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ABSTRACT
Video traffic now represents a growing proportion of the traffic on
cellular networks, causing capacity problems for operators and in-
creased delays for users. Studies have shown that deploying caches
at the network level reduces the delay for the end-user and the over-
all traffic volume for the telecom operator. In this paper, we analyse
a large nation-wide dataset of real-life video requests sent by mo-
bile users to a popular video streaming website. This analysis is
the first to rely on such a large dataset, and sheds light on the op-
timal cacheability of video content with caches distributed in the
cellular network, and how efficient some existing cache replace-
ment algorithms are at reducing the number of requests sent to the
video provider. We show that depending on the cache size and al-
gorithm parameters, up to 20.33% of the requests can be served by
a local cache.

1. INTRODUCTION
Over the past few years, traffic from wireless and mobile de-

vices has grown at a rapid rate. It is expected to exceed traffic
from wired devices by 2016, and mobile data traffic will increase
13-fold between 2012 and 2017 [6]. This increase in traffic is to
a large extent driven by video content, which is expected to make
up 69% of all consumer Internet traffic in 2017 (up from 57% in
2012). This is becoming an increasing problem for cellular net-
work operators, as a large part of their available bandwidth is con-
sumed by video traffic. In particular, the backhaul from the base
station is often a bottle-neck in these systems. Therefore, the in-
troduction of information-centric networking architectures [7, 12]
and caches at base stations show great potential to improve perfor-
mance and reduce load on the system. There are three main benefits
to caching [8]:

• The servers delivering the content receive less requests, hence
reducing the resources needed and the risks of overload.

• The network bandwidth usage is reduced, allowing more traf-
fic to go through links and equipments.

• The end-users perceive a reduced delay and potentially a bet-
ter quality of experience when watching a video.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AllThingsCellular’14, August 22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2990-3/14/08 . . . $15.00.
http://dx.doi.org/10.1145/2627585.2627588.

In this paper, we determine the cacheability (the maximum cache
hit ratio) of YouTube content in mobile networks. When users are
accessing videos from the cellular network, we analyse to what ex-
tent videos can be dynamically stored in local caches, so that future
local requests can be answered directly by the local cache without
involving the core network and the YouTube servers.

To understand the efficiency of such approach, we use a large
dataset containing more than 75 million requests sent by more than
3 million users. To the best of our knowledge, this is the first study
to look at such a large dataset to evaluate the potential of caching
video content in cellular networks.

Caching is only useful is a substanstial amount of users are ac-
cessing the same content – therefore, in this paper we address the
question "Do most users watch the same videos of cute kittens?"
and is this commonality large enough to motivate the deployment
of in-network caches? We first investigate the potential gain achiev-
able by looking at the YouTube requests sent by users from differ-
ent cells. We then investigate different caching algorithms with
varying parameter settings to see how close they can come to pro-
viding an optimal caching efficiency.

2. RELATED WORKS
Early studies explored cacheability of web resources by defining

static content as cacheable, and dynamic content as not cacheable.
Cao and Irani [4] conducted a trace-driven study of web cacheabil-
ity, analysing more than 24 million accesses to web proxies. They
investigated the performance of different caching algorithms and
showed high cacheability (up to 50% cacheable content). This was
confirmed by Mills and Mikhailov [17], who showed that more than
40% of HTML resources and 60% of images do not change, explor-
ing over 1.8 million requests from proxy cache log traces.

The internet in general and the web in particular have since evolved
and the content available is very different from the content stud-
ied in these previous works. For instance, user generated content
(UGC) websites are now a large part of user activities, with web-
sites offering a large variety of contents generated by users, such
as question-answer databases, digital video, blogging, podcasting,
forums, reviews, social networking, social media, or mobile phone
photography. The amount of static content (not dynamically gener-
ated) represents a much higher proportion of the traffic nowadays,
and it is assumed that most of the content is cacheable. Therefore,
the cacheability is now simply defined by recent studies as the frac-
tion of requests that can be answered by a cache.

