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ABSTRACT 
This paper describes a generic framework for explaining the prediction of probabilistic machine 
learning algorithms using cases. The framework consists of two components: a similarity metric between 
cases that is defined relative to a probability model and an novel case-based approach to justifying the 
probabilistic prediction by estimating the prediction error using case-based reasoning. As basis for 
deriving similarity metrics, we define similarity in terms of the principle of interchangeability that two 
cases are considered similar or identical if two probability distributions, derived from excluding either one 
or the other case in the case base, are identical. Lastly, we show the applicability of the proposed 
approach by deriving a metric for linear regression, and apply the proposed approach for explaining 
predictions of the energy performance of households. 
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1. INTRODUCTION 
Explanation has been identified as a key factor for user acceptance of an intelligent system [1–
6]. If a user does not understand or trust a decision support system, it will be less likely that 
the system will be accepted. For instance, in the medical domain it is well-known that a good 
prediction performance will not automatically mean user acceptance unless the physicians 
understand the reasoning behind [7]. In this paper, we propose a novel approach to using case-
based reasoning (CBR) as an intuitive approach for justifying (explaining) the predictions of a 
probabilistic model as a complement to traditional statistical measures of uncertainty such as the 
mean value and the variance. 

CBR is a conceptually simple and intuitive, but yet powerful approach for knowledge 
management and learning [8, 9]. In contrast to model-based approaches in machine learning 
and statistics, inference in CBR is done directly from a set of cases without generalizing to a 
model. The fundamental idea in CBR is that similar problems have similar solutions and 
therefore, new solutions can be created from previous solutions. Traditionally, CBR is not used 
if there is a sufficiently good model-based solution to a problem. Yet, CBR has some 
advantages that complement model-based learning approaches. For instance, a probabilistic 
machine learning model can be hard to understand for non-experts while CBR is conceptually 
much more intuitive and easy to explain. Therefore, by complementing a probabilistic model 
with a CBR-based explanation facility, we can make the system more understandable. 
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Explanation using preceding cases has some advantages compared to other approaches. For 
instance, it has been shown in a user experiment that users in some domains prefer case-based 
over rule-based explanation [10]. In [11], Nugent et al. list three advantages of case-based 
explanation. Firstly, it is a natural form of explanation in many domains where explanation by 
analogy is common. Second, it uses real evidence in form of a set of cases relevant to the task 
at hand. This, we argue in this paper, is the key strength of combining probabilistic methods 
with CBR for explanation. Lastly, it is a fixed and simple form of explanation that is directly 
related to the problem at hand. Thus, regardless of the complexity of the problem at hand, the 
content of the explanation can be kept rather constant. 

The purpose of explaining a system can vary depending on which type of user the explanation 
is addressing. For instance, Sørmo et al. list five common types of explanations: transparency, 
learning, conceptualization, relevance, and justification [12]. The goal of transparency is to 
explain how the system computed the prediction. This goal is more relevant for expert users 
that are able to assess the reasoning process by themselves. The goal of learning is to help 
novice users to learn the application domain. The goal of conceptualization is to help novice 
users to understand the meaning of concepts used in the system. The explanation goal relevance 
is about explaining why the system does something such as asking a question for more 
information. In this paper, we only consider the last type of explanation – justification – where 
the goal is to support a non-expert user in assessing the reliability of the system predictions 
using CBR. 

The work in the current paper presents developments in line with previous work in knowledge 
light CBE that uses cases to explain model-based machine learning algorithms [13–15]. 
However, while previous work define similarity metrics ad-hoc and by intuitive means, we 
differ by defining similarity metrics with a good theoretical foundation and with a clear 
meaning. This can be achieved by restricting the application to learning algorithms that result in 
probability models. In probabilistic machine learning, the inference is visible in terms of 
probability distributions. So by analyzing the probability distributions from two different 
probability models, we can draw some conclusions of the relation between them. This 
probabilistic assumption makes the proposed approach generically applicable to any probabilistic 
machine learning algorithm. 

In addition, we also differ with respect to previous work in how a prediction is explained. Since 
the probability model is most likely trained on all cases, it would not be sufficient to justify the 
system performance by only showing a list of the most similar cases. A list of similar cases would 
lead the user into checking each case and compare its difference or similarity to the new case. 
This would be very time consuming and would not say much of the system performance at a 
larger scale. As justification of the system performance, we instead propose using the average 
prediction error for all similar preceding cases. This is a straightforward application of CBR 
applied to predicting the probabilistic prediction error. 

The rest of the paper is organized as follows. Sect. 2 presents related work in case-based 
explanation. In Sect. 3, we give background to similarity metrics and statistical metrics. Sect. 4 
presents the overall framework for explanation by cases. We present a definition of similarity in 
terms of probability distributions and our approach to case-based explanation. We also derive a 
similarity metric for linear regression. Sect. 5 describes the application of the proposed 
approach to explaining the prediction of the energy performance of a household. In Sect. 6, we 
make concluding remarks and describe future work. 

