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Abstract. Confidentiality and integrity of data in Infrastructure-as-a-Service
(IaaS) environments increase in relevance as adoption of IaaS advances towards
maturity. While current solutions assume a high degree of trust in IaaS provider
staff and infrastructure management processes, earlier incidents have demon-
strated that neither are impeccable.
In this paper we introduce Domain-Based Storage Protection (DBSP) a data
confidentiality and integrity protection mechanism for IaaS environments, which
relies on trusted computing principles to provide transparent storage isolation
between IaaS clients.
We describe the building blocks of this mechanism and provide a set of detailed
protocols for generation and handling of keys for confidentiality and integrity pro-
tection of data stored by guest VM instances. The protocols assume an untrusted
IaaS provider and aim to prevent both malicious and accidental faulty config-
urations that could lead to breach of data confidentiality and integrity in IaaS
deployments.

1 Introduction

Following a period of establishment and early adoption, cloud computing is gaining
widespread popularity and is now present in the product portfolio of many large soft-
ware vendors in one of the three archetypes outlined by the US National Institute of
Standards and Technology (NIST): Infrastructure-as-a-Service , Platform-as-a-Service
or Software-as-a-Service [1]. Other factors which testify to the impact of the field are
the emergence of legal frameworks that regulate provisioning and usage of public cloud
computing services [2] and protection of data transferred to public cloud storage [3].
However, despite growing popularity, cloud computing continues to present a wide range
of unsolved security concerns [4, 5, 6]

Considering that security concerns were long cited as barriers to wider adoption of
public cloud services, emerging regulation will likely require public cloud providers to
operate with an even wider set of tools to safeguard when needed the confidentiality,
integrity, authenticity and even geolocation of data stored in public clouds. Governmental
programs, such as e.g FedRAMP in the USA propose a ”standardized approach to security
assessment, authorization, and continuous monitoring for cloud products and services”
[7]. While such programs are an important extension of the cloud security ecosystem, they
often assume manual execution steps which can not reliably exclude audit or reporting
errors due to human factors. In addition, the outcome of such programs is a certification
result based on a snapshot view of the public cloud providers’ infrastructure, processes
and policies, while an adversary with full logical access to the underlying infrastructure
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can conceal traces of an eventual security breach. Thus, while security assessment and
continuous monitoring of the infrastructure are valuable tools in ensuring security of
IaaS infrastructure deployments, we consider that effective prevention mechanisms have
a higher potential to increase the IaaS customers’ trust with respect to data processing
and storage in public IaaS environments.

A core enabling technology of IaaS is system virtualization [8], which enables hard-
ware multiplexing and redefinition of supported hardware architectures into software
abstractions. This redefinition is performed by the hypervisor, a software component
that abstracts the hardware resources of the platform and presents a virtualized software
platform where guest virtual machine (VM) instances can be deployed. In addition, the
hypervisor also manages the I/O communication between VM instances and external
components, including storage devices allocated to the VM instance. This is one of the
vulnerable areas of IaaS environments since, as demonstrated in [6], improper allocation
of block storage can lead to a breach of data confidentiality.

Certain aspects of IaaS security have been addressed through the use of Trusted
Computing technologies as defined by the Trusted Computing Group (TCG) [9]. A core
component in the TCG-defined security architecture is the Trusted Platform Module
(TPM), a cryptographic module that offers protected storage for sensitive parameters
and can be used as trust anchor for software integrity verification in open platforms.
TPM usage and deployment models for IaaS clouds have already been addressed in
earlier research [10,11,12,13,14,15]. The early principles of a trusted IaaS platform [13]
were later extended to cover both trusted VM launch [14,16] and VM migration [15].

These results demonstrate the capabilities resulting from combining basic TPM at-
testation mechanisms with standard cryptographic techniques to design an infrastructure
for VM protection. However, while much of the research effort has been directed towards
protection of VM instances in IaaS environments, ensuring the protection of data gen-
erated by such instances has received far less attention. We address this aspect in the
current paper.

Contribution

The focus of this paper is DBSP, a trusted storage protection mechanism which provides
per-VM instance access control, allowing the client to control a VM instance’s read and
write access rights over a storage unit at launch time.