Ager et al. [2] focus on UGC websites in general to study their
cacheability. Their study relies on a large dataset collected by a Eu-
ropean ISP, and mainly containing HTTP requests sent by 20,000
households during a couple of weeks. However, the study does not
focus on YouTube cacheability in particular. Zink et al. [18] re-
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lied on a dataset containing HTTP headers collected in a campus
network, between clients in the campus and YouTube servers. The
data covers 8 days and around 5,000 unique clients, but contrary to
the dataset we used, the data was not generated by mobile devices.
Other more recent studies such as in [5] explore datasets of UGC
video requests, but not from mobile devices and without looking at
the cacheability.

A more recent study by Arvidsson et al. analyses the demand
patterns for YouTube of 35,000 mobile devices over several weeks [3].
The authors study the cacheability of YouTube content on a tradi-
tional network, with cache proxies at the access points, whereas we
study the cacheability in cellular networks. Guillemin et al. [11]
also study the cacheability of YouTube videos but with a single
cache for each of the three cities studied. Our study considers dif-
ferent cache replacement algorithms, covers a nationwide network,
and considers one cache per cell instead of one cache per city.

Cacheability in cellular networks has been studied by Erman et
al. [9], who have explored HTTP requests collected by a large wire-
less carrier from several million users and over a period of 36 hours.
However, the authors studied the cacheability of HTTP traffic in
general and not of YouTube content. Ramanan et al. [16] also
studied a large dataset collected from a live cellular network over
24 hours. While the authors did study video content in general
and YouTube in particular, they did not analyse the cacheability
of YouTube video content. They studied instead the cacheability
of all YouTube content together, including videos, but also images
and HTML pages.

Our work is the first study based on a nation-wide dataset that
investigates the cacheability of UGC content in cellular networks.

3. DATASET AND METHODOLOGY
The analysis performed in this paper is based on a dataset of

cellular network traffic traces from a large European operator that
were collected on a national scale over a period of around 41 days
between December 2011 and January 2012. The traces contain the
URL of around 30 billion HTTP requests together with timestamps
and an anonymised identifier of the user sending it, and the network
cell the user was connected to when sending the request.

For the sake of this study, we focus on requests that are sent
to YouTube and disregard all other traffic. We extract the video
identifiers from the request URLs to identify the different videos
requested by users, along with the anonymised cell identifier used.
There are roughly 3 million YouTube users in the dataset, and they
account for roughly 30% of the total users appearing in the dataset.
YouTube users have sent around 75 million video requests for 10
million different videos. A video request from a user is identified
by a set of HTTP requests sent to retrieve chunks of that video by
that user. Hence, a video request typically triggers several HTTP
requests.

Since we are looking at the potential for caching video con-
tent, we only study cells that received at least 1,000 requests for
YouTube videos, as we are not interested in isolated cells attract-
ing less traffic, such as in rural areas. We consider that the cost of
deploying a cache system in such cells is not worth the benefits.

The data available in our dataset does not allow us to accurately
determine the exact size of each video. Therefore, for our analysis,
we count the cache size and the achievable cacheability in terms of
number of videos. Note that a requested video might only be down-
loaded partially, as the user might decide to abort the download and
stop playing the video. The caching systems studied hereafter can
be optimised by only caching partial contents. This is out of scope
of this study.
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Figure 1: Cumulative distribution of the number of unique
videos requested for each cell.

The resulting sub-set is composed of around 40 million requests
sent by 2 million users to approximately 20,000 cells and targeting
6.6 million unique videos. The median number of unique videos
requested for each cell is 1,593, with an average of 2,309. Figure 1
shows the distribution of the cells per number of unique videos
requested.

4. CACHING ALGORITHMS
We consider a scenario where each cell of the network maintains

a cache to answer requests of the users in the cell.
Initially, when the cache is not full, every newly requested con-

tent is stored so that the next queries for that content can be directly
answered by the cache. When the cache is full, and the requested
content is not in the cache memory, the replacement strategy dic-
tates which content, if any, must be deleted from the cache and
replaced by the new content.

Caching algorithms found in the litterature follow different strate-
gies to replace a content when the cache is full [15]. While differ-
ent classifications can be used for the replacement strategies ( [13,
14]), we use the one proposed by Podlipnig and Böszörmeny [15]:
frequency-based, recency-based, randomised, recency/frequency-
based, and function-based.