2. CASE-BASED EXPLANATION 
Case-based explanation (CBE) is a research field within CBR that investigates the use of cases 
for explaining systems [16–18, 5]. CBE can, similarly to CBR, be divided into knowledge 
intensive and knowledge light CBE where the former makes use of explicit domain knowledge 



while the latter uses mainly knowledge already contained in the similarity metric and the case 
base [10]. The main work in knowledge light CBE has been in explaining classification while 
less work has been invested in explaining regression. The current work is an instance of 
knowledge light CBE where no explicit explanation mechanisms are modeled and the 
considered learning task is regression. 

Furthermore, CBE research differs in how cases are explained. One type of knowledge light 
CBE research investigates the use of other types of learning methods for explanation. The 
ProCon system described in [19, 20] uses a naive Bayes classifier trained on all cases to find 
which features of a case support or oppose the classification. The author argues that even the 
most similar case can some times contain information that contradicts the prediction and that 
must be made explicit in order to keep the confidence of the user. The system presented in [21] 
by the same author generates rules from the nearest neighbors in order to explain the retrieved 
cases. Similarly to the previous system, it is ensured that the learned rules subsumes both cases 
that supports and opposes the classification. Case-based explanation of a lazy learning approach 
in the same vein for classifying chemical compounds was presented in [23]. The approach lets 
the user compare the molecular structures using the similarities between cases with respect to 
cases from different classes. Thus, by showing the user similarities only common to cases of 
each class the user is also able to understand the difference between classifications. In [22], the 
authors describes a system that applies logistic regression to a set of retrieved cases and uses the 
logistic model to explain the importance of features and assign a probabilistic confidence 
measure of the system’s prediction. 

A second type of research considers which cases to present to a user for explaining classification 
of new cases. This research was started when it was noticed that the set of cases used for making 
the classification is not necessary also the best cases for explaining the classification. Instead of 
presenting the most similar case, it might be better to show a case close to the decision border 
between two classes. In [24], the authors compare similarity metrics optimized for explanation 
with similarity metrics optimized for classification, while in [25], the authors use the same 
similarity metric as for classification but explore different rules for selecting which case to use 
as explanation. In [22], logistic regression is used to find cases close to the classification 
border. A more recent work describing all these three approaches is presented in [11]. 

A third type of knowledge light CBE research has addressed the problem of explaining model-
based machine learning methods using cases, but so far, mainly neural networks have been 
investigated [13, 14, 26, 15, 27, 28]. The first knowledge light CBE for model-based learning 
algorithms was presented in [13, 14]. In the first paper, the author sketches ideas on how to use 
the model of a neural network or a decision tree as a similarity metric. In case of neural networks 
the activation difference between two cases was proposed as a metric while the leaves in the 
decision tree naturally contain similar cases. In [26] the authors explain the prediction of an 
ensemble of neural networks using rules extracted from the network. Then, for a new case, only 
rules relevant for explaining that case are used. The rules are filtered using heuristic criteria. The 
work presented in [27, 28] explains the output of an ensemble of neural networks using the most 
important feature values relative to a case. In [15], a generic knowledge light CBE framework 
for black-box machine learning algorithms is presented. The authors trained a locally weighted 
linear model to approximate a neural network using artificial cases generated from the neural 
network. Then they used the coefficients of the linear model both as feature weights of a 
similarity metric to retrieve relevant cases and for explaining which features are most import for 
a prediction.  

3. PRELIMINARIES 
In this section, we define the notion of a true metric that is important in order to index cases 
for fast retrieval. In addition, we present the J-divergence that is a statistical measure of 



similarity between probability distribution that we use in our definition of similarity between 
cases. 

3.1. True Metrics 
In order to make fast retrieval of cases similarity metrics should adhere to the axioms of a true 
metric. Given a true metric, the search space can be partitioned into smaller regions and 
organized so that there is no need to search through all regions. 

In this paper, we use the term metric informally as any function that makes a comparison 
between two cases, while a true metric is a metric in a mathematical sense. This means that a true 
metric is a function d that satisfy the following three axioms where X denotes the case base with 
the set of all cases: 

1. d(x, y) ≥ 0 (non-negative and identity) with d(x, y) = 0 if and only if x = y,  ∀x, y ∈ X 

2. d(x, y) = d(y, x) (symmetric) for all x, y ∈ X 

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality) for all x, y, z ∈ X 

There is a discussion in the CBR literature whether all of the above axioms are required for useful 
similarity and distance metrics [29, 30]. A common true metric that we will use in this paper is 
the Manhattan distance. The definition of the Manhattan distance is 
 

d(x, y) = ∑ |xk − yk | 
       k 

where | . . . | denotes the absolute value function. 

