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1 Introduction

In the 2011 Panel of the Future of CP [1], one of the identified challenges for CP was the need to han-
dle large scale problems. Multi-dimensional bin-packing problems were quoted as a typical example [2],
particularly relevant in the context of cloud computing. Indeed, the importance of multi-dimensional bin-
packing problems was recently highlighted in [3], and was part of the topic of the 2012 Roadef Chal-
lenge [4].

Till now, the tendency has been to use dedicated algorithms and metaheuristics [5] to cope with large
instances. Various reasoning methods can be used forcumulativeconstraints, including Decomposition [6],
Time-Table [7], Edge-Finding [8, 9], Energetic Reasoning [10], and recently Time-Table and Edge-Finding
combined [11]. A comparison between these methods can be found in [10]. These filtering algorithms
focus on having the best possible deductions rather than on scalability issues. This explains why they
usually focus on small size problems (i.e., typically less than 200 tasks up to 10000 tasks) but leave open
the scalability issue.

Like what was already done for thegeostconstraint [12], which handles up to 2 million boxes, our
goal is to come up with lean filtering algorithms for cumulative problems. In order to scale well in terms
of memory, we design lean filtering algorithms, which can also be turned into greedy algorithms. This
approach allows us to avoid the traditional memory bottleneck problem of CP solvers due to trailing or
copying data structures [13]. Moreover, like forgeost, our lean algorithms and their derived greedy modes
are compatible in the sense that they can be used both at the root and at each node of the search tree, i.e. first
call the greedy mode for trying to find a solution and, if that doesn’t work, use the filtering mode to restrict
the variables and continue the search.

To achieve scalability we reuse the idea ofsweep synchronizationintroduced in [14]: rather than prop-
agating each constraint independently, we adjust the minimum (respectively maximum) of each variable
wrt. all cumulativeand allprecedenceconstraints in one single sweep over the time horizon.

This report focuses on thecumulativeconstraint, originally introduced in [15] for modeling resource
scheduling problems, and two extensions: (1) thek-dimensional cumulativeconstraint, which handles mul-
tiple parallel resources; and (2) thek-dimensional cumulative with precedencesconstraint, which handles
multiple parallel resources and precedence relations between the tasks.

Given n tasks and a resource with a maximum capacitylimit where each taskt (0 ≤ t < n) is
described by its startst, fixed durationdt (dt > 0), endet and fixed resource consumptionht (ht ≥ 0), the
cumulativeconstraint with the two arguments

• 〈〈s0, d0, e0, h0〉, . . . , 〈sn−1, dn−1, en−1, hn−1〉〉

• limit

holds if and only if conditions (1) and (2) are true:

∀t ∈ [0, n− 1] : st + dt = et (1)

∀i ∈ Z :
∑

t∈[0,n−1],
i∈[st,et)

ht ≤ limit (2)

Section 2 provides a critical analysis of the major bottlenecks of the 2001 sweep algorithm [16] for
cumulative, and gives general design decisions to avoid them. Based on these design decisions Section 3
presents a new sweep based filtering algorithm introduced in[17]. Section 4 revisits the sweep based
filtering algorithm proposed in [18] for handlingk cumulative constraints, while Section 5 extends it to
also handle precedence constraints between tasks. Section6 puts these algorithms into perspective. Sec-
tion 7 evaluates our new sweep algorithms on industrial and random instances, and on the well known
PSPLib [19], and finally Section 8 concludes.
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2 Motivations and General Decisions

The sweepalgorithm is based on an idea which is widely used in computational geometry and that is
called sweep [20]. In constraint programming, sweep was used for implementing thenon-overlapping
constraint [12] as well as thecumulativeconstraint [16].

In 2 dimensions, a planesweepalgorithm solves a problem by moving a vertical line, i.e. thesweep-line,
from left to right. The algorithm uses two data structures:

• The sweep-line status, which contains some information related to the current position δ of the
vertical line.

• Theevent point series, which holds the events to process, ordered in increasing order according to
the time axis.

The algorithm initializes the sweep-line status for the starting position of the vertical line. Then the sweep-
line “jumps” from event to event; each event is handled and inserted into or removed from the sweep-line
status.

We recall the 2001 sweep algorithm [16] and identify five weaknesses preventing it from scaling well.
To overcome those weaknesses, we introduce some general design decisions that will be shared by all the
three new sweep algorithms described in Sections 3, 4 and 5.

2.1 A Critical Analysis of the 2001 Sweep Algorithm

In the context of resource scheduling, the sweep-line scansthe time axis in order to build a compulsory
part profile (CPP) and to perform checks and pruning according to this profile and to the resource limit.
So the algorithm is a sweep variant of thetimetablemethod [21]. To define the notion of CPP let us first
introduce the definition of thecompulsory partof a task.

Definition 1 (Compulsory Part) The compulsory part of a taskt is the intersection of all its feasible in-
stances. The height of the compulsory part of a taskt at a given time pointi is defined byht if i ∈ [st, et)
and 0 otherwise, wherest andet respectively denote the maximum value of the start variablest and the
minimum value of the end variableet.

Definition 2 (CPP) Given a set of tasksT , the CPP of the setT consists of the aggregation of the com-
pulsory parts of the tasks inT . The height of the CPP at a given instanti is given by

∑
t∈T ,

i∈[st,et)

ht.

We now introduce a running example that will be used, and extended later, throughout this report for
illustrating the different algorithms.

Example 1 Consider five taskst0,t1,. . . ,t4 which have the followingstart, duration, endandheight:

• t0: s0 ∈ [1, 1], d0 = 1, e0 ∈ [2, 2], h0 = 2,

• t1: s1 ∈ [0, 3], d1 = 2, e1 ∈ [2, 5], h1 = 2,

• t2: s2 ∈ [0, 5], d2 = 2, e2 ∈ [2, 7], h2 = 1,

• t3: s3 ∈ [0, 9], d3 = 1, e3 ∈ [1, 10], h3 = 1,

• t4: s4 ∈ [0, 7], d4 = 3, e4 ∈ [3, 10], h4 = 2,

subject to the constraint

cumulative(〈 〈s0, d0, e0, h0〉,
〈s1, d1, e1, h1〉,
〈s2, d2, e2, h2〉,
〈s3, d3, e3, h3〉,
〈s4, d4, e4, h4〉〉, 3)
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(see Part (A) of Figure 1). Since taskt0 starts at instant 1 and sincet1 cannot overlapt0 without exceeding
the resource limit 3, the earliest start of taskt1 is adjusted to 2 (see Part (B)). Since taskt1 now has a
compulsory part on interval[3, 4) and since taskt4 cannot overlap that compulsory part without exceeding
the resource limit 3, the earliest start of taskt4 is adjusted to 4 (see Part (C)). The purpose of the sweep
algorithm is to perform such filtering in an efficient way.

(A)
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0 1 2 3 4
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1
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3
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t0 s0 e0

t1 s1 e1

t2 s2 e2

t3 s3 e3
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(B)

r0

0 1 2 3 4 5 6
0

1

2

3

t0

t0 s0 e0

t1 s1 e1

t2 s2 e2
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(C)
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t0 t1
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Figure 1: Parts (A), (B), and (C) respectively represent theearliest positions of the tasks and the CPP, of
the initial problem described in Example 1, after a first sweep, and after a second sweep.

2.1.1 Event Point Series

In order to build the CPP and to prune the start variables of the tasks, the sweep algorithm considers the
following types of events:

• Profile eventsfor building the CPP correspond to the latest starts and the earliest ends of the tasks
for which the latest start is strictly less than the earliestend (i.e. the start and the end of a non-empty
compulsory part).

• Pruning eventsfor recording the tasks to prune, i.e. the not yet fixed tasks that intersect the current
positionδ of the sweep-line.

Table 1 describes the different types of events, where each event corresponds to a quadruple〈event type,
task generating the event , event date, available space update〉. These events are sorted by increasing
date.

Table 1: Event types for the 2001 sweep with corresponding condition for generating them. The last event
attribute is only relevant for event typesSCP andECP .

Generated Events (2001 algo.) Conditions
〈SCP , t, st,−ht〉 st < et
〈ECP , t, et,+ht〉 st < et
〈PR, t, st, 0〉 st 6= st

Continuation of Example 1 (Generated Events). To the initial domains of the five tasks of Example 1
correspond the following events that are sorted by increasing dates:〈PR, 1, 0, 0〉 〈PR, 2, 0, 0〉 〈PR, 3, 0, 0〉
〈PR, 4, 0, 0〉 〈SCP , 0, 1,−2〉 〈ECP , 0, 2, 2〉.
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2.1.2 Sweep-Line Status

The sweep-line maintains three pieces of information:

• The current sweep-line positionδ, initially set to the date of the first event.

• The amount of available resource at instantδ, denoted bygap, i.e., the difference between the re-
source limit and the height of the CPP at instantδ.

• A list of tasksTprune , recording all tasks that potentially can overlapδ, i.e. tasks for which the start
may be pruned wrt. instantδ.

The sweep algorithm first creates and sorts the events wrt. their dates. Then, the sweep-line moves from
one event to the next event, updatinggap andTprune . Once all events atδ have been handled, the sweep
algorithm tries to prune all tasks inTprune wrt. gap and interval[δ, δnext) whereδnext is the next sweep-
line position, i.e. the date of the next event. More precisely, given a taskt ∈ Tprune with no compulsory
part overlapping interval[δ, δnext) such thatht > gap, the interval[δ − dt + 1, δnext) is removed from the
start variable of taskt.

Continuation of Example 1 (Illustrating the 2001 Sweep Algorithm). The sweep algorithm reads the events
〈PR, 1, 0, 0〉, 〈PR, 2, 0, 0〉, 〈PR, 3, 0, 0〉, 〈PR, 4, 0, 0〉 and setsgap to the resource limit 3 andTprune to
{t1, t2, t3, t4}. During a first sweep, the compulsory part of taskt0 (see Part (A) of Figure 1) permits
to prune the start oft1 andt4 since thegap on [1, 2) is strictly less thanh1 andh4. The pruning of the
earliest start oft1 during the first sweep causes the creation of a compulsory part for taskt1 which is not
immediately used to perform more pruning (see Part (B) of Figure 1). As shown in Part (C) of Figure 1, it
is necessary to wait for a second sweep to take advantage of this new compulsory part to adjust the earliest
start of taskt4 to 4. A third and last sweep is performed to find out that the fixpoint was reached.

2.1.3 Weaknesses of the 2001 Sweep Algorithm

We now list the main weaknesses of the 2001 sweep algorithm.

➀ [Too static] The potential increase of the CPP during a single sweep is notdynamically taken
into account. In other words, creations and extensions of compulsory parts during a sweep are not
immediately used to perform more pruning while sweeping. Example 1 illustrates this point since
the 2001 sweep algorithm needs to be run from scratch 3 times before reaching its fixpoint.

➁ [Often reaches its worst-case time complexity] The worst-case time complex-
ity of the 2001 sweep algorithm isO(n2) wheren is the number of tasks. This complexity is often
reached in practice when most of the tasks can be placed everywhere on the time line. The reason
is that it needs at each positionδ of the sweep-line to systematically re-scan all tasks that overlapδ.
Profiling the 2001 implementation indicates that the sweep algorithm spends up to 45% of its overall
running time scanning again and again the list of potential tasks to prune.

➂ [Creates holes in the domains] The 2001 sweep algorithm removes intervals of con-
secutive values from domain variables. This is a weak point,which prevents handling large instances
since the domain of a variable cannot just be compactly represented by its minimum and maximum
values.

➃ [Does not take advantage of bin-packing] For instances where all tasks have du-
ration one, the worst time complexityO(n2) is left unchanged.

➄ [Too local] Having in the same problem multiplecumulativeconstraints that systematically
share variables leads to the following source of inefficiency. In a traditional setting, eachcumulative
constraint is propagated independently on all its variables, and because of the shared variables, the
sweep algorithm of eachcumulativeconstraint should be rerun several times to reach the fixpoint.
Note that a single update of a bound of a variable by onecumulativeconstraint will trigger all
the othercumulativeconstraints again. The same observation holds when, in addition to resource
constraints, one also considers precedences between tasks.
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2.2 General Design Decisions

We now give some important general design decisions that permit to avoid the five weaknesses of the 2001
sweep algorithm identified above. Then, we introduce the property maintained by our sweep algorithm [17]
for one singlecumulativeconstraint, which will be extended in Sections 4 and 5 for thek-dimensional
cumulativeand thek-dimensional cumulative with precedencesconstraints.

2.2.1 Handling the Weaknesses of the 2001 sweep

Avoiding Point ➀ [Too static]. As illustrated by Example 1, the 2001 sweep algorithm needsto
be re-run several times in order to reach its fixpoint (i.e., 3times in our example). This is due to the fact
that, during one sweep, restrictions on task origins are notimmediately taken into account. The three new
sweep algorithms filter the task origins in two distinct sweep stages. A first stage, calledsweepmin, tries
to adjust the earliest starts of tasks by performing a sweep from left to right, and a second stage, called
sweepmax, tries to adjust the latest ends by performing a sweep from right to left. Note that the propagator
needs to iterate the two phases until fixpoint. Suppose thatsweepminhas run, and thatsweepmaxextends
the CPP. Thensweepmin may no longer be at fixpoint, and needs to run again, and so on. W.l.o.g, we
focus from now on the first stage,sweepmin, since the second stage is completely symmetric. In our three
new algorithms,sweepmindynamically uses these deductions to reach its fixpoint in one single sweep. To
deal with this aspect, our new sweep algorithms introduce the concept ofconditional events, i.e., events
that are created while sweeping over the time axis, anddynamic events, i.e., events that can be shifted over
the time axis.

Avoiding Point ➁ [Often reaches its worst-case time complexity]. For partially
avoiding Point➁ due to the rescan of all tasks that overlap the current sweep-line position, we introduce
dedicated data structures in our three new algorithms. The idea is based on the following observations: if
a task of heighth cannot overlap the current sweep-line position and consequently needs to be adjusted,
all tasks with a height greater than or equal toh need to be adjusted too; and symmetrically, if a task of
heighth can overlap the current sweep-line position, all tasks witha height less than or equal toh can also
overlap the current sweep-line position and consequently do not need to be adjusted too.

Avoiding Point ➂ [Creates holes in the domains]. The first difference from the 2001 sweep
is that our algorithms only deal with domain bounds, which isa good way to reduce the memory consump-
tion for the representation of domain variables. Consequently, we need to change the 2001 algorithm,
which creates holes in the domain of task origins.

