
978-1-4673-5828-6/13/$31.00 c©2013 IEEE

Authorization Framework for the Internet-of-Things

Ludwig Seitz∗, Göran Selander†, Christian Gehrmann∗
∗Security Lab, SICS Swedish ICT, Sweden

†Security Research, Ericsson Research, Sweden
{ludwig,chrisg}@sics.se, goran.selander@ericsson.com

Abstract—This paper describes a framework that allows fine-
grained and flexible access control to connected devices with very
limited processing power and memory.

We propose a set of security and performance requirements
for this setting and derive an authorization framework dis-
tributing processing costs between constrained devices and less
constrained back-end servers while keeping message exchanges
with the constrained devices at a minimum.

As a proof of concept we present performance results from
a prototype implementing the device part of the framework.

Keywords—Internet of Things, Access control, Assertions

I. INTRODUCTION

Internet-of-Things (IoT) is a term commonly used today
to describe a networked society, where everything that can
benefit from a connection will be connected. This means that in
contrast to the past where mainly mobile phones and computers
were globally interconnected over the Internet, now all kinds
of electronic equipment are about to come on-line. This trend
is expected to accelerate over the coming years due to the
decrease of hardware and network costs as well as the Internet
technology maturity.

In this paper we address one of the important security
challenges, authorization and access control, in the context
of interconnected systems consisting of resource constrained
devices not directly operated by humans. In particular, we
focus on the problem where a single constrained device is
communicating with several other devices or back-end com-
puters.

This implies, that even if the device is primarily configured
by one person or organization, it must be able to handle
connections from other entities and these different entities may
not have the same access rights, i.e., the device must be able
to distinguish between requests from different entities, and
enforce fine-grained authorization decisions.

Furthermore, we allow authorization decisions relating to
a device to be based on local data only available to the device
itself. The use of device local conditions for policy decision
adds significant flexibility to the access control models that
can be supported, since any parameter read by the device can
be used to condition granting of a request.

The scope of this paper is to support generic authorization
and access control procedures applicable to a variety of devices
and access purposes. However, since the constrained devices
are the limiting factor we must assume the worst case and
design for a restricted computation and communication budget
(transmission and reception are known to be costly for wireless
sensor devices).

Our contributions in this paper are a generic authorization
framework supporting fine-grained and flexible access control
to constrained devices, with the following properties:

• the device enforces the access control decision locally;

• the decision may be based on device local parameters;

• the framework is based on current Internet and access
control standards;

• no extra messages are exchanged with the device com-
pared to current deployments without access control;

• the execution times on a constrained device are rea-
sonable.

The challenge in this work is to adapt standardized approaches
from other domains to the resource constraints imposed by the
Internet-of-Things settings.

The rest of the paper is organized as follows. In section
II, we discuss related work in this area and provide the back-
ground information needed to understand the framework. We
specify our requirements for an IoT authorization framework
in section III. Section IV describes the overall framework in
relation to the requirements, and section V discusses candidate
authentication and key establishment protocols. The necessary
authorization procedures are specified in section VI and the
core entity of the framework, the Authorization Engine, is
described in section VII. We discuss implementation results
in section VIII and evaluate the security of the framework in
section IX. Finally, section X provides a summary of the paper
and examines the potential future work in this area.

II. RELATED WORK

The EU-project Internet-of-Things Architecture is working
on a general framework for IoT including security. As part of
this work the consortium has released a concept description for
privacy and security for IoT services [1]. This concept includes
usage of the eXtensible Access Control Markup Language
(XACML) [2] and the Security Assertion Markup Language
(SAML) [3] for IoT but does not discuss adaptations or changes
to these standards which would be necessary in order for them
to work efficiently in constrained environments.

Naedele [4] proposes a public-key based protocol for se-
cure access and communication using a back-end authorization
engine and signed capabilities. The device, after verifying the
validity of the capability, initiates a protected session with
a user which is used for further communication. However,
the protocol requires several message exchanges in order to
establish a secure session, lacks the option of device local
conditions, and is not adapted to relevant standards.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/301007607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Resch et al. surveys lightweight methods to secure geo-
infrastructures with low power units in [5]. This scenario is
very similar to that we consider and the results apply also
to our scenario. The authors also suggest a novel security
framework. In contrast to our suggested framework, this is built
upon a security proxy function in the network. This breaks the
end-to-end security for the service which is one of our basic
requirements (see Section III).