3.2. Statistical Metrics 
A commonly used statistical metric for comparing two probability distributions is the well-
known Kullback-Leibler divergence (KL) [31]. KL is also sometimes called the relative entropy 
or the information gain, since it is closely related to the entropy concept introduced by Shannon 
[32, 33]. The KL for the two probability distributions pi , p j , with parameter θ, is 
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KL is not symmetric but by computing the KL divergence in both directions and

then add them together we get a symmetric metric. This is an important characteristic
if we desire a true metric as described in Sect. 3.1. The symmetric KL is usually called
Jeffreys divergence (J-divergence). The J-divergence will then be:
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In this paper, we use the J-divergence as basis for the similarity metrics, because it
is a commonly used measure and it has a clear information theoretical interpretation.
Other statistical metrics for comparing distributions are also available such as the total
variation distance, the Euclidean distance and the Jensen-Shannon divergence [34, 31,
35–37].

4 The Case-based Explanation Framework

In this paper, we propose a generic case-based explanation framework that justifies the
predictions of an intelligent system by estimating the prediction reliability case by case.
We have restricted the approach to probabilistic machine learning methods, since that
gives the framework a good theoretical foundation. However, the explanation part can
in principle also be used for any learning algorithm.

Assume that we have trained a probability model for predicting an unknown variable
and that we have derived a relevant similarity metric. Then, the framework creates a
case-based explanation according to the following pseudo-algorithm:

1. Make prediction for a new case using the probability model

2. Retrieve most similar previous cases

3. For each previous case

(a) Make prediction for the case using the probability model
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In this paper, we use the J-divergence as basis for the similarity metrics, because it is a 
commonly used measure and it has a clear information theoretical interpretation. Other 
statistical metrics for comparing distributions are also available such as the total variation 
distance, the Euclidean distance and the Jensen-Shannon divergence [34, 31,35–37]. 



4. THE CASE-BASED EXPLANATION FRAMEWORK 
In this paper, we propose a generic case-based explanation framework that justifies the 
predictions of an intelligent system by estimating the prediction reliability case by case. We have 
restricted the approach to probabilistic machine learning methods, since that gives the 
framework a good theoretical foundation. However, the explanation part can in principle also be 
used for any learning algorithm. 

Assume that we have trained a probability model for predicting an unknown variable, and that we 
have derived a relevant similarity metric. Then, the framework creates a case-based explanation 
according to the following pseudo-algorithm: 

1. Make prediction for a new case using the probability model 

2. Retrieve most similar previous cases 

3. For each previous case 

a. Make prediction for the case using the probability model 

b. Compute the absolute prediction error given the ground truth 

4. Estimate the prediction error for the new case as the average of previous prediction 
errors 

5. Present predicted value and estimated prediction error to the user 

We will apply this framework to a real example in Sect. 5 where we explain the predictions 
from a linear regression model of the energy performance of a household. However, before that, 
we will describe the approach in more detail in the rest of this section. First, in Sect. 4.1, we 
describe a generic approach to defining a similarity metric using methods from statistics and 
machine learning. Then, Sect 4.2 shows how a similarity metric based on the linear regression 
model can be derived. Last, Sect. 4.3 describes a CBR approach to estimating the prediction 
error. 

4.1.   A Statistical Measure of Similarity 

In this section, we present a principled approach to defining similarity metrics using methods 
from statistics and machine learning. 

As a means to relate the similarity between two cases to probability models, we have 
formulated the principle of interchangeability as a general definition. We define the principle of 
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We have chosen to use the J-divergence presented in Sect. 3.2 for comparing two probability 
distributions. The J-divergence distance between two cases xi , x j  in case base X is 
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The resulting measure between two cases can then be interpreted information the-
oretically as the sum of the information gain from including one case in the case base
over the other case and the information gain from including the other case in the case
base over the first case. However, the resulting J-divergence distance is not a true met-
ric, so an additional step might be needed that turns it into a final distance that fulfills
the axioms of a true metric.

