-

P
brought to you by i CORE

provided by Software institutes' Online Digital Archive

View metadata, citation and similar papers at core.ac.uk

Synchronized Sweep Algorithms for
Scalable Scheduling Constraints

Arnaud Letort
TASC team (CNRS/INRIA), Mines de Nantes, FR-44307 Nantesnée
Arnaud. Letort @i nes-nantes. fr

Mats Carlsson
SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
Mat s. Carl sson@i cs. se

Nicolas Beldiceanu
TASC team (CNRS/INRIA), Mines de Nantes, FR-44307 Nantesnée
Ni col as. Bel di ceanu@ri nes-nantes. fr

SICS Technical Report T2013:05
ISSN: 1100-3154
ISRN: SICS-T-2013/05-SE

SICS

Abstract: This paper introduces a family of synchronized sweep battedrig algorithms for handling scheduling
problems involving resource and precedence constraihisk@y idea is to filter all constraints of a scheduling proble
in a synchronized way in order to scale better. In additiondomal filtering mode, the algorithms can rungreedy
mode, in which case they perform a greedy assignment ofestdrénd times. The filtering mode achieves a significant
speed-up over the decomposition into indepenaemulativeand precedenceconstraints, while the greedy mode
can handle up to 1 million tasks with 64 resources consgantd 2 million precedences. These algorithms were
implemented in both CHOCO and SICStus.

Keywords: Global Constraint; Sweep; Scheduling; Filtering Algomith

April 11, 2013

https://core.ac.uk/display/301007546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

[1__Introductionl 2
[2__Motivations and General Decisions 3

[2.1 A Critical AnaIVS|s of the 2001 Sweep Algorithm 3

4

5

5

6

6

7

1 Introduction

In the 2011 Panel of the Future of CE [1], one of the identifiedllenges for CP was the need to han-
dle large scale problems. Multi-dimensional bin-packingtjlems were quoted as a typical example [2],
particularly relevant in the context of cloud computingddéed, the importance of multi-dimensional bin-
packing problems was recently highlighted in [3], and wadg p&the topic of the 2012 Roadef Chal-
lenge [4].

Till now, the tendency has been to use dedicated algoritmdsyeetaheuristics [5] to cope with large
instances. Various reasoning methods can be usedifoulativeconstraints, including Decompositian [6],
Time-Table[[7], Edge-Findin@ [8] 9], Energetic Reasonih@][and recently Time-Table and Edge-Finding
combined[[11]. A comparison between these methods can belfiou[10]. These filtering algorithms
focus on having the best possible deductions rather tharcalalslity issues. This explains why they
usually focus on small size problems (i.e., typically ldsat 200 tasks up to 10000 tasks) but leave open
the scalability issue.

Like what was already done for thlgeostconstraint([12], which handles up to 2 million boxes, our
goal is to come up with lean filtering algorithms for cumulatproblems. In order to scale well in terms
of memory, we design lean filtering algorithms, which carodie turned into greedy algorithms. This
approach allows us to avoid the traditional memory bottd&ngroblem of CP solvers due to trailing or
copying data structureis [13]. Moreover, like fprost our lean algorithms and their derived greedy modes
are compatible in the sense that they can be used both attten@at each node of the search tree, i.e. first
call the greedy mode for trying to find a solution and, if thaedn’t work, use the filtering mode to restrict
the variables and continue the search.

To achieve scalability we reuse the ideasafeep synchronizatiantroduced in[[14]: rather than prop-
agating each constraint independently, we adjust the nuimirtrespectively maximum) of each variable
wrt. all cumulativeand allprecedenceonstraints in one single sweep over the time horizon.

This report focuses on theumulativeconstraint, originally introduced in_[15] for modeling mesce
scheduling problems, and two extensions: (1)kftBmensional cumulativeonstraint, which handles mul-
tiple parallel resources; and (2) thkedimensional cumulative with precedencesstraint, which handles
multiple parallel resources and precedence relationsdethe tasks.

Givenn tasks and a resource with a maximum capadityit where each task (0 < t < n) is
described by its start, fixed durationd; (d; > 0), ende; and fixed resource consumptibp(h; > 0), the
cumulativeconstraint with the two arguments

L4 <<SO; dO; €0, h0>a ey <Sn717 dnflv €n—1, hn71>>
o [imit

holds if and only if conditiond (1) andl(2) are true:

Vte[O,n—l] 15t +dy = ey (1)
VieZ: Y hy < limit 2)
te[0,n—1],
1€ [s¢,eq)

Sectior 2 provides a critical analysis of the major botttdseof the 2001 sweep algorithm [16] for
cumulative and gives general design decisions to avoid them. Basellese tesign decisions Sectidn 3
presents a new sweep based filtering algorithm introducd@idh Section % revisits the sweep based
filtering algorithm proposed ir [18] for handling cumulative constraints, while Sectibh 5 extends it to
also handle precedence constraints between tasks. Séiots these algorithms into perspective. Sec-
tion[7 evaluates our new sweep algorithms on industrial andem instances, and on the well known
PSPLib [19], and finally Sectidd 8 concludes.

2 Motivations and General Decisions

The sweepalgorithm is based on an idea which is widely used in commrtat geometry and that is
called sweep [20]. In constraint programming, sweep was fiseimplementing thenon-overlapping
constraint[[12] as well as thmuimulativeconstraint[[16].

In 2 dimensions, a plareveemlgorithm solves a problem by moving a vertical line, i.egtveep-ling
from left to right. The algorithm uses two data structures:

e The sweep-line statyswhich contains some information related to the currenitjposs of the
vertical line.

e Theevent point serieswhich holds the events to process, ordered in increasitigr@ccording to
the time axis.

The algorithm initializes the sweep-line status for thetstg position of the vertical line. Then the sweep-
line “jumps” from event to event; each event is handled aseéited into or removed from the sweep-line
status.

We recall the 2001 sweep algorithm [16] and identify five wesdses preventing it from scaling well.
To overcome those weaknesses, we introduce some gendrai desisions that will be shared by all the
three new sweep algorithms described in Secfidh$ 3, fland 5.

2.1 A Critical Analysis of the 2001 Sweep Algorithm

In the context of resource scheduling, the sweep-line sttemime axis in order to build a compulsory
part profile (CPP) and to perform checks and pruning accgrttirthis profile and to the resource limit.

So the algorithm is a sweep variant of ttimetablemethod[[21]. To define the notion of CPP let us first
introduce the definition of theompulsory parbf a task.

Definition 1 (Compulsory Part) The compulsory part of a tasis the intersection of all its feasible in-
stances. The height of the compulsory part of a taska given time point is defined by, if i € [57, e;)
and 0 otherwise, wherg; ande; respectively denote the maximum value of the start varigbénd the
minimum value of the end varialde.

Definition 2 (CPP) Given a set of tasks, the CPP of the sel” consists of the aggregation of the com-

pulsory parts of the tasks ifi. The height of the CPP at a given instans$ given by~ c7, he.
i€ [5t,et)

We now introduce a running example that will be used, andnelad later, throughout this report for
illustrating the different algorithms.

Example 1 Consider five taskg),t1,. .. 4 Which have the followingtart duration endandheight
oto: soell,1], do=1, e €[22, ho=2,
ot1: $1€[0,3], di=2, e €][2,5], hi =2,
oty s2€[0,5], do=2, ex€[2,7], hy =1,
ots: s3€[0,9], ds=1, e3€[l,10], hz=1,

oty S4 € [0,7], dy =3, e4€ [3, 10], ha = 2,

subject to the constraint

cumulative({ (so, do, o, ho 5

()
(hi),
<52,d 62,h2>,
<S d3,€3,h3>,
<S4, d4, €4, h4>>, 3)

(see Part (A) of Figurkll). Since tagkstarts at instant 1 and sindg cannot overlag, without exceeding
the resource limit 3, the earliest start of taskis adjusted to 2 (see Part (B)). Since tasknow has a
compulsory part on intervdB, 4) and since task, cannot overlap that compulsory part without exceeding
the resource limit 3, the earliest start of taskis adjusted to 4 (see Part (C)). The purpose of the sweep
algorithm is to perform such filtering in an efficient way. O

ro

to
b, b1 F-—,, b E
t2 g, f2 g, t2 g,
ts Koy ts ey ts ey
t4 S4 [t4 |___)574 eq t4 |___)S4 €4

Figure 1: Parts (A), (B), and (C) respectively representethrdiest positions of the tasks and the CPP, of
the initial problem described in Examplk 1, after a first syyed after a second sweep.

2.1.1 Event Point Series

In order to build the CPP and to prune the start variablesetakks, the sweep algorithm considers the
following types of events:

o Profile eventdor building the CPP correspond to the latest starts and dhleest ends of the tasks
for which the latest start is strictly less than the earl@xt (i.e. the start and the end of a non-empty
compulsory part).

e Pruning eventdor recording the tasks to prune, i.e. the not yet fixed takisintersect the current
positiond of the sweep-line.

Tabld1 describes the different types of events, where aait eorresponds to a quadrupteent type,
task generating the event, event date, available space update). These events are sorted by increasing
date.

Table 1: Event types for the 2001 sweep with correspondingition for generating them. The last event
attribute is only relevant for event typ8€'P and ECP.

Generated Events (2001 algo.)| Conditions
(SCP,t,57, —hy) 5 <et
(ECP,t,es,+he) S <e

(PR, 1, 5¢,0) 5t # 5

Continuation of ExamplgEl1 (Generated Event3p the initial domains of the five tasks of Example 1
correspond the following events that are sorted by incngedates{ PR, 1,0,0) (PR, 2,0,0) (PR, 3,0,0)
(PR,4,0,0) (SCP,0,1,—-2) (ECP,0,2,2). O

2.1.2 Sweep-Line Status

The sweep-line maintains three pieces of information:
e The current sweep-line positi@n initially set to the date of the first event.

e The amount of available resource at instdntlenoted byyap, i.e., the difference between the re-
source limit and the height of the CPP at inst&nt

o Alist of tasks7,,une, recording all tasks that potentially can overtgp.e. tasks for which the start
may be pruned wrt. instaat

The sweep algorithm first creates and sorts the events wit.dates. Then, the sweep-line moves from
one event to the next event, updating and7,..... Once all events at have been handled, the sweep
algorithm tries to prune all tasks if},,une Wrt. gap and intervalld, 6,e.¢) Whered,..; is the next sweep-
line position, i.e. the date of the next event. More pregisgiven a task € 7, With no compulsory
part overlapping intervdb, d,,..+) such that; > gap, the intervald — d; + 1, §,,¢4¢) is removed from the
start variable of task

Continuation of Examplég 1 (lllustrating the 2001 Sweep Atgm). The sweep algorithm reads the events
(PR,1,0,0), (PR,2,0,0), (PR,3,0,0), (PR,4,0,0) and setyap to the resource limit 3 ant,,,. to
{t1,t2,t3,t4}. During a first sweep, the compulsory part of tagk(see Part (A) of FigurEl1l) permits
to prune the start of; and¢, since thegap on [1,2) is strictly less tharh; andhy. The pruning of the
earliest start of; during the first sweep causes the creation of a compulsotyfgrataskt; which is not
immediately used to perform more pruning (see Part (B) ofifeld). As shown in Part (C) of Figulé 1, it
is necessary to wait for a second sweep to take advantages ofetlv compulsory part to adjust the earliest
start of task, to 4. A third and last sweep is performed to find out that thedimpwas reached. O

2.1.3 Weaknesses of the 2001 Sweep Algorithm

We now list the main weaknesses of the 2001 sweep algorithm.

O [Too static] The potential increase of the CPP during a single sweep idyramically taken
into account. In other words, creations and extensions wiptosory parts during a sweep are not
immediately used to perform more pruning while sweepingar&ple[1 illustrates this point since
the 2001 sweep algorithm needs to be run from scratch 3 tiefesdreaching its fixpoint.

O [Often reaches its worst-case tine conpl exity] The worst-case time complex-
ity of the 2001 sweep algorithm 8(n?) wheren is the number of tasks. This complexity is often
reached in practice when most of the tasks can be placedveverg on the time line. The reason
is that it needs at each positiérof the sweep-line to systematically re-scan all tasks thatlapd.
Profiling the 2001 implementation indicates that the swégprithm spends up to 45% of its overall
running time scanning again and again the list of poterdisits to prune.

O [Creates holes in the donmai ns] The 2001 sweep algorithm removes intervals of con-
secutive values from domain variables. This is a weak paihich prevents handling large instances
since the domain of a variable cannot just be compactly sgoted by its minimum and maximum
values.

O [Does not take advantage of bin-packing] For instances where all tasks have du-
ration one, the worst time complexi€y(n?) is left unchanged.

O [Too | ocal] Having in the same problem multiplumulativeconstraints that systematically
share variables leads to the following source of inefficjeit a traditional setting, eaddtumulative
constraint is propagated independently on all its vargkded because of the shared variables, the
sweep algorithm of eactumulativeconstraint should be rerun several times to reach the fixpoin
Note that a single update of a bound of a variable by omeulativeconstraint will trigger all
the othercumulativeconstraints again. The same observation holds when, irtiaddd resource
constraints, one also considers precedences between tasks

2.2 General Design Decisions

We now give some important general design decisions thatipty avoid the five weaknesses of the 2001
sweep algorithm identified above. Then, we introduce thpenmy maintained by our sweep algorithml[17]
for one singlecumulativeconstraint, which will be extended in Sectidds 4 ahd 5 forkidimensional
cumulativeand thek-dimensional cumulative with precedencesstraints.

2.2.1 Handling the Weaknesses of the 2001 sweep

Avoiding Point[] [Too static]. Asillustrated by Examplgl 1, the 2001 sweep algorithm néeds
be re-run several times in order to reach its fixpoint (i.dines in our example). This is due to the fact
that, during one sweep, restrictions on task origins arémutediately taken into account. The three new
sweep algorithms filter the task origins in two distinct spretages. A first stage, callsgveepmin, tries

to adjust the earliest starts of tasks by performing a sweanp feft to right, and a second stage, called
sweepmayx tries to adjust the latest ends by performing a sweep frght to left. Note that the propagator
needs to iterate the two phases until fixpoint. Supposestheepmin has run, and thaaweepmaxextends
the CPP. Thesweepmin may no longer be at fixpoint, and needs to run again, and so oho.§y we
focus from now on the first stageweepmin, since the second stage is completely symmetric. In ouethre
new algorithmssweepmindynamically uses these deductions to reach its fixpoint exsingle sweep. To
deal with this aspect, our new sweep algorithms introdueectimcept otonditional eventsi.e., events
that are created while sweeping over the time axis,dymémic events.e., events that can be shifted over
the time axis.

Avoiding Point [Oten reaches its worst-case tinme conplexity]. For partially
avoiding Poinfdl due to the rescan of all tasks that overlap the current sweepposition, we introduce
dedicated data structures in our three new algorithms. dée is based on the following observations: if
a task of height cannot overlap the current sweep-line position and coresgttyuneeds to be adjusted,
all tasks with a height greater than or equahtaeed to be adjusted too; and symmetrically, if a task of
heighth can overlap the current sweep-line position, all tasks witieight less than or equal kacan also
overlap the current sweep-line position and consequenthlyad need to be adjusted too.

Avoiding Point[d] [Creates hol es in the domai ns]. Thefirstdifference fromthe 2001 sweep
is that our algorithms only deal with domain bounds, which good way to reduce the memory consump-
tion for the representation of domain variables. Consetlyjene need to change the 2001 algorithm,
which creates holes in the domain of task origins.