Zhang et al. [6] describe a distributed privacy-preserving
access control scheme for sensor networks. Their protocol
requires users to purchase tokens from the device owner in
order to access data from the device. The main focus of this
work lies in protecting the privacy of the user towards the
device and preventing token-reuse. It does not examine fine-
grained access control enforcement on the devices, as well as
local conditions.

In summary one can say that problem of authorization in
the Internet of Things is not conclusively solved yet. Current
approaches concentrate on a number of very specific problems
whereas our approach is to design a generic authorization
framework based on established and emerging standards. The
novelty of our approach is that we have designed profiles and
adaptations of these standards to enable or optimize their use
with constrained devices.

III. AUTHORIZATION FRAMEWORK REQUIREMENTS

As previously described, we target a setting of constrained
devices and different entities accessing those devices. For this
setting we list a set of security and performance requirements
of a generic authorization framework. Naedele [4] also lists
requirements on a similar basis, so we limit ourselves to
additional requirements supporting fine-grained and flexible
authorization:

• R1: The framework shall support
a differentiated access rules for different re-

questing clients,
b access control at the granularity of REST-

ful resources,
c policies based on local conditions (e.g.

state of device, time, position).

• R2: All introduced security mechanisms shall be de-
signed such that the total overhead due to computation
and especially communication is as low as possible on
the device side.

• R3: The authorization framework shall support secure
access to access control related information.

• R4: The access control solution shall be dependent on
a minimum of other functions.

• R5: The solution shall provide end-to-end protection
(integrity and confidentiality) of relevant parts of the
protocol messages, as well as replay protection.

Note that in order to be generally applicable, the autho-
rization framework we are addressing must not be dependent
on a specific authentication mechanism, key management or
secure transport protocol. These security mechanisms must
also comply with similar requirements. This is out of scope,
but impacted the design of our proof of concept.

IV. AUTHORIZATION FRAMEWORK

In order to fulfill the requirements for fine-grained access
control we have chosen to use the access control standard
XACML [2], since it is the most predominant standard in the
area, and has been used in industry to some extent1. With
XACML we can cover both sub-requirements R1.a and R1.b.

Evaluating XACML policies is too heavyweight for con-
strained devices, therefore we propose to externalize most of
the authorization decision process (R2), and have the device
perform primarily authorization enforcement (R5).

In order to deal with local conditions affecting the ac-
cess control decision (R1.c), either information about local
conditions must be transported to an external policy decision
point or some access control decision be made within the
constrained device. The latter is preferred for several reasons:
transporting information about local conditions for each policy
decision introduces delays and adds a transmission costs to the
device, and moreover, the local conditions may have changed
at the time of enforcement. Furthermore, we can express
local conditions as XACML Obligations, i.e. constraints under
which an external authorization decision is valid.

In order to convey the authorization decisions from the ex-
ternal decision point to the device, we chose to use assertions,
which are digitally signed data objects containing asserted
information, and in particular we use SAML authorization
decision assertions [7] as a template. An alternative would
have been to use OAuth access tokens [8] as starting point,
the end result would have been the similar, but we choose
SAML since it is well integrated with XACML.

We therefore need the following three entities in our frame-
work: A Device (D) hosting resources, a User (U) wishing to
access a resource and an Authorization Engine (AE) located
in the back-end, that performs policy evaluation and issues
authorization assertions for resource access to the User. The
User sends these assertions to the device along with the
request. The AE is acting on behalf of a device owner who
has configured the resource access policies.

Independent of the authorization mechanism, we also need
a fourth entity that facilitates resource discovery, a Resource
Directory maintaining descriptions of resources. Our design
extends the use of the directory to also manage security data,
relevant to devices (e.g. device public key, capability to process
local conditions). Note that for privacy reasons, the resource
descriptions may also be subject to access control (see R3),
and should not be transmitted over an unprotected channel. It
is straightforward to apply our access control framework to
this data, but this is not discussed further in this paper.

The resulting architecture is illustrated in figure 1.

Given this architecture, the authorization framework re-
quires the following minimal set of functions (consider R4):

• The AE must to be able to bind the User to the
assertion. If the authorization decision depends on the
User’s identity the AE also needs to authenticate the
User. In cases where the User’s identity is not relevant
(e.g. a purchased service) a pseudonym can be used

1See e.g. http://www.axiomatics.com/customers.html

Device 1

Device n

Internet

User

Back-end

Authorization Engine

Resource Directory

Fig. 1: The authorization architecture

instead. The binding can be achieved by including
the public key or the pseudonym of the User in the
assertion. The pseudonym can be authenticated using
the scheme described in section V.