4.2 Derivation of a Similarity Metric for Linear Regression

In this section, we derive a similarity metric for linear regression showing that this
simple statistical model leads to a simple metric based on the Manhattan distance. The
derived distance metric is the ratio between the distribution parameters plus the square
of the sum of the weighted differences between case features.
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and the information gain from including the other case in the case base over the first case. 
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sum of a feature vector: 
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where εi are the residual error and the ω is a weight vector, and an unknown value y for a new 
case x is estimated by: 

         K 
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ŷ = w0 +
K

Â
k=1

w
k

x

k (5)

Let e be normally distributed with mean 0 and standard deviation s and then, the
predictive distribution, conditioned on the weights and the standard deviation from a
point estimation will be denoted as:

p(y|x) = 1p
2ps

e

� 1
2s2 [y�(w0+ÂK

k=1 w
k

x

k)]2 (6)

Theorem 1. Let p

i

(y|x) and p

j

(y|x) be the predictive probability distributions for lin-

ear regression derived from excluding x

i

and x

j

respectively. Let w
i

,s
i

,w
j

,s
j

be the

corresponding point estimations for the parameters of the distributions. Then, it can be

shown that the J-divergence distance for two cases x

i

,x
j

is:

d(x
i

,x
j

) =

 
s2

i

2s2
j

+
s2

j

2s2
i

�1

!
+

 
1

2s2
j

+
1

2s2
i

!"
K

Â
k=0

(wk

i

x

k

i

�wk

j

x

k

j

)

#2

(7)

Remark 1. Notice that a special case of Eq. 7 is when s
i

⇡ s
j

⇡ s and w
i

⇡ w
j

⇡ w ,
in which case the distance metric becomes:

d(x
i

,x
j

)⇡ 1
s2

"
K

Â
k=1

w
k

(xk

i

� x

k

j

)

#2

(8)

which is approximately true with a large number of cases.

If we ignore the difference between the standard deviations, the resulting metric is
square of the difference between the predicted value of ŷ
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ues, but not with respect to the cases.3 As a consequence, two cases that lead to the
same predicted values would be considered similar.

If a true metric is desirable, we have to ensure that different features do not cancel
out each other. One way of doing this is by rewriting the distance metric as follows:
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If we ignore the difference between the standard deviations, the resulting metric is
square of the difference between the predicted value of ŷ
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and ŷ

j

for case x
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and x

j

respectively. The square root of this is a true metric, with respect to the predicted val-
ues, but not with respect to the cases.3 As a consequence, two cases that lead to the
same predicted values would be considered similar.

If a true metric is desirable, we have to ensure that different features do not cancel
out each other. One way of doing this is by rewriting the distance metric as follows:

3 Actually it is the one dimensional form of the Euclidean and Manhattan distances, since
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So, the absolute weights are indicating the importance of each feature, which is
similar to how the weights of a locally weighted linear regression model is used in [15].
Thereby, we can theoretically justify the use of the regression weights in a distance
metric.

4.3 Estimating the Prediction Error

In this paper, we have formulated case-based explanation as a regression problem that
we solve using CBR. Thus, by retrieving a set of similar cases, we can estimate the
error of the prediction for a new case. Below, we describe the simple average prediction
estimation that we use for estimating the prediction error.

The average prediction error approach is a simple application of the k nearest neigh-
bor algorithm [9]. Thus, given a new case x
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, we can retrieve the set of k most similar
cases {(y
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j=1 using the metric in Eq. 10. Thereafter, we can estimate the prediction
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5 Explaining Predicted Energy Performance of a Household

In this section, we apply the proposed framework to explaining the prediction of en-
ergy performance of households. The energy performance of a household is measured
in kilowatt hours per square meter and year, and corresponds to the energy need in a
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 So, the absolute weights are indicating the importance of each feature, which is similar to how 
the weights of a locally weighted linear regression model are used in [15]. Thereby, we can 
theoretically justify the use of the regression weights in a distance metric. 

4.3.   Estimating the Prediction Error 
In this paper, we have formulated case-based explanation as a regression problem that we solve 
using CBR. Thus, by retrieving a set of similar cases, we can estimate the error of the prediction 
for a new case. Below, we describe the simple average prediction estimation that we use for 
estimating the prediction error.  

The average prediction error approach is a simple application of the k nearest neighbor algorithm 
[9]. Thus, given a new case xi , we can retrieve the set of k most similar cases using the metric in 
Eq. 10. Thereafter, we can estimate the prediction error ei as the average prediction error of the 
retrieved cases: 

                   
where ej = |ŷj − y j | is the actual prediction error, ŷj  is the predicted value for case x j from Eq. 12 
and yj is the true value. 

5. EXPLAINING PREDICTED ENERGY PERFORMANCE OF A HOUSEHOLD 
In this section, we apply the proposed framework to explaining the prediction of energy 
performance of households. The energy performance of a household is measured in kilowatt 
hours per square meter and year, and corresponds to the energy need in a building for space 
and hot water heating, cooling, ventilation, and lighting based on standard occupancy. The 
energy performance has been computed by a certified energy and it is intended to make it easy 
to compare houses when selling and buying a house. 