Our dataset is not suitable to evaluate function-based strategies,
relying for example on object size. Instead, we focus on typical
algorithms implementing frequency- and recency-based strategies,
and compare with a randomised strategy.

4.1 Least Frequently Used (LFU)
The Least Frequently Used (LFU) cache replacement policy is a

frequency-based strategy where the least frequently accessed con-
tent (accessed the least number of times) in the cache is replaced
when the cache is full. In this paper we consider two main versions
of this algorithm:
In-cache LFU only keeps a counter for videos that are already in
the cache, which means that if some content is evicted from the
cache and later another access for that content happens, the previ-
ous history for that content is lost. When a piece of content which
is not in the cache is requested, it will always be added to the cache
and replace some other content if the cache is full.
Perfect LFU keeps track of the frequency of all videos ever ac-
cessed. Perfect LFU is more complex with higher overhead than
in-cache LFU, as the cache must keep a counter for every content
requested. This in turns will give it a possibility to remember the
history of content that is not currently in the cache. The perfect



LFU strategy only replaces an existing content in the cache when
the new requested content has a higher frequency than the content
in cache with the minimum frequency.

In their basic version, both of these LFU variants count the fre-
quency of the requests since their first request. However, the video
popularity is dynamic and changes over time. If a video was pop-
ular for a period of time and then loses its popularity, the video
will be kept in the cache even if there are no more requests for this
video. To alleviate this, we use a version of LFU with a time win-
dow, which only remembers requests from the last time window in
the past, removing older data. We use several time windows from
one hour to ten days, and in also consider an infinite time window,
which is equivalent to the basic version of LFU.

4.2 Least Recently Used (LRU)
Recency-based strategies use recency as a main factor when de-

ciding which content to evict from the cache. The most common
such strategy is Least Recently Used (LRU) that has been applied
successfully in many different areas.

In our evaluations, we keep track of the most recent request for
all content items currently in the cache. When a new item (not
currently in the cache) is requested, it is always added to the cache,
and the item in the cache that has not been requested for the longest
time is evicted.

4.3 Random
Instead of relying on frequency or recency, a random replace-

ment strategy removes randomly one content from the cache and
replaces it with the newly requested content. This has shown to
be a valid alternative to more complex replacement strategies [10].
Note that frequent contents will still persist in entering the cache,
and if frequent contents are few compared to all the other contents
requested, they are less likely to be evicted when cache size is large.
This makes the random strategy a valid strategy for some contexts.

5. RESULTS
The main metric commonly used to evaluate the cache algo-

rithms is the hit ratio. Other metrics include bandwidth consump-
tion and latency reduction, for instance. However, our dataset does
not allow us to determine accurately the size of the content being
requested, nor to analyse the latency experienced by the users dur-
ing the viewing sessions.

The hit ratio for a given cache proxy can be simply defined as the
proportion of requests received by this proxy and answered with a
content already in cache. If the content requested is not in cache,
then it is sent all the way up to the original servers (here, YouTube
servers). The higher the hit ratio, the more efficient is the caching
algorithm.

The cacheability of a content in a particular context is defined as
the maximum hit ratio reachable by a caching algorithm, assuming
an infinite cache size. We use the cacheability definition proposed
by Ager et al. [2] and used in other works [1,16], where ki denotes
the total number of requests for video i, and n is the number of
unique videos requested:

cacheability =
Ân

i=1(ki �1)
Ân

i=1 ki

First we consider the overall cacheability for YouTube videos in
our dataset. If a single central cache for the whole cellular network
was deployed, the cacheability of our dataset would be 83.42%.
Note that for YouTube videos this value is much higher than the
cacheability observed in previous studies for all HTTP content in

general (around 30% [9]) and video content in general (around
50% [16]). However, while it is certainly of interest for the op-
erator to reduce the outgoing and incoming traffic for its network
for economical reasons, the main bottleneck is not located between
the operator and the content provider (in this case the YouTube
servers). Instead, the bottleneck is mainly in the cellular access net-
work, where bandwidth out to base stations can be scarce if usage
is heavy. Therefore, in this paper we focus on studying the effects
of distributed caches further out in the network. Instead of a central
cache, we set up local caches co-located with the base station at
each cell, thus allowing us to reduce the traffic in the network and
the latency for the end-user. However when a cached video is re-
quested a second time from a different cell, it will have to be cached
again in that new cell, reducing the total cacheability. In this sec-
tion, we consider that each cell has its own local cache, assuming
that users sending requests to the same cell share roughly the same
location. Hence, the cacheability observed for a local cache at each
cell is always lower than the one for a central cache proxy for all
the network. In our dataset, the local cacheability is 21.06%.