- In this paper we introduce an approach to ensuring confidentiality and integrity of
stored data in public IaaS deployments with the additional capability of domain-
based isolation. Such Domain-Based Storage Protection allows a IaaS Compute Host
(CH) to encrypt and integrity protect data before it is stored. Encryption and in-
tegrity protection is performed using TPM-protected keys which are only available
to a CH in a trusted state, which excludes the possibility of decryption and/or mod-
ification on a simulated deployment. Furthermore, DBSP allows to enforce storage
management policies to provide control over allocation of and access to storage in a
fully virtualized environment.

- We introduce a storage allocation protocol that reduces the risk of accidental or
premeditated breach of data isolation between different tenants (an attack vector
introduced in [17] with actual vulnerabilities described in [6]) by introducing and
enforcing the concept of administrative domains in the context of storage resources.



III

- We present a set of protocols for transparent full disk encryption performed at the
hypervisor level; while hypervisor-based background encryption has been explored
earlier [18], our protocol focuses on a different key handling mechanism where the
control over the domain master keys protecting the data storage is transferred to an
external trusted party.

- We extend previously introduced protocols for trusted launch of VM instances in
public IaaS environments [14,16] by introducing additional parameters to direct the
allocation of storage resources to a certain administrative domain.

2 System Model

In this paper we assume an IaaS deployment model as defined by NIST, where an IaaS
client is able to provision processing, storage, networks, and other fundamental computing
resources as well as able to deploy and run arbitrary software supported by the hypervisor.
[1]; moreover, the same definition explicitly states that IaaS clients do not have control
over the underlying infrastructure. In a typical usage scenario, IaaS clients communicate
over an insecure network with the IaaS platform which provisions computing resources
and launches guest VM instances3 and allocates storage resources.

According to our system model, the domain of the IaaS provider is limited to the IaaS
software platform and the hypervisor environment (including the hypervisor itself, any
administrative domains, e.g. Dom0 according to the Xen hypervisor model [19] and the
communication channels between administrative domains and the VM instances). Prac-
tical IaaS deployments assume that the VM image repository and data storage provided
for the VM instances could be either controlled by the IaaS provider or by a third party.
We assume for simplicity (but without affecting the applicability of DBSP) that the IaaS
provider is in full control of both the image store and the data storage. The IaaS provider
domain is marked with bold dashed lines in Figure 1.

1

1. Image store2. Other storage     resources

2

(open)
network

Client
A

Client
B

Hardware

Hypervisor

Dom0 DomUA DomU
N

DomUB

DomUM

DomUA

DomU
B

DomUN

IaaS 
provider

IaaS software platform

Fig. 1: Data flow in the cloud

We share the attack model with [13, 14, 15, 16], which assume that privileged access
rights can be maliciously used by IaaS provider system administrators (Ar) with re-
mote access. In addition, Ar can obtain root access on any host maintained by the IaaS
provider, but not can not obtain physical access.

3 VM images can originate from the clients themselves, the IaaS provider or a public image
repository.
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We assume that an Ar obtaining remote root access to a compute host within the
secured IaaS provider perimeter will not be able to access the volatile memory of any
VM instance residing on the compute host at that time, i.e. the compute host offers
VM instances a closed box execution environment4, e.g. similar to the model in [20].
The attack model also includes unintentional configuration errors caused by Ar, such
as incorrect allocation of storage devices or unintended network connectivity between
physical or virtual devices.

Runtime attacks on the hypervisor are excluded from the model, since they represent a
separate research topic. One promising solution towards this problem is presented in [21].
Denial-of-Service attacks are also explicitly excluded from our model, because according
to the definition of the IaaS model in [1] the client has limited access to the networking
infrastructure of the IaaS deployment and the IaaS provider could start a DoS attack
simply by severing the network communication between the client and the VM instance.

We consider a VM trusted if the integrity of the VM image used for launch is ensured,
the VM instance is spawned on a trusted compute host and the VM instance can prove
knowledge of a client-verification token (see section 4.1).

Based on the model presented above, we define a set of requirements towards a solu-
tion which aims to ensure the confidentiality and integrity of data processed and stored
by a VM instance in an untrusted IaaS setting.