Avoiding Point[] [Does not take advantage of bi n-packi ng].Moreover,the data struc-
tures introduced for avoiding Poifai] will permit to reduce the worst-case time complexity of olgoa
rithms in the specific case of bin-packing problems, i.e. mtie duration of all tasks is reduced to one.
This point will be explained in Sectidn 3.5.

Avoiding Point[] [Too | ocal]. To handle this weak point, we first design a second filterigg-a
rithm that handles multiple parallel resources in one singginstraint, calleé-dimensional cumulative
The main difference is that we directly adjust the earlitstt of a task wrt. all resource constraints rather
than successively and completely propagating each res@ortstraint independently. Second, following
this idea, we also design a third filtering algorithm thatdias multiple parallel resources and precedences
in one single constraint, calldddimensional cumulative with precedencggst, we recall a method for
adjusting the start and end times of a set of tasks subjecdbaf precedences. Then, we present the main
idea of these two filtering algorithms.

Handling a Set of Precedences. Given a set of task$ and a set of precedences where each precedence
denotes a task 6f that must be completed before the start of another tagk, afdjusting the earliest and

latest start of each task is done by a two-phase algorithtrstaets from a topological order of the tasks
(each task is a vertex of a digraph and each precedence an arc)

O The first phase adjusts the earliest start of each task byessigely selecting a source, i.e. a task
with no predecessor, removing it and updating the earltast af its direct successors.

O Similarly, the second phase adjusts the latest start of @a&tby successively selecting a sink, i.e. a
task with no successor.

Since in each phase the method considers each task onlyibcmeyerges directly to the fixpoint in linear
time. The key observation is that the adjustment of theestrtitart of a task does not influence the earliest
start of its predecessors.

Importing the Idea of Topological Sort. As soon as resource constraints come into play, the twoephas
method for handling a set of precedences was not considayethare and each resource and precedence
constraints were propagated independently until the fixpdihe key idea of this report is to reuse as much
as possible the idea of the two-phase method by selectitigefirst phase, the task which has the earliest
start and adjusting its earliest startt. all constraintswhere the task is involved, i.e. all precedence and
resource constraints. To achieve this, we revisit the weguee and precedence constraints are propagated
so that we consider them in a synchronized way rather thasolation.

2.2.2 Property

Our dynamic sweep algorithm for tleemulativeconstraint maintains the following property.

Property 1 Given acumulativeconstraint with its set of task§ and resource limitlimit, sweepmin
ensures that:
VEET,\ Vi€ [see) t het+ D hy < limit 3)
t'eT\{t},

Ze[gaei)

Property(1 ensures that, for any taskf the cumulativeconstraint, one can schedulat its earliest
start without exceeding the resource limit wrt. the CPPliertaisks off \ {¢}.
Note that we can construct from Propdity 1 a relaxed solwfdahe cumulativeconstraint by:

O setting the resource consumption to O for the tasks that thawe any compulsory part,

O setting the duration to the size of the compulsory part ¢i.e- 5;) for the tasks that do have a
compulsory part, and

O assigning the start of each task to its earliest start.

3 A Dynamic Sweep Algorithm for one Singlecumulative Constraint

This section presents the new sweep algorithm introducidjrfor thecumulativeconstraint. We describe

it in a similar way the 2001 original sweep algorithm wasaeliiced in Sectiohnl 2. We first present the new
event point serieghen describe the nesweep-line statysnd the overall algorithm. Finally we prove that
Property1 introduced above is maintained by the new algorind we give its worst-case complexity in
the general case as well as in the case where all task dwsatieriixed to one.

3.1 Event Point Series

In order to address Poifil[Too st ati c] of Sectiori2sweepminshould handle the extension and the
creation of compulsory parts caused by the adjustment ofalniéest starts of tasks in one single sweep.
We therefore need to modify the events introduced in Tabl€ahle[2 presents the eventssfeepmin
and their relations with the events of the 2001 algorithm.

e The event type SCP, t, 3¢, —h;) for the start of compulsory part of tagks left unchanged. Note
that, sincesweepmin only adjusts the earliest starts, the start of a compulsary (hich corre-
sponds to a latest start) can never be further extended tefthe

e Theeventtype ECPD,t, e, hy) for the end of the compulsory part of tasis converted tq ECPD, t, e, hy)
whereD stands fodynamic The date of such event corresponds to the earliest enghésfo the end
of its compulsory part) and may increase due to the adjudtofehe earliest start of task

e A new event typeCCP,t,5,0), where CCP stands forconditional compulsory parts initially
created for each taskthat does not have any compulsory part. At the latest, oneestreep-
line reaches positior;, it adjusts the earliest start of tasko know if a compulsory part appears.
Consequently the conditional event can be transformedim&C P and anECPD events, reflecting
the creation of compulsory part for a task that did not iflitinave any compulsory part.

e The eventtyp&PR,t, s;,0) for the earliest start of tagkis left unchanged. Itis required to add task
t to the list of tasks that potentially can overlap

Table 2: The list of different event types with the condition generating them. The last attribute of an
event (i.eavailable space incremeris only relevant forSCP, ECP and ECPD event types.

New Events Events (2001 algo.) | Conditions
(SCP, 1,37, —hy) (SCP,t,5, —hy) 5 <e
(ECPD,t, e, +hy) (ECP,t, e, +hy) S <e
(CCP,t,5,0) St > et
(PR, t,5t,0) (PR, 5t,0) st # St

On the one hand, some of these events may have their dateBedodiile sweeping (seBCPD). On
the other hand, some events create new eventa{6d8. Consequently, rather than just sorting all events
initially, we insert them by increasing date into a heapezhll_cvents so that new or updated events can
be dynamically added into this heap while sweeping.

Continuation of Examplel 1 (New Generated Eventssfeeepmin). The following events are generated
and added intdi_events (note that the new events are highlighted in boldpR, 1,0, 0), (PR, 2,0,0),
(PR,3,0,0),(PR,4,0,0),(SCP,0,1,—-2), (ECPD,0,2,2), (CCP,1, 3,0), (CCP, 2,5,0), (CCP,4,7,0),
(CCP, 3,9,0). The evenf ECPD, 0, 2, 2) stands for the end of compulsory part of task In our ex-
ample, since task is fixed, this event cannot be pushed on the time axis. The ¢@@P, 1, 3, 0) stands

for the date where the compulsory part of tagkcan start if and only if its earliest start is pruned enough
(i.e. such thas, + d; > 53). O

3.2 Sweep-Line Status
The sweep-line maintains the following pieces of inforroati
e The current sweep-line positi@n initially set to the date of the first event.

e The amount of available resource at instdntlenoted byyap, i.e., the difference between the re-
source limit and the height of the CPP.

e Two heapsh_conflict andh_check for partially avoiding Poinfdl of Sectio{ 2, namely avoiding to
scan again and again the tasks that overlap the current simeggposition. W.l.0.g. assume that the
sweep-line is at its initial position and that we handle aendwf typePR (i.e., we try to find out the
earliest possible start of a tagk

— On the one hand, if the height of tasks strictly greater than the available gapjatve know
that we have to adjust the earliest start of taskn order to avoid re-checking each time we
move the sweep-line, whether or not the gap is big enough/wrtwe say that task is in
conflictwith 6. We insert task into the heaph_conflict, which records all tasks that are in
conflict with 9, sorted by increasing height, i.e. the top of the hgapnflict corresponds to
the smallest value. This ordering is induced by the fact, tifiae need to adjust the earliest
start of a task, all earliest task starts with a height greater than or etpuia) also need to be
adjusted.

— On the other hand if the height of tasks less than or equal to the available gap at instant
we know that the earliest start of taskould be equal té. But to be sure, we need to check
Property1 for task (i.e., 7 = {¢}). For this purpose we insert taghnto the heaph_check,
which records all tasks for which we currently check Prog@rtTaskt stays inh_check until
a conflict is detected (i.eh, is greater than the available gap, argbes back intg:._conflict)
or until the sweep-line passes instant d; without having detected any conflict (and we have
found a feasible earliest start of taskvrt. Property). In the heap_check, tasks are sorted
by decreasing height, i.e. the top of the héapheck corresponds to the largest value, since if
a taskt is not in conflict withd, all other tasks of._check of height less than or equal tg are
also not in conflict with).

In the following algorithms, functioampty (h) returnstrue if the heaph is emptyfalseother-

wise. Functiorget_top_key(h) returns the key of the top element in the héapVe introduce
an integer arraynins which stores for each tagkn h_check the value o whent was added
into h_check.

3.3 Algorithm

The sweepmin algorithm performs one single sweep over the event poinésén order to adjust the
earliest start of the tasks wrt Propedy 1. It consists of &rtwop, a filtering part and a synchronization
part. This last part is required in order to directly hantile deductions attached to the creation or increase
of compulsory parts in one single sweep. In additiominsand the heaps_check and h_conflict, we
introduce a Boolean arragvup which indicates for each tagkwhether events related to the compulsory
part of taskt were updated or not. The value is setrize once we have found the final value of the earliest
start of taskt and once the events related to the compulsory part ofttabk exists, are up to date in the
heap of events. We introduce a litwActiveTasksvhich records all tasks that have th&iR event at.

The primitiveadjust_min_var(var, val) adjusts the minimum value of the variahler to valueval.

3.3.1 Main Loop
The main loop (Algorithni11) consists of:

o [I NI TI ALI ZATI ON] (lines2 td®). The events are generated and insertedinrt@nts according
to the conditions given in Tablé 2. Thecheck andh_conflict heaps are initialized as empty heaps.
The Booleanrevup, is set totrue if and only if the taskt is fixed. The integernins; is set to the
earliest start of the task The listnewActiveTaskis initialized as an empty list is set to the date
of the first event.

e [MAI N LOOP] (lined8 td25). For each datehe main loop processes all the corresponding events.
It consists of the following parts:

— [HANDLI NG A SWEEP- LI NE MOVE] (lines[10 td1F). Each time the sweep-line moves,
we update the sweep-line status dheck and h_conflict) wrt. the newactive tasksi.e. the
tasks for which the earliest start is equabtoAll the new active tasks that are in conflict with
§ in the CPP are added inta conflict (line[13). For tasks that are not in conflict we check
whether the sweep intervid, d,,..:) is big enough wrt. their durations. Tasks for which the
sweep interval is too small are added inteheck (line[I4). Then to take into account the new

ALGORITHM sweep_min() : boolean

1:

N NNNNRRRRRRRRR R
RWONREROOONDORAWNRO

25:

©e AR DN

[NITIALI ZATI ON|

. h_events < generation of events wrk., s;, 5¢, d, e, andh and TabléR.
. h_check, h_conflict < (; newActiveTasks < ()

fort=0ton—1do

evup, < (8¢ = 5¢); minsg < s¢

0« get_topIey(h_events); Oneat < 0; gap < limit
: [MAIN LOOP]
: while —empty (h_events) do

[HANDLI NG A SWEEP- LI NE MOVE]
if 0 # Opness then
while —empty (newActive Tasks) do
extract first task from newActive Tasks
if hy > gap thenadd(h,, t) into h_conflict
else ifd; > dpest — 0 then {add(he, t) into h_check; mins; < 0;}
elseevup, <+ true
if —filter_min(d, d,eq¢) then return false
0+ 5nezt
[HANDLI NG CURRENT EVENT]
d + synchronize(d)
extract(type, t, §, dec) from h_events
if type = SCP V type = ECPD then gap <+ gap + dec
else iftype = PR then newActiveTasks < newActiveTasks U {t}
[GETTI NG NEXT EVENT]
if empty(h_events) A —filter_min(d, +o00) then return false
Onext < synchronize(d)

26: return true

Algorithm 1: Returnsfalseif a resource overflow is detected while sweepitige otherwise. Iftrue,

ensures that the earliest start of each task is pruned sBrbperty 1 holds.

available space (i.egap) on top of the CPHjlter_min (see AlgorithniR) is called to update
h_check andh_conflict and to adjust the earliest start of tasks for which a feagibgtion wrt.

Property1 was found.

— [HANDLI NG CURRENT EVENT] (lines[19 to[2R). First, algorithmynchronize (line[19)
(1) converts conditional event€'CP) to SCP and ECPD events, or ignore them if the cor-
responding task has no compulsory part, (2) pushes dynareits (ZCPD) to their right
position to ensure events are sorted on their dates. Settenthp event is extracted from the
heaph_events. Depending of its type (i.eSCP or ECPD), the available resource is updated,
or (i.e., PR), the task associated with the current event is added ietbshof new active tasks

(line[22).

— [GETTI NG NEXT EVENT] (lines[24 td 2b). If there is no more eventinevents, filter_min
is called in order to empty the heapcheck, which may generate new compulsory part events.

3.3.2 The Filtering Part

Once all the events associated with the current datee handled, Algorithil2 takes into account the new
available space on top of the CPP. It processes tagks:ireck andh_conflict in order to adjust the earliest

start of the tasks wrt. Propefty 1. The main parts of the dlgorare:

e [CHECK RESOURCE OVERFLOW (line[2). If the available resourggp is negative on the sweep
interval[d, 8.+), Algorithm[2 returndalsefor failure (i.e. the resource capacitynit is exceeded).

10

ALGORITHM filter_min(d, dpezt) : boolean
1. [CHECK RESOURCE OVERFLOW
2: if gap < 0 then return false
3: [UPDATI NG TOP TASKS OF h_check WRT gap]
4: while —empty (h_check) A (empty(h_events) V get_top_key(h_check) > gap) do

5. extract(h;, t) from h_check

6: if 6 > 35V — mins; > di Vempty(h_events) then

7: if —adjust_min_var(s;, mins;) V —adjust_min_var(e;, mins; + d;) then return false
8 if ~evup, then {update events of the compulsory partpévup, « true;}

9 else

10: add(hy, t) into h_conflict

11: [UPDATI NG TOP TASKS OF h_conflict WRT gap]

12: while —empty (h_conflict) A get_top_key(h_conflict) < gap do
13: extract(hy, t) from h_conflict

14: if 6 > 5; then

15: if madjust-min_var(ss,5;) V —adjust_min_var(e;, €;) then return false

16: if —evup, then {update events of the compulsory partpévup, < true;}

17: else

18: if 5nezt -0 Z dt then

19: if madjust_min_var(s;,d) V -adjust_min_var(es, § + d;) then return false
20: if —evup, then {update events of the compulsory partpévup, + true;}
21: else

22: add(h;,t) into h_check; mins; < ¢;

23: return true

Algorithm 2: Tries to adjust the earliest starts of the top tasks_itheck andh_conflict wrt. the current
sweep interval = [0, 0,,.,¢] @nd the available resourgep on top of the CPP on intervdl. Returndalse
if a resource overflow is detectdte otherwise.

e [UPDATI NG TOP TASKS OF h_check WRT gap] (lines[4 to[10). All tasks inh_check of
height greater than the available resoujeg are extracted.

— A first case is when task has been im_check long enough (i.eé — mins; > d, line[@),
meaning that the task is not in conflict on interyalins;, d), whose size is greater than or
equal to the duratiod; of taski. Consequently, we adjust the earliest start of takkvalue
mins;. Remember thatnins, corresponds to the latest sweep-line position where tagks
moved intoh_check.

— A second case is wherhas passed the latest start of tagke. 6 > 5;, line[d). That means task
t was not in conflict on intervdlnins;, §) either, and we can adjust its earliest starttins;.

— Athird case is when there is no more event in the Heapents (i.e.empty(h_events), linelG).
It means that the height of the CPP is equal to zero and we nesdptyh_check.