5.1 LFU algorithms
Table 1 shows the hit ratios for the perfect LFU algorithm, for

different cache sizes and different time windows. As expected, the
performance increases with the cache size. However, choosing an
infinite time window reduces the cache ratio, as it does not take
into account the evolution of video popularity. For instance, if a
video is very popular for one week, its frequency will keep it in
the cache, even though it is not popular anymore in the next weeks.
By choosing a limited time windows, the algorithm only takes into
account the frequency of the video in that time window, and hence
will remove it from the cache if it is no longer popular.

As highlighted by Figure 2, for both versions of LFU the choice
of the time windows does affect the hit ratio, and the right trade off
depends on the cache size. A short time window of only one hour is
better when the cache size is small, whereas longer time windows
are more and more efficient when the cache size is bigger. Figure 3
shows the view count over time for two examples of videos from
our dataset, and we can see that videos have different popularity
patterns over time. Videos like Video A experience bursts of high
popularity for short periods of time, while videos like Video B have
a lower, but more constant over time, popularity rate. For small
cache sizes, it is important to be able to cache mostly type A videos
during their popular periods, as they are targeted by a large number
of requests and will increase the hit ratio. Due to the small cache
size, it is beneficial to rapidly evict such videos once their popular-
ity is over and cache some newly popular video instead. However,
those videos are relatively rare, and overall there are more videos
like Video B. Thus, when the size of the cache is larger, keeping
a record of videos that are popular over a longer time scale, like
Video B, allows the cache to keep such videos in the cache as well,
which further increases the hit ratio over time. Therefore, longer
time windows are more beneficial for large cache sizes, while small
caches needs to be dynamic and focus on content that is popular on
shorter time scales, making a shorter time window preferential.

The hit ratios for the in-cache LFU algorithm are shown in Ta-
ble 2. We observe that the values are always equal or greater than
the hit ratios obtained by perfect LFU. As for the perfect LFU al-
gorithm, the hit ratio is higher when the cache size is bigger, and
the best time window for each cache size is longer when the cache
size is bigger. This result shows that for the videos requested in our
dataset, it is more efficient to only keep track of the frequency of
videos already in cache. In the perfect LFU algorithm, a new video
must receive enough views to exceed that of videos already in the
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(a) Perfect LFU.
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(b) In-cache LFU.

Figure 2: Hit ratios obtained with the LFU algorithms for different cache sizes. The best value for each cache size (circled) is obtained
with shorter time windows for small cache sizes, and longer time windows for larger cache sizes.

Table 1: Overall hit ratios with the perfect LFU caching algorithm (track all videos).
Cache size / Time window 1 hour 12 hours 24 hours 3 days 7 days 10 days infinite

10 videos 10.98% 6.93% 5.88% 4.26% 3.39% 3.10% 2.24%
50 videos 14.29% 13.71% 12.71% 9.53% 7.50% 6.83% 4.90%

200 videos 15.72% 16.93% 17.21% 16.33% 13.86% 12.54% 8.68%
1000 videos 19.27% 19.69% 19.85% 20.06% 20.00% 19.76% 16.04%

infinite 21.06%
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Figure 3: View count of two videos with different popularity
patterns. Video A will have a high request frequency during
short time windows, while Video B has higher frequency over a
longer time window duration. Thus, different caching choices
may be made depending on the time window.

cache before an old video is evicted. Thus, there is a risk that new
videos that experience a sudden popularity burst may miss many
potential cache hits, while in-cache LFU always adds a new video
to its cache and evicts something else. In the perfect LFU algo-
rithm, a once-popular videos are more likely to stay in the cache
"too" long, and if evicted are also more likely than new videos to
be added to the cache again. This will decrease the hit ratio, be-
cause that once-popular video will compete with videos that are
currently becoming popular.