Avoiding Point ➃ [Does not take advantage of bin-packing]. Moreover, the data struc-
tures introduced for avoiding Point➁ will permit to reduce the worst-case time complexity of our algo-
rithms in the specific case of bin-packing problems, i.e. when the duration of all tasks is reduced to one.
This point will be explained in Section 3.5.

Avoiding Point ➄ [Too local]. To handle this weak point, we first design a second filtering algo-
rithm that handles multiple parallel resources in one single constraint, calledk-dimensional cumulative.
The main difference is that we directly adjust the earliest start of a task wrt. all resource constraints rather
than successively and completely propagating each resource constraint independently. Second, following
this idea, we also design a third filtering algorithm that handles multiple parallel resources and precedences
in one single constraint, calledk-dimensional cumulative with precedences. First, we recall a method for
adjusting the start and end times of a set of tasks subject to aset of precedences. Then, we present the main
idea of these two filtering algorithms.

Handling a Set of Precedences. Given a set of tasksT and a set of precedences where each precedence
denotes a task ofT that must be completed before the start of another task ofT , adjusting the earliest and
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latest start of each task is done by a two-phase algorithm that starts from a topological order of the tasks
(each task is a vertex of a digraph and each precedence an arc):

① The first phase adjusts the earliest start of each task by successively selecting a source, i.e. a task
with no predecessor, removing it and updating the earliest start of its direct successors.

② Similarly, the second phase adjusts the latest start of eachtask by successively selecting a sink, i.e. a
task with no successor.

Since in each phase the method considers each task only once,it converges directly to the fixpoint in linear
time. The key observation is that the adjustment of the earliest start of a task does not influence the earliest
start of its predecessors.

Importing the Idea of Topological Sort. As soon as resource constraints come into play, the two-phase
method for handling a set of precedences was not considered any more and each resource and precedence
constraints were propagated independently until the fixpoint. The key idea of this report is to reuse as much
as possible the idea of the two-phase method by selecting, inthe first phase, the task which has the earliest
start and adjusting its earliest startwrt. all constraintswhere the task is involved, i.e. all precedence and
resource constraints. To achieve this, we revisit the way resource and precedence constraints are propagated
so that we consider them in a synchronized way rather than in isolation.

2.2.2 Property

Our dynamic sweep algorithm for thecumulativeconstraint maintains the following property.

Property 1 Given acumulativeconstraint with its set of tasksT and resource limitlimit , sweepmin
ensures that:

∀t ∈ T , ∀i ∈ [st, et) : ht +
∑

t′∈T \{t},
i∈[s

t′
,e

t′
)

ht′ ≤ limit (3)

Property 1 ensures that, for any taskt of the cumulativeconstraint, one can schedulet at its earliest
start without exceeding the resource limit wrt. the CPP for the tasks ofT \{t}.

Note that we can construct from Property 1 a relaxed solutionof thecumulativeconstraint by:

① setting the resource consumption to 0 for the tasks that do not have any compulsory part,

② setting the duration to the size of the compulsory part (i.e.et − st) for the tasks that do have a
compulsory part, and

③ assigning the start of each task to its earliest start.

3 A Dynamic Sweep Algorithm for one Singlecumulative Constraint

This section presents the new sweep algorithm introduced in[17] for thecumulativeconstraint. We describe
it in a similar way the 2001 original sweep algorithm was introduced in Section 2. We first present the new
event point series, then describe the newsweep-line status, and the overall algorithm. Finally we prove that
Property 1 introduced above is maintained by the new algorithm and we give its worst-case complexity in
the general case as well as in the case where all task durations are fixed to one.

3.1 Event Point Series

In order to address Point➀ [Too static] of Section 2,sweepminshould handle the extension and the
creation of compulsory parts caused by the adjustment of theearliest starts of tasks in one single sweep.
We therefore need to modify the events introduced in Table 1.Table 2 presents the events ofsweepmin
and their relations with the events of the 2001 algorithm.
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• The event type〈SCP , t, st,−ht〉 for the start of compulsory part of taskt is left unchanged. Note
that, sincesweepmin only adjusts the earliest starts, the start of a compulsory part (which corre-
sponds to a latest start) can never be further extended to theleft.

• The event type〈ECPD , t, et, ht〉 for the end of the compulsory part of taskt is converted to〈ECPD , t, et, ht〉
whereD stands fordynamic. The date of such event corresponds to the earliest end oft (also the end
of its compulsory part) and may increase due to the adjustment of the earliest start of taskt.

• A new event type〈CCP , t, st, 0〉, whereCCP stands forconditional compulsory part, is initially
created for each taskt that does not have any compulsory part. At the latest, once the sweep-
line reaches positionst, it adjusts the earliest start of taskt to know if a compulsory part appears.
Consequently the conditional event can be transformed intoanSCP and anECPD events, reflecting
the creation of compulsory part for a task that did not initially have any compulsory part.

• The event type〈PR, t, st, 0〉 for the earliest start of taskt is left unchanged. It is required to add task
t to the list of tasks that potentially can overlapδ.

Table 2: The list of different event types with the conditionfor generating them. The last attribute of an
event (i.e.available space increment) is only relevant forSCP , ECP andECPD event types.

New Events Events (2001 algo.) Conditions
〈SCP , t, st,−ht〉 〈SCP , t, st,−ht〉 st < et
〈ECPD , t, et,+ht〉 〈ECP , t, et,+ht〉 st < et
〈CCP , t, st, 0〉 st ≥ et
〈PR, t, st, 0〉 〈PR, t, st, 0〉 st 6= st

On the one hand, some of these events may have their dates modified while sweeping (seeECPD ). On
the other hand, some events create new events (seeCCP ). Consequently, rather than just sorting all events
initially, we insert them by increasing date into a heap calledh events so that new or updated events can
be dynamically added into this heap while sweeping.

Continuation of Example 1 (New Generated Events forsweepmin). The following events are generated
and added intoh events (note that the new events are highlighted in bold):〈PR, 1, 0, 0〉, 〈PR, 2, 0, 0〉,
〈PR, 3, 0, 0〉, 〈PR, 4, 0, 0〉, 〈SCP , 0, 1,−2〉, 〈ECPD,0,2,2〉, 〈CCP,1,3,0〉, 〈CCP,2,5,0〉, 〈CCP,4,7,0〉,
〈CCP,3,9,0〉. The event〈ECPD,0,2,2〉 stands for the end of compulsory part of taskt0. In our ex-
ample, since taskt0 is fixed, this event cannot be pushed on the time axis. The event 〈CCP,1,3,0〉 stands
for the date where the compulsory part of taskt1 can start if and only if its earliest start is pruned enough
(i.e. such thatst + dt > st).

3.2 Sweep-Line Status

The sweep-line maintains the following pieces of information:

• The current sweep-line positionδ, initially set to the date of the first event.

• The amount of available resource at instantδ, denoted bygap, i.e., the difference between the re-
source limit and the height of the CPP.

• Two heapsh conflict andh check for partially avoiding Point➁ of Section 2, namely avoiding to
scan again and again the tasks that overlap the current sweep-line position. W.l.o.g. assume that the
sweep-line is at its initial position and that we handle an event of typePR (i.e., we try to find out the
earliest possible start of a taskt).
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– On the one hand, if the height of taskt is strictly greater than the available gap atδ, we know
that we have to adjust the earliest start of taskt. In order to avoid re-checking each time we
move the sweep-line, whether or not the gap is big enough wrt.ht, we say that taskt is in
conflict with δ. We insert taskt into the heaph conflict , which records all tasks that are in
conflict with δ, sorted by increasing height, i.e. the top of the heaph conflict corresponds to
the smallest value. This ordering is induced by the fact that, if we need to adjust the earliest
start of a taskt, all earliest task starts with a height greater than or equalto ht also need to be
adjusted.

– On the other hand if the height of taskt is less than or equal to the available gap at instantδ,
we know that the earliest start of taskt could be equal toδ. But to be sure, we need to check
Property 1 for taskt (i.e.,T = {t}). For this purpose we insert taskt into the heaph check ,
which records all tasks for which we currently check Property 1. Taskt stays inh check until
a conflict is detected (i.e.,ht is greater than the available gap, andt goes back intoh conflict )
or until the sweep-line passes instantδ + dt without having detected any conflict (and we have
found a feasible earliest start of taskt wrt. Property 1). In the heaph check , tasks are sorted
by decreasing height, i.e. the top of the heaph check corresponds to the largest value, since if
a taskt is not in conflict withδ, all other tasks ofh check of height less than or equal toht are
also not in conflict withδ.
In the following algorithms, functionempty(h) returnstrue if the heaph is empty,falseother-
wise. Functionget top key(h) returns the key of the top element in the heaph. We introduce
an integer arraymins, which stores for each taskt in h check the value ofδ whent was added
into h check .

3.3 Algorithm

The sweepmin algorithm performs one single sweep over the event point series in order to adjust the
earliest start of the tasks wrt Property 1. It consists of a main loop, a filtering part and a synchronization
part. This last part is required in order to directly handle the deductions attached to the creation or increase
of compulsory parts in one single sweep. In addition tominsand the heapsh check andh conflict , we
introduce a Boolean arrayevup, which indicates for each taskt whether events related to the compulsory
part of taskt were updated or not. The value is set totrue once we have found the final value of the earliest
start of taskt and once the events related to the compulsory part of taskt, if it exists, are up to date in the
heap of events. We introduce a listnewActiveTasks, which records all tasks that have theirPR event atδ.
The primitiveadjust min var(var , val) adjusts the minimum value of the variablevar to valueval .

3.3.1 Main Loop

The main loop (Algorithm 1) consists of:

• [INITIALIZATION] (lines 2 to 6). The events are generated and inserted intoh events according
to the conditions given in Table 2. Theh check andh conflict heaps are initialized as empty heaps.
The Booleanevupt is set totrue if and only if the taskt is fixed. The integerminst is set to the
earliest start of the taskt. The listnewActiveTasksis initialized as an empty list.δ is set to the date
of the first event.

• [MAIN LOOP] (lines 8 to 25). For each dateδ the main loop processes all the corresponding events.
It consists of the following parts:

– [HANDLING A SWEEP-LINE MOVE] (lines 10 to 17). Each time the sweep-line moves,
we update the sweep-line status (h check andh conflict ) wrt. the newactive tasks, i.e. the
tasks for which the earliest start is equal toδ. All the new active tasks that are in conflict with
δ in the CPP are added intoh conflict (line 13). For tasks that are not in conflict we check
whether the sweep interval[δ, δnext) is big enough wrt. their durations. Tasks for which the
sweep interval is too small are added intoh check (line 14). Then to take into account the new
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ALGORITHM sweep min() : boolean
1: [INITIALIZATION]
2: h events ← generation of events wrt.n, st, st, dt, et andh and Table 2.
3: h check , h conflict ← ∅; newActiveTasks ← ∅
4: for t = 0 to n− 1 do
5: evupt ← (st = st); minst ← st
6: δ ← get top key(h events); δnext ← δ; gap ← limit

7: [MAIN LOOP]
8: while ¬empty(h events) do
9: [HANDLING A SWEEP-LINE MOVE]

10: if δ 6= δnext then
11: while ¬empty(newActiveTasks) do
12: extract first taskt from newActiveTasks

13: if ht > gap then add〈ht, t〉 into h conflict

14: else ifdt > δnext − δ then {add〈ht, t〉 into h check ; minst ← δ;}
15: elseevupt ← true
16: if ¬filter min(δ, δnext) then return false
17: δ ← δnext
18: [HANDLING CURRENT EVENT]
19: δ ← synchronize(δ)
20: extract〈type, t, δ, dec〉 from h events

21: if type = SCP ∨ type = ECPD then gap ← gap + dec

22: else iftype = PR then newActiveTasks ← newActiveTasks ∪ {t}
23: [GETTING NEXT EVENT]
24: if empty(h events) ∧ ¬filter min(δ,+∞) then return false
25: δnext ← synchronize(δ)
26: return true

Algorithm 1: Returnsfalse if a resource overflow is detected while sweeping,true otherwise. Iftrue,
ensures that the earliest start of each task is pruned so thatProperty 1 holds.

available space (i.e.,gap) on top of the CPP,filter min (see Algorithm 2) is called to update
h check andh conflict and to adjust the earliest start of tasks for which a feasibleposition wrt.
Property 1 was found.

– [HANDLING CURRENT EVENT] (lines 19 to 22). First, algorithmsynchronize (line 19)
(1) converts conditional events (CCP ) to SCP andECPD events, or ignore them if the cor-
responding task has no compulsory part, (2) pushes dynamic events (ECPD ) to their right
position to ensure events are sorted on their dates. Second,the top event is extracted from the
heaph events . Depending of its type (i.e.,SCP orECPD ), the available resource is updated,
or (i.e.,PR), the task associated with the current event is added into the list of new active tasks
(line 22).

– [GETTING NEXT EVENT] (lines 24 to 25). If there is no more event inh events , filter min
is called in order to empty the heaph check , which may generate new compulsory part events.

3.3.2 The Filtering Part

Once all the events associated with the current dateδ are handled, Algorithm 2 takes into account the new
available space on top of the CPP. It processes tasks inh check andh conflict in order to adjust the earliest
start of the tasks wrt. Property 1. The main parts of the algorithm are:

• [CHECK RESOURCE OVERFLOW] (line 2). If the available resourcegap is negative on the sweep
interval[δ, δnext), Algorithm 2 returnsfalsefor failure (i.e. the resource capacitylimit is exceeded).
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ALGORITHM filter min(δ, δnext) : boolean
1: [CHECK RESOURCE OVERFLOW]
2: if gap < 0 then return false
3: [UPDATING TOP TASKS OF h check WRT gap]
4: while ¬empty(h check ) ∧ (empty(h events) ∨ get top key(h check ) > gap) do
5: extract〈ht, t〉 from h check

6: if δ ≥ st ∨ δ −minst ≥ dt ∨ empty(h events) then
7: if ¬adjust min var(st,minst ) ∨ ¬adjust min var(et,minst + dt) then return false
8: if ¬evupt then {update events of the compulsory part oft; evupt ← true;}
9: else

10: add〈ht, t〉 into h conflict

11: [UPDATING TOP TASKS OF h conflict WRT gap]
12: while ¬empty(h conflict) ∧ get top key(h conflict) ≤ gap do
13: extract〈ht, t〉 from h conflict

14: if δ ≥ st then
15: if ¬adjust min var(st, st) ∨ ¬adjust min var(et, et) then return false
16: if ¬evupt then {update events of the compulsory part oft; evupt ← true;}
17: else
18: if δnext − δ ≥ dt then
19: if ¬adjust min var(st, δ) ∨ ¬adjust min var(et, δ + dt) then return false
20: if ¬evupt then {update events of the compulsory part oft; evupt ← true;}
21: else
22: add〈ht, t〉 into h check ; minst ← δ;
23: return true

Algorithm 2: Tries to adjust the earliest starts of the top tasks inh check andh conflict wrt. the current
sweep intervalI = [δ, δnext ] and the available resourcegap on top of the CPP on intervalI. Returnsfalse
if a resource overflow is detected,true otherwise.