The rest of this section is organized as follows. Sect. 5.1 describes the used data set. Sect. 5.2 
presents which features we have used and the result from fitting a linear regression model to 
the data. Sect. 5.3 describes the implementation and evaluation of the proposed case-based 



explanation framework for energy performance prediction. Finally, Sect. 5.4 ends this section by 
showing examples of case-based explanation for two households. 

5.1. Energy Performance Data 
The data that we have used comes from around 1800 energy reports collected in the ME3Gas 
project [38,41] . The energy report consists of four attributes related to the building and location 
of a house, which are shown in the upper part of Table 1, and energy measurements for 12 
different heating system types, which are shown in Table 2. Each used energy system type is 
measured in kWh. In addition, there are also the time period when measuring was done and the 
energy performance measurement that are shown in the second part of Table 1. 

Table 1. The building and location attributes with summary of the data followed by measuring 
period start and energy performance. Climate zone indicate location in Sweden: zone 1 is in the 
most northern part and 4 is in the most southern part of Sweden. 

 

House attribute Summary 
Year of construction 

Climate zone 1-4 

House type 

Size of heated area (m2 ) 

mean: 1956, min: 1083, max: 2013 

90, 248, 934, and 515 in each zone 1-4 

#Detached: 1727, #Terraced: 57  

mean: 177, min: 38, max: 925 

Start dates of measuring period (year) 

Energy performance 

mean: 2011, min: 2007, max: 2013 

mean: 111, min: 24, max: 388 

Table 2. Heating systems and how many households with each. 

Heating System  

District heating  

Heating oil 

Natural gas 

Firewood 

Wood chips/pellets 

Electric water-borne  

200 

75 

19 

512 

133 

316 

Electric direct Acting 

Electric airborne 

Geothermal heat pump electrical  

Exhaust air heat pump  

Heat pump Air Air 

Heat pump Air Water 

738 

50 

317                                                                                               

147 

417 

137 

 
5.2.  Log-Linear Regression Model Fitting 

In this section, we first select which features to use and then fit a linear regression model to the 
energy performance data. Our first observation is that the energy performance is not normally 
distributed, but log-normally distributed. This means that the logarithm of the energy 
performance is normally distributed. In addition, all relations between features and the log of 
the energy are not linear. Thus, the following set of new features were added that capture non-
linear relations: age of the house when the measuring was started, log of age that is the natural 
logarithm of age, log of climate zone, and log of heated area. For the household heating 
systems, we assume that it is only known which types of heating systems a new household uses, 



not how much energy is used by each heating system. Each heating system is therefore 
represented as 1 if present or 0 if not. 

A linear regression model was then fitted to the data using the ridge regularization 
implementation of the scikit-learn project [39]. This resulted in a log-linear regression model 
with the weights listed in Table 3. The energy performance can then be predicted as below, 
using the exponential power of the result from Eq. 5 plus an extra term (s2/2) that is an 
adjustment for the bias of the log-normal model: 

        
 

where s2  is the estimated standard error of the predicted value ŷ. The distance metric would 
still be the same as in Eq. 10, but with the extra features added to the cases, and that the distance 
metric is defined with respect to the distribution of log(y) and not y. 

 

Table 3. The regression weight of each feature. 

House Characteristics Weight (ω ) Heating Systems Weight (ω ) 
 Year of construction 

Age 

Log of Age 

Climate zone 

Log of Climate zone  

Detached house  

Terraced house  

Heated area 

Log of Heated Area 

0.002 

0.002 

0.107 

-0.021 

-0.064 

0.068 

0.064 

0.000 

-0.221 

 District heating 

Heating oil 

Natural gas 

Firewood 

Wood chips/pellets 

Electric water-borne 

Electric direct Acting 

Electric airborne 

Geothermal heat pump electrical 

Exhaust air heat pump 

Heat pump Air Air 

Heat pump Air Water 

0.142 

0.190 

0.040 

0.150 

0.263 

0.100 

0.008 

0.036 

-0.441 

-0.046 

-0.159 

-0.197 

 

5.3. Evaluation of the Estimation of the Prediction Error 
In this section, we evaluate the estimation approach proposed in Sect 4.3 for estimating the 
prediction error of the log-linear regression model. We compare the estimated error to the true 
error. 

In the experiment, we split the data set 10 times into three sets: a 60% training set, a 20% 
validation set and a 20% test set. Each time the log-linear model is trained on the training set. 
Then, the k nearest neighbor algorithm was trained on the training set and configured to use the 
distance metric from Sect. 5.2 together with average prediction error approaches from Sect. 
4.3. Thereafter, the performance of the k nearest neighbor algorithm was measured on both the 
validation set and the test set. The results from all data splits were then averaged. The 

Table 2. Heating systems and how many households with the energy source.