• The Device must to be able to verify that an assertion
is valid and from a trusted source. To achieve this
the AE needs to sign the message using a key that is
known to, and trusted by the Device.

• The Device must to be able to bind the User to the
assertion. This can be achieved by explicit or implicit
authentication of the User (or the used pseudonym).

To comply with R2 the protocols used to implement these
functions should use a minimum of message exchanges with
the Device, ideally not more than if the Device was accessed
without authorization mechanisms. As transport protocol we
build upon the IETF Constrained Application Protocol draft
(CoAP) [9], adding security information to the CoAP messages
where needed. CoAP is specifically designed for constrained
devices and features a very low overhead compared to e.g.
HTTP, nevertheless our framework is not specific to CoAP
and would also work with other application layer protocols.

With the framework described above we can implement
functions complying with all our requirements and additionally
even fulfill those of Naedele [4].

V. KEY ESTABLISHMENT

Requirement R5 assumes a key establishment procedure,
and unless keys are provisioned, this has in turn been predated
by an authentication procedure. Our authorization framework
neither requires a particular authentication protocol nor key
agreement procedure, but we must nevertheless account for
how keys are established as that impacts what capacity is left
in the device for authorization related tasks. We limit ourselves
to two main candidates here.

One straightforward option suitable for CoAP is DTLS
[10] based on raw public keys or pre-shared keys, in which
case the DTLS record protocol provides encryption, integrity
and replay protection of CoAP messages. For extremely con-
strained devices, however, the DTLS handshake may impose
a considerable setup time.

As a proof of concept, we modeled the framework on an
object security based approach. This approach uses symmetric
keys for object protection but works with both symmetric
and asymmetric established keys: Assume first that Device

and Authorization Engine have established each other’s public
keys. By including a nonce in the assertion, it is possible to
use these static public keys in a Diffie-Hellman calculation to
derive a shared secret symmetric key kAD (C(0e, 2s) scheme
of [11]). By also including a verified public key of the User
(obtained by the Authorization Engine in the assertion request)
in the assertion, and a nonce in the payload the Device
and User can perform the analog calculation and derive a
symmetric key kUD.

Assume now instead that Device and Authorization Engine
have established shared symmetric keys. By including a unique
User pseudonym instead of public key in the assertion, the
Authorization Engine and Device can use a suitable one-way
key derivation function to derive a symmetric key kUD, which
is also provided to the User in the response to the assertion
request. Also in this case it is prudent to include a nonce in
object and key derivation to avoid overuse of keys.

Hence given any key establishment between Device and
AE we can without loss of generality assume that shared
symmetric keys kAD and kUD with AE and U, respectively, are
available in the Device after reception of the assertion. These
shared keys are the basis for securing the data objects passed
between AE and D (assertions), and U and D (payloads).

Note that there are also hybrid approaches, e.g. long lived
DTLS used between Device and AE to establish a shared key
which can be used for deriving key kUD used to secure objects
passed between User and Device.

VI. AUTHORIZATION PROCEDURES

As a result of the framework outlined in section IV, we
need a set of procedures and protocols to perform the following
tasks:

A. Device owners registering new devices and their
relevant security data.

B. Users finding a device and requesting an authorization
assertion for it.

C. Users accessing a device using a previously obtained
authorization assertion.

In order to comply with our requirement R2 we design
our protocols such that they do not require additional message
exchanges compared to unprotected CoAP exchanges.

A. Registering new devices

For this procedure, we assume the existence of a resource
directory such as the IETF Resource Directory [12] which
supports procedures for the device to initiate registration of
resource description to the directory. We assume that security
relevant data for a device such as its public key, the AE it
trusts, its owner, and the Obligations which it can process,
may be registered as device meta-data in the directory, and can
be queried by relevant entities. Publishing this meta-data can
follow the same procedure as for publication of the device’s
resources.

B. Getting an authorization assertion

In order to access a resource on a device, the User needs
not only to find the URI of the resource, but also to acquire

an authorization assertion and a cryptographic key to use in
security protocols with the device. The resource URI and
device related security parameters can be retrieved from the
Resource Directory. Among these is the address of the AE
trusted by the device.

The User requests an assertion to access a particular
resource from this AE, which internally runs the XACML
request-response protocol to find out if the User is granted
access (see Section VII). If so, the AE returns an assertion
and a Device Key to the User.