1. The solution must ensure integrity and confidentiality protection of data processed
and stored by VM instances on resources hosted by an untrusted IaaS provider.

2. The solution must be capable to enforce access rights, such that a guest VM only
can access a certain storage domain if explicitly assigned by the IaaS client.

3. The solution must prevent both accidental and intended breaches of storage resource
isolation between VM instances triggered by IaaS Ars.

These requirements will be revisited in section 5 as part of the evaluation of the
proposed solution.

3 Building Blocks

Before presenting the set of protocols comprising DBSP, we provide some details about
essential components of the proposed solution and component specific properties which
we rely on in the remainder of this paper.

3.1 Trusted Platform Module

The Trusted Platform Module (TPM) is a cryptographic coprocessor, developed accord-
ing to the specifications of the Trusted Computing Group (TCG) [9]. Given that the final
specification for TPM version 2.0 is not yet released at the time of writing, we assume
TPM version 1.2 for the remainder of this paper.

TPM provides a set of standard, unmodifiable functionality implemented by vendors
according to the specifications published by the TCG and offers data protection through
asymmetric cryptography using internally maintained keys. Two of the operations sup-
ported by the TPM that are particularly relevant for the proposed solution are bind and

4 This does not include any VM instances part of the hosting infrastructure, such as adminis-
trative VMs
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seal. According to [9], a message encrypted (”bound”) using a particular TPM’s public
key can only be decrypted using the private key of the same TPM. Sealing is a special
case of binding, where an encrypted message produced through binding can only be de-
crypted in a certain platform state (defined through the platform configuration register
values) to which the message is sealed. Refer to [9] for a detailed description of the bind
and seal operations.

3.2 Trusted Third Party

For the purposes of the protocol, we introduce a standalone component referred to as
trusted third party (TTP). We assume that the security guarantees provided by the
trusted third party with regard to guest VM launch and storage protection are sufficient
for the IaaS client. We further assume that the IaaS provider allows communication
between its servers and the TTP for platform attestation and key management purposes.
We continue by enumerating of the functionality assumed to be provided by the TTP:

– Communication with components deployed on the compute host, such as integrity
attestation information, authentication tokens and cryptographic keys;

– Integrity attestation based on the integrity attestation quotes provided by the TPM
hardware component installed on the compute host;

– Verification of client supplied electronic signature authenticity;
– Sealing of data to a certain trusted compute host configuration;
– Generation of nonce values and of confidentiality and integrity protection keys ac-

cording to the input data received from the compute host.

Given the central role the TTP plays in our model, we assume that the TTP com-
municates with the components of the IaaS deployment through reliable channels.

3.3 Secure Component

Another part of the proposed solution is a verifiable execution module referred to as the
”Secure Component” (SC) in the protocols. The secure component provides the following
functionality:

– Communication with the TTP for authentication and cryptographic key exchange;
– Verification of VM instance access rights to storage resources;
– Fetching, caching and storing confidentiality and integrity protection keys per guest

VM instance;
– Encryption, decryption, integrity protection and verification of data written or read

to/from allocated storage resources;

Having defined the responsibilities of SC, we turn to the possible ways to integrate
it into currently used virtualization stacks. Figure 2 shows a Xen hypervisor deployed on
a hardware node, with a set of boxes on top of it representing the guest VM instances
(DomU1 to DomUN ), along with an administrative VM instance, Dom0. While imple-
menting SC as part of Dom0 is feasible, this would only increase the (already large)
amount of code that must be included in the trusted computing base.

An alternative implementation of SC on a Xen virtualization platform follows the
disaggregation principles described in [22] to implement a ”DomSC” executing the func-
tionality of the secure component described above. The trusted computing base is thus be
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reduced to the underlying hardware, the bare-bones hypervisor, a necessary minimum of
Dom0 and DomSC, as depicted in Figure 3 (the TCB within the dashed line). While full
exclusion of Dom0 from the trusted computing base is indeed desirable, it is a non-trivial
task, as discussed in [22].

Implementation(s) of the SC for Xen and/or KVM is planned as future work.

4 Design Principles

We assume a scenario where data is stored in an IaaS storage using any suitable units,
such as block storage devices (iSCSI or similar). Confidentiality and integrity of the data
during storage is ensured by the secure component, as described in section 3.3.