— Otherwise, since the height of tasls greater than the available resource, the task is added int
h_conflict (line[10).

e [UPDATI NG TOP TASKS OF h_conflict WRT gap] (lines[I3 td2B). All tasks irh_conflict
that are no longer in conflict atare extracted. 1§ is not located before the latest start of taswe
know that task cannot be scheduled before its latest start. Otherwise owgare the duration of
taskt with the size of the current sweep interyéld,...:] and decide whether to adjust the earliest
start of task or to add task into h_check.

3.3.3 The Synchronization Part

In order to handle dynamic and conditional events, Algonithchecks and possibly updates the top event
of the heaph_events before any access to cvents by the main algorithnsweepmin. The main parts of

11

ALGORITHM synchronize(d) : integer
1: [UPDATI NG TOP EVENTS]

2: repeat

3: if empty(h_events) then return —oo

4. sync + true; (date, t, type, dec) + consult top event of_events;
5: [PROCESSI NG DYNAM C (ECPD) EVENT]

6: if type = ECPD A —evup, then

7: if ¢ € h_check then update event date t@ins; + d;

8: elseupdate event date & + d;

9: evup, < true; sync < false
10: [PROCESSI NG CONDI TI ONAL (CCP) EVENT]
11: elseiftype = CCP A —evup, A date = then
12: if t € h_check N\ mins; + d; > 6 then
13: add(SCP,t,d, —h;) and(ECPD,t, mins; + dy, h;) into h_events
14: else ift € h_conflict then
15: add(SCP,t,d, —h:) and(ECPD,t,e, hy) into h_events
16: evup, < true; sync < false

17: until sync
18: return date

Algorithm 3: Checks that the event at the top/akvents is updated and returns the date of the next event
or —oo if h_events is empty.

the algorithm are:

e [UPDATI NG TOP EVENTS] (lines[2 td1¥). Dynamic and conditional events require ushieck

whether the next event to be extracted by Algorifim 1 needietopdated or not. The repeat loop
updates the next event if necessary until the top event is dpte.

[PROCESSI NG DYNAM C EVENT] (lines[8 to[®). An event of typd&@CPD must be updated if
the related task is in h_check or in h_conflict. If taskt is in h_check, it means that its earliest
start can be adjusted tains;. Consequently, it4#CPD event is updated to the dateins, + d;
(line[@). If taskt is in h_conflict, it means that task cannot start before its latest starting tiBgye
Consequently, itd¥CPD event is pushed back to the date+ d; (line[8).

[PROCESSI NG CONDI TI ONAL EVENT] (lines[11 td1B). When the sweep-line reaches the po-
sition of aCCP event for a task, we need to know whether or not a compulsory partfisrcreated.

As evup, is set tofalse, we know that is either inh_check or in h_conflict. If taskt is in h_check,

a compulsory part is created if and onlynifins; + d; > ¢ (lines[12 td_IB). If task is in h_conflict

the task is fixed to its latest position and related eventadded intdh_events (line[18).

Continuation of Examplel 1 (lllustrating the Dynamic Sweégao#fithm). The sweep algorithm first

initializes the current sweep-line position to 0, i.e. thistfevent date, and thgip to 3, i.e. the resource
limit. The algorithm reads the fouPR events related to the tasks ¢, t3 andt,. Since the heights of
tasksty, to, t4 are less than or equal to the gap and their durations ard¢l\sii@ater than the size of
the sweep interval, these tasks are added fintdeck (Algorithm[d, line[14). Tasks is not added into
h_check since its duration is equal to the size of the sweep inteAMalqrithm[d, line[14), i.et3 cannot be
adjusted. Then, it moves the sweep-line to the positionddsehe eventSCP, 0, 1, —2) and setgap to
1. The call offilter_min with § = 1, 6, = 2 andgap = 1 retrievest; andt, from h_check and inserts
them intoh_conflict (Algorithm([2, line[10). Then it moves the sweep-line to thsigion 2, reads the event
(ECPD,0,2,2) and setgjap to 3. The call offilter_min with § = 2, §,,..: = 3 andgap = 3 retrieves;
andt, from h_conflict and inserts them intb_check (Algorithm[2, line22). Then it moves the sweep-line
to the position 3 and reads the evéntCP, 1, 3,0). Since task; is in h_check and its potential earliest
end is greater thaf (Algorithm[3, line[12), theCCP event oft; is converted inta SCP, 1,3, —2) and
(ECPD, 1,4, +2) standing for the creation of a compulsory part on intef8al). The sweep-line reads

12

the newSCP event related to task and setyap to 1. The call offilter_min with 6 = 3, d,e0x = 4
andgap = 1 retrievest, from h_check and inserts it intdi_conflict. Then it moves the sweep-line to the
position 4, reads the eve(\ECPD, 1,4, +2) and setgjap to 3. Since there is no more compulsory part,
the earliest start of, is adjusted to 4 and the fixpoint sfveepmin is reached. Note that the creation of
the compulsory part occurs after the sweep-line positidrighvis key to ensuring Propeity 1. O

3.4 Correctness and Property Achieved byweep_min

We now prove that after the termination @feepmin(Algorithm[), Property 1l holds. For this purpose,
we first introduce the following lemma.

Lemma 1 At any point of its executiosweepmin(Algorithm[1) cannot generate a new compulsory part
that is located before the current positiérof the sweep-line.

Proof 1 Since the start of the compulsory part of a taskorresponds to its latest stagg, which is in-
dicated by itsCCP or SCP event, and sinceweepmin only prunes earliest starts, the compulsory part
of taskt cannot start before the date associated to this event. Cpresely, the latest value éfto know
whether the compulsory part of tasks created iss;. This case is processed by Algorithim 3, lineks 11 7o 16.
The end of the compulsory part of a taskorresponds to its earliest end and is indicated by its
ECPD event. To handle its potential extension to the right, thdiest start of task must be adjusted to
its final position before the sweep extractsit6€’ PD event. This case is processed by Algorilim 3, [hes 6
to[@. O

Proof 2 (of Property[1) Given a taskt, let §; and min; respectively denote the position of the sweep-
line when the earliest start of tagkis adjusted bysweepmin, and the new earliest start of tagsk We
successively show the following points:

O When the sweep-line is located at instantve can start task at min, without exceedingmit, i.e.

Vi€ T\{t},¥i € [min,60) : he+ » he < limit
t'eT\{t},

S [§7€i)

The adjustment of the earliest start of tasto min; implies that task is not in conflict on the
interval [min;, d;) wrt. the CPP. Conditiorget_top_key(h_check) > gap (Algorithm[2, line[4)
ensures that the adjustment in lide 7 does not induce a resaarerflow onminy, §;), otherwiset
should have been added inkaconflict. Conditionget_top_key(h_conflict) < gap (Algorithm[2,
line[12) implies that task is in conflict until the current sweep-line positidn If 6 > 5; (line[14)
the conflict onsz, d;) is not “real” since the compulsory part of is already taken into account in
the CPP. In lind_IB of Algorithi] 2, the earliest start of task adjusted to the current sweep-line
position, consequently the intervahin,, 0;) is empty.

O For each value ob greater thand;, sweepmin cannot create a compulsory part before instant
This is implied by Lemmid 1, which ensures thaeepmin cannot generate any compulsory part
befored.

Consequently oncaveepmin is completed, any tagkcan be fixed to its earliest start without creating
a CPP exceeding the resource linhituit. 0O

3.5 Complexity

Given acumulativeconstraint involvingn tasks, the worst-case time complexity of the dynamic sweep
algorithmisO(n? log n). First note that the overall worst-case complexityyafchronize over a full sweep

is O(n) since conditional and dynamic events are updated at most die worst-cas@(n? log n) can be
reached in the special case when the CPP consists of a socceshigh peaks and deep, narrow valleys.

13

Assume that one ha3(n) peaksO(n) valleys, and)(n) tasks to switch betweén check andh_conflict
each time. A heap operation cof2¢log n). The resulting worst-case time complexity@$n? log n). For
bin-packing, the two heaps conflict andh_check permit to reduce the worst-case time complexity down
to O(nlogn). Indeed, the earliest start of the tasks of duration oneekith_conflict can directly be
adjusted (i.eh_check is unused).

4 A Synchronized Sweep Algorithm for thek-dimensional cumula-
tive Constraint

This section presents a new synchronized sweep algoritatrhindles several cumulative resources in
one single sweep. In this new setting, each task uses sevemallative resources and the challenge is to
come with an approach that scales well. We should quotehieatimber of resources may be significant
in many situations:

e Forinstance, in the 2012 Roadef Challenge we have up to lidisesources per item to pack.

e A new resource’ can also be introduced for modeling the fact that a givenetutifgasks is subject
to a cumulativeor disjunctiveconstraint. The tasks that do not belong to the subset haie th
consumption of resourcé set to 0. This is indeed the case for the industrial appboapresented
in the evaluation section. Since we potentially can have afleuch constraints on different subsets
of tasks, this can lead to a large number of resources.

This new synchronized sweep algorithm is an efficient séaleldimensional version of thiémetable
method which achieves exactly the same pruning asstances of the 1-dimensional version reported in
Sectior 8. Note that this version differs from the one introed in [18], and despite the fact that it scales
a little worse when considering the number of tasks, it scalkt better when considering the number of
resources.

Given k resources and tasks, where each resourcd0 < r < k) is described by its maximum
capacitylimit,., and each task (0 < ¢t < n) is described by its stag, fixed durationd; (d; > 0), end
e; and fixed resource consumptiohs, . .., ht k-1 (he; > 0,4 € [0,k — 1]) on thek resources, the
k-dimensional cumulativeonstraint with the two arguments

o ((s0,do, €0, (ho,0s---,h0k=1))s- -, (Sn—1,dn—1,n—1, (An—1,0,- - s An—1,k—1)))
(] <lzmzt0, ey lzmztk,ﬁ

holds if and only if conditiond (4) and](5) are both true:

Vte[O,n—l] 2S5t +dy = ey (4)
Vre0,k—1,Vi€Z : Y hiy < limit, (5)
te0,n—1],
i€ [s¢,et)

Example 2 (Exampldl extended with an extra resourgg Consider two resources, 1 (k = 2) with
limito = 3 and limit; = 2 and five task$y,t1,. .. t4 which have the following restrictions on thestart
duration endandheights

oty so€[l1], do=1, e €[22, hoo=2 hos=1
oti: s1€[0,3), di=2 e €25, ho=2 h=1
ety $2€[0,5], do=2, eq€][2,7], hoo=1, ho1=2
ot3: s3€[0,9, ds3=1, e3€[l,10], hzo=1, hg1=1

oty S4 € [0,7], dy =3, e4€ [3, 10], h470 =2, h471 =0

14

Since task; cannot overlapt, without exceeding the resource limit on resourge the earliest start
of ¢; is adjusted to 2. Sinc& occupies the intervaB, 4) and since, on resourca, t4 cannot overlap
t1, its earliest start is adjusted to 4. On resourcg sincet, cannot overlap task;, its earliest start is
adjusted to 4. The purpose of the synchronized sweep digoi# to perform such filtering in an efficient
way, i.e. in one single sweep. O

To

1
—
so

tO (1)) ﬁo S0 €o
tl S1 €1 tl |___)Sl €1
b2 e, bz Fo———oi—,,
ts3 t3
S3 €3 S3 €3
i, ta o=,

Figure 2: Parts (A) and (B) respectively represent theestrfiositions of the tasks and the CPP on resource
ro andry, (A) of the initial problem described in Examplk 2, (B) onbe fixpoint is reached.

We now show how decomposing tledimensional cumulativeonstraint into twocumulativecon-
straints on resourcg andr; leads to a ping-pong between the two constraints to readixibint.

Continuation of Examplgl 2 (lllustrating the ping-pong ireédd by the decompositianJhe instance given
in Exampld2 can naturally be decomposed into tumulativeconstraints:

Co - cumulative((<So, d()7 €0, h070>, <51, dl, €1, h170> <SQ, dg, €2, h2_]0>,

° 9
(s3,ds3, €3, h3.0), (S4,da, eq, ha o)), limity),

1 = cumulative({ (S0, do, €0, ho1), (s1,d1,e1,h11), (s2,d2,e2,ha1),
(ss,ds,es, h3 1)), limity). :

e During a first sweep wrt. constraing (see Part (A) of Figurl3), the compulsory part of the task
on resource, and on intervall, 2) permits to adjust the earliest start of tadsko 2 since the gap
on top of this interval is strictly less than the resourcestonption oft; onry. Taskt; how has a
compulsory part on the intervéd, 4). This new compulsory part permits to adjust the earliest sta
of the task, to 4.

e A second sweep wrt. constraint (see Part (B) of Figullg 3), adjusts the earliest start of tasince
it cannot overlap neither the compulsory part of taskor the compulsory part of tagl. So task
to now has a compulsory part on the inter{gl6).

¢ Finally a third sweep wrt. constraing is performed to find out that nothing more can be deduced
and that the fixpoint is reached. O

15

(A) (B)

t1 E b E

t2 e t2 e rra PN
ts e, ts e,

ta |————-->|S4—|64

Figure 3: Parts (A) and (B) respectively represent the estrfpositions of the tasks and the CPP, after a
first sweep on the resoureg, and after a second sweepon

Our newsweepmin filtering algorithm will perform such deductions in one dimgtep.
We now give the fixpoint property achieved by our neweepmin algorithm that handles thk-
dimensional cumulativeonstraint.

Property 2 Given a kdimensional cumulativeonstraint withn tasks and: resources, the corresponding
sweepmin algorithm ensures that:

Vre(0k—1,vt€[0,n—1,Vi€ [sp,e0) = hep+ Y, hoy < limit, (6)
t'#£ t,

’Le[gei)

Propertyf 2 ensures that, for any tasif the k-dimensional cumulativeonstraint, one can schedulat its
earliest start without exceeding for any resour¢e < r < k) its resource limit wrt. the CPP on resource
r of the tasks of7 "\ {t}.

4.1 Event Point Series

Since events are only related to the temporal aspect, theptddepend on how many resources we have,
and can therefore be factored out. The only difference viaghavent point series df [118] is that tli&”'P
event type has been merged with th€P event type. This is possible since they are related to thesam
time point, i.e. the latest start of a task. In order to build €PP on each resource and to filter the earliest
start of each task, the algorithm considers the followinzetyof events.

e The event typdSCP, t,s;) for the Start of Compulsory Pamf taskt (i.e. the latest start of tagh.
This event is generated for all the tasks. If the task has ngpadsory part when the event is read, it
will simply be ignored.

e The eventtypd ECPD,t, e;) where the date of such event corresponds tétof the Compulsory
Part of taskt (i.e. the earliest end of tagl and may increase due to the adjustment of the earliest
start oft. This eventis generated if and only if taiskas a compulsory part, i.e. if and onlysif < e;.

e The event typg PR, t, s;) where PR stands forPruning Eventcorresponds to the earliest start of
taskt. This event is generated if and only if tasls not yet scheduled, i.e. if and onlydf # 5;.

16

As in the single resource case, events are recorded in tipghhe@nts where the top event is the event
with the smallest date.