Depending on whether asymmetric or symmetric keys are
used, the assertion contains either a public key or a unique
pseudonym of the User. In the former case, the Device Key
is the public key of the Device. In the latter case, the Device
Key is the derived secret key kUD (Section V). The assertion
is signed2 by the AE using asymmetric or symmetric keys.

Protocol, authentication mechanism and secure transport
between User and AE are out of scope of this paper. Assuming
that the User and the AE are not resource constrained, common
Internet standards such as HTTP and TLS can be applied.

C. Accessing a device

In order to access the resource on the device, the User
now sends a CoAP request including the assertion to the
Device, secured with a protocol/crypto suite supported by the
Device. CoAP supports the use of optional request information
to be carried as a CoAP Option interspersed between header
and payload. We propose to introduce an Assertion Option
in CoAP. Furthermore, in our object security approach we
replaced the CoAP payloads with object secured equivalents
based on the Device Key obtained from the AE.

The device verifies the assertion, matches the access rights
authorized in the assertion with the actual access request, and
verifies the local conditions (if any) specified in the assertion.

If all verifications are successful the request is granted with
consequential processing and response. Replay protection is
provided by giving the assertions a short, pre-defined validity
time, and storing on the device a list of recently used assertion
identifiers.

While DTLS offers bundled encryption and integrity pro-
tection of both payload and headers, the object security
approach allows for a trade-off between protection against
performance. Depending on the trust model, assertion and
payload may need to be encrypted because eavesdropping will
reveal information about the User’s request, which may be
privacy sensitive. Wrapping the the payloads as secure objects
allows differentiated protection of the content based on its
sensitiveness.

For example, in a CoAP GET request, the assertion could
be integrity protected only, while the response payload would
be encrypted and integrity protected. In a CoAP PUT/POST
the assertion and request payload would be integrity protected
and the response would be unprotected.

The security parameters published by the device should
specify which protection mode is to be used, and the crypto
suite identifiers should preferably be standardized.

2The term signature is also used for Message Authentication Codes.

VII. AUTHORIZATION ENGINE

The Authorization Engine consists of two components: An
access control system and an assertion issuing system.

The access control system produces policy-based access
control decisions using XACML. How the policies are created
and administrated is out of scope for this paper.

When a User is granted access by the access control
system, the assertion issuing system encodes the authorization
decision as an assertion.

It is possible that the access granted by such an assertion
depends on parameters known only to the device, in which
case the device will evaluate those and grant or deny access
based on the outcome of this evaluation. This means that at
least some devices will perform more than pure enforcement
of access control decisions.

To enable the device to enforce the authorization decision,
the assertion needs to provide the following information:

• Which resource does the decision applies for.

• Which action (GET, PUT, POST, DELETE) does the
decision apply for.

• Which subject does the decision apply for, and how
can this subject be authenticated (if necessary).

• Which assertion engine has issued this assertion (this
information might be implicit from the signature of
the assertion).

• Under which other conditions is the assertion valid
(expiration date, replay protection, parameters evalu-
ated by the device at access time).

Since the full syntax of XACML Responses and SAML As-
sertions includes a large number of features, we have defined
a subset of both standards, in order to simplify the processing
on the Device. Furthermore the XML representation of this
subset is too verbose for efficient transmission over limited
channels, therefore we have defined a compact JSON-based
notation for our SAML and XACML subset. This approach
reduces the size of the assertion roughly by a factor of ten.

The assertion shown in the following example would have
a size of 208 bytes without pretty printing. The corresponding
XML assertion would be 2281 bytes large.

01 {
02 "ID": "ID_ffda55f9...097bdd21e6",
03 "II": "2013-02-15T10:02:52Z",
04 "IS": "AAA-Server",
05 "SK": "BvDgLAXSHe...0RLhfwS1fue",
06 "ST": {
07 "OB":{
08 "NB":"09:00:00Z",
09 "NA":"17:00:00Z"
10 },
11 "ACT": "GET",
12 "RES": "coap://node346/tempSensor"
13 }
14 }

ID is the assertion identifier, II is the issue instant in
UTC format, IS is the identifier of the assertion issuer and
SK represents the subject of the assertion, using a public key
for subject confirmation.

The authorization decision statement is represented by ST,
it contains an abbreviated XACML Obligation OB representing
a local condition that is verified on the device. In this case we
have a not-before (NB) and not-after (NA) time that constrains
the access permission.

The ACT element is the action and the RES the target
resource URI authorized by the assertion. These parameters
represent the XACML request.