• [UPDATING TOP TASKS OF h check WRT gap] (lines 4 to 10). All tasks inh check of
height greater than the available resourcegap are extracted.

– A first case is when taskt has been inh check long enough (i.e.δ − minst ≥ dt, line 6),
meaning that the task is not in conflict on interval[minst , δ), whose size is greater than or
equal to the durationdt of taskt. Consequently, we adjust the earliest start of taskt to value
minst . Remember thatminst corresponds to the latest sweep-line position where taskt was
moved intoh check .

– A second case is whenδ has passed the latest start of taskt (i.e.δ ≥ st, line 6). That means task
t was not in conflict on interval[minst , δ) either, and we can adjust its earliest start tominst .

– A third case is when there is no more event in the heaph events (i.e.empty(h events), line 6).
It means that the height of the CPP is equal to zero and we need to emptyh check .

– Otherwise, since the height of taskt is greater than the available resource, the task is added into
h conflict (line 10).

• [UPDATING TOP TASKS OF h conflict WRT gap] (lines 13 to 23). All tasks inh conflict

that are no longer in conflict atδ are extracted. Ifδ is not located before the latest start of taskt, we
know that taskt cannot be scheduled before its latest start. Otherwise, we compare the duration of
taskt with the size of the current sweep interval[δ, δnext ] and decide whether to adjust the earliest
start of taskt or to add taskt into h check .

3.3.3 The Synchronization Part

In order to handle dynamic and conditional events, Algorithm 3 checks and possibly updates the top event
of the heaph events before any access toh events by the main algorithmsweepmin. The main parts of
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ALGORITHM synchronize(δ) : integer
1: [UPDATING TOP EVENTS]
2: repeat
3: if empty(h events) then return −∞
4: sync ← true; 〈date , t, type, dec〉 ← consult top event ofh events;
5: [PROCESSING DYNAMIC (ECPD) EVENT]
6: if type = ECPD ∧ ¬evupt then
7: if t ∈ h check then update event date tominst + dt
8: elseupdate event date tost + dt
9: evupt ← true; sync ← false;

10: [PROCESSING CONDITIONAL (CCP) EVENT]
11: else iftype = CCP ∧ ¬evupt ∧ date = δ then
12: if t ∈ h check ∧minst + dt > δ then
13: add〈SCP , t, δ,−ht〉 and〈ECPD , t,minst + dt, ht〉 into h events

14: else ift ∈ h conflict then
15: add〈SCP , t, δ,−ht〉 and〈ECPD , t, et, ht〉 into h events

16: evupt ← true; sync ← false;
17: until sync
18: return date

Algorithm 3: Checks that the event at the top ofh events is updated and returns the date of the next event
or−∞ if h events is empty.

the algorithm are:

• [UPDATING TOP EVENTS] (lines 2 to 17). Dynamic and conditional events require us tocheck
whether the next event to be extracted by Algorithm 1 needs tobe updated or not. The repeat loop
updates the next event if necessary until the top event is up to date.

• [PROCESSING DYNAMIC EVENT] (lines 6 to 9). An event of typeECPD must be updated if
the related taskt is in h check or in h conflict . If task t is in h check , it means that its earliest
start can be adjusted tominst. Consequently, itsECPD event is updated to the dateminst + dt
(line 7). If taskt is in h conflict , it means that taskt cannot start before its latest starting timest.
Consequently, itsECPD event is pushed back to the datest + dt (line 8).

• [PROCESSING CONDITIONAL EVENT] (lines 11 to 16). When the sweep-line reaches the po-
sition of aCCP event for a taskt, we need to know whether or not a compulsory part fort is created.
As evupt is set tofalse, we know thatt is either inh check or in h conflict . If task t is in h check ,
a compulsory part is created if and only ifminst + dt > δ (lines 12 to 13). If taskt is in h conflict

the task is fixed to its latest position and related events areadded intoh events (line 15).

Continuation of Example 1 (Illustrating the Dynamic Sweep Algorithm). The sweep algorithm first
initializes the current sweep-line position to 0, i.e. the first event date, and thegap to 3, i.e. the resource
limit. The algorithm reads the fourPR events related to the taskst1, t2, t3 andt4. Since the heights of
taskst1, t2, t4 are less than or equal to the gap and their durations are strictly greater than the size of
the sweep interval, these tasks are added intoh check (Algorithm 1, line 14). Taskt3 is not added into
h check since its duration is equal to the size of the sweep interval (Algorithm 1, line 14), i.e.t3 cannot be
adjusted. Then, it moves the sweep-line to the position 1, reads the event〈SCP , 0, 1,−2〉 and setsgap to
1. The call offilter min with δ = 1, δnext = 2 andgap = 1 retrievest1 andt4 from h check and inserts
them intoh conflict (Algorithm 2, line 10). Then it moves the sweep-line to the position 2, reads the event
〈ECPD , 0, 2, 2〉 and setsgap to 3. The call offilter min with δ = 2, δnext = 3 andgap = 3 retrievest1
andt4 from h conflict and inserts them intoh check (Algorithm 2, line 22). Then it moves the sweep-line
to the position 3 and reads the event〈CCP , 1, 3, 0〉. Since taskt1 is in h check and its potential earliest
end is greater thanδ (Algorithm 3, line 12), theCCP event oft1 is converted into〈SCP , 1, 3,−2〉 and
〈ECPD , 1, 4,+2〉 standing for the creation of a compulsory part on interval[3, 4). The sweep-line reads
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the newSCP event related to taskt1 and setsgap to 1. The call offilter min with δ = 3, δnext = 4
andgap = 1 retrievest4 from h check and inserts it intoh conflict . Then it moves the sweep-line to the
position 4, reads the event〈ECPD , 1, 4,+2〉 and setsgap to 3. Since there is no more compulsory part,
the earliest start oft4 is adjusted to 4 and the fixpoint ofsweepmin is reached. Note that the creation of
the compulsory part occurs after the sweep-line position, which is key to ensuring Property 1.

3.4 Correctness and Property Achieved bysweep min

We now prove that after the termination ofsweepmin(Algorithm 1), Property 1 holds. For this purpose,
we first introduce the following lemma.

Lemma 1 At any point of its execution,sweepmin(Algorithm 1) cannot generate a new compulsory part
that is located before the current positionδ of the sweep-line.

Proof 1 Since the start of the compulsory part of a taskt corresponds to its latest startst, which is in-
dicated by itsCCP or SCP event, and sincesweepmin only prunes earliest starts, the compulsory part
of taskt cannot start before the date associated to this event. Consequently, the latest value ofδ to know
whether the compulsory part of taskt is created isst. This case is processed by Algorithm 3, lines 11 to 16.

The end of the compulsory part of a taskt corresponds to its earliest endet and is indicated by its
ECPD event. To handle its potential extension to the right, the earliest start of taskt must be adjusted to
its final position before the sweep extracts itsECPD event. This case is processed by Algorithm 3, lines 6
to 9.

Proof 2 (of Property 1) Given a taskt, let δt andmint respectively denote the position of the sweep-
line when the earliest start of taskt is adjusted bysweepmin, and the new earliest start of taskt. We
successively show the following points:

① When the sweep-line is located at instantδt we can start taskt atmint without exceedinglimit , i.e.

∀t′ ∈ T \{t}, ∀i ∈ [mint, δt) : ht +
∑

t′∈T \{t},
i∈[s

t′
,e

t′
)

ht′ ≤ limit

The adjustment of the earliest start of taskt to mint implies that taskt is not in conflict on the
interval [mint, δt) wrt. the CPP. Conditionget top key(h check ) > gap (Algorithm 2, line 4)
ensures that the adjustment in line 7 does not induce a resource overflow on[mint, δt), otherwiset
should have been added intoh conflict . Conditionget top key(h conflict) ≤ gap (Algorithm 2,
line 12) implies that taskt is in conflict until the current sweep-line positionδ. If δ ≥ st (line 14)
the conflict on[st, δt) is not “real” since the compulsory part oft is already taken into account in
the CPP. In line 19 of Algorithm 2, the earliest start of taskt is adjusted to the current sweep-line
position, consequently the interval[mint, δt) is empty.

② For each value ofδ greater thanδt, sweepmin cannot create a compulsory part before instantδt.
This is implied by Lemma 1, which ensures thatsweepmin cannot generate any compulsory part
beforeδ.

Consequently oncesweepmin is completed, any taskt can be fixed to its earliest start without creating
a CPP exceeding the resource limitlimit .

3.5 Complexity

Given acumulativeconstraint involvingn tasks, the worst-case time complexity of the dynamic sweep
algorithm isO(n2 logn). First note that the overall worst-case complexity ofsynchronize over a full sweep
isO(n) since conditional and dynamic events are updated at most once. The worst-caseO(n2 logn) can be
reached in the special case when the CPP consists of a succession of high peaks and deep, narrow valleys.
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Assume that one hasO(n) peaks,O(n) valleys, andO(n) tasks to switch betweenh check andh conflict

each time. A heap operation costsO(log n). The resulting worst-case time complexity isO(n2 logn). For
bin-packing, the two heapsh conflict andh check permit to reduce the worst-case time complexity down
to O(n logn). Indeed, the earliest start of the tasks of duration one thatexit h conflict can directly be
adjusted (i.e.h check is unused).

4 A Synchronized Sweep Algorithm for thek-dimensional cumula-
tive Constraint

This section presents a new synchronized sweep algorithm that handles several cumulative resources in
one single sweep. In this new setting, each task uses severalcumulative resources and the challenge is to
come with an approach that scales well. We should quote that the number of resources may be significant
in many situations:

• For instance, in the 2012 Roadef Challenge we have up to 12 distinct resources per item to pack.

• A new resourcer′ can also be introduced for modeling the fact that a given subset of tasks is subject
to a cumulativeor disjunctiveconstraint. The tasks that do not belong to the subset have their
consumption of resourcer′ set to 0. This is indeed the case for the industrial application presented
in the evaluation section. Since we potentially can have a lot of such constraints on different subsets
of tasks, this can lead to a large number of resources.

This new synchronized sweep algorithm is an efficient scalable k-dimensional version of thetimetable
method which achieves exactly the same pruning ask instances of the 1-dimensional version reported in
Section 3. Note that this version differs from the one introduced in [18], and despite the fact that it scales
a little worse when considering the number of tasks, it scales a lot better when considering the number of
resources.

Given k resources andn tasks, where each resourcer (0 ≤ r < k) is described by its maximum
capacitylimitr, and each taskt (0 ≤ t < n) is described by its startst, fixed durationdt (dt ≥ 0), end
et and fixed resource consumptionsht,0, . . . , ht,k−1 (ht,i ≥ 0, i ∈ [0, k − 1]) on thek resources, the
k-dimensional cumulativeconstraint with the two arguments

• 〈〈s0, d0, e0, 〈h0,0, . . . , h0,k−1〉〉, . . . , 〈sn−1, dn−1, en−1, 〈hn−1,0, . . . , hn−1,k−1〉〉〉,

• 〈limit0, . . . , limitk−1〉

holds if and only if conditions (4) and (5) are both true:

∀t ∈ [0, n− 1] : st + dt = et (4)

∀r ∈ [0, k − 1], ∀i ∈ Z :
∑

t∈[0,n−1],
i∈[st,et)

ht,r ≤ limit r (5)

Example 2 (Example 1 extended with an extra resourcer1) Consider two resourcesr0, r1 (k = 2) with
limit0 = 3 and limit1 = 2 and five taskst0,t1,. . . ,t4 which have the following restrictions on theirstart,
duration, endandheights:

• t0: s0 ∈ [1, 1], d0 = 1, e0 ∈ [2, 2], h0,0 = 2, h0,1 = 1

• t1: s1 ∈ [0, 3], d1 = 2, e1 ∈ [2, 5], h1,0 = 2, h1,1 = 1

• t2: s2 ∈ [0, 5], d2 = 2, e2 ∈ [2, 7], h2,0 = 1, h2,1 = 2

• t3: s3 ∈ [0, 9], d3 = 1, e3 ∈ [1, 10], h3,0 = 1, h3,1 = 1

• t4: s4 ∈ [0, 7], d4 = 3, e4 ∈ [3, 10], h4,0 = 2, h4,1 = 0
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Since taskt1 cannot overlapt0 without exceeding the resource limit on resourcer0, the earliest start
of t1 is adjusted to 2. Sincet1 occupies the interval[3, 4) and since, on resourcer0, t4 cannot overlap
t1, its earliest start is adjusted to 4. On resourcer1, sincet2 cannot overlap taskt1, its earliest start is
adjusted to 4. The purpose of the synchronized sweep algorithm is to perform such filtering in an efficient
way, i.e. in one single sweep.
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Figure 2: Parts (A) and (B) respectively represent the earliest positions of the tasks and the CPP on resource
r0 andr1, (A) of the initial problem described in Example 2, (B) once the fixpoint is reached.

We now show how decomposing the2-dimensional cumulativeconstraint into twocumulativecon-
straints on resourcer0 andr1 leads to a ping-pong between the two constraints to reach thefixpoint.

Continuation of Example 2 (Illustrating the ping-pong induced by the decomposition). The instance given
in Example 2 can naturally be decomposed into twocumulativeconstraints:

•
c0 : cumulative(〈 〈s0, d0, e0, h0,0〉, 〈s1, d1, e1, h1,0〉, 〈s2, d2, e2, h2,0〉,

〈s3, d3, e3, h3,0〉, 〈s4, d4, e4, h4,0〉〉, limit0),

•
c1 : cumulative(〈 〈s0, d0, e0, h0,1〉, 〈s1, d1, e1, h1,1〉, 〈s2, d2, e2, h2,1〉,

〈s3, d3, e3, h3,1〉〉, limit1).
.