Continuation of Examplel2 (Generated Event§he following events are generated and sorted accord-
ing to their date:(PR,1,0), (PR,2,0), (PR, 3,0), (PR, 4,0), (SCP,0,1), (ECPD,0,2), (SCP,1,3),
(SCP,2,5),(SCP,3,9), (SCP,4,T). O

4.2 Sweep-Line Status

In order to build the CPP and to filter the earliest start oftdsks, the sweep-line jumps from event to
event, maintaining the following information:

e The current sweep-line positi@n initially set to the date of the first event.

e For each resource e [0, k — 1], the amount of available resource at instadenoted byap.,. (i.e.
the difference between the resource litit:t,. and the height of the CPP on resourca instant)
and its previous value denoted byp’,..

e For each task € [0,n — 1], ring, stores its status, and is equal to:

— none if and only if the sweep-line has not yet read tA& event related to task

— ready if and only if the earliest start of tagkwas adjusted to its final value (i.e. the fixpoint
was reached for the earliest start of tagk

— check ifand only if § € [s;,57) andVr € [0,k — 1] : hy, < gap,, i.e. for all resources, the
resource consumption of taslkdoes not exceed the available gap on top of the corresponding
CPP,

— conflict, ifand only if § € [s¢,5) and3r € [0,k — 1) : hyr > gap,, i.€. there is at least one
resource: where task is in conflict. Note that we only record the first resource vettbere is
a conflict.

All tasks ¢ for which ring, = check or ring, = conflict, are calledactive tasksn the following.
From an implementation point of view, the status of the &ctasks are stored in rings, i.e. circular
double linked lists, which permits us to quickly iterate pa# tasks incheck or conflict status, as
well as to move in constant time a task fraeck to conflict status or vice versa. In the following,
conflict, is used to indicate that tagks in conflict on a resource whose identifier we don’t need to
know.

Our synchronized sweep algorithm first creates and sortevéets wrt. their date. Then, the sweep-
line moves from one event to the next event, updating the atraflavailable space on each resource (i.e.
gap,., 0 < r < k), and the status of the tasks accordingly. Once all eventstint have been handled,
the algorithm tries to filter the earliest start of the actiasks wrt.gap, (0 < r < k) and to the sweep
interval [0, 0 et), Whered,..; is the next sweep-line position. In order to update the stafithe tasks,
for each resource, if gap, has decreased compared to the gap at the previous swegméitmn, we
scan all the tasks that potentially can switch their status tonflict or ready (i.e. all taskst for which
ring, = check). Symmetrically, for each resoureeif gap, has increased, we scan all the tasks that are
potentially no longer irconflict,.

4.3 Algorithm

Thesweepmin part of the synchronized sweep algorithm consists of a neaip (Algorithm4), a process-
ing events part (Algorithil5) and a filtering part (Algoritign

17

4.3.1 Main Loop
The main loop (Algorithni4) consists of:

e [CREATI NG EVENTS] (line[2). The events are generated wrt. the start and endblas of each
task and inserted into the heapevents, which records the events sorted by increasing date.

e [I NI TI ALI ZATI ON] (lines[4 to[T). The available spagep, and the previous available space
gap'. of each resourceis set the corresponding resource limipa,.. For each taskits status is set
to none if t is not fixed,ready otherwise.

e [MAIN LOOP] (lines[9 to12). For each sweep-line position the main loaesses all the cor-
responding events and updates the sweep-line status sltashipart, Algorithni 4 returrfalseif a
resource overflow occurs.

ALGORITHM sweep_min() : boolean
1: [CREATI NG EVENTS]
. h_events < generation of events wrk., s, 57, dy, e;.
[NITI ALI ZATI ON|
cforr=0tok—1do
gap,., gap.. < capa,.
:fort=0ton—1do
if s; = 5; then ring, < ready else ring; < none
: [MAI N LOOP]
: while —empty (h_events) do
(0, Opext) + process_events()
if —filter_min(d, dpest) then
return false
13: return true

© O N O U R WN

[l
N B o

Algorithm 4: Main sweep algorithm. Returralseif a resource overflow occursue otherwise. Iftrue,
ensures that the earliest start of each task is pruned sBrbperty 2 holds.

4.3.2 The Event Processing Part

In order to update the sweep-line status, AlgorifBm 5 readspaocesses all the events related to the current
sweep-line positiod and determines the sweep inter{@ld,..). Algorithm[8 consists in the following
parts:

e [PROCESSI NG START COVPULSORY PART (SCP) EVENTS] (lines[3 to[14). When the
sweep-line reaches the latest start of a taske have to determine whether or not the earliest start
of taskt can still be updated. This requires the following steps todiesidered:

— Iftasktisin conflict (i.e.ring, = conflict,, line[3), then: cannot be scheduled before its latest
position.

— If the status of task is check (line[d), meaning that there is no conflict on the interyals;),
then the earliest start efcannot be updated. To ensure PropElty 2, the consumpti@slof t
on the intervalsz, e;), which is empty if task has no compulsory part, is taken into account
in the CPP.

Once the earliest start and end of the task are up to date,@eto&now whether a compulsory part
was created for task(i.e., whethep = 5 is strictly less tham, line[10). If a compulsory part has
appeared, the gaps are decreased accordingly abd’&d event is added intb_events.

18

e [PROCESSI NG DYNAM C (ECPD) EVENTS] (lines[I6 td2l). When the sweep-line reaches
the ECPD event of a task we first have to check that the date of this event is well plaegdthe
sweep-line. If not{, > ¢, line[17), theECPD event is pushed back into the helagvent to its
correct date (linE18). If the event is well placed, the alzl#é spaces are updated (lines 20 21).

e [DETERM NE THE NEXT EVENT DATE] (line[23). In orderto process the pruningi) events,
we first need to know the next positiop.,; of the sweep-line.

e [PROCESSI NG EARLI EST START (PR) EVENTS] (lines[25% td31). If a conflict is detected
(i.e.3r | her > gap,, line[28) the status of the tagks set toconflict. Else if the sweep interval is
too small wrt. the duration of task(i.e. e; > dycqt), the status of is set tocheck. Else we know
that the earliest start of taglcannot be further adjusted wrt. Propéity 2

ALGORITHM process_events() : (integer, integer)
1: {6,€) « extract and record i# all the events irh_cvents related to the minimal date
2: [PROCESSI NG START COMPULSORY PART (SCP) EVENTS]
3: for all events of typdSCP,t,5;) in £ do

4: ecp’ e

5. if ring, = conflict, then

6: adjust-min_var(s¢, 5¢); adjust_min_var(es,);
7: ring, < ready

8: elseifring, = check then

9: ring, <— ready

10: if § < ¢4 then

11: forr=0tok—1do

12: gap, < gap, — hyr

13: if ecp’ <4 then [l introduce ECPD event if new CP
14: add(ECPD,t,e;) to h_events

15: [PROCESSI NG DYNAM C (ECPD) EVENTS]
16: for all events of typ€ ECPD, t,e;) in € do

17: if ey > 0 then I/ reintroduceECP event ife; has moved
18: add(ECPD,t, e;) to h_events

19: else

20: forr=0tok—1do

21 gap, < gap, + hyr

22: [DETERM NE THE NEXT EVENT DATE]

23: Opeqt < get_top_key(h_events) I +o0 if empty
24: [PROCESSI NG EARLI EST START (PR) EVENTS]

25: for all events of typ& PR, t,s,) in £ do /I PR must be handled las
26 if Ir | heyr > gap, then /] is taskt in conflict?
27 ring, < conflict,

28: else ifﬁ > Onext then /I might taskt be in conflict next time?
29: ring, < check

30: else

31 ring, <— ready

32: return (6, Gyeqr)

Algorithm 5: Called every time the sweep-line moves. Extracts and psesesll events at given time
pointé. Returns both the curreftand the next time poin,,c.;.

4.3.3 The Filtering Part

Algorithm[§ takes into account the variation of the gaps gqndabthe CPP between the previous and the
current position of the sweep-line in order to process takks are inconflict or in check status and

19

possibly to adjust their earliest start. The main parts efatyorithm are:

e [CHECK RESOURCE OVERFLOW (lines[2 td3). If the available resource is negative on aitlea

one resource on the sweep interf@b,,..:), Algorithm[8 returndalsefor failure.

[TASKS NO LONGER | N CHECK] (lines[3 td®). Scans each resouroghere the current avail-
able resource is less than the previous available spacedif > gap,., line[6). It has to consider
each task which is in check such that the height of tagkis greater than the current available space
(line[@), i.e. tasks which are no longerdheck. If the sweep-line has passed the earliest end of task
t, meaning that there is no conflict on the interjsal e;) its status is updated t@ady. Otherwise,

the status of taskis set tocheck.

[TASKS NO LONGER | N CONFLI CT ON RESOURCE r] (lines[11 to[2R). Scans each re-
sourcer where the current available resource is strictly great@n the previous available resource.
It has to consider each taskvhich is in conflict such that the height ofs less than or equal to the
current available space (lifgl13), i.e. tasks which are ngdoin conflict on resource We consider
the two following cases:

— If the taskt is in conflict on another resoureé (3r'.h; ,» > gap,., line[I4) its status is set to
conflict.

— Otherwise, the earliest start of tasks updated (lin€_18) to the current sweep-line position and
an ECPD eventis added if a new compulsory part occurs (linés 20to 21)

ALGORITHM filter_min(d, dpest) : boolean
1: [CHECK RESOURCE OVERFLOW
2. forr=0tok —1do /1 tail if capacity exceeded

©eNOA AW

10
11

: [TASKS NO LONGER | N CHECK]
:forr=0tok—1do

: [TASKS NO LONGER | N CONFLI CT ON RESOURCE r]
cforr=0tok—1do

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23: return true

if gap, < 0 then return false

if gap] > gap, then
forall ¢ | ring, = check A hy > gap,. do
ring, < if e; > ¢ then conflict, else ready

gap,. < gap,

if gap! < gap, then
forall ¢ | ring, = conflict, A hy, < gap,. doO

if 3r'.hy > gap,. then
ring, <— conflict,

else
ecp’ < ey
adjust_min_var(s, §); adjust_min_var(es, d + d);
ring, < if e; > dpesr then check else ready
if 57 > ecp’ N5 < [then /I introduce ECPD event if new compulsory par

add(ECPD.,t, e;) to h_events

gap,. < gap,

Algorithm 6: Called every time the sweep-line moves fréro §,,.,; in order to try to filter the earliest
start of the tasks wrt. the available space on each resource.

Continuation of Examplgl 2 (lllustrating the Synchronizede8p Algorithm) The synchronized sweep

algorithm first initializes the current sweep-line positi 0, gap,, to 3, andgap, to 2. Since tasky is
fixed, its status is set teeady, and tonone for all the other tasks (Algorithil 4, lifg 7). The sweep-line
reads the foulPR events related to the tasks t», t3 andt,. The next event date permits to ggt,; to

20

1. On the one hand the status of the taigk$, andt, is set tocheck since their heights on both resources
are less than or equal to the corresponding available spacksince their duration is strictly greater than
the size of the sweep intervil, 1) (Algorithm[5, line[29). On the other hand the status of tasis set to
ready since its duration is less than or equal to the size of the gweerval. The first call ofilter_min
does not deduce anything singep, and gap, are respectively equal tgup’, andgap’,. Then it moves
the sweep-line to position 1, reads tH€P event related to tasly and reads the next event date 2. During
filter_min, status of tasks, and¢, are set taconflict because of their too big height on resourge The
status of task, is also set taconflict, because of its too big height on resourggAlgorithm[8, line[8).
Then it moves the sweep-line to position 2, readsAli&’D event related t@, and reads the next event
date 3. Durindilter_min, the earliest start of tasks, ¢; andt. is set to 2 and their status is setdieck.
Moreover the followinggCPD eventis generated for, (ECPD, 1,4) (Algorithm[g, linesIBtG 21). Then

it moves the sweep-line to position 3 and readsI6#® event of task;. Since the current status of is
check, we know that the earliest start of taskcannot be adjusted anymore and consequently the status
of taskt; is set toready (Algorithm[5, line[d). The next event date is 4. The callffivter_min on the
sweep interval3, 4) with gap, = 1 andgap, = 1 changes the status of tagksandt, to conflict because
ho.1 > gap; andhyo > gap, (Algorithm[g, line[8). Then it moves the sweep-line to pasitd, reads
the ECPD event of task; and setyap, to 3 andgap, to 2. Duringfilter_min, since the available spaces
increase, the status of tasksandt, change fronconflict to check, their earliest start is adjusted to 4,
and the followingECPD event is generated for tagk, (ECPD,2,6) (Algorithm[§, lined18 t¢ 211). No
ECPD event is generated for task since its earliest end is always less than or equal to itstiatart
(Algorithm[g, lined18). Then the sweep-line reads $t&P and ECPD events related to tagk, nothing
more can be deduced, and Propéity 2 is holds. O

4.4 Complexity

Given ak-dimensional cumulativievolving n tasks, the worst-case time complexity of the synchronized
sweep algorithm i€)(kn?). Initially, at most three events are generated per taskddiitian, at most one
dynamicECPD event can be generated per task. Since one event is handlEé i logn), the overall
worst-case time complexity of Algorithimh 5 over a full swesPi(kn+nlogn). Like for the 1-dimensional
dynamic sweep, the worst-case time complexity is reacheshwiine CPP consists of a succession of high
peaks and deep, narrow valleys. In this worst-case, Algmffi has to change the status of théasks,
which is done inO(kn) since line§I4 t6 21 are executed at most once per task angl I8ie€l4 costs
O(k). Algorithm[@ is called at each step of the sweep, which réswdtcomplexity ofO(kn?).

5 A Synchronized Sweep Algorithm for thek-dimensional cumula-
tive with precedences Constraint

This section presents an extension of the synchronizedpsalgerithm introduced in Sectidi 4 that also
handles a set of precedence constraints among the taskss tohtext, a precedence between a taeskd

a taskt’ means that taskmust be completed before tagkstarts, i.es; + d; < e,. Our goal is to provide
an algorithm that scales well, even with a high number of @deace constraints, which is usually a source
of inefficiency in CP solvers (see Polldi[Too Local] of Sectior2).

Given k resources and tasks, where each resourcd0 < r < k) is described by its maximum
capacitylimit,., where each task(0 < t < n) has a list of successorg and is described by its stasf,
fixed duratiord; (d; > 0), ende,, fixed resource consumptiohs, . .., hz—1 (he; > 0,4 € [0,k — 1])
on thek resources, thk-dimensional cumulative with precedencesstraint with the three arguments

o ((s0,do, €0, (ho,0s--,h0k=1))s- -, (Sn—1,dn—1,n—1, ("n—1,0, - s An—1,k—1))):
(] <lzmzt0, ey lzmztk,ﬁ

[] <P(),...,Pn,1>

21

holds if and only if conditiond{7)[{8) andl(9) are true:

VtG[O,nfl] :St+dt:et (7)
Vre0,k—1,Vi€Z : Y hiy < limit, (8)
tel0,n—1],
i€[s¢,et)
Vie[0,n—1], V' € P, 1e; < spr 9)

Note that the graph of precedences is supposed to be acyclic.

Example 3 (ExampléR extended with precedence constraints) Consigeresources, 1 (k = 2) with
limito = 3 and limit; = 2 and five task$y,t1,. .. t4 which have the following restrictions on thestart
duration endandheights

oty so€[l, 1], do=1, e €22, hoo=2 ho1=1
oty 51 €[0,3], di=2, e €][2,5], hi0=2, hi1=1
oty s3€[0,5], da=2, e€(2,7], hoo=1 ha1=2
ot3: s3€[0,9, ds3=1, e3€[l,10], hzo=1, hg1=1

oty S4 € [0,7], dy =3, e4€ [3, 10], h470 =2, h471 =0
We also consider the following three precedence conssaintong the tasks:

e ¢g < s3, meaning that task, has to end before tagk starts,
e ¢; < s3, meaning that task, has to end before tagk starts,

e e5 < s4, meaning that task, has to end before tagk starts.