Heating System #
District heating 200
Heating oil 75
Natural gas 19
Firewood 512
Wood chips/pellets 133
Electric water-borne 316

Electric direct Acting 738
Electric airborne 50
Geothermal heat pump electrical 317
Exhaust air heat pump 147
Heat pump Air Air 417
Heat pump Air Water 137

started, log of age that is the natural logarithm of age, log of climate zone, and log of

heated area. For the household heating systems, we assume that it is only known which
types of heating systems a new household uses, not how much energy is used by each
heating system. Each heating system is therefore represented as 1 if present or 0 if not.

A linear regression model was then fitted to the data using the ridge regularization
implementation of the scikit-learn project [39]. This resulted in a so called log-linear
regression model with the weights listed in Table 3. The energy performance can then
be predicted as below, using the exponential power of the result from Eq. 5 plus an extra
term (s2/2) that is an adjustment for the bias of the log-normal model:
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where s

2 is the estimated standard error of the predicted value ŷ. The distance metric
would still be the same as in Eq. 10, but with the extra features added to the cases, and
that the distance metric is defined with respect to the distribution of log(y) and not y.

Table 3. The regression weight for each feature.

House Characterstic Weight (w)
Year of construction 0.002
Age 0.002
Log of Age 0.107
Climate zone -0.021
Log of Climate zone -0.064
Detached house 0.068
Terraced house 0.064
Heated area 0.000
Log of Heated Area -0.221

Heating System Weight (w)
District heating 0.142
Heating oil 0.190
Natural gas 0.040
Firewood 0.150
Wood chips/pellets 0.263
Electric water-borne 0.100
Electric direct Acting 0.008
Electric airborne 0.036
Geothermal heat pump electrical -0.441
Exhaust air heat pump -0.046
Heat pump Air Air -0.159
Heat pump Air Water -0.197



validation set is used for selecting the algorithm parameters k. The performance is measured 
using root mean square error (RMSE). 

In Figure 1, we show the average RMSE of the estimated prediction error on a validation set 
and a test set. The figure shows that the performance of both the test and the validation set is 
quite consistent. The minimum error of the validation set is located somewhere between k = 25 
and k = 45, so we can select k = 35 as the size of the case set that will be used for explaining the 
prediction. However, we should also consider the experience of the users. If the users distrust the 
explanation because we have selected a too small set of previous cases, we should consider 
selecting a larger k. For instance, the difference in performance between k = 35 and k = 60 is 
quite small, so the latter could be preferred in some situations if it is considered more 
convincing. 

 
Figure 1. Number of k nearest neighbors (x-axis) versus the root mean square error (y-axis) of 
the estimated prediction error. 

5.4. Case-based Explanation Examples 
This section presents two examples of case-based explanations for two different households 
using the average prediction error as estimation with k = 60 neighbors. The two examples are 
shown in Table 4 and Table 5 respectively. Beginning from top of the tables. First, the 
characteristics of the house are listed, and then the used heating systems. Thereafter, the 
predicted value is shown, together with the true value that is assumed to be unknown but is 
here shown for comparison. Last, we explain the prediction in words, where we classify a 
estimated prediction error to be low if less than 10% of the predicted value, medium high if 
less than 20%, quite high if less than 30%, high if less than 40% and very high otherwise. In 
classifying the estimated prediction error, we use background knowledge in that low values are 
better than large and that the energy performance should be larger than zero. Thus, a relative 
value is an intuitive means of assessing the severity of the error. As can be seen from the 
examples, the explanations show that the prediction errors are medium high or high and that the 
prediction are not completely reliable, which can be confirmed by looking at the value of the true 
energy performance compared to the predicted value (especially the second household). However, 
the reason that the prediction of the second household is so bad is that there are very few 
houses with that combination of heating systems, especially wood chips/pellets, which can be 



easily seen by in addition listing the most similar cases. In Table 6 are the three most similar 
households listed, and as can be seen, none of them are very similar to example 2. 

Table 4. Household example 1 
Feature Value 
Year of construction 

Climate zone 1-4 

House type 

Size of heated area 

1977 

2 

Detached house 

215 m2 

Electric direct Acting 

Heat pump Air Air 

Yes 

Yes 

Predicted energy performance 

True energy performance 

84.0 kWh/m2 

90 kWh/m2 (Unknown) 

Explanation: The predicted energy performance of this house is 84.0 kWh/m2. 

The average prediction error for the 60 most similar houses is 14.5 kWh/m2. That 
is about 17.3% of the predicted energy performance, which is medium high. 

 

Table 5. Household example 2 
Year of construction 

Climate zone 1-4 

House type 

Size of heated area 

1961 

1 

Detached house 

100 

Wood chips/pellets 

Electric water-borne 

Heat pump Air Air 

Yes 

Yes 

Yes 

Predicted energy performance 

True energy performance 

185.6 kWh/m2 

 81 kWh/m2 (Unknown) 

Explanation: The predicted energy performance of this house is 185.6 kWh/m2. 
The average prediction error for the 60 most similar houses is 57.5 kWh/m2. That 
is about 31.0% of the predicted energy performance, which is high. 