• During a first sweep wrt. constraintc0 (see Part (A) of Figure 3), the compulsory part of the taskt0
on resourcer0 and on interval[1, 2) permits to adjust the earliest start of taskt1 to 2 since the gap
on top of this interval is strictly less than the resource consumption oft1 on r0. Taskt1 now has a
compulsory part on the interval[3, 4). This new compulsory part permits to adjust the earliest start
of the taskt4 to 4.

• A second sweep wrt. constraintc1 (see Part (B) of Figure 3), adjusts the earliest start of taskt2 since
it cannot overlap neither the compulsory part of taskt0 nor the compulsory part of taskt1. So task
t2 now has a compulsory part on the interval[5, 6).

• Finally a third sweep wrt. constraintc0 is performed to find out that nothing more can be deduced
and that the fixpoint is reached.
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Figure 3: Parts (A) and (B) respectively represent the earliest positions of the tasks and the CPP, after a
first sweep on the resourcer0, and after a second sweep onr1.

Our newsweepminfiltering algorithm will perform such deductions in one single step.
We now give the fixpoint property achieved by our newsweepmin algorithm that handles thek-

dimensional cumulativeconstraint.

Property 2 Given a k-dimensional cumulativeconstraint withn tasks andk resources, the corresponding
sweepmin algorithm ensures that:

∀r ∈ [0, k − 1], ∀t ∈ [0, n− 1], ∀i ∈ [st, et) : ht,r +
∑

t′ 6= t,
i∈[s

t′
,e

t′
)

ht′,r ≤ limit r (6)

Property 2 ensures that, for any taskt of thek-dimensional cumulativeconstraint, one can schedulet at its
earliest start without exceeding for any resourcer (0 ≤ r < k) its resource limit wrt. the CPP on resource
r of the tasks ofT \{t}.

4.1 Event Point Series

Since events are only related to the temporal aspect, they donot depend on how many resources we have,
and can therefore be factored out. The only difference with the event point series of [18] is that theCCP
event type has been merged with theSCP event type. This is possible since they are related to the same
time point, i.e. the latest start of a task. In order to build the CPP on each resource and to filter the earliest
start of each task, the algorithm considers the following types of events.

• The event type〈SCP , t, st〉 for theStart of Compulsory Partof taskt (i.e. the latest start of taskt).
This event is generated for all the tasks. If the task has no compulsory part when the event is read, it
will simply be ignored.

• The event type〈ECPD , t, et〉where the date of such event corresponds to theEnd of the Compulsory
Part of taskt (i.e. the earliest end of taskt) and may increase due to the adjustment of the earliest
start oft. This event is generated if and only if taskt has a compulsory part, i.e. if and only ifst < et.

• The event type〈PR, t, st〉 wherePR stands forPruning Event, corresponds to the earliest start of
taskt. This event is generated if and only if taskt is not yet scheduled, i.e. if and only ifst 6= st.
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As in the single resource case, events are recorded in the heap h events where the top event is the event
with the smallest date.

Continuation of Example 2 (Generated Events).The following events are generated and sorted accord-
ing to their date:〈PR, 1, 0〉, 〈PR, 2, 0〉, 〈PR, 3, 0〉, 〈PR, 4, 0〉, 〈SCP , 0, 1〉, 〈ECPD , 0, 2〉, 〈SCP , 1, 3〉,
〈SCP , 2, 5〉, 〈SCP , 3, 9〉, 〈SCP , 4, 7〉.

4.2 Sweep-Line Status

In order to build the CPP and to filter the earliest start of thetasks, the sweep-line jumps from event to
event, maintaining the following information:

• The current sweep-line positionδ, initially set to the date of the first event.

• For each resourcer ∈ [0, k − 1], the amount of available resource at instantδ denoted bygapr (i.e.
the difference between the resource limitlimit r and the height of the CPP on resourcer at instantδ)
and its previous value denoted bygap′

r.

• For each taskt ∈ [0, n− 1], ring t stores its status, and is equal to:

– none if and only if the sweep-line has not yet read thePR event related to taskt,

– ready if and only if the earliest start of taskt was adjusted to its final value (i.e. the fixpoint
was reached for the earliest start of taskt),

– check if and only if δ ∈ [st, st) and∀r ∈ [0, k − 1] : ht,r ≤ gapr, i.e. for all resources, the
resource consumption of taskt does not exceed the available gap on top of the corresponding
CPP,

– conflictr if and only if δ ∈ [st, st) and∃r ∈ [0, k − 1) : ht,r > gapr, i.e. there is at least one
resourcer where taskt is in conflict. Note that we only record the first resource where there is
a conflict.

All tasks t for which ringt = check or ring t = conflictr are calledactive tasksin the following.
From an implementation point of view, the status of the active tasks are stored in rings, i.e. circular
double linked lists, which permits us to quickly iterate over all tasks incheck or conflict status, as
well as to move in constant time a task fromcheck to conflict status or vice versa. In the following,
conflict⋆ is used to indicate that taskt is in conflict on a resource whose identifier we don’t need to
know.

Our synchronized sweep algorithm first creates and sorts theevents wrt. their date. Then, the sweep-
line moves from one event to the next event, updating the amount of available space on each resource (i.e.
gapr, 0 ≤ r < k), and the status of the tasks accordingly. Once all events atinstantδ have been handled,
the algorithm tries to filter the earliest start of the activetasks wrt.gapr (0 ≤ r < k) and to the sweep
interval [δ, δnext), whereδnext is the next sweep-line position. In order to update the status of the tasks,
for each resourcer, if gapr has decreased compared to the gap at the previous sweep-lineposition, we
scan all the taskst that potentially can switch their status toconflict or ready (i.e. all taskst for which
ring t = check ). Symmetrically, for each resourcer, if gapr has increased, we scan all the tasks that are
potentially no longer inconflictr.

4.3 Algorithm

Thesweepminpart of the synchronized sweep algorithm consists of a main loop (Algorithm 4), a process-
ing events part (Algorithm 5) and a filtering part (Algorithm6).
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4.3.1 Main Loop

The main loop (Algorithm 4) consists of:

• [CREATING EVENTS] (line 2). The events are generated wrt. the start and end variables of each
task and inserted into the heaph events, which records the events sorted by increasing date.

• [INITIALIZATION] (lines 4 to 7). The available spacegapr and the previous available space
gap′

r of each resourcer is set the corresponding resource limitcapar. For each taskt its status is set
to none if t is not fixed,ready otherwise.

• [MAIN LOOP] (lines 9 to 12). For each sweep-line position the main loop processes all the cor-
responding events and updates the sweep-line status. In this last part, Algorithm 4 returnsfalse if a
resource overflow occurs.

ALGORITHM sweep min() : boolean
1: [CREATING EVENTS]
2: h events ← generation of events wrt.n, st, st, dt, et.
3: [INITIALIZATION]
4: for r = 0 to k − 1 do
5: gapr, gap

′
r ← capar

6: for t = 0 to n− 1 do
7: if st = st then ring t ← ready else ringt ← none

8: [MAIN LOOP]
9: while ¬empty(h events) do

10: 〈δ, δnext〉 ← process events()
11: if ¬filter min(δ, δnext) then
12: return false
13: return true

Algorithm 4: Main sweep algorithm. Returnsfalse if a resource overflow occurs,true otherwise. Iftrue,
ensures that the earliest start of each task is pruned so thatProperty 2 holds.

4.3.2 The Event Processing Part

In order to update the sweep-line status, Algorithm 5 reads and processes all the events related to the current
sweep-line positionδ and determines the sweep interval[δ, δnext). Algorithm 5 consists in the following
parts:

• [PROCESSING START COMPULSORY PART (SCP) EVENTS] (lines 3 to 14). When the
sweep-line reaches the latest start of a taskt, we have to determine whether or not the earliest start
of taskt can still be updated. This requires the following steps to beconsidered:

– If task t is in conflict (i.e.ringt = conflict⋆, line 5), thent cannot be scheduled before its latest
position.

– If the status of taskt is check (line 8), meaning that there is no conflict on the interval[st, st),
then the earliest start oft cannot be updated. To ensure Property 2, the consumption of taskt
on the interval[st, et), which is empty if taskt has no compulsory part, is taken into account
in the CPP.

Once the earliest start and end of the task are up to date, we need to know whether a compulsory part
was created for taskt (i.e., whetherδ = st is strictly less thanet, line 10). If a compulsory part has
appeared, the gaps are decreased accordingly and anECPD event is added intoh events .
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• [PROCESSING DYNAMIC (ECPD) EVENTS] (lines 16 to 21). When the sweep-line reaches
theECPD event of a taskt we first have to check that the date of this event is well placedwrt. the
sweep-line. If not (et > δ, line 17), theECPD event is pushed back into the heaph event to its
correct date (line 18). If the event is well placed, the available spaces are updated (lines 20 to 21).

• [DETERMINE THE NEXT EVENT DATE] (line 23). In order to process the pruning (PR) events,
we first need to know the next positionδnext of the sweep-line.

• [PROCESSING EARLIEST START (PR) EVENTS] (lines 25 to 31). If a conflict is detected
(i.e.∃r | ht,r > gapr, line 26) the status of the taskt is set toconflict . Else if the sweep interval is
too small wrt. the duration of taskt (i.e. et > δnext ), the status oft is set tocheck . Else we know
that the earliest start of taskt cannot be further adjusted wrt. Property 2

ALGORITHM process events() : 〈integer, integer〉
1: 〈δ, E〉 ← extract and record inE all the events inh events related to the minimal dateδ
2: [PROCESSING START COMPULSORY PART (SCP) EVENTS]
3: for all events of type〈SCP , t, st〉 in E do
4: ecp′ ← et
5: if ringt = conflict⋆ then
6: adjust min var(st, st); adjust min var(et, et);
7: ring t ← ready
8: else ifring t = check then
9: ring t ← ready

10: if δ < et then
11: for r = 0 to k − 1 do
12: gapr ← gapr − ht,r

13: if ecp′ ≤ δ then // introduceECPD event if new CP

14: add〈ECPD , t, et〉 to h events

15: [PROCESSING DYNAMIC (ECPD) EVENTS]
16: for all events of type〈ECPD , t, et〉 in E do
17: if et > δ then // reintroduceECP event ifet has moved

18: add〈ECPD , t, et〉 to h events

19: else
20: for r = 0 to k − 1 do
21: gapr ← gapr + ht,r

22: [DETERMINE THE NEXT EVENT DATE]
23: δnext ← get top key(h events) // +∞ if empty

24: [PROCESSING EARLIEST START (PR) EVENTS]
25: for all events of type〈PR, t, st〉 in E do // PR must be handled last

26: if ∃r | ht,r > gapr then // is taskt in conflict?

27: ring t ← conflictr
28: else ifet > δnext then // might taskt be in conflict next time?

29: ring t ← check
30: else
31: ring t ← ready
32: return 〈δ, δnext〉

Algorithm 5: Called every time the sweep-line moves. Extracts and processes all events at given time
pointδ. Returns both the currentδ and the next time pointδnext .

4.3.3 The Filtering Part

Algorithm 6 takes into account the variation of the gaps on top of the CPP between the previous and the
current position of the sweep-line in order to process tasksthat are inconflict or in check status and
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possibly to adjust their earliest start. The main parts of the algorithm are:

• [CHECK RESOURCE OVERFLOW] (lines 2 to 3). If the available resource is negative on at least
one resource on the sweep interval[δ, δnext), Algorithm 6 returnsfalse for failure.

• [TASKS NO LONGER IN CHECK] (lines 5 to 9). Scans each resourcer where the current avail-
able resource is less than the previous available space (i.e. gap′

r > gapr, line 6). It has to consider
each taskt which is incheck such that the height of taskt is greater than the current available space
(line 7), i.e. tasks which are no longer incheck . If the sweep-line has passed the earliest end of task
t, meaning that there is no conflict on the interval[st, et) its status is updated toready . Otherwise,
the status of taskt is set tocheck .

• [TASKS NO LONGER IN CONFLICT ON RESOURCE r] (lines 11 to 22). Scans each re-
sourcer where the current available resource is strictly greater than the previous available resource.
It has to consider each taskt which is in conflict such that the height oft is less than or equal to the
current available space (line 13), i.e. tasks which are no longer in conflict on resourcer. We consider
the two following cases:

– If the taskt is in conflict on another resourcer′ (∃r′.ht,r′ > gapr′ , line 14) its status is set to
conflict .

– Otherwise, the earliest start of taskt is updated (line 18) to the current sweep-line position and
anECPD event is added if a new compulsory part occurs (lines 20 to 21).

ALGORITHM filter min(δ, δnext) : boolean
1: [CHECK RESOURCE OVERFLOW]
2: for r = 0 to k − 1 do // fail if capacity exceeded

3: if gapr < 0 then return false
4: [TASKS NO LONGER IN CHECK]
5: for r = 0 to k − 1 do
6: if gap′

r > gapr then
7: for all t | ring t = check ∧ ht,r > gapr do
8: ring t ← if et > δ then conflictr else ready
9: gap′

r ← gapr

10: [TASKS NO LONGER IN CONFLICT ON RESOURCE r]
11: for r = 0 to k − 1 do
12: if gap′

r < gapr then
13: for all t | ring t = conflictr ∧ ht,r ≤ gapr do
14: if ∃r′.ht,r′ > gapr′ then
15: ring t ← conflictr′

16: else
17: ecp′ ← et
18: adjust min var(st, δ); adjust min var(et, δ + dt);
19: ring t ← if et > δnext then check else ready
20: if st ≥ ecp′ ∧ st < et then // introduceECPD event if new compulsory part

21: add〈ECPD , t, et〉 to h events

22: gap′
r ← gapr

23: return true

Algorithm 6: Called every time the sweep-line moves fromδ to δnext in order to try to filter the earliest
start of the tasks wrt. the available space on each resource.