On the one hand, if we ignore the precedence constraints we tree same instance than Examiple 2,
consequently we have the same pruning, i.e. because ofdberce constraint omg andr;, the earliest
start of taski; is adjusted to 2, the earliest start of tagksandt, is adjusted to 4 (see Part (B), Figuré 2).
On the other hand, considering the precedence constragaidd to the following additional adjustments:
the earliest start of task; is adjusted to 4 since the earliest end of tasks 4 and the earliest start of task
t4 is adjusted to 6 since the earliest end of tasks 6 (see Part (B), Figurgl4). The purpose of the synchro-
nized sweep algorithm, extended to handle a set of precedemstraints, is to perform such filtering wrt.
all resource and precedence constraints in one single sweep 0O

We now show how to achieve such filtering by decomposin@tdémensional cumulative with prece-
dencegonstraint into twaumulativeconstraint on resoureg andr; and three precedence constraints.

Continuation of Examplgl2 (lllustrating the decomposijiofhe instance given in Examgdlé 3 can nat-
urally be decomposed into tweumulativeconstraints and three inequality constraints:

co = cumulative({ (so,do, €0, ho,0), (s1,d1, €1, h1,0), (52,d2, €2, hayp),

° b
(s3,d3, €3, h3,0), (84,da, eq, hap)), limity)

c1 : cumulative({ (so,do, o, ho,1), (51,d1,e1,h11), (s2,d2, €2, ha1),

[] ’
<S3) d37 €3, h3,1>>7 lzmztl)

® c3:e9 < S3.

22

To

t() S0 €o
t b, tr b-,
b2 e, b2 Fo———ig
ts b, ty F-—-—=igl,
ta —,, by Fommm - T e

Figure 4: Parts (A) and (B) respectively represent theestrfiositions of the tasks and the CPP on resource
ro andry, (A) of the initial problem described in Examplk 3, (B) onbe fixpoint is reached.

® c4:eq < s3.
® C5: e < sy.

Traditionally, a CP solver will first process the lighteshstraints, i.ecs, ¢4 andcs and reach a fixpoint over
this subset of constraints. Then, it will process oamulativeconstraint. These two steps are repeated until
the fixpoint over the five constraints is reached. The souf@gedficiency comes from the fact that when
a precedence constraint prunes one variable, we need tofrera scratch all the cumulative constraints
involving the corresponding variable. O

The property ensures by tls&veepmin algorithm is an extension of Propeffly 2 that also considers t
precedence constraints.

Property 3 Given a kdimensional cumulative with precedenaesstraint withn tasks and: resources,
sweepmin ensures that:

Vre [0,k =1Vt € [0,n—1],Vi € [sp,e0) = hep+ D huy < limit, (10)
t'# t,

ZE[W)E)

Vte0,n—1],Vt' € P, : e < sy (11)

Property B ensures that, for any tasi thek-dimensional cumulative with precedencesstraint, one
can schedule at its earliest start without exceeding for any resour¢@ < r < k) its resource limit wrt.
the CPP on resouraeof the tasks of \{¢}, and all its immediate successors cannot start beforeritegta
end.

5.1 Event Point Series

In order to build the CPP of the resources, we need all theteypes required by the synchronized
sweep algorithm for th&-dimensional cumulativeonstraint (see Sectign 4.1). To ensure Reldfidn 11 of
Property(B, all the events related to tasks that have at desspredecessor are not initially added into the
heap of events. A task will only be added when the earliestsstd all its immediate predecessors are
adjusted to their final position wrt Propelily 3. More prelis® know the moment when these events must
be added, we introduce the following new event type:

23

e The eventtyp&RS,t, e;) for Release Successabtaskt (i.e. the earliest end of tagkis generated
for all the taskg that have at least one successor. This is required to prtheparliest starts of the
successors of tagikfrom being adjusted before the final earliest start of tass been determined.

Continuation of Examplgl 3 (Generated Events).the initialization part, the following events are gen-
erated and sorted according to their datBR, 1,0), (PR, 2,0), (SCP,0,1), (ECPD,0,2), (RS, 0,2),
(RS,1,2), (RS,2,2), (SCP,1,3), (SCP,2,5). On the one hand, since tasks ¢, and¢, all have at
least one successor we generate Bi§eevent, in bold, for each of them. On the other hand since tasks
andt, do not have any successor, we do not generatdthgvents for them. O

5.2 Sweep-Line Status

All the elements of the sweep-line status of the synchrah&xeeep are needed to build the CPP over the
resources. In addition, we introduce the following infotima to handle the precedence constraints among
the tasks:

e Foreachtask € [0,n — 1], nbpred, records the number of predecessors of task which the final
value of the earliest start wrt. Propelly 3 was not yet fourti@current sweep-line positién

The synchronized sweep algorithm with precedences firateseand sorts the events wrt. their date for
the tasks that have no predecessors. Then the sweep-liresiftom one event to the next event, updating
the amount of available space on each resource and the efatus tasks. Only once the earliest starts
of all the predecessors of a given taskave been found, i.eabpred, = 0, events related to taskare
generated and added into the heap of events.

5.3 Algorithm

The sweepmin part of the synchronized sweep algorithm with precedenastcaints consists again of a
main loop, a processing events part and a filtering part. Tegssing part calls the algorithmlease_task,
which releases a task when the earliest starts of all itsgmextors have been adjusted to their final values.
We omit the filtering part since it is strictly identical togtlone introduced in Sectibh 4.

5.3.1 Main Loop

The main loop (Algorithnil7) consists of the following parts:

e [CREATI NG EVENTS] (line[2). The events are generated wrt. the start and endblas of each
task that has no predecessors and insertedhirteents.

o [INITIALI ZATI ON] (lines[4 to[T). The available spagep, and the previous available space
gap!. of each resource is set the corresponding resource limipa,.. For each task, its status is
set tonone if ¢ is not fixed,ready otherwise.

e [MAI N LOOP] (lines[9 td14). For each sweep-line position the main lo@zesses all the corre-
sponding events and updates the sweep-line status. Algdfitreturndalseif a resource overflow
occurs or if a task cannot be introduced in its temporal window because of gsl@cessors.

5.3.2 The Event Processing Part

In order to update the sweep-line status, Algorifim 8 readpaocesses all the events related to the current
sweep-line positiod and determines the sweep inter{@ld,,..+). Since this algorithm only differs from
Algorithm[H5 from line[22 to liné_3R, we do not comment again thieer lines.

24

ALGORITHM sweep_min() : boolean

: [CREATI NG EVENTS]

. h_events < generation of events wrh., s, 5;, d;, e; and the precedence constraints.
[INITI ALl ZATI ON|

cforr=0tok—1do

1

LR e S O
A w NNk O

15:

:fort=0ton—1do

: [MAIN LOOP]
: while —empty (h_events) do

© O N O U R WN

return true

gap,., gap,. < capa,

if s; = 5; then ring, < ready else ring, < none

(0, Opext, Success) < process_events()
if —success then

return false
if —filter_min(d, dpert) then

return false

Algorithm 7: Main sweep algorithm. Returmfialseif a resource overflow occurs or a precedence constraint
cannot be satisfiedrue otherwise. Ensures Propeftly 3 in the latter case.

e [PROCESSI NG RELEASE SUCCESSOR (RS) EVENTS] (lines[23 to[3P). When the sweep-

line reaches th&S event of a task, we first have to determine whether or not it is its final positi
i.e. whether the earliest end of taskan still be updated. This requires the following steps to be
considered:

— If the status of task is set toconflict, the RS eventis pushed back to its first feasible position,
i.e.d + d; (see lind2b). This position considers that the earliest sfaask: will be adjusted
tod.

— Else if the position of thék.S event does not correspond to the earliest end of the taskingea
that the earliest end of tagkhas been adjusted since the creation ofRlseevent, we just push
back the event to its correct positien(see lind 217).

If the RS event is at its final position, meaning that the earliest sthtaskt will not be adjusted
anymore, the successors of taskre scanned. For each successorsf task ¢, the number of
remaining tasks to filter wrt Propefy 3 (i.ebpred,.) is decremented (see liel30). If the earliest
starts of all predecessors of a tasare updated wrt Properky 3, ishpred, = 0, then the events
related to task’ are generated and inserted into the heap of events. Thipdaisis described in
Sectiorl 5.313, Algorithri]9.

5.3.3 Releasing a Successor

Once the earliest starts of all predecessors of a tdskve been adjusted wrt. Propeldy 3 the algorithm
release_task generates and adds the events of tasko the heap of events or directly into the list of events
that have just been extract€d This algorithm consists of three parts:

e [CHECK THE NEW EARLI EST START] (lines[2 to[3). This first part removes from the start

(resp. end) variable of taskall the values strictly less thah (resp. strictly less than + d;). It
returnsfalseif one domain becomes empty.

[EARLI EST START COF TASK ¢ | S ADDED AT 4] (linedB td16). First we consider the case
where the earliest start of tasks equal ta. If the start of task is fixed (i.e.s; = 57, line[6) then the
available spaces are decreased wrt. the heights of t&3therwise aPR event is added into the list

of events to handle at the current sweep-line position {{ifie Since theSCP and ECPD events
cannot be associated with the positidof the sweep-line they are added into the heap of events.
Finally, if taskt has a least one successoR.& event is generated.

25

e [EARLI EST START OF TASK ¢ |'S ADDED AFTER 4] (lines[I8 to[2¥). We consider the
case where the earliest start of task strictly greater thaga. In such a case, events are generated as
in the initialization ofsweepmin and added into the heap of events.

Continuation of Examplel 3 (lllustrating the Synchronizeee8p Algorithm with Precedencesjhe syn-
chronized sweep algorithm with precedences first initigithe current sweep-line position todap,, to

3, andgap, to 2. The status of task is set toready, and tonone for all the other tasks. The sweep-line
reads thePR events of task; andt¢, and sets their status igheck since their heights are less than the
available spaces and their duration is greater than thepsimézrval|0, 1) (Algorithm[8, line[40). Noth-
ing can be deduced by the first call filker_min. Then it moves the sweep-line to position 1, reads the
SCP event of task, and sets the available spagg®, and gap, to 1. The call tofilter_min modifies
the status of task to conflict, because of its height on resourgg and the status of tagk, because of
its height on resource;. Then it moves the sweep-line to position 2, readsAld& D event of taskiy
and sets the available spacg®, to 3 andgap; to 2, and reads the thre®S events of tasks, ¢; and

to. Since task is initially fixed, its R.S event is well placed and we can scan its only successoriiask
(Algorithm|[8, line[29). Consequenthlybpred, is set to 1, meaning that exactly one predecessor of task
t3 is not yet adjusted to its fixpoint. Since the status of taskandi, is set toconflict, their RS event

is pushed back to 4 (Algorithid 8, life125). The callfidfer_min changes the status of tasksandts

to check and adjusts their earliest start to 2. The ev@€'PD, t,4) is created for task; reflecting the
creation of a compulsory part. Then it moves the sweep-tin@sition 3, reads th#CP event of task;
and setgjap, to 1 andgap, to 1. The status of the task is now set toready (Algorithm[g, line[9). The
call of filter_min modifies the status of tagk to conflict because of its height on resounce Then it
moves the sweep-line to position 4, sets the available sgagg to 3 andgap, to 2 because of the end of
compulsory part of task . The sweep-line reads th&S event of task,, which is now at its final position.
Sonbpreds is set to 0, meaning that all the predecessors oftaslave reached their fixpoint, and that the
events of tasks can be generated and added into the heap of events. This pandled byelease_task
called on lind_3P of AlgorithrhI8. Imelease_task, the earliest start of task is adjusted t@ (i.e. 4). Since
taskt¢s is not fixed and has no compulsory part, the following evergggeneratedPR, t, 4), (SCP,t,9)
(Algorithm[9, lined 11 t¢12). Then, thBR event is immediately processed and the status ofitaiskset

to ready (Algorithm(8, line[42). The call ofilter_min sets the status of tagk to check, adjusts its earliest
start to 4 and add the evefffCPD, t, 6), reflecting the creation of its compulsory part. Then it notre
sweep-line to position 5, reads th€'P events of tasks and sets the available spageg,, to 2 andgap,

to 0. The status of task is now set tocheck (Algorithm[8, line[9). Nothing can be deduced filyer_min.
Then it moves the sweep-line to position 6, readsAli& D event of task, and sets the available spaces
gap, to 3 andgap, to 2. It also reads th&S event of task, which is at its final position. Consequently,
nbpred, is set to 0 (AlgorithniB, lin€-30), meaning that all the eatlistart of the predecessors of task
t, are adjusted wrt Properfy 3. The calltdease_task generates the even{®R, t,6), (SCP,t,7) and
(ECPD,t,9). Finally, it successively moves the sweep-line to posgidmand 9, corresponding to the start
and end of the compulsory part of taisk and checks that the resource limits are never exceeded. O

5.4 Complexity

Given ak-dimensional cumulative with precedena@slving n tasks, the worst-case time complexity of
the synchronized sweep algorithm with precedencé€gis:? + n X (k+logn)), whereX is the maximum
number of times that &S event can be shifted on the time axis. In the worst-case, fask, the RS
event can be pushdde; — e;)/d;] times (see Algorithriil8, line_25). Over a full sweep, the waase
time complexity of Algorithn{8 isO(kn + nlogn + nX logn). The partnX logn that is not present

in the worst-case time complexity of thedimensional sweep without precedence is explained by the
fact that we need to handle tlign X)) RS events. Over a full sweep, the worst-case time complexity of
Algorithm[8 isO(kn? + nXk). Due to theO(nX) RS events, Algorithnib can be callgd(n.X) times
with Vr € [0..k — 1] : gap,. = gap’,.. In such a case, the complexity of Algorithin 6 is limited2¢k) (see
lines[6 and1R).

26

6 Synthesis

This section provides a synthetic view of the three sweegdféittering algorithms introduced in Sec-
tions[3,[4 and5. First, we recall for each of them the key oauncerning the events generated and
processed, the information maintained by the sweep-laeistand the worst-case time complexity. Sec-
ond, we give the main principle of the greedy modes of thegerdhm.

6.1 The Key Points of the New Sweep Algorithms
We begin with the 1-dimensional dynamic sweep introducesiatior B for theumulativeconstraint:

e [EVENTS] It generates and inserts at most four events per task intbeébp of events. When a
task is initially not fixed (i.es; # s;), one PR event related to its earliest start and aii€P event
related to its latest start are generated. Then,(b# event can be converted intoCP and an
ECPD event if a compulsory part occurs. The key events aretmelitional CCP and thedynamic
ECPD since they permit to handle the extension of the CPP in ortgesgweep.

e [SWEEP- LI NE STATUS] The main data structures are the two heapsheck and h_conflict,
which handle the status of the tasks. Indeed, the use of lietpskey point to avoiding to system-
atically rescan all the active tasks each time the sweeprtiaves.

e [COVPLEXI TY] The worst-case time complexity of the 1-dimensional alponiis O (n? log n). It
can be reduced t0(n?) by replacing the two heaps check andh_conflict by a list that records
the status of the tasks, but in such a case, the compl@xity) is more often reached in practice.

We continue with the synchronized sweep algorithm intreduin Sectiod ¥ for thé&-dimensional
cumulativeconstraint:

e [EVENTS] It generates and inserts at most four events per task intoaap of events. Compared
to the 1-dimensional sweep, ti&P has been merged with th&CP event. Initially at most three
events are generated per task, P&, SCP and ECPD events, then th& CPD event can be pushed
back on the time axis at most once. The key events in orderrtdleéahe extension of the CPP are
the SCP events that are generated for the tasks initially withouhgolsory part and thé&CPD
events.

e [SVEEP- LI NE STATUS] The main data structures are the circular double linkes {i&tt record
the status of the tasks. Unlike the 1-dimensional sweep,oné dse heaps to record the status of the
tasks. Indeed, the advantage given by the heaps in the Indiomal sweep comes from the fact that
an active task is either in the heaApconflict or in the heag_check. For thek-dimensional version,
we would have to create these two heaps for each resource, s would have to be duplicated
in the heap%_check to state that the task is not in conflict.

e [COWPLEXI TY] The worst-case time complexity of the synchronized swegprihm isO(kn?).