All data stored at the IaaS provider using the scheme described in this paper is
associated with specific storage domains. A storage domain in this context typically
corresponds to a particular organization or administrative domain that utilizes public
cloud services (including the storage service) offered by an IaaS provider, i.e. a single
administrative entity that typically only handles data storage for its own domain and
not for any other domains. All data in a single domain is protected with the same storage
protection domain master key, denoted by KM . This key is generated by the TTP and
cannot leave TTP’s logical perimeter.

We assume that at guest VM launch, the VM instance is assigned a unique identifier
(IDVM ). During the entire lifetime of the VM instance, IDVM is reliably associated with
a particular storage domain. Keys used for data confidentiality and integrity protection
and verification in a single domain are derived by the TTP.

Below we describe three protocols necessary for the data handling functionality of a
VM instance, namely protocols for secure VM instance launch plus initial and subsequent
storage usage. Migration of VM instances is a relevant and important topic, but due to
space considerations it is out of the scope of this paper.
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4.1 VM Instance Launch

We suggest the following principles for securely associating a VM instance with a par-
ticular storage domain at VM launch. It is important to note that the following launch
protocol description (also presented in Figure 4 focuses mainly on the extensions to
the trusted launch protocol in [16] and does not revisit all its details. In the following
description, the extensions to the protocol are marked with a bold font.

Fig. 4: Trusted VM launch protocol: C: Client; S: Scheduler; CH: Compute Host; T T P:
Trusted Third Party;

:C :S :CH :T T P:C :S :CH :T T P

2. Make token

TTTP

3. Launch args

4. Launch args

5. Attestation data

7. MTTP

sealed

11. Launch trusted

Trusted V M instance

ok

ok

1. Client C prepares a VM launch package similar to the one described in [16] or [14].
The launch package contains a launch message, M, which consists of the following
parameters:
(a) The identifier of the VM to be launched, IDVM .
(b) A storage domain identifier, IDD. For this protocol assume IDD = A.
(c) An assertion, AS, proving to the TTP, that C is authorized to request

the launch of VM instances with access to storage domain A.5

(d) A nonce (N ) encrypted with the public key of the TTP (PKTTP ); denote the
resulting encrypted nonce by NPKTTP

(e) Optional additional parameters, such as required target platform Security Profile
(SP ) and a hash HVM of the target VM image 6.

5 We assume here that an assertion in the SAML format is used.
6 Here we assume that an unmodified, ”vanilla” VM image available from a public image repos-

itory is used. The protocol can be adapted for client-customized images, by encrypting the
image with a symmetric key K, protecting K with PKTTP and including that into M.
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2. The client produces a digital signature, SIG, over all the values in M
using the client’s Private Key (PrKC), with the corresponding public key
certified in CertC. Denote the data structure containing M, SIG and CertC by
TTTP .

3. TTTP is sent to the IaaS provider along with VMimage or an indication of the VM
Image (IDVMimg) that should be chosen for launch from a publicly available VM
image repository.

4. The scheduler (S) selects a suitable available compute host in the provider network
and transfers TTTP and VMimage/IDVMimg to the chosen compute host.

5. Once the compute host receives TTTP , it sends TTTP to the TTP for verification.
6. The TTP follows the below steps to verify the contents of the received TTTP , attest

the trustworthiness of the compute host and generate the necessary keys:
(a) TTP verifies CertC and the signature SIG and if they are valid, TTP

proceeds to the next step; otherwise it aborts with an error message
to CH.

(b) TTP checks the assertion, AS (using the client’s identity and key infor-
mation provided in CertC) and verifies that the client is authorized to
use storage domain A7. If that is true, TTP proceeds with next step, otherwise
it aborts with an error message to the compute host.

(c) Using its private key, TTP decrypts the received NPKTTP
contained in M.

(d) TTP generates a session domain key for the domain specified by IDD

(in this example we assume domain ”A”) and the target platform. We
denote this key by SDKA.