Note that the XACML response is implied to be a PERMIT
response. The Authorization Engine does not issue assertions
for authorization decisions other than PERMIT. Furthermore
the Subject part of the XACML request is omitted since the
Authorization Engine enforces that it corresponds to the SK
element of the assertion.

The device needs to know how to process the Obligation,
otherwise it must reject the assertion. Section VI describes how
a device can publish the types of Obligations it can process.

VIII. IMPLEMENTATION

The device part of our framework was implemented using
the object security based approach and symmetric keys (see
Section V) on an example platform: The Arduino Mega 2560
board3. This board features a 16 MHz processor, 256 kB of
Flash Memory, 8 kB of SRAM, and 4 kB of EEPROM. We
chose this board in order to test our approach on the low end
of the performance spectrum for target constrained devices.

The board was programmed in C using a custom imple-
mentation of the CoAP protocol stack, the Cryptosuite4 library
for HMAC-SHA256 and an optimization of the 8-bit AES
implementation by Brian Gladman5.

Processing the CoAP messages on the device, including
our authorization handling, requires roughly 7.3 kB of static
memory (including Arduino internals such as UDP, Ethernet,
SPI libraries, etc), which places us close to the upper limit of
what this board can do.

From the required operations the most time consuming
ones unsurprisingly turned out to be encrypting, decrypting,
integrity protection, and integrity verification. Other operations
such as matching the assertion to the requested action turned
out to consume only negligible time.

We chose to use the IETF JSON Web Encryption (JWE)
[13], an emerging secure object standard, for wrapping the
assertion and payload. Note that this wrapping expands the
payload size drastically. For example a typical sensor reading
could be a 4-byte integer. If that would be protected by AES
encryption and a HMAC message authentication code, we
would have 128 bytes of encrypted text due to the block-size
padding and another 160 bytes for the MAC.

Table I shows the resulting performance figures.

3http://arduino.cc/en/Main/ArduinoBoardMega2560
4https://github.com/Cathedrow/Cryptosuite
5http://gladman.plushost.co.uk/oldsite/AES

Integrity verification of POST request/assertion 58 ms / 100 ms
Decryption of POST request/assertion 231 ms

Encryption of GET response 192 ms
Integrity protection of GET response 101 ms

TABLE I. Execution time for cryptographic processing

The processing times were confirmed by measuring in
the CoAP client the round trip time of one protected POST
message and one protected GET message, which equals to
the sum of the corresponding figures in the table plus a fixed
time corresponding to the round trip time of the corresponding
unprotected message.

These tests used a chip-set without any cryptographical
co-processor. Using such specialized hardware could reduce
memory use, battery consumption, and improve performance.

IX. SECURITY EVALUATION

In the present framework, we aim to protect the following
assets: The data on devices, the devices themselves, and the
services offered by devices.

Our measures to protect these assets are to enforce fine-
grained restrictions on accessing the devices (as opposed an
all-or-nothing approach, that would just require authentica-
tion). Due to the setup of our framework, we also need to
protect authorization decisions, the authorization policies, and
relevant attributes to make these decisions.

Note that only the protection of authorization decisions
needs to be verified on the device, everything else is performed
on more powerful back-end machines.

The Authorization Engine is a Trusted Third Party from the
point of view of the device owner, which if compromised could
e.g. issue assertions to unauthorized parties or use a derived
key kUD to decrypt an eavesdropped GET response.

The end-to-end security setting has two sides. Since all data
is verified and protected in the device there are no intermediary
attack targets for breaking confidentiality or integrity. But also
since the device is in principle open for access from arbi-
trary users, additional overload protection mechanisms may
be needed, e.g. external firewall functionality restricting the
number of simultaneous requests and/or verifying assertions
before forwarding (if possible).

An alternative approach is to use a gateway that has full,
direct access to the devices it manages, and filters access
requests based on its access control policies. Such an approach
has the advantage that all authorization handling is moved to an
entity without the resource constraints present on the devices.
However one disadvantage is that we cannot maintain end-
to-end protection of the protocol messages, since the gateway
needs to be able to read them. Thus privacy critical requests
cannot be protected should the User distrust the gateway.
Furthermore this approach is not applicable to a scenario
featuring devices only locally accessible in isolated places.

X. CONCLUSION AND FUTURE WORK

We have presented a generic authorization framework for
IoT devices built upon existing Internet and access control

standards supporting fine-grained and flexible access control
to constrained devices.