We finish with the extension of the synchronized sweep algorintroduced in Sectiopl 5 for tHe
dimensional cumulative with precedencesstraint:

e [EVENTS] Initially, it generates and inserts all the events that yechronized sweep algorithm
without precedences generates, plus B§eevent associated to the earliest end of the tasks that have
at least one successor. In the worst-case, &ithvent related to a tagkcan be pushed back on the
time axis[(e; — e;)/d; | times.

e [SWEEP- LI NE STATUS] As for the synchronized sweep without precedences, the otz
structures are the circular double linked lists that re¢bedstatus of the tasks. To handle the prece-
dences, we just add an integefpred, for each task that records the number of predecessors for
which the final value of the earliest start was not yet fountth@tcurrent sweep-line position.

27

e [COVPLEXI TY] The worst-case time complexity of the synchronized swegprdhm with prece-
dences i€ (kn? + nX (k + logn)), whereX is the maximum number of times thatzs event can
be pushed back, i.e. [rnax](((e_t —et)/dt]).

te|0.n—1 —

6.2 The Greedy Mode

The motivation for greedy modes is to handle larger instamtea CP solver. For each of the three sweep
algorithms introduced in this report we design a greedy mabieh reuses theweepmin part of the
corresponding filtering algorithm, in the sense that oneatinimum value of a start variable is found, the
greedy mode directly fixes the start to its earliest feasiblee wrt Properti/[1.]2 ¢ 3. Then the sweep-line
is reset to this start and the process continues until ddktgset fixed or a resource overflow occurs. Thus
the greedy modes directly benefit from the propagation peréd while sweeping.

7 Evaluation

We implemented the dynamic sweep algorithm in Choco [22]@i@5tus([28]. Choco benchmarks were
run with an Intel Xeon at 2.93 GHz processor on one single,coegnory limited to 14GB under Mac OS
X 64 bits. SICStus benchmarks were run on a quad core 2.8 GidzQ@ore i7-860 machine with 8MB
cache per core, running Ubuntu Linux (using only one pramesere). The sweep algorithms that we
consider in this section are:

S The 2001 sweep algorithin [16]

UH The dynamic sweep algorithm, as described in Se€fion 3

UR The dynamic sweep algorithm, but with thizg data structure instead of heaps

K The k-dimensional dynamic sweep algorithm, as described ini@ddt

KG A greedy assignment algorithm corresponding to the previtem

P Thek-dimensional dynamic sweep algorithm with precedencesribes] in Sectiofills

PG A greedy assignment algorithm corresponding to the pusvitem

We have run our sweep algorithms with randomly generatetnees, with resource-constrained
project scheduling instances coming from PSPLib, and watidomized multi-year project scheduling
instances coming from an industrial customer.

7.1 Random Instances

This experiment was run in Choco. The program listing of tieadnce generator is given in Appendix A.
We ran random instances of bin-packing (unit duration) amthdative (duration> 1) problems, with
precedences or without them, withvarying from 1 to 64 and from 1000 to 1024000. Instances were
randomly generated with a density close to 0.7. For a givenbar of tasks, we generated two different
instances with the average number of tasks overlapping @ pioint equal to 5. We measured the time
needed to find a first solution. As a search heuristic, theabégiwith the smallest minimal value was
chosen, and for that variable, the domain values were tniégcreasing order. All instances were solved
without backtracking. The times reported are total executime, not just the time spent in the dynamic
sweep algorithm.

In a first set of runs (see Figuké 5), we compared algorithms UR, K and KG on bin-packing
instances without precedences. We note that UR is unifosmilge 5% faster than UH, confirming the
hypothesis that the rings data structure outperforms tapsiene. A preliminary analysis of the observed
runtimes as a function of andk suggest that UR solves instances in appt@tkn?>1°) time, whereas K
solves them in approx0(k%-25n2:2%) time. In other words, we observe a speed-up by neétfi?. The

28

Algorithm UH Algorithm UR

1e+06 T — 1e+06 ———
" n=1000 —— T o n=1000 —+—"
N=2000_ x5 N=2000- %5
n=4000 -n=4000
-n=8000 - 100000 ¢)
100000 | i *" n=16000 ~-+-- 4

x L

10000 ¥~

msec
msec

10000 T 1
T 1000

1000 100
1 2 4 8 16 32 64 1 2 4 8 6 32 64
3 k
Algorithm K Algorithm KG
1e+06 T T — 1e+08 T T T T T
n=1000 === n=1000 ——
,,,,,,,,,,,,, wommmo-#=m 7T A=2000 e [2000 e
100000 n=4000 07 - N=4000 -;-x
E o n=8000%"= L o]
. ° n=16000 ---=:-- 1e+06 N=16000 -+~
o e o 100000 f " .. T=32000 -
3 * - 3 A n=64000
@ 10000 F - @ - P=128000- A==
E I € 10000 F -~ .
1000 1000 [.- -
100 -
100 10
1 2 4 8 16 32 64 1 2 4 8 6 32 64

Figlﬁre 5: Runtimes in msec for random bin—"packing instances

pattern for KG is a little irregular, but we observe that thatimes increase very little with increasihg
and also that the runtimes are orders of magnitude smaberftr K. KG is able to solve instances with
more than one million tasks and 64 resources.

In a second set of runs (see Figlte 6), we compared algorithi$JR, K, P and PG on bin-packing
instances with precedences. We observe the same pattayhifddR and K as for the first set. Regarding
K vs. P, P is uniformly some 15% to 50% faster than K, confirntimg efficiency of treating cumulative
and precedences globally. Regarding PG, curiously, thertgnce of: is similar to that of P, which was
not the case for KG vs. K. Like for KG vs. K, the runtimes of P@ arders of magnitude smaller than for
P.

In a third set of runs (see Figuké 7), we compared algorithtds UR, K and KG on cumulative
instances without precedences. In terms of the compleriyyais of runtimes as a function efandk,
the picture is similar to that of the first set, but runtimes albout 50% longer.

In a fourth set of runs (see Figure 8), we compared algoritbisUR, K, P and PG on cumulative
instances with precedences. In terms of the complexityyarsabf runtimes as a function ef andk, the
picture is similar to that of the second set, but runtimesaé@ut twice as long.

7.2 Resource-Constrained Project Scheduling

This experiment was run in SICStus Prolog. The programmiistif the solver is given in AppendiX B. We
used single-mode resource-constrained project schepodinchmark suites from PSPIEIbcomparing S,
UH, K and P. There are four suites: J30, J60, J90 and J120. iBEsiznce involves 30, 60, 90 or 120
tasks, respectively, 4 resources and several precedensgaiats. The problem constraints were encoded
as follows, depending on the algorithm used:

S and UH Fourcumulativeconstraints, over the tasks using a nonzero amount of tiesgasource only,
typically about 50% of all the tasks. Precedence conssaissimple linear inequalities over an end
and a start variable.

K Onek-dimensionatumulativeconstraint, over all the tasks. For tasks that did not usgengiesource,
a zero resource consumption was specified. Precedenceaiotssas above.

P As for algorithm K, but with precedences encoded as parasiet¢hecumulativeconstraint, instead of
being posted separately.

Ihttp://129.187.106. 231/ pspli b/

29

http://129.187.106.231/psplib/

msec

msec

msec

msec

le+06

100000

10000

1000

le+06

100000

10000

1000
1

le+06

100000

10000

Algorithm UH

1e+06

100000

o

[

{2}

£
10000
1000

Algorithm K

Algorithm UR

8
k
1e+06
100000 ¢
o
[
{2}
£
10000
1000
1
Algorithm P

n=8000

L an=16000 --=-- 1

R

)

2 4 8 16

Figure 6: Ruintimes in msec for random bin—packingkinstamiésprecedences.

Algorithm UH

32 64

n=8000-

- n=16000 ——=-- |

1000
1 2 4 8 16 32 64
K
Algorithm K
1e+06 T T v —
" 1a1600 ——
,,,,,, e meemme e NZ2000 e
=4000 --x
n=8000-="
100000 . o= n=16000 = |

10000

1000

e

*

1 2 4 8 16

Figlire 7: Runtimes in msec for random curfiulative instances.

32 64

msec

msec

msec

1e+08
1le+07

1e+06

100000 T~
10000 L.

1000
100

10

1e+06

100000

10000

1000

1le+07

1e+06

100000

10000 {

1000

100 !

30

Algorithm PG

1 2 4 8 16 32 64

Algorithm UR

F 31000 =
. 52000 -
=4000 -

e " n=8000_-

: =16000

%

Algorithm KG

1 2 4 8 16 32 64

msec

msec

Algorithm UH Algorithm UR
1e+06 ———— = 1le+06 —
- - n=1000""———— n=1000. =+
n=2000 -
o v N=4000
000-"e
100000 100000
o)
Q
@
£
10000 - 10000 ¢
1000 1000
1 2 4 8 16 32 64 1 2 4 8 16 32
k k
Algorithm K
1e+06 L — w———
I n=1000 ——
n=2000_-u-
o -N=A000
® @ n=8000 ---=
100000 | n=16000_.-=-==-
(s} -
Q
@
£
10000
1000
1 2 4 8 16 32 64
k
Algorithm P Algorithm PG
le+06 T T 1le+08 T T T T
n=1000 ——
B 2000 -
1e+07 :,/*/,/n:"moo o]
o n=8000 e |
100000 | s o n=16000 ---=+-- J 1e+06 | N e n=16000 - ew
2 o . oeeP=32000 -0
- @ Lo AT 64000 % -+
. . . x g 100000 ¥ + 12138000 —-sm

10000

1000
1

64

10000

1000

L L L L L 100 =

2 4 8 16 32 64 1 2

. k . . - k -
Figure 8: Runtimes in msec for random cumulative instanddsprecedences.

31

4

8

64

The initial domains of the start times corresponded to th@éya makespan, if it was known, or the
best known upper bound, otherwise. A 60 seconds time linmitrpzance was imposed.

We used a two-phase search procedure. Phase one is norndatenso if Phase two fails, it will
backtrack into Phase one to find another partial solutiod sanon:

Phase one. First, the tasks were statically ordered by descending areere the area of a task is defined
as its duration times its total resource consumption overdifferent resources. Then, for each task
with start variables; and durationd;, we introduced variables; and u; subject to0 < u; < d; and
d;b; + u; = s;. Finally, to ensure that each task has a compulsory partabedd the, variables in the
static order, by increasing value.

Phase two. Until all start variables have been fixed:

O Selectthe task with the smallest earliest start, breaking ties by choofiegearliest one in the static
order.

O Split the current search tree node into a left node imposing< m and a right node imposing
sk > m, wherem = | (s, + 55)/2].

It is worth noting that the search tree for a given instandebeiidentical for all the algorithms, except
S. Since algorithm S can filter out values in the middle of dims\at is able to solve some instances in
slightly fewer backtracks than the other algorithms.

In Table[3, we show the results in terms of backtracks perrsk¢iots) per suite and algorithm. Each
table row corresponds to the set of observed bts for instatiea took nonzero time and backtracks,
showing the minimum, maximum, mean, median bts as well astdredard deviation and the number
of instances solved in 60 seconds. Note that the reportedunmbers include both solved and timed out
instances.

We observe from theneanandmedian columns that algorithm S is slower than UH, which is slower
than K, which is slower than P, although for classes J90 ad,dthere is practically no difference between
K and P. Recall that the motivation for handling precedemtietly in the filtering algorithm of P was
to reach a fixpoint faster, requiring fewer invocations & fittering algorithm than if the precedences are
handled outside the algorithm. We conjecture that for J2DJ9, this is indeed what happens, whereas
for J90 and J120, the saving is smaller and just about ouhsetige overhead paid by P for handling
precedences, what with extra dynamic events and everything

In Table[4, we give for each suite a pairwise comparison oétgerithms. Each table row corresponds
to the set of observed (bts for algorithtji(bts for algorithmy) for given algorithmse/y and instances that
took nonzero time and backtracks to solve for both algorithm

The latter table confirms the findings of the former one, aruhsthat the largest performance gain in
our series of algorithm is due to the handlingkofesources in one constraint. The UH/K quotients are
slightly larger thart =075 = (.35, predicted in the analysis of Figure 5. We conjecture thiatithdue to
the abundance of tasks with zero demand for one or more o the PSPLIib instances, which means
that each individual 1-dimensional constraint needs td aels with a subset of the tasks.

7.3 An Industrial Application

This experiment was run in SICStus Prolog, except algor@nwhich was run in Choco. It consists of a
resource-constrained project scheduling problerm [24] &itesources and up to 15000 tasks. The resource
usage array is sparse: only 12.5% of the array elements arerm

The data are a randomized example of a multi-year projeadsding problem from industrial cus-
tomer. A series of jobs have to be scheduled over multiplesyesach job consisting of multiple tasks,
which may need some of the limited resources. Links betwaskstof different jobs indicate dependen-
cies in the workflow.

The key point is that we are not solving the problem once, toeap with an operational plan, but
have to solve many what-if scenarios, where the user chahgdsming of the migration tasks, the mix

32

Table 3: Results for PSPLib instances per suite and algorithntime in msec).

class | #instances| algorithm | #solved min max mean median stddev
S 469 100.00 | 34040.00(3147.90 | 2827.78 | 3052.43
130 480 UH 471 100.00 | 56733.33| 4034.65 | 3200.00 | 5077.59
K 474 1300.00 | 34040.00| 9332.15 | 8212.50 | 5087.08
P 475 100.00 | 34500.00(12437.60| 11635.82| 5806.21
S 368 50.00 | 20600.00| 1748.56 | 1533.91 | 1748.79
360 480 UH 369 100.00 | 17430.77| 2165.60 | 1914.70 | 1807.89
K 374 100.00 | 14700.00(5650.81 | 5539.14 | 2859.14
P 374 100.00 | 10622.64| 5915.70 | 6503.00 | 2603.33
S 293 50.00 | 18890.94| 1457.08 | 994.43 | 1758.14
390 480 UH 294 33.33 | 23923.77| 2106.73 | 1437.25 | 2611.13
K 296 50.00 9510.00 | 4184.08 | 4489.25 | 2298.52
P 295 50.00 | 10568.43| 4138.43 | 4648.68 | 2193.36
S 91 50.00 12779.59| 1617.27 877.87 | 1873.42
3120 600 UH 93 50.00 | 29948.11| 3519.59 | 2117.19 | 4138.10
K 95 33.33 | 12450.80| 5239.94 | 5611.33 | 2016.51
P 94 50.00 9455.08 | 5283.45 | 5681.04 | 1764.89

Table 4: Results for PSPLib instances per suite and paigoféhms (runtime in msec).

class | #instances| algorithms | min | max | mean | median | stddev
S/UH 0.25| 2.00 | 0.91 0.91 0.28
S/IK 0.12 | 2.00 | 0.45 0.36 0.29
S/P 0.08 | 1.80 | 0.32 0.28 0.23
J30 480 UH/K 0.14| 2.00 | 0.51 0.42 0.31
UH/P 0.09 | 3.00 | 0.39 0.30 0.35
K/P 0.25| 2.00 | 0.88 0.75 0.48
S/UH 0.34| 250 | 0.89 0.86 0.34
S/K 0.10 | 255 | 0.40 0.32 0.29
S/P 0.08 | 3.18 | 0.38 0.30 0.33
J60 480 UH/K 0.13| 2.15 | 0.48 0.38 0.30
UH/P 0.14 | 269 | 0.44 0.35 0.31
K/P 0.39 | 2.00 | 0.96 0.95 0.30
S/UH 0.25| 3.00 | 0.78 0.70 0.36
S/K 0.06 | 3.00 | 0.44 0.28 0.42
S/IP 0.06 | 247 | 0.43 0.28 0.40
J90 480 UH/K 0.12 | 4.00 | 0.57 0.38 0.56
UH/P 0.12 | 4.00 | 0.57 0.37 0.54
K/P 0.44 | 2.00 | 1.02 1.00 0.30
S/UH 0.22 | 2.00 | 0.49 0.40 0.30
S/K 0.05| 3.00 | 0.36 0.18 0.41
S/P 0.05| 3.00 | 0.37 0.18 0.47
120 600 UH/K 0.16 | 3.33 | 0.71 0.46 0.65
UH/P 0.16 | 3.87 | 0.72 0.42 0.71
K/P 0.33| 3.00| 1.01 1.00 0.23

33

of resource limits, etc. This means that fast, interactasponse is very important, and consequently the
availability of a greedy method that can handle sevemahulativeand precedence constraints is crucial.