7. Parameters IDVM and SDKA (together with other parameters such as N and
HVM , similar to the mechanism in [16]) are TPM sealed to a protected state of
the compute host and only made available to a trusted state of the com-
pute host. The encrypted message, denoted MTTP

sealed, is sent back to the compute
host, which concludes the trusted launch. We maintain our earlier assumption that
C has requested the launch of a publicly available VM image and provided HVM for
verification:

8. The compute host unseals MTTP
sealed and ensures SDKA is available to the

secure component running on the platform.
9. The compute host compares the received HVM with the hash of the available VM

image to ensure its integrity.
10. The VM is assigned IDVM and is launched in a secure isolated execution

compartment on the trusted platform.
11. The compute host injects N into the VM image prior to launching the VM instance,

launches the VM instance and returns an acknowledgement to the client to confirm
a successful launch.

12. To verify that the VM instance has been launched on a trusted platform, the client
challenges the VM instance to prove its knowledge of N .

4.2 Initialization And First Time Data Writes

The protocol for set up and first time data write is presented in Figure 5 and explained
in detail below.

7 We assume that remote attestation of the compute host will also be performed at this point;
however this is not included in the current description
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Fig. 5: Secure block write procedure: VM: VM instance; SC: Secure component; SR:
Storage resource; T T P: Trusted Third Party;

:VM :SC :SR :T T P:VM :SC :SR :T T P

1. writex

2. Wrequest

6. Wresponse

8. metadatax
WT , MACWT

ok

9. data
Ke

x, Ki
x

x

ackdata

ackdata

1. The VM instance on the compute host requests access to a new storage resource, e.g.
a block device or database in the provider network; the storage resource is denoted
by SR.

2. The storage resource reference is denoted SRR. Using SRR as reference, the VM
specifically requests a data write to a storage entity, x, in SR (this being a block or
other storage structure).

3. This request is intercepted or received by the secure component.
4. The secure component sends, protected under key SDKA, a write request (Wrequest)

to the TTP for new storage entity keys for entity x, domain A and SRR from the VM
instance identified by VMID. The request is confidentiality and integrity protected
using SDKA

8.
5. The TTP executes the verification steps outlined below:

(a) TTP verification, using SDKA, that Wrequest is correct, which includes a veri-
fication of the domain access rights of the key SDKA. The protocol execution
only proceeds if the key SDKA is associated with the requested domain.

(b) If so, TTP fetches the master key KM for the requested domain A and generates
a nonce N TTP .

(c) Next, TTP uses a suitable pseudo-random function, PRF (KM , N TTP ) to gen-
erate data encryption and integrity protection keys. In this way, the generated
keys are associated with a specific domain indicated by the domain identifier pro-
vided by the customer. The VMID is associated with the domain for ancillary
purposes, such as billing.

(d) Denote encryption and integrity protection keys by Ke
x and Ki

x respectively 9.
(e) Next the TTP generates a token (WT ) consisting of N TTP , A and SRR.

8 Several alternatives for confidentiality and integrity protection are applicable using well-
established protocols, e.g. TLS with pre-shared keys.

9 In certain cases, only integrity or only confidentiality of data is required and thus one of the
two keys suffice. Here we assume both confidentiality and integrity protection is needed.
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(f) The TTP uses an internal integrity key, which never leaves the logical domain of
the TTP, to calculate an integrity check value over WT , denoted as MACWT .

6. Next, the write response token Wresponse (containing WT , MACWT , Ke
x, Ki

x) is
confidentiality and integrity protected using SDKA

10 and sent to the secure com-
ponent.

7. The secure component receives Wresponse from the TTP, decrypts WT , MACWT ,
Ke

x and Ki
x and associates them with domain A and VMID.

8. The secure component stores WT and MACWT received from TTP as part of storage
metadata for the new storage entity x in SR.

9. The secure component uses keys Ke
x and Ki

x to protect the confidentiality and in-
tegrity of the data stored in storage entity x in SR.

Performance and Efficiency Considerations The storage entity unit should be
selected so that the communication frequency between the secure component and TTP
on one hand and the secure component’s activities on the other hand do not incur a
larger performance penalty than what is acceptable by the involved parties. Also, the
storage entity unit should be selected so that integrity protection meta-data does not
consume a larger portion of storage than what is acceptable by the involved parties. 11

4.3 Subsequent Data Reads and Writes

The protocol for subsequent data reads and writes is introduced and explained in detail
below; a high-level view of the key retrieval protocol is presented in Figure 6.

