine. The way BEAMJIT generates native code using the
Emulator Slicer and Clang to produce LLVM-IR is not limited to a
just-in-time compiler, it could equally well be applied in an ahead-
of-time compiler.

8. Conclusion and Future Work
This paper has introduced a just-in-time compiling runtime for Er-
lang called BEAMJIT. The evaluation shows that a tracing just-in-
time compiler for the BEAM abstract machine which is synthe-
sized from the C implementation of the abstract machine gives tan-
gible performance improvements in many cases. Although not all
benchmarks in the benchmarking suite show performance improve-
ments, the lack of performance is not due to the synthesis process
but rather to correctable inefficiencies in the surrounding runtime
environment.

The automatic extraction process greatly reduces the amount
of manual work required to maintain a just-in-time compiler as
it automatically tracks the base system. During the development
of BEAMJIT the implementation has been forward-ported to one
major and three minor releases of Erlang with only minor changes
required to the synthesis framework.

For the future we have identified a number of areas of improve-
ment. In the runtime system we plan to add full SMP-support, both
for executing native code and for performing tracing. SMP-tracing
will require a much refined trace representation. We also aim to re-
duce the overhead of mode switching and also allow more of the
BEAM implementation to be just-in-time compiled by extending
the tracing process to built-in primitives. Further planned work is
to implement the Erlang-specific optimizations mentioned in Sec-
tion 5 that HiPE has pioneered.

Acknowledgments
This work is funded by Ericsson AB. The authors also wish to thank
Roberto Castañeda Lozano and the anonymous reviewers for their
helpful comments on this manuscript.

References
[1] D. Anderson. IonMonkey in Firefox 18. https://blog.mozilla.org/

javascript/2012/09/12/ionmonkey-in-firefox-18/, 2012. Visited May
2014.

[2] J. Aycock. A Brief History of Just-in-time. ACM Comput. Surv., 35
(2):97–113, June 2003. .

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent
Dynamic Optimization System. SIGPLAN Not., 35(5):1–12, May
2000. .

[4] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte,
N. Tillmann, and H. Venter. SPUR: A Trace-based JIT Compiler for
CIL. SIGPLAN Not., 45(10):708–725, Oct. 2010. .

[5] J. R. Bell. Threaded code. Commun. ACM, 16(6):370–372, June 1973.
.

[6] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A
Fast Dynamic Language for Technical Computing. http://arxiv.org/
abs/1209.5145, 2012. Visited May 2014.

[7] M. Chang, E. Smith, R. Reitmaier, M. Bebenita, A. Gal, C. Wimmer,
B. Eich, and M. Franz. Tracing for Web 3.0: Trace Compilation
for the Next Generation Web Applications. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’09, pages 71–80. ACM, 2009. .

[8] B. Cheng and B. Buzbee. A JIT Compiler for An-
droid’s Dalvik VM. http://dl.google.com/googleio/2010/
android-jit-compiler-androids-dalvik-vm.pdf, 2010. Visited May
2014.

[9] M. Fulton and M. Stoodley. Compilation techniques for real-time
java programs. In Proceedings of the International Symposium on
Code Generation and Optimization, CGO ’07, pages 221–231. IEEE
Computer Society, 2007. .

[10] A. Gal, C. W. Probst, and M. Franz. HotpathVM: An Effective
JIT Compiler for Resource-constrained Devices. In Proceedings of
the 2Nd International Conference on Virtual Execution Environments,
VEE ’06, pages 144–153. ACM, 2006. .

[11] GNU. GNU lightning 2.0. https://www.gnu.org/software/lightning/,
2013. Visited May 2014.

[12] N. Grcevski, A. Kielstra, K. Stoodley, M. G. Stoodley, and V. Sundare-
san. Java just-in-time compiler and virtual machine improvements for
server and middleware applications. In Virtual Machine Research and
Technology Symposium, pages 151–162. USENIX, 2004.

[13] C. Häubl and H. Mössenböck. Trace-based Compilation for the Java
HotSpot Virtual Machine. In Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, PPPJ
’11, pages 129–138. ACM, 2011. .