We compared algorithms S, UH, UR, K, P and PG on these instanseshown in Tablég 5, displaying
runtimes and numbers of invocations of the filtering aldort The instances are easy, and are solved
without backtracking by all the algorithms. The same seantcitegy was used as in Section 7.1.

We find that S is slower than all the algorithms introducedhis teport. UH was slower than UR,
confirming the earlier finding that the rings data structurperforms the heaps one. UR was faster than
K, which we conjecture is due to the sparse usage array. udits the observed number of invocations
of the filtering algorithms. With all array elements nonzene would have expected abokit(= 8)
times more invocations for UR than for K. Finally, the relaty poor performance of P vs. K can also be
explained by the invocation counts. The small saving in nemna invocations we see here clearly does
not outweigh the extra overhead in P of handling precedentfesconjecture that with a harder instance
and different search strategy, the difference in numbemafdations would be greater.

Finally, this application with its large but easy instanees its requirement on speed and interaction
demonstrates the usefulness of a greedy assignment mode.

8 Conclusion

Unlike the traditional way of propagating constraints wheach constraint is propagated independently
from each other, this paper exploits the ideaswfichronizing the propagation of different constraifuts
getting more scalable scheduling constraints. Startiogpfone singleumulativeconstraint, we then con-
sider severatumulativeconstraints and finally severalimulativeandprecedenceonstraints. The idea is
not to use a sophisticated filtering algorithm that perfornagse deduction by considering a conjunction of
constraints globally, but rather to perform some standaogggation in a faster way so that the filtering
algorithm scales better as the number of tasks of a schedptiwblem increases. All three algorithms
introduced in this paper can operate both in filtering modevel$ as in greedy assignment mode. Our
benchmarks show that the filtering mode achieves a signifgaeed-up over the decompaosition into in-
dependentumulativeand precedenceonstraints, especially as the numbeicamulativeor precedence
constraints increases. The greedy mode yields another rm@yof magnitude of speed up allowing an
industrial problem of significant size to be solved in reaiéi

34

Table 5: Results for the industrial application. Runtinreseéconds. All instances were solved in less than
two seconds by PG.

instance | #tasks | #precedences| algorithm | runtime | #invocations

S 46.01 8471
UH 20.82 8300
UR 14.97 8303

A 8268 31538
K 24.23 8308
P 30.00 8269
S 25.96 7794
UH 14.54 7652
UR 10.49 7655
B 7628 26711 K 14.15 7660
P 23.91 7629
S 24.36 7631
UH 13.79 7493
UR 9.79 7496
C 7467 27055 K 13.47 7501
P 22.63 7468
S 30.88 8196
UH 16.45 8051
UR 11.85 8054

D 24 28017
80 80 K 16.28 8059
P 26.66 8025
S 15.41 6557
UH 9.32 6440
UR 6.54 6443

E 421 22

6 895 K 9.55 6448
P 16.35 6422
S 14.21 6459
UH 9.00 6362
UR 6.30 6365
F 6347 22943 K 944 6370
P 16.08 6348
S 115.77 14734
UH 62.75 14403
UR 51.65 14406
G 14337 53218 K 57.90 14411
P 99.83 14338
S 73.91 11638
UH 37.56 11402
UR 28.82 11405
H 11354 41776 K 36.28 11410
P 59.61 11355
S 105.46 13669
UH 54.38 13405
UR 42.76 13408
| 13348 50311 K 50 45 13413
P 85.77 13349
S 131.91 15746
UH 73.52 15422
UR 54.75 15425
J 15351 59917 K 76.49 15430
P 115.94 15352
S 121.25 15318
35 UH 67.37 15008
UR 51.53 15011

K 1494 2541
945 625 K 69.00 15016
P 113.85 14946

ALGORITHM process_events() : (integer, integer)
1: {6,€) « extract and record i# all the events irh_cvents related to the minimal date
2: [PROCESSI NG START COMPULSORY PART (SCP) EVENTS]
3: for all events of typdSCP,t,5;) in £ do

4: ecp’ e

5. if ring, = conflict, then

6: adjust-min_var(ss, 5¢); adjust_min_var(e;, &)
7: ring, < ready

8: elseifring, = check then

9: ring, <— ready

10: if § < ¢4 then

11 forr=0tok—1do

12: gap, < gap, — hyr

13: if ecp/ < ¢ then /I introduce ECPD event if new compulsory par
14: add(ECPD,t, e;) to h_events

15: [PROCESSI NG DYNAM C (ECPD) EVENTS]
16: for all events of typ€ ECPD, t,e;) in € do

17: if ey > 0 then I/ reintroduceECP event ife; has moved
18: add(ECPD,t, e;) to h_events

19: else

20: forr=0tok—1do

2L gap,. < gap, + hyy

22: [PROCESSI NG RELEASE SUCCESSOR (RS) EVENTS]
23: for all events of type&RS, t,e;) in € do
24: if ring, = conflict, then

25: add(RS,t,d + d;) to h_events /I push back thek S event
26 elseifd # e, then

27: add(RS,t, ﬁ> to h_events /1 push back ther S event
28 else

29: forall ¢ ¢ successors; do /I scan the successors of task
30: nbpred,, < nbpred, — 1

31 if nbpred,, = 0then

32: if —release_task(t’,d, &) then return false I/ introduce events related to tagk
33: [DETERM NE THE NEXT EVENT DATE]

34: Opeqt <+ get_top_key(h_events) I +oo if empty
35: [PROCESSI NG EARLI EST START (PR) EVENTS]

36: for all events of typ& PR, t,s,) in € do /I PR must be handled las
37. if 3r| hyyr > gap, then I/ is taskt in conflict?
38: ring, < conflict,

39: else ifﬁ > Opneet then /1 might task be in conflict next time 7
40: ring, < check

41: else

42: ring, <— ready

43: return (6, Spext)

Algorithm 8: Called every time the sweep-line moves. Extracts and psesesll events at given time
pointd. Returns the curredtand the next time point,.,; and a Boolean indicating whether the algorithm
succeeds or not.

36

ALGORITHM release_task(t, d, £) : boolean
1: [CHECK THE NEW EARLI EST START]
2: if —adjust_min_var(s;,) V —adjust_-min_var(e;, 6 + d¢) then

3. return false

4: [EARLI EST START OF TASK ¢t | S ADDED AT ¢]

5: if s, = ¢ then

6: if St = St then /] taskt is scheduled and starts &t
7: forr=0tok—1do

8: gap, < gap, — hyr

9: ring, < ready

10. else

11 add(PR,t, ﬂ) to& /I add PR event to€ since it needs to be handled nof
12: add(SCP,t,35;) to h_events

13: if St < e then Il ECPD event implies presence of compulsory part

14: add(ECPD,t,e;) to h_events
15 if taskt has a least one successoen

16: add(RS,t,e;) to h_events

17: [EARLI EST START OF TASK ¢t | S ADDED AFTER /]

18: else

19: add(SCP,t,3;) to h_events

20: if St < €t then /I ECPD event implies presence of compulsory part
21 add(ECPD,t,e;) to h_events

22: if St <8¢ then /] taskt is not yet fixed
23: add(PR,t, s¢) to h_events

24: else

25: ring, < ready

26: if taskt has at least one successogn
27 add(RS,t, e) to h_events
28: return true

Algorithm 9: Generates and adds events related to taskeaning that all its predecessors have reached
their fixpoint. Returngalsefor failure if 5 has passed the latest start of taskue otherwise.

37

References

[1] E. Freuder, J. Lee, B. O'Sullivan, G. Pesant, F. RossiSEliman, and T. Walsh. The future of CP.
personal communication, 2011.

[2] Barry O’Sullivan. CP panel position - the future of CP.rgenal communication, 2011.

[3] Jean-Charles Régin and Mohamed Rezgui. Discussiontatmmstraint programming bin packing
models. InAl for Data Center Management and Cloud ComputiAgAl, 2011.

[4] ROADEF. Challenge 2012 machine reassignment, 2012.

[5] Paul Shaw. Using constraint programming and local dearethods to solve vehicle routing prob-
lems. INCP’98, volume 1520 of NCS pages 417-431. Springer, 1998.

[6] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, andkaiWallace. Why cumulative decomposi-
tion is not as bad as it sounds. @P’09, volume 5547 o£ NCS pages 746—761. Springer, 2009.

[7] Nicolas Beldiceanu and Mats Carlsson. Sweep as a geprriing technique applied to the non-
overlapping rectangles constraint. @#’01, volume 2237 oL NCS pages 377—-391. Springer, 2001.

[8] Roger Kameugne, Laure Pauline Fotso, Joseph Scott, andhéu Ngo-Kateu. A quadratic edge-
finding filtering algorithm for cumulative resource congita. In CP’11, volume 6876 ofLNCS
pages 478-492. Springer, 2011.

[9] Petr Vilim. Edge finding filtering algorithm for discetcumulative resources i@(knlogn). In
CP’09, volume 5547 o NCS pages 802—-816. Springer, 2009.

[10] Philippe Baptiste, Claude Le Pape, and Wim Nuijt€manstraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problematernational Series in Operations Research and Man-
agement Science. Kluwer, 2001.

[11] Petr Vilim. Timetable edge finding filtering algorithior discrete cumulative resources. QfAIOR
volume 6697 oLNCS pages 230-245. Springer, 2011.

[12] N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and Gcliet. A generic geometrical constraint
kernel in space and time for handling polymorphidimensional objects. I€P’07, volume 4741 of
LNCS pages 180-194. Springer, 2007.

[13] Christian Schulte. Comparing trailing and copyingdonstraint programming. In Danny De Schreye,
editor,ICLP’99, pages 275—-289. The MIT Press, 1999.

[14] Nicolas Beldiceanu, Mats Carlsson, and Sven Thiel. énsy/nchronisation as a global propagation
mechanismComputers and Operations Resear8B(10):2835-2851, 2006.

[15] A. Aggoun and N. Beldiceanu. Extending CHIP in orderdtve complex scheduling and placement
problems.Mathl. Comput. Modellingl7(7):57-73, 1993.

[16] Nicolas Beldiceanu and Mats Carlsson. A new multi-tesecumulativesonstraint with negative
heights. INCP 2002 volume 2470 ofNCS pages 63—79. Springer, 2002.

[17] Arnaud Letort, Nicolas Beldiceanu, and Mats CarlssArscalable sweep algorithm for the cumula-
tive constraint. IrCP, LNCS, pages 439-454. Springer, 2012.

[18] Arnaud Letort, Mats Carlsson, and Nicolas Beldicea#usynchronized sweep algorithm for the
k-dimensional cumulative constraint. GPAIOR LNCS, pages ?—? Springer, 2013.

[19] Rainer Kolisch and Arno Sprecher. PSPLIB — a projecesiehing problem libraryEuropean Journal
Of Operational Resear¢l96:205-216, 1996.

38

[20] M. de Berg, M. van Kreveld, M. Overmars, and O. SchwapfkaComputational geometry - algo-
rithms and ApplicationsSpringer, 1997.

[21] C. Le PapeDes systmes d’ordonnancement flexibles et opportunigi thesis, Université Paris
IX, 1988. in French.

[22] CHOCO Team. Choco: an open source Java CP library. Raseaport 10-02-INFO, Ecole des
Mines de Nantes, 2010.

[23] Mats Carlsson and et abICStus Prolog User’'s Manua§SICS, 4.2.3 edition, 2012.

[24] Helmut Simonis. An industrial benchmark. personal camnication, 2013.

39

A Source Code for Random Instance Generator

public class Generation {
public static void main(String[] args) {
/1 define paraneters
int nbTasks = 100;
int nbResources = 3;
doubl e density = 0. 8;
int capacity =1
int mnHeight =
i nt maxHei ght =
int m nDuration 1;
int maxDuration = 10;
doubl e avgNbSuccessors = 3;
int maxNbSuccessors = 9;
/1 generate the instance
RCPSPGener at or g = new RCPSPGener at or (nbTasks, nbResources, density,
capacity, m nHei ght, maxHei ght, minDuration, nmaxDuration,
avgNbSuccessors, maxNbSuccessors);
RCPSPI nstance i = g. generateCumul ative();

0;
1
5;

}

import java.util.Random
public class RCPSPGenerator {

private final int nbTasks;

private final int nbResources;
private final double density;
private final int capacity;
private final int mnHeight;
private final int maxHei ght;
private final int mnDuration;
private final int nmaxDuration;
private final double avgNbSuccessors;
private final int maxNbSuccessors;
private final Random rnd;

private doubl e avgTaskEner gy;
private int makespan;

publ i ¢ RCPSPGenerator(int nbTasks, int nbResources, double density, int
capacity, int minHeight, int naxHei ght,
int mnDuration, int maxDuration, double
avgNbSuccessors, int maxNbSuccessors) {

this.rnd = new Randon{);

thi s. nbTasks = nbTasks;

t hi s. nbResour ces = nbResour ces;
this.density = density;

this.capacity = capacity;

this. m nHei ght = ni nHei ght;

t hi s. maxHei ght = maxHei ght;

this.m nDurati on = m nDuration;

thi s. maxDurati on = maxDur ati on;

t hi s. avgNbSuccessors = avgNbSuccessors;
thi s. maxNbSuccessors = naxNbSuccessors;

40

publ i ¢ RCPSPGenerator(int nbTasks, int nbResources, double density, int
capacity, int mnHeight, int naxHei ght,
int minDuration, int maxDuration) {
t hi s(nbTasks, nbResour ces, densi ty, capaci ty, m nHei ght, naxHei ght,
m nDur ati on, maxDur ati on, 0, 0) ;

publ i ¢ RCPSPI nst ance generat eCurnul ative() ({
/1 conpute makespan
t hi s. avgTaskEnergy = ((maxDurati on+mi nDuration)/2)«*((m nHei ght +
maxHei ght)/ 2);
doubl e sunkEnergy = (long) ((avgTaskEnergy*nbTasks)/density);
this. makespan = (int) (sunEnergy / capacity);
/1 menory alloc
int[] startLB = new int[nbTasks];
int[] duration = new int[nbTasks];
int[] endUB = new i nt[nbTasks];
int[][] heights = new int[nbTasks][nbResources];
int[][] successors = new int[nbTasks][];
/1 generate the duration and the height of the tasks for 1 resource
int curNbTasks = O;
doubl e futurEnergy = 0, avgFuturEnergy, taskEnergy, curEnergy = O;
int d=-1, h=-1;
bool ean i sCk;
while (curNbTasks < nbTasks) {
avgFut ur Energy = (curNbTasks+1) xavgTaskEner gy;
isCk = fal se;
while (lisOk) {
_d = random(ni nDur ati on, maxDur ati on);
_h = random(ni nHei ght, naxHei ght) ;
taskEnergy = _d * _h;
futurEnergy = curEnergy + taskEnergy;
if ((futurEnergy <= avgFuturEnergy+1.02) && (futurEnergy >=
avgFut ur Energy+0.08)) {
isCk = true;