The VM identified to the compute host by VMID requests a data write or data read
from entity x using SRR as a reference handle. This request is intercepted or received
by the secure component and the following procedure applies:

1. The secure component checks if the required integrity and confidentiality keys needed
to verify and decrypt the requested storage entity x are cached locally. If that is the
case, it proceeds to step 5. Otherwise, the protocol executes the following steps:

2. First, it locates WT and MACWT used to protect x in SR in the meta data of
storage entity x.

3. The secure component sends to the TTP a read-write request (RWrequest) containing
WT , MACWT , A, SRR and the VMID, and a request for the data entity keys for x.
The write request is confidentiality and integrity protected under key SDKA

10. The
TTP executes the following steps to provide the necessary encryption and integrity
protection keys:

(a) The TTP verifies the correctness of the RWrequest and of the token WT (using its
own internal MAC key). Similar to the initialization protocol, the TTP verifies the
domain access rights associated with SDKA and only proceeds if the key SDKA

is associated with the domain identifier requested by the secure component.
(b) If WT is valid, TTP checks that the domain identifier and SRR contained in

WT match the IDD and SRR indicated by the secure component.

10 Several alternatives for confidentiality and integrity protection are applicable using well-
established protocols, e.g. TLS with pre-shared keys.

11 We plan to investigate the relation between the storage entity unit size and performance
penalty in a prototype implementation.
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Fig. 6: key retrieval procedure for subsequent data reads and writes: SC: Secure compo-
nent; T T P: Trusted Third Party;

:SC :T T P:SC :T T P

3.
get keys x

{WT , MACWT , A, SRR}SDKA

3.(a) verify(WT )

correct

3.(b) verify(IDD, SRR)

correct

3.(c) PRF (KM , N TTP )

Ke
x, Ki

x

3.(d) {Ke
x, Ki

x}SDKA

4. decrypt{Ke
x, Ki

x}SDKA

Ke
x, Ki

x

(c) If all the above verifications are successful, TTP uses the KM domain master key
and N TTP in WT to derive Ke

x and Ki
x for VM instance VMID.

(d) Next, the TTP sends to the secure component the keys Ke
x and Ki

x in a read-write
response message (RWresponse) which is confidentiality and integrity protected
using SDKA

10.

4. The secure component receives RWresponse from TTP and decrypts the keys.

5. The secure component uses Ke
x and Ki

x to encrypt and/or integrity protect (write)
or decrypt and/or integrity check (read) data at storage entity x.

5 Security Evaluation

To assess the solution, we first discuss the involved components and the expected security
properties and continue with a brief discussion of the protocol verification using ProVerif,
a cryptographic protocol verifier [23].

In the system model currently considered, integrity of VM images is universally im-
portant, while confidentiality is mostly relevant in the case of client-customized VM
images. In the proposed solution, integrity is ensured by calculating SIG of the HVM on
the client side and verifying it on the compute host at the time of launch. We apply pre-
viously introduced principles for trusted VM instance launch [14, 16] in order to ensure
that the respective VM instance has been launched on a trusted compute host, i.e. on
a compute host running a trusted code base, attested by a TTP. The TTP has, within
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the scope of this protocol, extensive responsibilities and must itself be protected from
software attacks12.

A key assumption of the protocol is the reliance on an attested and trusted compute
host, which is performed by the TTP using Direct Anonymous Attestation [25] defined
in version 1.2 of the TCG specification.

Integrity verification of the stored data is performed using integrity keys Ki
x, which are

generated by the TTP. Key generation requires the presence of the correct session domain
key SDK, which is sealed to the trusted configuration of the compute host. According
to TPM properties, the sealed SDK can only be decrypted by the compute host if it is
in the trusted state the key was sealed to [9]. Consequently, a compute host booted into
an untrusted state (configuration) or a malicious third party would be unable to obtain
Ki

x. The same mechanism protects the confidentiality protection key Ke
x. Security of the

keys Ke
x and Ki

x regenerated for subsequent reads and writes is ensured by the integrity
verification of the token WT created by the TTP and stored in the meta data.