The key components in this framework are the Authoriza-
tion Engine and our newly designed assertion profile defined
as subset of SAML and XACML and compactly represented
in a JSON notation. Of special significance we used XACML
obligations to enable any kind of local decisions in the device.
Supporting components are the extension of the Resource Di-
rectory for publication of device capabilities for local decisions
and enforcement, and key management procedures used to
establish security between the Device and the AE/User.

Performance critical parts of this framework have been
implemented and tested using a object security based approach
on an example device and thereby shown that the authorization
procedures can be executed in a reasonable time-frame on
certain classes of constrained devices. The security evaluation
elucidates the trade-offs and assumptions that where made for
this framework and specifies which security assurances the
framework provides.

The use of JWE as wrapper format for secure object is
suitable for the assertion but highly non-optimal for payloads
of a few bytes, which are common in CoAP. Both the JWE
header and the crypto payload could be made more compact for
this kind of deployment. Potential future work include explor-
ing and standardizing the use of stream-ciphers and MAC for
JWE. Other topics for standardization are our assertion profile
of SAML and XACML, and device registration of security
related meta-data using the Resource Directory.

ACKNOWLEDGMENT

We would like to thank Alexander Maximov from Ericsson
Research for his optimization of the 8-bit AES code.

REFERENCES

[1] A. Serbanati, A. S. Segura, A. Oliverau, Y. B. Saied, N. Gruschka,
D. Gessner, and F. Gomez-Marmol, “Internet of Things Architecture,
Concept and Solutions for Privacy and Security in the Resolution
Infrastructure,” EU project IoT-A, Project report D4.2, February 2012,
http://www.iot-a.eu/public/public-documents.

[2] S. Godik, and T. Moses (eds.), “eXtensible Access Control Markup
Language (XACML),” Organisation for the Advancement of Structured
Information Standards (OASIS), Standard Version 2.0, February 2005.
[Online]. Available: http://www.oasis-open.org/committees/xacml

[3] S. Cantor, J. Kemp, R. Philpott, and E. Maler (eds.), “Assertions
and Protocols for the OASIS Security Assertion Markup Language
(SAML),” Organisation for the Advancement of Structured Information
Standards (OASIS), Standard Version 2.0, March 2005. [Online].
Available: http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-
os.pdf

[4] M. Naedele, “An Access Control Protocol for Embedded Devices,” in
Proceedings of the fourth IEEE Conference on Industrial Informatics,
INDIN. Singapore: IEEE, August 2006, pp. 565–596.

[5] B. Resch, B. Shulz, M. Mittlboeck, and T. Heistracher, “Pervasive geo-
security a lightweight triple-A approach to securing distributed geo-
service infrastructures,” International Journal of Digital Earth, vol. 5,
no. 4, pp. 1–18, 2012.

[6] R. Zhang, Y. Zhang, and K. Ren, “Distributed Privacy-Preserving
Access Control in Sensor Networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 23, no. 8, pp. 1427–1438, 2012.

[7] E. Rissanen, and H. Lockhart (eds.), “SAML 2.0 Profile of XACML
Version 2.0,” Organization for the Advancement of Structured Infor-
mation Standards (OASIS), Committee Specification, August 2010,
http://www.oasis-open.org/committees/xacml.

[8] L. Daigle and O. Kolkman, “The OAuth 2.0 Authorization Framework,”
Internet Engineering Task Force (IETF), Request For Comments (RFC)
6749, October 2012, http://www.ietf.org/rfc/rfc6749.txt.

[9] Z. Shelby, K. Hartke, and C. Bormann, “Constrained Application
Protocol (CoAP),” Internet Engineering Task Force, Internet-Draft draft-
ietf-core-coap-14, March 2013, work in progress.

[10] E. Rescorla and N. Modadugu, “Datagram Transport Layer
Security Version 1.2,” Internet Engineering Task Force
(IETF), Request For Comments (RFC) 6347, January 2012,
http://www.ietf.org/rfc/rfc6347.txt.

[11] E. Barker, L. Chen, M. Smid, and A. Roginsky, “Recommendation
for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography,” NIST, Special Publication 800-56A, August 2012.

[12] Z. Shelby, S. Krco, and C. Bormann, “CoRE Resource Directory,” Inter-
net Engineering Task Force, Internet-Draft draft-shelby-core-resource-
directory-05, February 2013, work in progress.

[13] M. Jones, E. Rescorla, and J. Hildebrand, “JSON Web Encryption
(JWE),” Internet Engineering Task Force (IETF), Internet-Draft draft-
ietf-jose-json-web-encryption-08, December 2012, work in progress.