 



Table 6. The three most similar cases to household example 2. 

Feature Case 1 Case 2 Case 3 

Year of construction 1968 1909 1987 

Heated area 105 107 112 

Detached Yes Yes Yes 

Climate zone 1 2 3 

Heating system 

 

Firewood, Electric 
direct Acting 

Electric water-
borne, Heat 
pump Air Air 

District heating 

Predicted energy 
performance 

186.0 128.7   137.3 

True energy 
performance 172 132 128 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a framework for knowledge light case-based explanation of 
probabilistic machine learning. The first contribution of this work is a principled and 
theoretically well-founded approach to defining a similarity metric for retrieving cases relative 
a probability model. 

As a second contribution, we have proposed a novel approach to justifying a prediction by 
estimating the prediction error as the average prediction error of the most similar cases. Since 
the justification is based on real cases and not merely on the correctness of the probability 
model, we argue that this is a more intuitive justification of the reliability than traditional 
statistical measures. However, it should be regarded as a complement to traditional measures 
rather than a replacement. 

The work in this paper can be developed further in many directions. Clearly, we could develop 
case-based explanation approaches for other types of probability models. Especially, we would 
like to extend this approach to classification tasks. In addition, in order to evaluate the proposed 
explanation any further we would need to conduct user studies where we let real users use 
different versions of explanations and assess the effectiveness of each approaches. 

ACKNOWLEDGEMENTS 
The authors gratefully acknowledge the funding from the Swedish Knowledge Foundation (KK-
stiftelsen) [40] through ITS-EASY Research School, the European ARTEMIS project ME3Gas 
(JU Grant Agreement number 100266), the ITEA 2 (ITEA 2 Call 5, 10020) and Swedish 
Governmental Agency for Innovation Systems (VINNOVA) grant no 10020 and JU grant no 
100266 making this research possible. The energy performance data is used by courtesy of CNet 
Svenska AB [41]. 

REFERENCES 

[1] Wick, M.R., Thompson, W.B, (1992) “Reconstructive expert system explanation”, Artificial 
Intelligence 54(1), pp33–70 



[2] Ye, L.R., Johnson, P.E. (1995) “The impact of explanation facilities on user acceptance of expert 
systems advice”, MIS Quarterly, pp157–172 

[3] Gregor, S., Benbasat, I. (1999) “Explanations from intelligent systems: Theoretical foundations and 
implications for practice”, MIS quarterly, pp497–530 

[4]  Lacave, C., Diez, F.J. ) (2004) “A review of explanation methods for heuristic expert systems”, The 

Knowledge Engineering Review 19(02, pp133–146 

[5] Leake, D., McSherry, D. (2005) “Introduction to the special issue on explanation in case-based 
reasoning”, Artificial Intelligence Review 24(2), pp103–108 

[6] Darlington, K. (2013) “Aspects of intelligent systems explanation”, Universal Journal of Control and 
Automation 1, pp40 – 51 

[7] Langlotz, C.P., Shortliffe, E.H. (1983) “Adapting a consultation system to critique user plans”, 
International Journal of Man-Machine Studies 19(5), pp479–496 

[8] Aamodt, A., Plaza, E. (1994) “Case-based reasoning: Foundational issues, methodological variations, 
and system approaches”, AI communications 7(1), pp39–59 

[9] Aha, D., Kibler, D., Albert, M. (1991) “ Instance-based learning algorithms”, Machine learning 6(1), 
pp37–66 

[10] Cunningham, P., Doyle, D., Loughrey, J. (2003) “An evaluation of the usefulness of case-based 
explanation”, In: Case-Based Reasoning Research and Development. Springer, pp122–130 

[11] Nugent, C., Doyle, D., Cunningham, P. (2009)  “Gaining insight through case-based explanation”, 
Journal of Intelligent Information Systems 32(3), pp267–295 

[12] Sørmo, F., Cassens, J., Aamodt, A. (2005)  “Explanation in case-based reasoning–perspectives and 
goals”, Artificial Intelligence Review 24(2), 109–143 

[13] Caruana, R., Kangarloo, H., Dionisio, J., Sinha, U., Johnson, D. (1999)  “Case-based explanation of 
non-case-based learning methods”, In: Proceedings of the AMIA Symposium, American Medical 
Informatics Association, pp212 

[14] Caruana, R. (2000) “Case-based explanation for artificial neural nets”, In: Artificial Neural Networks 
in Medicine and Biology. Springer, pp303–308 