Continuation of Example 2 (Illustrating the Synchronized Sweep Algorithm). The synchronized sweep
algorithm first initializes the current sweep-line position to 0,gap0 to 3, andgap1 to 2. Since taskt0 is
fixed, its status is set toready , and tonone for all the other tasks (Algorithm 4, line 7). The sweep-line
reads the fourPR events related to the taskst1, t2, t3 andt4. The next event date permits to setδnext to
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1. On the one hand the status of the taskst1, t2 andt4 is set tocheck since their heights on both resources
are less than or equal to the corresponding available spacesand since their duration is strictly greater than
the size of the sweep interval[0, 1) (Algorithm 5, line 29). On the other hand the status of taskt3 is set to
ready since its duration is less than or equal to the size of the sweep interval. The first call offilter min
does not deduce anything sincegap0 andgap1 are respectively equal togap′

0 andgap′
1. Then it moves

the sweep-line to position 1, reads theSCP event related to taskt0 and reads the next event date 2. During
filter min, status of taskst1 andt4 are set toconflict because of their too big height on resourcer0. The
status of taskt2 is also set toconflict , because of its too big height on resourcer1 (Algorithm 6, line 8).
Then it moves the sweep-line to position 2, reads theECPD event related tot0 and reads the next event
date 3. Duringfilter min, the earliest start of taskst4, t1 andt2 is set to 2 and their status is set tocheck .
Moreover the followingECPD event is generated fort1, 〈ECPD , 1, 4〉 (Algorithm 6, lines 18 to 21). Then
it moves the sweep-line to position 3 and reads theSCP event of taskt1. Since the current status oft1 is
check , we know that the earliest start of taskt1 cannot be adjusted anymore and consequently the status
of task t1 is set toready (Algorithm 5, line 9). The next event date is 4. The call tofilter min on the
sweep interval[3, 4) with gap0 = 1 andgap1 = 1 changes the status of taskst2 andt4 to conflict because
h2,1 > gap1 andh4,0 > gap0 (Algorithm 6, line 8). Then it moves the sweep-line to position 4, reads
theECPD event of taskt1 and setgap0 to 3 andgap1 to 2. Duringfilter min, since the available spaces
increase, the status of taskst2 andt4 change fromconflict to check , their earliest start is adjusted to 4,
and the followingECPD event is generated for taskt2, 〈ECPD , 2, 6〉 (Algorithm 6, lines 18 to 21). No
ECPD event is generated for taskt4 since its earliest end is always less than or equal to its latest start
(Algorithm 6, lines 18). Then the sweep-line reads theSCP andECPD events related to taskt2, nothing
more can be deduced, and Property 2 is holds.

4.4 Complexity

Given ak-dimensional cumulativeinvolving n tasks, the worst-case time complexity of the synchronized
sweep algorithm isO(kn2). Initially, at most three events are generated per task. In addition, at most one
dynamicECPD event can be generated per task. Since one event is handled inO(k + logn), the overall
worst-case time complexity of Algorithm 5 over a full sweep isO(kn+n logn). Like for the 1-dimensional
dynamic sweep, the worst-case time complexity is reached when the CPP consists of a succession of high
peaks and deep, narrow valleys. In this worst-case, Algorithm 6 has to change the status of then tasks,
which is done inO(kn) since lines 14 to 21 are executed at most once per task and since line 14 costs
O(k). Algorithm 6 is called at each step of the sweep, which resultin a complexity ofO(kn2).

5 A Synchronized Sweep Algorithm for thek-dimensional cumula-
tive with precedences Constraint

This section presents an extension of the synchronized sweep algorithm introduced in Section 4 that also
handles a set of precedence constraints among the tasks. In this context, a precedence between a taskt and
a taskt′ means that taskt must be completed before taskt′ starts, i.e.st + dt ≤ et′ . Our goal is to provide
an algorithm that scales well, even with a high number of precedence constraints, which is usually a source
of inefficiency in CP solvers (see Point➄ [Too Local] of Section 2).

Given k resources andn tasks, where each resourcer (0 ≤ r < k) is described by its maximum
capacitylimitr, where each taskt (0 ≤ t < n) has a list of successorsPt and is described by its startst,
fixed durationdt (dt > 0), endet, fixed resource consumptionsht,0, . . . , ht,k−1 (ht,i ≥ 0, i ∈ [0, k − 1])
on thek resources, thek-dimensional cumulative with precedencesconstraint with the three arguments

• 〈〈s0, d0, e0, 〈h0,0, . . . , h0,k−1〉〉, . . . , 〈sn−1, dn−1, en−1, 〈hn−1,0, . . . , hn−1,k−1〉〉〉,

• 〈limit0, . . . , limitk−1〉

• 〈P0, . . . , Pn−1〉
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holds if and only if conditions (7), (8) and (9) are true:

∀t ∈ [0, n− 1] : st + dt = et (7)

∀r ∈ [0, k − 1], ∀i ∈ Z :
∑

t∈[0,n−1],
i∈[st,et)

ht,r ≤ limit r (8)

∀t ∈ [0, n− 1], ∀t′ ∈ Pt : et ≤ st′ (9)

Note that the graph of precedences is supposed to be acyclic.

Example 3 (Example 2 extended with precedence constraints) Considertwo resourcesr0, r1 (k = 2) with
limit0 = 3 and limit1 = 2 and five taskst0,t1,. . . ,t4 which have the following restrictions on theirstart,
duration, endandheights:

• t0: s0 ∈ [1, 1], d0 = 1, e0 ∈ [2, 2], h0,0 = 2, h0,1 = 1

• t1: s1 ∈ [0, 3], d1 = 2, e1 ∈ [2, 5], h1,0 = 2, h1,1 = 1

• t2: s2 ∈ [0, 5], d2 = 2, e2 ∈ [2, 7], h2,0 = 1, h2,1 = 2

• t3: s3 ∈ [0, 9], d3 = 1, e3 ∈ [1, 10], h3,0 = 1, h3,1 = 1

• t4: s4 ∈ [0, 7], d4 = 3, e4 ∈ [3, 10], h4,0 = 2, h4,1 = 0

We also consider the following three precedence constraints among the tasks:

• e0 ≤ s3, meaning that taskt0 has to end before taskt3 starts,

• e1 ≤ s3, meaning that taskt1 has to end before taskt3 starts,

• e2 ≤ s4, meaning that taskt2 has to end before taskt4 starts.

On the one hand, if we ignore the precedence constraints we have the same instance than Example 2,
consequently we have the same pruning, i.e. because of the resource constraint onr0 andr1, the earliest
start of taskt1 is adjusted to 2, the earliest start of taskst2 andt4 is adjusted to 4 (see Part (B), Figure 2).
On the other hand, considering the precedence constraints leads to the following additional adjustments:
the earliest start of taskt3 is adjusted to 4 since the earliest end of taskt1 is 4 and the earliest start of task
t4 is adjusted to 6 since the earliest end of taskt2 is 6 (see Part (B), Figure 4). The purpose of the synchro-
nized sweep algorithm, extended to handle a set of precedence constraints, is to perform such filtering wrt.
all resource and precedence constraints in one single sweep.

We now show how to achieve such filtering by decomposing the2-dimensional cumulative with prece-
dencesconstraint into twocumulativeconstraint on resourcer0 andr1 and three precedence constraints.

Continuation of Example 2 (Illustrating the decomposition). The instance given in Example 3 can nat-
urally be decomposed into twocumulativeconstraints and three inequality constraints:

•
c0 : cumulative(〈 〈s0, d0, e0, h0,0〉, 〈s1, d1, e1, h1,0〉, 〈s2, d2, e2, h2,0〉,

〈s3, d3, e3, h3,0〉, 〈s4, d4, e4, h4,0〉〉, limit0)
.

•
c1 : cumulative(〈 〈s0, d0, e0, h0,1〉, 〈s1, d1, e1, h1,1〉, 〈s2, d2, e2, h2,1〉,

〈s3, d3, e3, h3,1〉〉, limit1)
.

• c3 : e0 ≤ s3.
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Figure 4: Parts (A) and (B) respectively represent the earliest positions of the tasks and the CPP on resource
r0 andr1, (A) of the initial problem described in Example 3, (B) once the fixpoint is reached.

• c4 : e1 ≤ s3.

• c5 : e2 ≤ s4.

Traditionally, a CP solver will first process the lightest constraints, i.e.c3, c4 andc5 and reach a fixpoint over
this subset of constraints. Then, it will process onecumulativeconstraint. These two steps are repeated until
the fixpoint over the five constraints is reached. The source of inefficiency comes from the fact that when
a precedence constraint prunes one variable, we need to rerun from scratch all the cumulative constraints
involving the corresponding variable.

The property ensures by thesweepmin algorithm is an extension of Property 2 that also considers the
precedence constraints.

Property 3 Given a k-dimensional cumulative with precedencesconstraint withn tasks andk resources,
sweepmin ensures that:

∀r ∈ [0, k − 1], ∀t ∈ [0, n− 1], ∀i ∈ [st, et) : ht,r +
∑

t′ 6= t,
i∈[s

t′
,e

t′
)

ht′,r ≤ limit r (10)

∀t ∈ [0, n− 1], ∀t′ ∈ Pt : et ≤ st′ (11)

Property 3 ensures that, for any taskt of thek-dimensional cumulative with precedencesconstraint, one
can schedulet at its earliest start without exceeding for any resourcer (0 ≤ r < k) its resource limit wrt.
the CPP on resourcer of the tasks ofT \{t}, and all its immediate successors cannot start before its earliest
end.

5.1 Event Point Series

In order to build the CPP of the resources, we need all the event types required by the synchronized
sweep algorithm for thek-dimensional cumulativeconstraint (see Section 4.1). To ensure Relation 11 of
Property 3, all the events related to tasks that have at leastone predecessor are not initially added into the
heap of events. A task will only be added when the earliest starts of all its immediate predecessors are
adjusted to their final position wrt Property 3. More precisely, to know the moment when these events must
be added, we introduce the following new event type:
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• The event type〈RS , t, et〉 for Release Successorsof taskt (i.e. the earliest end of taskt) is generated
for all the taskst that have at least one successor. This is required to preventthe earliest starts of the
successors of taskt from being adjusted before the final earliest start of taskt has been determined.

Continuation of Example 3 (Generated Events).In the initialization part, the following events are gen-
erated and sorted according to their date:〈PR, 1, 0〉, 〈PR, 2, 0〉, 〈SCP , 0, 1〉, 〈ECPD , 0, 2〉, 〈RS,0,2〉,
〈RS,1,2〉, 〈RS,2,2〉, 〈SCP , 1, 3〉, 〈SCP , 2, 5〉. On the one hand, since taskst0, t1 andt2 all have at
least one successor we generate oneRS event, in bold, for each of them. On the other hand since taskst3
andt4 do not have any successor, we do not generate anyRS events for them.

5.2 Sweep-Line Status

All the elements of the sweep-line status of the synchronized sweep are needed to build the CPP over the
resources. In addition, we introduce the following information to handle the precedence constraints among
the tasks:

• For each taskt ∈ [0, n− 1], nbpred t records the number of predecessors of taskt for which the final
value of the earliest start wrt. Property 3 was not yet found at the current sweep-line positionδ.

The synchronized sweep algorithm with precedences first creates and sorts the events wrt. their date for
the tasks that have no predecessors. Then the sweep-line moves from one event to the next event, updating
the amount of available space on each resource and the statusof the tasks. Only once the earliest starts
of all the predecessors of a given taskt have been found, i.e.nbpred t = 0, events related to taskt are
generated and added into the heap of events.

5.3 Algorithm

Thesweepmin part of the synchronized sweep algorithm with precedence constraints consists again of a
main loop, a processing events part and a filtering part. The processing part calls the algorithmrelease task,
which releases a task when the earliest starts of all its predecessors have been adjusted to their final values.
We omit the filtering part since it is strictly identical to the one introduced in Section 4.

5.3.1 Main Loop

The main loop (Algorithm 7) consists of the following parts:

• [CREATING EVENTS] (line 2). The events are generated wrt. the start and end variables of each
task that has no predecessors and inserted intoh events .

• [INITIALIZATION] (lines 4 to 7). The available spacegapr and the previous available space
gap′

r of each resourcer is set the corresponding resource limitcapar. For each taskt, its status is
set tonone if t is not fixed,ready otherwise.

• [MAIN LOOP] (lines 9 to 14). For each sweep-line position the main loop processes all the corre-
sponding events and updates the sweep-line status. Algorithm 7 returnsfalse if a resource overflow
occurs or if a taskt cannot be introduced in its temporal window because of its predecessors.

5.3.2 The Event Processing Part

In order to update the sweep-line status, Algorithm 8 reads and processes all the events related to the current
sweep-line positionδ and determines the sweep interval[δ, δnext). Since this algorithm only differs from
Algorithm 5 from line 22 to line 32, we do not comment again theother lines.
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ALGORITHM sweep min() : boolean
1: [CREATING EVENTS]
2: h events ← generation of events wrt.n, st, st, dt, et and the precedence constraints.
3: [INITIALIZATION]
4: for r = 0 to k − 1 do
5: gapr, gap

′
r ← capar

6: for t = 0 to n− 1 do
7: if st = st then ring t ← ready else ring t ← none
8: [MAIN LOOP]
9: while ¬empty(h events) do

10: 〈δ, δnext , success〉 ← process events()
11: if ¬success then
12: return false
13: if ¬filter min(δ, δnext) then
14: return false
15: return true

Algorithm 7: Main sweep algorithm. Returnsfalseif a resource overflow occurs or a precedence constraint
cannot be satisfied,true otherwise. Ensures Property 3 in the latter case.

• [PROCESSING RELEASE SUCCESSOR (RS) EVENTS] (lines 23 to 32). When the sweep-
line reaches theRS event of a taskt, we first have to determine whether or not it is its final position,
i.e. whether the earliest end of taskt can still be updated. This requires the following steps to be
considered:

– If the status of taskt is set toconflict , theRS event is pushed back to its first feasible position,
i.e. δ + dt (see line 25). This position considers that the earliest start of taskt will be adjusted
to δ.

– Else if the position of theRS event does not correspond to the earliest end of the task, meaning
that the earliest end of taskt has been adjusted since the creation of theRS event, we just push
back the event to its correct positionet (see line 27).

If the RS event is at its final position, meaning that the earliest start of taskt will not be adjusted
anymore, the successors of taskt are scanned. For each successorst′ of task t, the number of
remaining tasks to filter wrt Property 3 (i.e.nbpred t′ ) is decremented (see line 30). If the earliest
starts of all predecessors of a taskt are updated wrt Property 3, i.enbpred t = 0, then the events
related to taskt′ are generated and inserted into the heap of events. This lastpart is described in
Section 5.3.3, Algorithm 9.

5.3.3 Releasing a Successor

Once the earliest starts of all predecessors of a taskt have been adjusted wrt. Property 3 the algorithm
release task generates and adds the events of taskt into the heap of events or directly into the list of events
that have just been extractedE . This algorithm consists of three parts:

• [CHECK THE NEW EARLIEST START] (lines 2 to 3). This first part removes from the start
(resp. end) variable of taskt all the values strictly less thanδ (resp. strictly less thanδ + dt). It
returnsfalse if one domain becomes empty.