Enforceable access rights management is ensured by the requirement for the VM
launch process to present an assertion AS generated by the client to the TTP. If no such
assertion is available, the VM launch process is aborted by the TTP (the IaaS can still
launch a VM instance, however such an instance would not be trusted by the IaaS client).
Furthermore, possession of a session domain key for the respective domain generated in
the process of trusted launch is necessary to obtain the integrity and confidentiality
protection keys Ke

x and Ki
x. Thus, a VM instance which does not possess the client-

provided AS for a certain domain would not complete a trusted launch procedure and
would not obtain the session domain key for the respective administrative domain. The
step requiring the VM launch process to present a client-generated assertion during the
guest VM launch procedure to obtain a session domain key which is in turn necessary
for data access operations satisfies requirement 2 by enforcing access rights based on the
credentials provided by the IaaS client.

Domain isolation of data is cryptographically enforced by the TTP in several steps.
First, session domain keys SDKA are generated based on the information received from
the client, in particular assertion (proving to the TTP that the client is authorized to
launch VM instances with storage access to a certain domain) and the client certificate.
Subsequent generation of confidentiality and integrity protection keys Ke

x and Ki
x is only

done by the TTP based on the possession of a correct session key for the respective
domain. A VM instance can thus only obtain read or write access if it has been launched
in the same domain and the respective assertion has been provided by the IaaS client.
Malicious or accidental allocation of the respective storage resource to an arbitrary VM
instance would not have any effect on the confidentiality of the data protected under Ke

x.
Such cryptographic isolation satisfies requirement 3 stated above.

5.1 Protocol Verification with ProVerif

We have verified the security properties of the proposed protocol using ProVerif, an
automatic cryptographic protocol verifier in the formal (Dolev-Yao) model [23] 13. The
verification has demonstrated the confidentiality of both the stored data and consequently

12 Anecdotal cases, such as NIST taking the National Vulnerability Database (NVD) offline in
response to learning that it had been hacked [24] point to the fact that attestation services
(such as the TTP) are important attack vectors and must therefore be closely monitored.

13 The ProVerif script is available at https://github.com/nicopal/dbspVerification
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of the confidentiality protection keys14, as well as of the TTP-generated nonce that is
necessary in order to regenerate the confidentiality and integrity protection keys Ke

x and
Ki

x, demonstrating that requirement 1 has been satisfied.

6 Related Work

The importance of data confidentiality protection and isolation of data between tenants
in a IaaS environment is underlined by the attention it has received from the research
community. However, many public IaaS providers still harbour ”low hanging fruits” in
terms of vulnerabilities, such as for example the one addressed in [6], when researchers
have identified vulnerabilities in the disk allocation procedure whereby the disk space
allocated to a certain tenant would contain fragments of information written by other
previous tenants. This particular vulnerability was caused by the fact that the host-
ing OS’s file API, which by default zeroes uninitialized data, was not used in the disk
allocation process. Our approach prevents such cases by encrypting the data prior to
writing it to disk. Management of allocated disk space according to security domains is
another barrier that would prevent an attacker from gaining access to disk space poten-
tially containing remnants of data. In this scenario, in case an improperly sanitized disk
is allocated to a guest VM from a different administrative domain, the guest VM would
only access encrypted data.

While the authors in [6] suggest full disk encryption as one of the mitigation tech-
niques, management of encryption keys is not trivial and has been the focus of a large
body of research. For example, [26] focuses on managing access rights upon shared ver-
sioned encrypted data on cloud infrastructure for a restricted, flexible group. The authors
base their model on several components, namely a Key Graph, encrypted updates to the
Key Graph (denoted as Key Trails) as well as actual versioned data, where the latter
two are stored in the untrusted cloud and the first one is stored with a trusted third
party. Key Trails are used to both adapt on the fly the Key Graph based on granted
or revoked data access, as well as format for deltas between two versions of the Key
Graph. This model focuses on key management, leaving the encryption and decryption
operations to the clients of the cloud storage. The approach builds on earlier research
in the area, namely [27] and utilizes the generation of encrypted key updates by storing
Key Trails on highly available and scalable but untrusted cloud infrastructures parallel
to the encrypted data. All keys are versioned equivalent with the data, in order to allow
a rather granular data access control, where the client can access a certain version or
all previous versions of the data. The authors also describe a potential extension of the
scheme that would allow a granular, per version client access to the data. While this
approach is attractive in many ways, especially considering the granular control of data,
the requirement for client-side encryption limits the applicability of the scheme for client
guest VMs that (for any reason) do not have the ability to run custom confidentiality/in-
tegrity protection code. In addition, our proposed solution allows protection of persistent
data at storage in an IaaS deployment almost transparently from the client point of view.