Table 3: Overall hit ratio with LRU and Random.
Cache size LRU Random
10 videos 12.44% 11.41%
50 videos 15.60% 14.67%

200 videos 18.02% 17.20%
1000 videos 20.33% 19.99%

infinite 21.06%

5.2 LRU and Random algorithms
Removing the least recent video from the cache appears to pro-

vide an even better hit ratio than both LFU variants, for every cache
size, as shown in Table 3. This result shows that despite being more
complex than the LRU algorithm, both LFU algorithms do not per-
form as well as the LRU algorithm in terms of hit ratio. The same
table shows that if the time window is not properly chosen, remov-
ing randomly any video from the cache can sometimes give better



Table 2: Overall hit ratio with the in-cache LFU caching algorithm (track only videos in the cache).
Cache size / Time window 1 hour 12 hours 24 hours 3 days 7 days 10 days infinite

10 videos 11.78% 9.83% 9.14% 8.15% 7.62% 7.45% 6.95%
50 videos 14.30% 14.65% 14.14% 12.09% 10.52% 10.01% 8.61%

200 videos 15.72% 16.97% 17.33% 17.11% 15.73% 14.89% 11.94%
1000 videos 19.27% 19.69% 19.85% 20.08% 20.12% 20.03% 18.34%

infinite 21.06%
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Figure 4: Hit ratios of different replacement strategies.

results than using an LFU algorithm. To obtain the hit ratios for the
Random algorithm, we ran three simulations and show in Table 3
the average value. For each of these values, the standard devia-
tion is very low (< 10�4), which confirms that the values were not
obtained by chance.

The same results can be seen in Figure 4 which compares the
hit ratios obtained with different replacement strategies and shows
clearly the better performance of LRU.

It is not only important to consider the overall cache hit ratio,
but we must also understand the hit ratio for individual cells in the
network. If cells have similar hit ratio, a more even performance
can be expected, regardless of the location of the user. On the other
hand, if there is large variance in the hit ratio between cells, cache
deployment can be optimised to only be deployed in high impact
locations. Figure 5 shows an example of of the distribution of the
cells according to their hit ratio for the different replacement poli-
cies. We note that the hit ratios for the cells are rather homogeneous
– a large majority of the cells fall in a fairly narrow range of hit ratio
values. While the absolute numbers vary for different cache poli-
cies, the overall shape of the curves are the same. Most cells have
similar characteristics and would experience similar performance
improvements from the deployment of caches.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we explored the cacheability of YouTube content

accessed from a cellular network. We rely on a large dataset cover-
ing a nationwide network and millions of users over a time period
of 41 days. To the best of our knowledge, it is the first study on
YouTube video cacheability for cellular networks on such a large
scale. In particular, we study the local cacheability of videos, where
each cell maintains a local cache. We found that in our dataset
21.06% of the requests could be answered by a local cache of infi-
nite size. In the more realistic case where the cache size is limited,
we evaluated different classic cache replacement strategies. We
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Figure 5: Cumulative distribution of the cells according to their
hit ratio for the different cache strategies and cache size of 200
videos. Results for other cache sizes are similar and all show a
same hit ratio distribution over the cells.

found out that we do not benefit from using more complex algo-
rithms such as LFU: replacing the least recent video in the cache
(LRU) is enough to obtain even better results.

Using a local cache size of only 50 videos is enough to achieve
15% hit ratio, which is already fairly close to the cacheability of
21.06%, and with a cache size of 1000 videos, we can achieve up
to 20.33% cache hit ratio. Increasing the hit ratio while maintaining
a limited cache size is important, but considering that even a ran-
dom replacement strategy gives very good results, as it reduces the
network traffic generated by YouTube video distribution with up to
19.99%, we do not believe it meaningful at this moment to look at
more advanced cache eviction algorithms to reach the cacheability
of 21.06%. Instead we will in future work investigate ways to in-
crease that cacheability. In particular, we are considering to share
cached data among mobile devices, and to cache videos at multiple
levels in the network by aggregating several cells for a neighbour-
hood or city into one cache.
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