• [EARLIEST START OF TASK t IS ADDED AT δ] (lines 5 to 16). First we consider the case
where the earliest start of taskt is equal toδ. If the start of taskt is fixed (i.e.st = st, line 6) then the
available spaces are decreased wrt. the heights of taskt. Otherwise aPR event is added into the list
of events to handle at the current sweep-line position (line11). Since theSCP andECPD events
cannot be associated with the positionδ of the sweep-line they are added into the heap of events.
Finally, if taskt has a least one successor, aRS event is generated.
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• [EARLIEST START OF TASK t IS ADDED AFTER δ] (lines 18 to 27). We consider the
case where the earliest start of taskt is strictly greater thanδ. In such a case, events are generated as
in the initialization ofsweepmin and added into the heap of events.

Continuation of Example 3 (Illustrating the Synchronized Sweep Algorithm with Precedences). The syn-
chronized sweep algorithm with precedences first initializes the current sweep-line position to 0,gap0 to
3, andgap1 to 2. The status of taskt0 is set toready , and tonone for all the other tasks. The sweep-line
reads thePR events of taskt1 andt2 and sets their status tocheck since their heights are less than the
available spaces and their duration is greater than the sweep interval[0, 1) (Algorithm 8, line 40). Noth-
ing can be deduced by the first call tofilter min. Then it moves the sweep-line to position 1, reads the
SCP event of taskt0 and sets the available spacesgap0 andgap1 to 1. The call tofilter min modifies
the status of taskt1 to conflict , because of its height on resourcer0, and the status of taskt2, because of
its height on resourcer1. Then it moves the sweep-line to position 2, reads theECPD event of taskt0
and sets the available spacesgap0 to 3 andgap1 to 2, and reads the threeRS events of taskst0, t1 and
t2. Since taskt0 is initially fixed, itsRS event is well placed and we can scan its only successor, taskt3
(Algorithm 8, line 29). Consequentlynbpred3 is set to 1, meaning that exactly one predecessor of task
t3 is not yet adjusted to its fixpoint. Since the status of taskst1 andt2 is set toconflict , theirRS event
is pushed back to 4 (Algorithm 8, line 25). The call offilter min changes the status of taskst1 andt2
to check and adjusts their earliest start to 2. The event〈ECPD , t, 4〉 is created for taskt1 reflecting the
creation of a compulsory part. Then it moves the sweep-line to position 3, reads theSCP event of taskt1
and setsgap0 to 1 andgap1 to 1. The status of the taskt1 is now set toready (Algorithm 8, line 9). The
call of filter min modifies the status of taskt2 to conflict because of its height on resourcer1. Then it
moves the sweep-line to position 4, sets the available spaces gap0 to 3 andgap1 to 2 because of the end of
compulsory part of taskt1. The sweep-line reads theRS event of taskt1, which is now at its final position.
Sonbpred3 is set to 0, meaning that all the predecessors of taskt3 have reached their fixpoint, and that the
events of taskt3 can be generated and added into the heap of events. This part is handled byrelease task
called on line 32 of Algorithm 8. Inrelease task, the earliest start of taskt3 is adjusted toδ (i.e. 4). Since
taskt3 is not fixed and has no compulsory part, the following events are generated〈PR, t, 4〉, 〈SCP , t, 9〉
(Algorithm 9, lines 11 to 12). Then, thePR event is immediately processed and the status of taskt3 is set
to ready (Algorithm 8, line 42). The call offilter min sets the status of taskt2 to check , adjusts its earliest
start to 4 and add the event〈ECPD , t, 6〉, reflecting the creation of its compulsory part. Then it moves the
sweep-line to position 5, reads theSCP events of taskt2 and sets the available spacesgap0 to 2 andgap1

to 0. The status of taskt2 is now set tocheck (Algorithm 8, line 9). Nothing can be deduced byfilter min.
Then it moves the sweep-line to position 6, reads theECPD event of taskt2 and sets the available spaces
gap0 to 3 andgap1 to 2. It also reads theRS event of taskt2 which is at its final position. Consequently,
nbpred4 is set to 0 (Algorithm 8, line 30), meaning that all the earliest start of the predecessors of task
t4 are adjusted wrt Property 3. The call torelease task generates the events〈PR, t, 6〉, 〈SCP , t, 7〉 and
〈ECPD , t, 9〉. Finally, it successively moves the sweep-line to positions 7 and 9, corresponding to the start
and end of the compulsory part of taskt4, and checks that the resource limits are never exceeded.

5.4 Complexity

Given ak-dimensional cumulative with precedencesinvolving n tasks, the worst-case time complexity of
the synchronized sweep algorithm with precedences isO(kn2+nX(k+logn)), whereX is the maximum
number of times that aRS event can be shifted on the time axis. In the worst-case, for ataskt, theRS
event can be pushed⌈(et − et)/dt⌉ times (see Algorithm 8, line 25). Over a full sweep, the worst-case
time complexity of Algorithm 8 isO(kn + n logn + nX logn). The partnX logn that is not present
in the worst-case time complexity of thek-dimensional sweep without precedence is explained by the
fact that we need to handle theO(nX) RS events. Over a full sweep, the worst-case time complexity of
Algorithm 6 isO(kn2 + nXk). Due to theO(nX) RS events, Algorithm 6 can be calledO(nX) times
with ∀r ∈ [0..k− 1] : gapr = gap′

r. In such a case, the complexity of Algorithm 6 is limited toO(k) (see
lines 6 and 12).
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6 Synthesis

This section provides a synthetic view of the three sweep based filtering algorithms introduced in Sec-
tions 3, 4 and 5. First, we recall for each of them the key points concerning the events generated and
processed, the information maintained by the sweep-line status and the worst-case time complexity. Sec-
ond, we give the main principle of the greedy modes of these algorithm.

6.1 The Key Points of the New Sweep Algorithms

We begin with the 1-dimensional dynamic sweep introduced inSection 3 for thecumulativeconstraint:

• [EVENTS] It generates and inserts at most four events per task into theheap of events. When a
task is initially not fixed (i.e.st 6= st), onePR event related to its earliest start and oneCCP event
related to its latest start are generated. Then, theCCP event can be converted into aSCP and an
ECPD event if a compulsory part occurs. The key events are theconditionalCCP and thedynamic
ECPD since they permit to handle the extension of the CPP in one single sweep.

• [SWEEP-LINE STATUS] The main data structures are the two heapsh check andh conflict ,
which handle the status of the tasks. Indeed, the use of heapsis the key point to avoiding to system-
atically rescan all the active tasks each time the sweep-line moves.

• [COMPLEXITY] The worst-case time complexity of the 1-dimensional algorithm isO(n2 logn). It
can be reduced toO(n2) by replacing the two heapsh check andh conflict by a list that records
the status of the tasks, but in such a case, the complexityO(n2) is more often reached in practice.

We continue with the synchronized sweep algorithm introduced in Section 4 for thek-dimensional
cumulativeconstraint:

• [EVENTS] It generates and inserts at most four events per task into theheap of events. Compared
to the 1-dimensional sweep, theCCP has been merged with theSCP event. Initially at most three
events are generated per task, i.e.PR, SCP andECPD events, then theECPD event can be pushed
back on the time axis at most once. The key events in order to handle the extension of the CPP are
theSCP events that are generated for the tasks initially without compulsory part and theECPD
events.

• [SWEEP-LINE STATUS] The main data structures are the circular double linked lists that record
the status of the tasks. Unlike the 1-dimensional sweep, we don’t use heaps to record the status of the
tasks. Indeed, the advantage given by the heaps in the 1-dimensional sweep comes from the fact that
an active task is either in the heaph conflict or in the heaph check . For thek-dimensional version,
we would have to create these two heaps for each resource, anda task would have to be duplicated
in the heapsh check to state that the task is not in conflict.

• [COMPLEXITY] The worst-case time complexity of the synchronized sweep algorithm isO(kn2).

We finish with the extension of the synchronized sweep algorithm introduced in Section 5 for thek-
dimensional cumulative with precedencesconstraint:

• [EVENTS] Initially, it generates and inserts all the events that the synchronized sweep algorithm
without precedences generates, plus oneRS event associated to the earliest end of the tasks that have
at least one successor. In the worst-case, eachRS event related to a taskt can be pushed back on the
time axis⌈(et − et)/dt⌉ times.

• [SWEEP-LINE STATUS] As for the synchronized sweep without precedences, the maindata
structures are the circular double linked lists that recordthe status of the tasks. To handle the prece-
dences, we just add an integernbpred t for each taskt that records the number of predecessors for
which the final value of the earliest start was not yet found atthe current sweep-line position.
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• [COMPLEXITY] The worst-case time complexity of the synchronized sweep algorithm with prece-
dences isO(kn2 + nX(k + logn)), whereX is the maximum number of times that aRS event can
be pushed back, i.e.max

t∈[0..n−1]
(⌈(et − et)/dt⌉).

6.2 The Greedy Mode

The motivation for greedy modes is to handle larger instances in a CP solver. For each of the three sweep
algorithms introduced in this report we design a greedy modewhich reuses thesweepmin part of the
corresponding filtering algorithm, in the sense that once the minimum value of a start variable is found, the
greedy mode directly fixes the start to its earliest feasiblevalue wrt Property 1, 2 or 3. Then the sweep-line
is reset to this start and the process continues until all tasks get fixed or a resource overflow occurs. Thus
the greedy modes directly benefit from the propagation performed while sweeping.

7 Evaluation

We implemented the dynamic sweep algorithm in Choco [22] andSICStus [23]. Choco benchmarks were
run with an Intel Xeon at 2.93 GHz processor on one single core, memory limited to 14GB under Mac OS
X 64 bits. SICStus benchmarks were run on a quad core 2.8 GHz Intel Core i7-860 machine with 8MB
cache per core, running Ubuntu Linux (using only one processor core). The sweep algorithms that we
consider in this section are:

S The 2001 sweep algorithm [16]

UH The dynamic sweep algorithm, as described in Section 3

UR The dynamic sweep algorithm, but with thering data structure instead of heaps

K Thek-dimensional dynamic sweep algorithm, as described in Section 4

KG A greedy assignment algorithm corresponding to the previous item

P Thek-dimensional dynamic sweep algorithm with precedences described in Section 5

PG A greedy assignment algorithm corresponding to the previous item

We have run our sweep algorithms with randomly generated instances, with resource-constrained
project scheduling instances coming from PSPLib, and with randomized multi-year project scheduling
instances coming from an industrial customer.

7.1 Random Instances

This experiment was run in Choco. The program listing of the instance generator is given in Appendix A.
We ran random instances of bin-packing (unit duration) and cumulative (duration≥ 1) problems, with
precedences or without them, withk varying from 1 to 64 andn from 1000 to 1024000. Instances were
randomly generated with a density close to 0.7. For a given number of tasks, we generated two different
instances with the average number of tasks overlapping a time point equal to 5. We measured the time
needed to find a first solution. As a search heuristic, the variable with the smallest minimal value was
chosen, and for that variable, the domain values were tried in increasing order. All instances were solved
without backtracking. The times reported are total execution time, not just the time spent in the dynamic
sweep algorithm.

In a first set of runs (see Figure 5), we compared algorithms UH, UR, K and KG on bin-packing
instances without precedences. We note that UR is uniformlysome 5% faster than UH, confirming the
hypothesis that the rings data structure outperforms the heaps one. A preliminary analysis of the observed
runtimes as a function ofn andk suggest that UR solves instances in approx.O(kn2.10) time, whereas K
solves them in approx.O(k0.25n2.25) time. In other words, we observe a speed-up by nearlyk0.75. The
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Figure 5: Runtimes in msec for random bin-packing instances.

pattern for KG is a little irregular, but we observe that the runtimes increase very little with increasingk,
and also that the runtimes are orders of magnitude smaller than for K. KG is able to solve instances with
more than one million tasks and 64 resources.

In a second set of runs (see Figure 6), we compared algorithmsUH, UR, K, P and PG on bin-packing
instances with precedences. We observe the same pattern forUH, UR and K as for the first set. Regarding
K vs. P, P is uniformly some 15% to 50% faster than K, confirmingthe efficiency of treating cumulative
and precedences globally. Regarding PG, curiously, the dependence ofk is similar to that of P, which was
not the case for KG vs. K. Like for KG vs. K, the runtimes of PG are orders of magnitude smaller than for
P.

In a third set of runs (see Figure 7), we compared algorithms UH, UR, K and KG on cumulative
instances without precedences. In terms of the complexity analysis of runtimes as a function ofn andk,
the picture is similar to that of the first set, but runtimes are about 50% longer.

In a fourth set of runs (see Figure 8), we compared algorithmsUH, UR, K, P and PG on cumulative
instances with precedences. In terms of the complexity analysis of runtimes as a function ofn andk, the
picture is similar to that of the second set, but runtimes areabout twice as long.

7.2 Resource-Constrained Project Scheduling

This experiment was run in SICStus Prolog. The program listing of the solver is given in Appendix B. We
used single-mode resource-constrained project scheduling benchmark suites from PSPLib1, comparing S,
UH, K and P. There are four suites: J30, J60, J90 and J120. Eachinstance involves 30, 60, 90 or 120
tasks, respectively, 4 resources and several precedence constraints. The problem constraints were encoded
as follows, depending on the algorithm used:

S and UH Fourcumulativeconstraints, over the tasks using a nonzero amount of the given resource only,
typically about 50% of all the tasks. Precedence constraints as simple linear inequalities over an end
and a start variable.

K Onek-dimensionalcumulativeconstraint, over all the tasks. For tasks that did not use a given resource,
a zero resource consumption was specified. Precedence constraints as above.

P As for algorithm K, but with precedences encoded as parameters to thecumulativeconstraint, instead of
being posted separately.

1http://129.187.106.231/psplib/
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Figure 6: Runtimes in msec for random bin-packing instanceswith precedences.
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The initial domains of the start times corresponded to the optimal makespan, if it was known, or the
best known upper bound, otherwise. A 60 seconds time limit per instance was imposed.

We used a two-phase search procedure. Phase one is nondeterministic, so if Phase two fails, it will
backtrack into Phase one to find another partial solution, and so on:

Phase one. First, the tasks were statically ordered by descending area, where the area of a task is defined
as its duration times its total resource consumption over the different resources. Then, for each taski
with start variablesi and durationdi, we introduced variablesbi andui subject to0 ≤ ui < di and
dibi + ui = si. Finally, to ensure that each task has a compulsory part, we labeled thebi variables in the
static order, by increasing value.

Phase two. Until all start variables have been fixed:

① Select the taskk with the smallest earliest start, breaking ties by choosingthe earliest one in the static
order.