[15] Nugent, C., Cunningham, P. (2005) “A case-based explanation system for black-box systems”, 
Artificial Intelligence Review 24(2), pp163–178 

[16] Schank, R.C., Leake, D.B. (1989) “Creativity and learning in a case-based explainer”, Artificial 
Intelligence 40(1), pp353–385 

[17] Aamodt, A. (1994) “ Explanation-driven case-based reasoning”, In: Topics in case-based reasoning. 
Springer, pp274–288 

[18] Doyle, D., Tsymbal, A., Cunningham, P. (2003) “A review of explanation and explanation in 
case-based reasoning”, Dublin, Trinity college https://www.cs.tcd.ie/publications/techreports/reports 3  

[19] McSherry, D. (2003) “Explanation in case-based reasoning: an evidential approach”, In: Proceedings 
of the 8th UK Workshop on Case-Based Reasoning, pp47–55 

[20] McSherry, D. (2004) “Explaining the pros and cons of conclusions in CBR”, In: Advances in Case-
Based Reasoning. Springer, pp317–330 

[21] McSherry, D. (2012) “A lazy learning approach to explaining case-based reasoning solutions”, In: 
Case-Based Reasoning Research and Development. Springer, pp241–254 

[22] Nugent, C., Cunningham, P., Doyle, D. (2005) “ The best way to instil confidence is by being right”, 
In: Case-Based Reasoning Research and Development. Springer, pp368–381 

[23] Armengol, E. (2007) “Discovering plausible explanations of carcinogenecity in chemical 
compounds”, In: Machine Learning and Data Mining in Pattern Recognition.  Springer, pp756–769 



[24] Doyle, D., Cunningham, P., Bridge, D., Rahman, Y. (2004) “Explanation oriented retrieval”, In: 
Advances in Case-Based Reasoning. Springer, pp157–168 

[25] Cummins, L., Bridge, D.: Kleor (2006) A knowledge lite approach to explanation oriented retrieval. 
Computing and Informatics 25(2-3), pp173–193 

[26] Wall, R., Cunningham, P., Walsh, P. (2002) “Explaining predictions from a neural network ensemble 
one at a time”, In: Principles of Data Mining and Knowledge Discovery.  Springer, pp449–460 

[27] Green, M., Ekelund, U., Edenbrandt, L., Björk, J., Hansen, J., Ohlsson, M. (2008) “Explaining 
artificial neural network ensembles: A case study with electrocardiograms from chest pain patients”, In: 
Proceedings of the ICML/UAI/COLT 2008 Workshop on Machine Learning for Health-Care Applications.  

[28] Green, M., Ekelund, U., Edenbrandt, L., Björk, J., Forberg, J.L., Ohlsson, M. (2009) “Exploring 
new possibilities for case-based explanation of artificial neural network ensembles”, Neural Networks 
22(1), pp75–81 

[29] Burkhard, H.D., Richter, M.M. (2001) “ On the notion of similarity in case based reasoning and 
fuzzy theory”, In: Soft computing in case based reasoning. Springer , pp29–45 

[30] Burkhard, H.D. (2001) “Similarity and distance in case based reasoning”, Fundamenta Informaticae 
47(3), pp201 – 215 

[31] Kullback, S., Leibler, R.A (1951) “On information and sufficiency”, The Annals of Mathematical 
Statistics 22(1), pp79–86 

[32] Ihara, S. (1993) “Information theory for continuous systems”, Volume 2. World Scientific  

[33] Shannon, C.E. (2001) “A mathematical theory of communication”, ACM SIGMOBILE Mobile 
Computing and Communications Review 5(1), pp3–55 

[34] Rachev, S. T., Stoyanov, S. V., & Fabozzi, F. J. (2011) “A Probability Metrics Approach to 
Financial Risk Measures”, John Wiley & Sons. 

[35] Lin, J. (1991) “Divergence measures based on the Shannon entropy”, Information Theory, IEEE 
Transactions on 37(1), pp145–151 

[36] Cha, S. H. (2007) “Comprehensive survey on distance/similarity measures between probability 
density functions”, City, 1(2), 1. 

[37] Dragomir, S.C. (2008) “Some properties for the exponential of the Kullback-Leibler divergence”, 
Tamsui Oxford Journal of Mathematical Sciences 24(2), pp141–151 

[38] Me3gas – smart gas meters & middleware for energy efficient embedded services. url: 
http://www.me3gas.eu  

 [39] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, 
M., Duchesnay, E. (2011) “Scikit-learn: Machine learning in Python”, Journal of Machine Learning 
Research 12, pp2825–2830 

[40] KK-Stiftelse: Swedish Knowledge Foundation. http://www.kks.se (Last Accessed: A p ril 2014) 

[41] CNet Svenska AB. http://www.cnet.se (Last Accessed: April 2014) 