[14] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A trace-based java
jit compiler retrofitted from a method-based compiler. In Proceedings
of the 9th Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization, CGO ’11, pages 246–256. IEEE Computer
Society, 2011.

[15] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,
and D. Cox. Design of the Java HotSpot&Trade; Client Compiler for
Java 6. ACM Trans. Archit. Code Optim., 5(1):7:1–7:32, May 2008. .

[16] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong
program analysis transformation. In CGO 2004. International Sym-
posium on Code Generation and Optimization, 2004, pages 75–86,
March 2004. .

[17] D. Malcolm. Just-In-Time Compilation (libgccjit.so). http://gcc.gnu.
org/wiki/JIT, 2013. Visited May 2014.

[18] J. McCarthy. Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I. Commun. ACM, 3(4):184–195, Apr.
1960. .

[19] Microsoft. Common Language Runtime (CLR) 4.5. http://msdn.
microsoft.com/en-us/library/k5532s8a#running code, 2012. Visited
May 2014.

71

https://blog.mozilla.org/javascript/2012/09/12/ionmonkey-in-firefox-18/
https://blog.mozilla.org/javascript/2012/09/12/ionmonkey-in-firefox-18/
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
http://dl.google.com/googleio/2010/android-jit-compiler-androids-dalvik-vm.pdf
http://dl.google.com/googleio/2010/android-jit-compiler-androids-dalvik-vm.pdf
https://www.gnu.org/software/lightning/
http://gcc.gnu.org/wiki/JIT
http://gcc.gnu.org/wiki/JIT
http://msdn.microsoft.com/en-us/library/k5532s8a#running_code
http://msdn.microsoft.com/en-us/library/k5532s8a#running_code


[20] K. Millikin and F. Schneider. A New Crankshaft for V8. http://
blog.chromium.org/2010/12/new-crankshaft-for-v8.html, 2010. Vis-
ited May 2014.

[21] E. Miranda. Build me a JIT as fast as you
can... http://www.mirandabanda.org/cogblog/2011/03/01/
build-me-a-jit-as-fast-as-you-can/, 2011. Visited May 2014.

[22] M. Pall. LuaJIT 2.0. http://luajit.org/luajit.html, 2014. Visited May
2014.

[23] M. Pettersson, K. F. Sagonas, and E. Johansson. The HiPE/x86
Erlang Compiler: System Description and Performance Evaluation. In
Proceedings of the 6th International Symposium on Functional and
Logic Programming, FLOPS ’02, pages 228–244. Springer-Verlag,
2002.

[24] A. Rigo and S. Pedroni. PyPy’s Approach to Virtual Machine Con-
struction. In Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’06, pages 944–953. ACM, 2006. .

[25] K. Sagonas, C. Stavrakakis, and Y. Tsiouris. Erllvm: An llvm backend
for erlang. In Proceedings of the Eleventh ACM SIGPLAN Erlang
Workshop. ACM, 2012.

[26] T. Schilling. Trace-based Just-in-time Compilation for Lazy Func-
tional Programming Languages. PhD thesis, School of Computing,
University of Kent at Canterbury, April 2013.

[27] K. K. Thorup. Erjang: A virtual machine for erlang which runs on
java. http://github.com/trifork/erjang/wiki. Visited May 2014.

72

http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html
http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html
http://www.mirandabanda.org/cogblog/2011/03/01/build-me-a-jit-as-fast-as-you-can/
http://www.mirandabanda.org/cogblog/2011/03/01/build-me-a-jit-as-fast-as-you-can/
http://luajit.org/luajit.html
http://github.com/trifork/erjang/wiki

	Introduction
	Background
	Abstract Machine Implementation Techniques
	Switch Statement
	Direct Threading
	Indirect Threading

	Just-in-time Compilation
	Tracing Just-in-time Compilation
	Native Code Generation Back-ends

	An Overview of BEAMJIT
	The BEAMJIT Implementation
	Compiler Supported Profiling
	Analyzing the BEAM Source Code
	Identifying Abstract Machine Instructions
	Building the Control Flow Graph (CFG)

	Runtime Profiling
	Tracing
	Native Code Generation

	Evaluation
	Related Work
	Applicability to Other Language Runtimes
	Conclusion and Future Work