② Split the current search tree node into a left node imposingsk ≤ m and a right node imposing
sk > m, wherem = ⌊(sk + sk)/2⌋.

It is worth noting that the search tree for a given instance will be identical for all the algorithms, except
S. Since algorithm S can filter out values in the middle of domains, it is able to solve some instances in
slightly fewer backtracks than the other algorithms.

In Table 3, we show the results in terms of backtracks per second (bts) per suite and algorithm. Each
table row corresponds to the set of observed bts for instances that took nonzero time and backtracks,
showing the minimum, maximum, mean, median bts as well as thestandard deviation and the number
of instances solved in 60 seconds. Note that the reported btsnumbers include both solved and timed out
instances.

We observe from themeanandmedian columns that algorithm S is slower than UH, which is slower
than K, which is slower than P, although for classes J90 and J120, there is practically no difference between
K and P. Recall that the motivation for handling precedencesdirectly in the filtering algorithm of P was
to reach a fixpoint faster, requiring fewer invocations of the filtering algorithm than if the precedences are
handled outside the algorithm. We conjecture that for J30 and J60, this is indeed what happens, whereas
for J90 and J120, the saving is smaller and just about outweighs the overhead paid by P for handling
precedences, what with extra dynamic events and everything.

In Table 4, we give for each suite a pairwise comparison of thealgorithms. Each table row corresponds
to the set of observed (bts for algorithmx)/(bts for algorithmy) for given algorithmsx/y and instances that
took nonzero time and backtracks to solve for both algorithms.

The latter table confirms the findings of the former one, and show that the largest performance gain in
our series of algorithm is due to the handling ofk resources in one constraint. The UH/K quotients are
slightly larger than4−0.75 = 0.35, predicted in the analysis of Figure 5. We conjecture that this is due to
the abundance of tasks with zero demand for one or more resources in the PSPLib instances, which means
that each individual 1-dimensional constraint needs to deal only with a subset of the tasks.

7.3 An Industrial Application

This experiment was run in SICStus Prolog, except algorithmPG, which was run in Choco. It consists of a
resource-constrained project scheduling problem [24] with 8 resources and up to 15000 tasks. The resource
usage array is sparse: only 12.5% of the array elements are nonzero.

The data are a randomized example of a multi-year project scheduling problem from industrial cus-
tomer. A series of jobs have to be scheduled over multiple years, each job consisting of multiple tasks,
which may need some of the limited resources. Links between tasks of different jobs indicate dependen-
cies in the workflow.

The key point is that we are not solving the problem once, to come up with an operational plan, but
have to solve many what-if scenarios, where the user changesthe timing of the migration tasks, the mix
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Table 3: Results for PSPLib instances per suite and algorithm (runtime in msec).
class #instances algorithm #solved min max mean median stddev

J30 480

S 469 100.00 34040.00 3147.90 2827.78 3052.43
UH 471 100.00 56733.33 4034.65 3200.00 5077.59
K 474 1300.00 34040.00 9332.15 8212.50 5087.08
P 475 100.00 34500.00 12437.60 11635.82 5806.21

J60 480

S 368 50.00 20600.00 1748.56 1533.91 1748.79
UH 369 100.00 17430.77 2165.60 1914.70 1807.89
K 374 100.00 14700.00 5650.81 5539.14 2859.14
P 374 100.00 10622.64 5915.70 6503.00 2603.33

J90 480

S 293 50.00 18890.94 1457.08 994.43 1758.14
UH 294 33.33 23923.77 2106.73 1437.25 2611.13
K 296 50.00 9510.00 4184.08 4489.25 2298.52
P 295 50.00 10568.43 4138.43 4648.68 2193.36

J120 600

S 91 50.00 12779.59 1617.27 877.87 1873.42
UH 93 50.00 29948.11 3519.59 2117.19 4138.10
K 95 33.33 12450.80 5239.94 5611.33 2016.51
P 94 50.00 9455.08 5283.45 5681.04 1764.89

Table 4: Results for PSPLib instances per suite and pair of algorithms (runtime in msec).
class #instances algorithms min max mean median stddev

J30 480

S/UH 0.25 2.00 0.91 0.91 0.28
S/K 0.12 2.00 0.45 0.36 0.29
S/P 0.08 1.80 0.32 0.28 0.23

UH/K 0.14 2.00 0.51 0.42 0.31
UH/P 0.09 3.00 0.39 0.30 0.35
K/P 0.25 2.00 0.88 0.75 0.48

J60 480

S/UH 0.34 2.50 0.89 0.86 0.34
S/K 0.10 2.55 0.40 0.32 0.29
S/P 0.08 3.18 0.38 0.30 0.33

UH/K 0.13 2.15 0.48 0.38 0.30
UH/P 0.14 2.69 0.44 0.35 0.31
K/P 0.39 2.00 0.96 0.95 0.30

J90 480

S/UH 0.25 3.00 0.78 0.70 0.36
S/K 0.06 3.00 0.44 0.28 0.42
S/P 0.06 2.47 0.43 0.28 0.40

UH/K 0.12 4.00 0.57 0.38 0.56
UH/P 0.12 4.00 0.57 0.37 0.54
K/P 0.44 2.00 1.02 1.00 0.30

J120 600

S/UH 0.22 2.00 0.49 0.40 0.30
S/K 0.05 3.00 0.36 0.18 0.41
S/P 0.05 3.00 0.37 0.18 0.47

UH/K 0.16 3.33 0.71 0.46 0.65
UH/P 0.16 3.87 0.72 0.42 0.71
K/P 0.33 3.00 1.01 1.00 0.23

33



of resource limits, etc. This means that fast, interactive response is very important, and consequently the
availability of a greedy method that can handle severalcumulativeand precedence constraints is crucial.

We compared algorithms S, UH, UR, K, P and PG on these instances, as shown in Table 5, displaying
runtimes and numbers of invocations of the filtering algorithm. The instances are easy, and are solved
without backtracking by all the algorithms. The same searchstrategy was used as in Section 7.1.

We find that S is slower than all the algorithms introduced in this report. UH was slower than UR,
confirming the earlier finding that the rings data structure outperforms the heaps one. UR was faster than
K, which we conjecture is due to the sparse usage array. This also fits the observed number of invocations
of the filtering algorithms. With all array elements nonzero, we would have expected aboutk (= 8)
times more invocations for UR than for K. Finally, the relatively poor performance of P vs. K can also be
explained by the invocation counts. The small saving in number of invocations we see here clearly does
not outweigh the extra overhead in P of handling precedences. We conjecture that with a harder instance
and different search strategy, the difference in number of invocations would be greater.

Finally, this application with its large but easy instancesand its requirement on speed and interaction
demonstrates the usefulness of a greedy assignment mode.

8 Conclusion

Unlike the traditional way of propagating constraints where each constraint is propagated independently
from each other, this paper exploits the idea ofsynchronizing the propagation of different constraintsfor
getting more scalable scheduling constraints. Starting from one singlecumulativeconstraint, we then con-
sider severalcumulativeconstraints and finally severalcumulativeandprecedenceconstraints. The idea is
not to use a sophisticated filtering algorithm that performsmore deduction by considering a conjunction of
constraints globally, but rather to perform some standard propagation in a faster way so that the filtering
algorithm scales better as the number of tasks of a scheduling problem increases. All three algorithms
introduced in this paper can operate both in filtering mode aswell as in greedy assignment mode. Our
benchmarks show that the filtering mode achieves a significant speed-up over the decomposition into in-
dependentcumulativeandprecedenceconstraints, especially as the number ofcumulativeor precedence
constraints increases. The greedy mode yields another two orders of magnitude of speed up allowing an
industrial problem of significant size to be solved in real time.
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Table 5: Results for the industrial application. Runtimes in seconds. All instances were solved in less than
two seconds by PG.

instance #tasks #precedences algorithm runtime #invocations

A 8268 31538

S 46.01 8471
UH 20.82 8300
UR 14.97 8303
K 24.23 8308
P 30.00 8269

B 7628 26711

S 25.96 7794
UH 14.54 7652
UR 10.49 7655
K 14.15 7660
P 23.91 7629

C 7467 27055

S 24.36 7631
UH 13.79 7493
UR 9.79 7496
K 13.47 7501
P 22.63 7468

D 8024 28017

S 30.88 8196
UH 16.45 8051
UR 11.85 8054
K 16.28 8059
P 26.66 8025

E 6421 22895

S 15.41 6557
UH 9.32 6440
UR 6.54 6443
K 9.55 6448
P 16.35 6422

F 6347 22943

S 14.21 6459
UH 9.00 6362
UR 6.30 6365
K 9.44 6370
P 16.08 6348

G 14337 53218

S 115.77 14734
UH 62.75 14403
UR 51.65 14406
K 57.90 14411
P 99.83 14338

H 11354 41776

S 73.91 11638
UH 37.56 11402
UR 28.82 11405
K 36.28 11410
P 59.61 11355

I 13348 50311

S 105.46 13669
UH 54.38 13405
UR 42.76 13408
K 50.45 13413
P 85.77 13349

J 15351 59917

S 131.91 15746
UH 73.52 15422
UR 54.75 15425
K 76.49 15430
P 115.94 15352

K 14945 62541

S 121.25 15318
UH 67.37 15008
UR 51.53 15011
K 69.00 15016
P 113.85 14946
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ALGORITHM process events() : 〈integer, integer〉
1: 〈δ, E〉 ← extract and record inE all the events inh events related to the minimal dateδ
2: [PROCESSING START COMPULSORY PART (SCP) EVENTS]
3: for all events of type〈SCP , t, st〉 in E do
4: ecp′ ← et
5: if ringt = conflict⋆ then
6: adjust min var(st, st); adjust min var(et, et)
7: ring t ← ready
8: else ifring t = check then
9: ring t ← ready

10: if δ < et then
11: for r = 0 to k − 1 do
12: gapr ← gapr − ht,r

13: if ecp′ ≤ δ then // introduceECPD event if new compulsory part

14: add〈ECPD , t, et〉 to h events

15: [PROCESSING DYNAMIC (ECPD) EVENTS]
16: for all events of type〈ECPD , t, et〉 in E do
17: if et > δ then // reintroduceECP event ifet has moved

18: add〈ECPD , t, et〉 to h events

19: else
20: for r = 0 to k − 1 do
21: gapr ← gapr + ht,r

22: [PROCESSING RELEASE SUCCESSOR (RS) EVENTS]
23: for all events of type〈RS , t, et〉 in E do
24: if ringt = conflict⋆ then
25: add〈RS , t, δ + dt〉 to h events // push back theRS event

26: else ifδ 6= et then
27: add〈RS , t, et〉 to h events // push back theRS event

28: else
29: for all t′ ∈ successorst do // scan the successors of taskt

30: nbpred t′ ← nbpred t′ − 1
31: if nbpred t′ = 0 then
32: if ¬release task(t′, δ, E) then return false // introduce events related to taskt′

33: [DETERMINE THE NEXT EVENT DATE]
34: δnext ← get top key(h events) // +∞ if empty

35: [PROCESSING EARLIEST START (PR) EVENTS]
36: for all events of type〈PR, t, st〉 in E do // PR must be handled last

37: if ∃r | ht,r > gapr then // is taskt in conflict?

38: ring t ← conflictr
39: else ifet > δnext then // might task be in conflict next time ?

40: ring t ← check
41: else
42: ring t ← ready
43: return 〈δ, δnext〉

Algorithm 8: Called every time the sweep-line moves. Extracts and processes all events at given time
pointδ. Returns the currentδ and the next time pointδnext and a Boolean indicating whether the algorithm
succeeds or not.
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ALGORITHM release task(t , δ, E) : boolean
1: [CHECK THE NEW EARLIEST START]
2: if ¬adjust min var(st, δ) ∨ ¬adjust min var(et, δ + dt) then
3: return false
4: [EARLIEST START OF TASK t IS ADDED AT δ]
5: if st = δ then
6: if st = st then // taskt is scheduled and starts atδ

7: for r = 0 to k − 1 do
8: gapr ← gapr − ht,r

9: ring t ← ready
10: else
11: add〈PR, t, st〉 to E // addPR event toE since it needs to be handled now

12: add〈SCP , t, st〉 to h events

13: if st < et then // ECPD event implies presence of compulsory part

14: add〈ECPD , t, et〉 to h events

15: if taskt has a least one successorthen
16: add〈RS , t, et〉 to h events

17: [EARLIEST START OF TASK t IS ADDED AFTER δ]
18: else
19: add〈SCP , t, st〉 to h events

20: if st < et then // ECPD event implies presence of compulsory part

21: add〈ECPD , t, et〉 to h events

22: if st < st then // taskt is not yet fixed

23: add〈PR, t, st〉 to h events

24: else
25: ring t ← ready
26: if taskt has at least one successorthen
27: add〈RS , t, et〉 to h events

28: return true

Algorithm 9: Generates and adds events related to taskt, meaning that all its predecessors have reached
their fixpoint. Returnsfalsefor failure if δ has passed the latest start of taskt, true otherwise.
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[3] Jean-Charles Régin and Mohamed Rezgui. Discussion about constraint programming bin packing
models. InAI for Data Center Management and Cloud Computing. AAAI, 2011.

[4] ROADEF. Challenge 2012 machine reassignment, 2012.

[5] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. InCP’98, volume 1520 ofLNCS, pages 417–431. Springer, 1998.

[6] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Why cumulative decomposi-
tion is not as bad as it sounds. InCP’09, volume 5547 ofLNCS, pages 746–761. Springer, 2009.

[7] Nicolas Beldiceanu and Mats Carlsson. Sweep as a genericpruning technique applied to the non-
overlapping rectangles constraint. InCP’01, volume 2237 ofLNCS, pages 377–391. Springer, 2001.

[8] Roger Kameugne, Laure Pauline Fotso, Joseph Scott, and Youcheu Ngo-Kateu. A quadratic edge-
finding filtering algorithm for cumulative resource constraints. In CP’11, volume 6876 ofLNCS,
pages 478–492. Springer, 2011.

[9] Petr Vilı́m. Edge finding filtering algorithm for discrete cumulative resources inO(kn logn). In
CP’09, volume 5547 ofLNCS, pages 802–816. Springer, 2009.

[10] Philippe Baptiste, Claude Le Pape, and Wim Nuijten.Constraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problems. International Series in Operations Research and Man-
agement Science. Kluwer, 2001.