The trusted hypervisor approach has received much attention in the research com-
munity, as builds on the idea of separating resource allocation from resource isolation,
such that a specialized, trusted hypervisor is deployed on ring 0 below the commodity

14 The verification model assumes confidentiality protection also includes integrity protection so
not separate integrity verification of data was modelled
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hypervisor and protects the memory space of a guest VM from an untrusted commodity
hypervisor. This is done without intentionally interfering with resource allocation, which
is usually left to the commodity hypervisor, hence the separation between resource al-
location and isolation. Variations of this scenario include eliminating the commodity
hypervisor as a whole and relying on a trusted hypervisor with reduced functionality
(e.g. support of a single guest VM). Below follow two examples of this approach, which
could be used in combination with the protocols described in this paper. BitVisor (intro-
duced in [28] and further in [29]) is a thin hypervisor based on Intel VT-x and AMD-V
designed to enforce I/O device security of virtualized guests. The hypervisor uses a
parapass-through architecture that allows to forward a subset of the I/O instructions
(keyboard and mouse actions) without modification in order to have a minimal impact
on the performance of the VM instances. The approach describes a method to offer ac-
cess to both encrypted and unencrypted areas of the disk in a manner transparent to the
VM instance. Different from other approaches, BitVisor assumes a minimal hypervisor
functionality which facilitates deployment efforts.

While it introduces several novel ideas and has a code implementation which also
has been extended by other researchers, BitVisor trades the ability to have concurrently
executing VM instances for simplicity and ease of installation. This limitation severely
reduces the applicability of BitVisor in virtualized IaaS environments, where hardware
multiplexing is an important requirement.

In [30] the authors propose a full disk background encryption model by introducing
TCVisor, a BitVisor-based hypervisor with a parapass-through architecture which intro-
duces a novel key-management approach and TPM support. Support for TPM is added in
order to store parts of cryptographic keys and whole-disk checksums for integrity check-
ing. The authors use Merkle trees for integrity verification and protect the root value
relying on TPM functionality. However, the exact procedure of storing or sealing the
root value of the Merkle tree hash is not discussed. A modified version of AES is used for
data encryption; however the undisclosed modifications to AES raise concerns about the
necessity of modifying a standard verified encryption algorithm and about the effects the
of introduced modifications. The authors also examine the topic of key revocation and
propose an aggressive key revocation scheme triggered by user input. The approach sug-
gested in the paper does indeed address some aspects of protecting privacy-sensitive data
in IaaS storage. However, by building TCVisor on top of BitVisor, the model inherits the
limitations of BitVisor, e.g. support for only one executing VM instance.

As mentioned above, the DBSP protocols presented in this paper can be applied as
an extension of trusted hypervisor approaches, since similar to such hypervisors, DBPS
protocols require external attestation from a third party.

7 Conclusion

In this paper we have introduced a set of complementary protocols intended to ensure
transparent domain-based isolation between data stored by guest VMs. Transparency is
ensured by introducing a ’secure component’ SC, which is trusted by the hypervisor.
This secure component performs key management on the compute host side, along with
background confidentiality and integrity protection of stored data. We furthermore in-
troduce domain-based isolation, which uses symmetric encryption to ensure that guest
VMs only obtain data read or write access if they are authorized to do so by the IaaS
client. We rely on trusted computing principles and earlier defined trusted VM launch
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protocols in order to ensure that guest VM instances are only launched on trusted IaaS
compute hosts. We perform a theoretical security evaluation of the proposed solution.
Description and evaluation of an implementation of the solution on either the Xen or
KVM virtualization platforms are left for future work.
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