}
}

cur Energy = futurEnergy;
startLB[cur NbTasks] = 0;
duration[curNoTasks] = _d;
endUB[cur NbTasks] = makespan;
hei ght s[cur NoTasks][0] = _h;
cur NoTasks++;
}
/1 generate the heights of the tasks for the other dinensions
for (int r=1;r<nbResources;r++) {
cur NbTasks = 0;
curEnergy = 0;
while (curNbTasks < nbTasks) {
avgFut ur Energy = (cur NbTasks+1)*avgTaskEner gy;
istk = fal se;
while (!'isOk) {
_h = random(ni nHei ght, maxHei ght) ;
taskEnergy = duration[curNbTasks] * _h;
futurEnergy = curEnergy + taskEnergy;
if ((futurEnergy <= avgFuturEnergy*1.02) && (futurEnergy
>= avgFut ur Energy+0.08)) {
isCk = true;

41

}

}
cur Energy = futurEnergy;
hei ght s[cur NbTasks][r] = _h;
cur NbTasks++;
}
}
/'l generate the precedence relations (w thout cycle)
i f (avgNbSuccessors == 0 || maxNbSuccessors == 0) {
for (int t=0;t<nbTasks;t++) {
successors[t] = new int[O0];
}
} else {
int[] succTnmp = new int[maxNbSuccessors];
int nbSucc, currentWs
final int windowSi ze = Math. max((i nt)0.05*nbTasks, maxNbSuccessors)
doubl e percToBeSucc;
for (int i=0;i<nbTasks;i++) {
if (i+wi ndowSi ze<nbTasks) {
current W6 = wi ndowSi ze
} else {
current W6 = nbTasks - 1 - i;
}
nbSucc = 0;
percToBeSucc = avgNbSuccessors / current W5
for (int j=i+l;j<i+currentWs;j++) {
if (randonDoubl e() < percToBeSucc) {
succTnp[nbSucc] = j;
nbSucc++
if (nbSucc == maxNbSuccessors) {break;}
}
}
successors[i] = new int[nbSucc];
for (int j=0;j<nbSucc;j++) {
successors[i][j] = succTmp[j];
}
}
}

/1 create a new instance
RCPSPI nst ance i nstance = new RCPSPI nst ance();
nst ance. nbTasks = nbTasks;
nst ance. nbResour ces = nbResources
nstance. startLB = start LB
nst ance. endUB = endUB;
nstance. duration = duration;
nst ance. hei ghts = hei ghts;
nst ance. capaciti es = new i nt[nbResources];
for (int r=0;r<nbResources;r++) {
i nstance. capacities[r] = capacity;

}
i nstance. successors = SuUCCessors;
return instance;

}

public void setSeed(long seed) ({
thi s. rnd. set Seed(seed);

}

42

private int randonm(int Ib, int ub) {
return this.rnd. nextlnt(ub-Ib)+l b;

}

private doubl e randomDoubl e() {
return this.rnd. next Doubl e();

}
}

public class RCPSPI nstance {

public int[] startLB;
public int[] endUB;

public int[] duration;
public int[][] heights;
public int[][] successors;
public int[] capacities;
public int nbTasks;

public int nbResources;

RCPSPI nst ance() {}

43

B Source Code for PSPLIB Instance Solver

:- use_nodul e(library(lists)).

:- use_nodul e(library(ugraphs)).

:- use_nodul e(library(timeout)).

:- use_nodul e(library(file_systens)).
:- use_nodul e(library(clpfd)).

:- ensure_| oaded(bounds).

solve_dir(j120, static),
solve_dir(j 120, uni),

sol ve_dir(j 120, deconposed),

sol ve_dir(j 120, multi),
solve_dir(j120, multi_precedences),
solve_dir(j90, static),
solve_dir(j90, uni),

sol ve_dir(j 90, deconposed),
solve_dir(j90, nmulti),

sol ve_dir(j90, nulti_precedences),
solve_dir(j60, static),
solve_dir(j60, uni),
solve_dir(j 60, deconposed),
solve_dir(j60, multi),

sol ve_dir(j 60, nulti_precedences),
solve_dir(j30, static),
solve_dir(j30, uni),
solve_dir(j 30, deconposed),
solve_dir(j30, nmulti),
solve_dir(j30, nmulti_precedences),
true.

solve_dir(Dir, Al go) :-
solve_dir(Dir, Al go, mats_2phase).

solve_dir(Dir, Algo, Sel) :-
atom concat(’../PSPLIB/', Dr, AbsDir),
file_nenmbers_of _directory(AbsDir, Menbers),
(f oreach(Rel ati ve- Absol ut e, Menbers),
paran(Al go, Sel ,Dir)
do \+ \+ solve(Dir, Absolute, Relative, Al go, Sel)
).

solve(Dir, Abs, Rel, Algo, Sel) :-
generate(Dir, Abs, Rel, Algo, Ss, Durs, Es, Hss, Ps,
Tasks1l-Linl, Tasks2-Lin2, Tasks3-LinB, Tasks4-Limi),
statistics(runtine,),
fd_statistics(backtracks, _),
fd_statistics(resunptions, _),
di sjunctives(Tasks1, Liml),
di sjunctives(Tasks2, LinR),
di sjunctives(Tasks3, LinB),
di sjunctives(Tasks4, Lim),
post (Al go, [Tasksl1-Liml, Tasks2-Lin2, Tasks3-Li n8, Tasks4-Limd], Hss, Ps
F).
ti me_out (search(Sel, Ss, Durs, Es, Hss, F), 60000, Res),
statistics(runtime, [_,T2]),
fd_statistics(backtracks, Btr),

44

fd_statistics(resunptions, Ru),
atom concat (I nst, '.sm, Rel),
portray_cl ause(data(l nst, Al go, Res, T2, Btr, Ru)).

search(mat s_2phase, Ss, Durs, _Es, Hss,) :-

(f oreach(V, Ss),
foreach(C, Bi ns),
f oreach(D, Durs),
f or each(Hs, Hss),
f or each(V- Rank, Pai rs),
f or each(Rank- B, KL1),
foreach(_-C, KL2)

do B #= VID,
sum i st (Hs, Hsum,
Rank is -DrHsum

),

keysort (KL1, KL2),

| abel ing([], Bins),

mat s_| abel i ng(Pairs).

mats_| abeling([]) :- !.
mat s_| abel i ng(Pairs0) :-

(foreach(Pair, Pairs0),
fromo(Pairs, Pairsl, Pairs2,[]),
fromo(([[none]]-0)-0, Keyl, Key2, -Q2)

do Pair = OR
(nonvar(O ->

Pairsl = Pairs2,
Keyl = Key2
; fd_set(O Mn),
(Mn-R -0 @ Keyl
-> Key2 = (Mn-R -0
Pairsl = [Pair| Pairs2]
Key2 = Keyl,
Pairsl = [Pair| Pairs2]
)
)
mats_| abel i ng(2, Pairs).

mats_| abel ing(Q Pairs) :-
nonvar (O, !,
mat s_| abel i ng(Pairs).
mats_| abel ing(Q Pairs) :-
fd_mn(O Mn),
fd_max(O Max),
Md is (M n+Max) >>1,
(O #=< M d,
mat s_| abel i ng(O Pairs)
O #> Md,
mat s_| abel i ng(Pai rs)

).

post (static, TasksLimts, _, _,) :-
(foreach(Tasks-Limt, TasksLimts)
do cunul atives(Tasks, [machine(1,Limt)], [bound(upper)])

)

post (uni, TasksLimts, _, _, _) :-

(foreach(Tasks-Limt, TasksLimts)

45

do clpfd:uni _cumul ative(Tasks, [limt(Limt)])

post (deconposed, TasksLimts, _, _,) :-
(foreach(Tasks-Linit, TasksLinits)
do (foreach(task(O D, E, H 1), Tasks),
foreach(task(O D, E [H,I), Mrasks)

do true
),
clpfd: nul ti_cunul ative(Mrasks, [Linmt])
).
post (rmulti, TasksLimts, Hss, _,) :-

(foreach(_-Limit, TasksLinits),
foreach(Limt,Limts)

do true

)

TasksLimts = [Tasks-_|],

(foreach(task(O D, E, _, 1), Tasks),
foreach(task(O D, E, Hs, |), Mrasks),

f or each(Hs, Hss)
do true
)
cl pfd: mul ti _cumul ative(Mrasks, Linmits).
post (rmul ti _precedences, TasksLimits, Hss, Ps,) :-
(foreach(_-Limt, TasksLinmits),
foreach(Limt,Lints)

do true

)

TasksLimts = [Tasks-_|],

(foreach(task(O D, E, _, 1), Tasks),
foreach(task(O D, E, Hs, |), Mrasks),

f oreach(Hs, Hss)
do true

).

clpfd:multi_cumul ati ve(Mrasks, Limts, [precedences(Ps)]).

normul ti(static).
norul ti (uni).
nomul ti (deconposed) .

di sjunctives(Tasks, Lim :-

(f or each(Task, Tasks),
foreach(H Task, KL1)

do Task = task(_,_, ,H_)

)

keysort (KL1, KL2),

reverse(KL2, KL3),

(fromo(LimHL H2,),
fromt o(KL3, [H2- Task2| KL4] , KL4,),
fromo(Disj,Disjl,Disj21[]),
fronmo(>, _, Cmp, <),

paranm(Lim
do (H1+H2 > Lim
-> Disjl = [Task2| D sj 2]
; Disjl1 = Disj2
),

(K4 =[] ->Cmp = (<)
; H1+H2 =< Lim-> Cmp =
Cp = (>)

()

46

).

nbj obs(j 30,
nbj obs(j 60,
nbj obs(j 90,

)

fromo(Disj,[task(Sl, _,El, _,)|Disj3]

(foreach(task(S2, ,E2, ,),Disj3),
par anm(S1, E1)

do El #=< S2 #\/ E2 #=< S1

)

30).
60) .
90) .

nbj obs(j 120, 120).

,Disj3,[])

generate(Dir, Abs, Rel, Algo, Ss, Ds, Es, Hss, Precedences,
Tasks1-Liml, Tasks2-LinR, Tasks3-LinB, Tasks4-Limd) :-
nbj obs(Dir, NJ),
bounds(Rel, LCT, _),
see(Abs),
ski p_lines(19),

(

do
)

for(_,1,NJ),
f oreach(Succs, Succss)
read_ints([_, _,_| Succs])

skip_lines(6),

(

do

).

for(_,1,NJ),

f oreach(sS, Ss),

f oreach(Dur, Ds),

f or each(Hs, Hss),

f oreach(E, Es),

front o(Tasks1, Tasksla, Taskslb,
from o(Tasks2, Tasks2a, Tasks2b,
from o(Tasks3, Tasks3a, Tasks3b,
front o(Tasks4, Tasks4a, Tasks4b,
par anm(LCT, Al go)

(1
(1,
(1
[n

read_ints([_, _, Dur|Hs]),
Hs = [Rl, R2, R3, R4],
Sin 0..LCT,

E in 0..LCT,

S + Dur #= E,

(R1=: =0, nonulti (Al go) -> Tasksla = Taskslb

Tasksla = [task(S, Dur, E, R1L, 1) | Tasks1b]

(R2=: =0, nonulti (Al go) -> Tasks2a = Tasks2b

Tasks2a = [task(S, Dur, E, R2, 1) | Tasks2b]

(R3=: =0, nonulti (Al go) -> Tasks3a = Tasks3b

Tasks3a = [task(S, Dur, E, R3, 1) | Tasks3b]

(R4=: =0, nonulti (Al go) -> Tasksd4a = Tasks4b

skip_lines(4),

read_i nts([Linml, Li n2, Li nB, Li m4]),

seen,

gen_precedences(Al go, NJ, Succss, Es, Ss,

47

Tasksd4a = [task(S, Dur, E, R4, 1) | Tasks4b]

Precedences).

gen_precedences(nul ti _precedences, NJ, Succss,
(count(11,1,_),
f or each(Succsl, Succss),
front o(Precedencesl, Precedences?2, Precedences5,[]),
par an(NJ)
do (f oreach(J, Succsl),
fromt o(Precedences?2, Precedences3, Precedences4, Precedences5),
paran(|1, NJ)
do J1is J-1,
(J1 =< NJ -> Precedences3 = [|1-J1| Precedences4]
; Precedences3 = Precedences4

)

_, _, Precedencesl) :- !,

)
).
gen_precedences(_, _, Succss, Es, Ss, []) :-
f oreach(Succsl, Succss),
foreach(Ei, Es),
foreach(Si, Ss),
par an(Ss)
do (f oreach(J, Succsl),
param(Si, Ei , Ss)
do J1is J-1,
(nth1(J1, Ss, S§j) -> E #=<S ; true)

)
).
skip_lines(N) :-
(for(_,1,N
do \+ \+ read_line())
).

read_ints(Ints) :-
read_l i ne(Line),
parse_ints(Line, Ints).

parse_ints([], [])-

parse_ints([DiglLine], [Int]Ints]) :-
Dig > 00, Dig =<009, !
IntO is Dig - 0’0,
parse_ints(Line, Int0O, Int, Ints).

parse_ints([_|Line], Ints) :-
parse_ints(Line, Ints).

parse_ints([Di g|Line], IntO, Int, Ints) :-
Dig > 00, Dig=<2009, !,
Intlis 10+xInt0 + Dig - 0’0,
parse_ints(Line, Intl, Int, Ints).

parse_ints(Line, Int, Int, Ints) :-
parse_ints(Line, Ints).

48

	Introduction
	Motivations and General Decisions
	A Critical Analysis of the 2001 Sweep Algorithm
	Event Point Series
	Sweep-Line Status
	Weaknesses of the 2001 Sweep Algorithm

	General Design Decisions
	Handling the Weaknesses of the 2001 sweep
	Property

	A Dynamic Sweep Algorithm for one Single cumulative Constraint
	Event Point Series
	Sweep-Line Status
	Algorithm
	Main Loop
	The Filtering Part
	The Synchronization Part

	Correctness and Property Achieved by sweep_min
	Complexity

	A Synchronized Sweep Algorithm for the k-dimensional cumulative Constraint
	Event Point Series
	Sweep-Line Status
	Algorithm
	Main Loop
	The Event Processing Part
	The Filtering Part

	Complexity

	A Synchronized Sweep Algorithm for the k-dimensional cumulative with precedences Constraint
	Event Point Series
	Sweep-Line Status
	Algorithm
	Main Loop
	The Event Processing Part
	Releasing a Successor

	Complexity

	Synthesis
	The Key Points of the New Sweep Algorithms
	The Greedy Mode

	Evaluation
	Random Instances
	Resource-Constrained Project Scheduling
	An Industrial Application

	Conclusion
	Source Code for Random Instance Generator
	Source Code for PSPLIB Instance Solver