[11] Petr Vilı́m. Timetable edge finding filtering algorithmfor discrete cumulative resources. InCPAIOR,
volume 6697 ofLNCS, pages 230–245. Springer, 2011.

[12] N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C. Truchet. A generic geometrical constraint
kernel in space and time for handling polymorphick-dimensional objects. InCP’07, volume 4741 of
LNCS, pages 180–194. Springer, 2007.

[13] Christian Schulte. Comparing trailing and copying forconstraint programming. In Danny De Schreye,
editor,ICLP’99, pages 275–289. The MIT Press, 1999.

[14] Nicolas Beldiceanu, Mats Carlsson, and Sven Thiel. Sweep synchronisation as a global propagation
mechanism.Computers and Operations Research, 33(10):2835–2851, 2006.

[15] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling and placement
problems.Mathl. Comput. Modelling, 17(7):57–73, 1993.

[16] Nicolas Beldiceanu and Mats Carlsson. A new multi-resourcecumulativesconstraint with negative
heights. InCP 2002, volume 2470 ofLNCS, pages 63–79. Springer, 2002.

[17] Arnaud Letort, Nicolas Beldiceanu, and Mats Carlsson.A scalable sweep algorithm for the cumula-
tive constraint. InCP, LNCS, pages 439–454. Springer, 2012.

[18] Arnaud Letort, Mats Carlsson, and Nicolas Beldiceanu.A synchronized sweep algorithm for the
k-dimensional cumulative constraint. InCPAIOR, LNCS, pages ?–? Springer, 2013.

[19] Rainer Kolisch and Arno Sprecher. PSPLIB – a project scheduling problem library.European Journal
Of Operational Research, 96:205–216, 1996.

38



[20] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational geometry - algo-
rithms and Applications. Springer, 1997.

[21] C. Le Pape.Des syst̀emes d’ordonnancement flexibles et opportunistes. PhD thesis, Université Paris
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A Source Code for Random Instance Generator

public class Generation {
public static void main(String[] args) {

// define parameters
int nbTasks = 100;
int nbResources = 3;
double density = 0.8;
int capacity = 10;
int minHeight = 1;
int maxHeight = 5;
int minDuration = 1;
int maxDuration = 10;
double avgNbSuccessors = 3;
int maxNbSuccessors = 9;
// generate the instance
RCPSPGenerator g = new RCPSPGenerator(nbTasks, nbResources, density,

capacity, minHeight, maxHeight, minDuration, maxDuration,
avgNbSuccessors, maxNbSuccessors);

RCPSPInstance i = g.generateCumulative();
}

}

import java.util.Random;

public class RCPSPGenerator {

private final int nbTasks;
private final int nbResources;
private final double density;
private final int capacity;
private final int minHeight;
private final int maxHeight;
private final int minDuration;
private final int maxDuration;
private final double avgNbSuccessors;
private final int maxNbSuccessors;
private final Random rnd;
private double avgTaskEnergy;
private int makespan;

public RCPSPGenerator(int nbTasks, int nbResources, double density, int
capacity, int minHeight, int maxHeight,

int minDuration, int maxDuration, double
avgNbSuccessors, int maxNbSuccessors) {

this.rnd = new Random();
this.nbTasks = nbTasks;
this.nbResources = nbResources;
this.density = density;
this.capacity = capacity;
this.minHeight = minHeight;
this.maxHeight = maxHeight;
this.minDuration = minDuration;
this.maxDuration = maxDuration;
this.avgNbSuccessors = avgNbSuccessors;
this.maxNbSuccessors = maxNbSuccessors;

}
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public RCPSPGenerator(int nbTasks, int nbResources, double density, int
capacity, int minHeight, int maxHeight,

int minDuration, int maxDuration) {
this(nbTasks,nbResources,density,capacity,minHeight,maxHeight,

minDuration,maxDuration,0,0);
}

public RCPSPInstance generateCumulative() {
// compute makespan
this.avgTaskEnergy = ((maxDuration+minDuration)/2)*((minHeight+

maxHeight)/2);
double sumEnergy = (long) ((avgTaskEnergy*nbTasks)/density);
this.makespan = (int) (sumEnergy / capacity);
// memory alloc
int[] startLB = new int[nbTasks];
int[] duration = new int[nbTasks];
int[] endUB = new int[nbTasks];
int[][] heights = new int[nbTasks][nbResources];
int[][] successors = new int[nbTasks][];
// generate the duration and the height of the tasks for 1 resource
int curNbTasks = 0;
double futurEnergy = 0, avgFuturEnergy, taskEnergy, curEnergy = 0;
int _d=-1, _h=-1;
boolean isOk;
while ( curNbTasks < nbTasks ) {

avgFuturEnergy = (curNbTasks+1)*avgTaskEnergy;
isOk = false;
while (!isOk) {

_d = random(minDuration,maxDuration);
_h = random(minHeight,maxHeight);
taskEnergy = _d * _h;
futurEnergy = curEnergy + taskEnergy;
if ( (futurEnergy <= avgFuturEnergy*1.02) && (futurEnergy >=

avgFuturEnergy*0.08) ) {
isOk = true;

}
}
curEnergy = futurEnergy;
startLB[curNbTasks] = 0;
duration[curNbTasks] = _d;
endUB[curNbTasks] = makespan;
heights[curNbTasks][0] = _h;
curNbTasks++;

}
// generate the heights of the tasks for the other dimensions
for (int r=1;r<nbResources;r++) {

curNbTasks = 0;
curEnergy = 0;
while ( curNbTasks < nbTasks ) {

avgFuturEnergy = (curNbTasks+1)*avgTaskEnergy;
isOk = false;
while (!isOk) {

_h = random(minHeight,maxHeight);
taskEnergy = duration[curNbTasks] * _h;
futurEnergy = curEnergy + taskEnergy;
if ( (futurEnergy <= avgFuturEnergy*1.02) && (futurEnergy

>= avgFuturEnergy*0.08) ) {
isOk = true;
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}
}
curEnergy = futurEnergy;
heights[curNbTasks][r] = _h;
curNbTasks++;

}
}
// generate the precedence relations (without cycle)
if (avgNbSuccessors == 0 || maxNbSuccessors == 0) {

for (int t=0;t<nbTasks;t++) {
successors[t] = new int[0];

}
} else {

int[] succTmp = new int[maxNbSuccessors];
int nbSucc, currentWS;
final int windowSize = Math.max((int)0.05*nbTasks,maxNbSuccessors)

;
double percToBeSucc;
for (int i=0;i<nbTasks;i++) {

if ( i+windowSize<nbTasks ) {
currentWS = windowSize;

} else {
currentWS = nbTasks - 1 - i;

}
nbSucc = 0;
percToBeSucc = avgNbSuccessors / currentWS;
for (int j=i+1;j<i+currentWS;j++) {

if ( randomDouble() < percToBeSucc ) {
succTmp[nbSucc] = j;
nbSucc++;
if (nbSucc == maxNbSuccessors) {break;}

}
}
successors[i] = new int[nbSucc];
for (int j=0;j<nbSucc;j++) {

successors[i][j] = succTmp[j];
}

}
}
// create a new instance
RCPSPInstance instance = new RCPSPInstance();
instance.nbTasks = nbTasks;
instance.nbResources = nbResources;
instance.startLB = startLB;
instance.endUB = endUB;
instance.duration = duration;
instance.heights = heights;
instance.capacities = new int[nbResources];
for (int r=0;r<nbResources;r++) {

instance.capacities[r] = capacity;
}
instance.successors = successors;
return instance;

}

public void setSeed(long seed) {
this.rnd.setSeed(seed);

}
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private int random(int lb, int ub) {
return this.rnd.nextInt(ub-lb)+lb;

}

private double randomDouble() {
return this.rnd.nextDouble();

}
}

public class RCPSPInstance {

public int[] startLB;
public int[] endUB;
public int[] duration;
public int[][] heights;
public int[][] successors;
public int[] capacities;
public int nbTasks;
public int nbResources;

RCPSPInstance() {}
}
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B Source Code for PSPLIB Instance Solver

:- use_module(library(lists)).
:- use_module(library(ugraphs)).
:- use_module(library(timeout)).
:- use_module(library(file_systems)).
:- use_module(library(clpfd)).
:- ensure_loaded(bounds).

top :-
solve_dir(j120, static),
solve_dir(j120, uni),
solve_dir(j120, decomposed),
solve_dir(j120, multi),
solve_dir(j120, multi_precedences),
solve_dir(j90, static),
solve_dir(j90, uni),
solve_dir(j90, decomposed),
solve_dir(j90, multi),
solve_dir(j90, multi_precedences),
solve_dir(j60, static),
solve_dir(j60, uni),
solve_dir(j60, decomposed),
solve_dir(j60, multi),
solve_dir(j60, multi_precedences),
solve_dir(j30, static),
solve_dir(j30, uni),
solve_dir(j30, decomposed),
solve_dir(j30, multi),
solve_dir(j30, multi_precedences),
true.

solve_dir(Dir, Algo) :-
solve_dir(Dir, Algo, mats_2phase).

solve_dir(Dir, Algo, Sel) :-
atom_concat(’../PSPLIB/’, Dir, AbsDir),
file_members_of_directory(AbsDir, Members),
( foreach(Relative-Absolute,Members),

param(Algo,Sel,Dir)
do \+ \+ solve(Dir, Absolute, Relative, Algo, Sel)
).

solve(Dir, Abs, Rel, Algo, Sel) :-
generate(Dir, Abs, Rel, Algo, Ss, Durs, Es, Hss, Ps,

Tasks1-Lim1, Tasks2-Lim2, Tasks3-Lim3, Tasks4-Lim4),
statistics(runtime, _),
fd_statistics(backtracks, _),
fd_statistics(resumptions, _),
disjunctives(Tasks1, Lim1),
disjunctives(Tasks2, Lim2),
disjunctives(Tasks3, Lim3),
disjunctives(Tasks4, Lim4),
post(Algo, [Tasks1-Lim1,Tasks2-Lim2,Tasks3-Lim3,Tasks4-Lim4], Hss, Ps,

F),
time_out(search(Sel,Ss,Durs,Es,Hss,F), 60000, Res),
statistics(runtime, [_,T2]),
fd_statistics(backtracks, Btr),
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fd_statistics(resumptions, Ru),
atom_concat(Inst, ’.sm’, Rel),
portray_clause(data(Inst,Algo,Res,T2,Btr,Ru)).

search(mats_2phase, Ss, Durs, _Es, Hss, _) :-
( foreach(V,Ss),

foreach(C,Bins),
foreach(D,Durs),
foreach(Hs,Hss),
foreach(V-Rank,Pairs),
foreach(Rank-B,KL1),
foreach(_-C,KL2)

do B #= V/D,
sumlist(Hs, Hsum),
Rank is -D*Hsum

),
keysort(KL1, KL2),
labeling([], Bins),
mats_labeling(Pairs).

mats_labeling([]) :- !.
mats_labeling(Pairs0) :-

( foreach(Pair, Pairs0),
fromto(Pairs,Pairs1,Pairs2,[]),
fromto(([[none]]-0)-0,Key1,Key2,_-O2)

do Pair = O-R,
( nonvar(O) ->

Pairs1 = Pairs2,
Key1 = Key2

; fd_set(O, Min),
(Min-R)-O @< Key1

-> Key2 = (Min-R)-O,
Pairs1 = [Pair|Pairs2]

; Key2 = Key1,
Pairs1 = [Pair|Pairs2]

)
),
mats_labeling(O2, Pairs).

mats_labeling(O, Pairs) :-
nonvar(O), !,
mats_labeling(Pairs).

mats_labeling(O, Pairs) :-
fd_min(O, Min),
fd_max(O, Max),
Mid is (Min+Max)>>1,
( O #=< Mid,

mats_labeling(O, Pairs)
; O #> Mid,

mats_labeling(Pairs)
).

post(static, TasksLimits, _, _, _) :-
( foreach(Tasks-Limit,TasksLimits)
do cumulatives(Tasks, [machine(1,Limit)], [bound(upper)])
).

post(uni, TasksLimits, _, _, _) :-
( foreach(Tasks-Limit,TasksLimits)

45



do clpfd:uni_cumulative(Tasks, [limit(Limit)])
).

post(decomposed, TasksLimits, _, _, _) :-
( foreach(Tasks-Limit,TasksLimits)
do ( foreach(task(O,D,E,H,I),Tasks),

foreach(task(O,D,E,[H],I),MTasks)
do true
),
clpfd:multi_cumulative(MTasks, [Limit])

).
post(multi, TasksLimits, Hss, _, _) :-

( foreach(_-Limit,TasksLimits),
foreach(Limit,Limits)

do true
),
TasksLimits = [Tasks-_|_],
( foreach(task(O,D,E,_,I),Tasks),

foreach(task(O,D,E,Hs,I),MTasks),
foreach(Hs,Hss)

do true
),
clpfd:multi_cumulative(MTasks, Limits).

post(multi_precedences, TasksLimits, Hss, Ps, _) :-
( foreach(_-Limit,TasksLimits),

foreach(Limit,Limits)
do true
),
TasksLimits = [Tasks-_|_],
( foreach(task(O,D,E,_,I),Tasks),

foreach(task(O,D,E,Hs,I),MTasks),
foreach(Hs,Hss)

do true
),
clpfd:multi_cumulative(MTasks, Limits, [precedences(Ps)]).

nomulti(static).
nomulti(uni).
nomulti(decomposed).

disjunctives(Tasks, Lim) :-
( foreach(Task,Tasks),

foreach(H-Task,KL1)
do Task = task(_,_,_,H,_)
),
keysort(KL1, KL2),
reverse(KL2, KL3),
( fromto(Lim,H1,H2,_),

fromto(KL3,[H2-Task2|KL4],KL4,_),
fromto(Disj,Disj1,Disj2,[]),
fromto(>,_,Cmp,<),
param(Lim)

do ( H1+H2 > Lim
-> Disj1 = [Task2|Disj2]
; Disj1 = Disj2
),
( KL4 = [] -> Cmp = (<)
; H1+H2 =< Lim -> Cmp = (<)
; Cmp = (>)
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)
),
( fromto(Disj,[task(S1,_,E1,_,_)|Disj3],Disj3,[])
do ( foreach(task(S2,_,E2,_,_),Disj3),

param(S1,E1)
do E1 #=< S2 #\/ E2 #=< S1
)

).

nbjobs(j30, 30).
nbjobs(j60, 60).
nbjobs(j90, 90).
nbjobs(j120, 120).

generate(Dir, Abs, Rel, Algo, Ss, Ds, Es, Hss, Precedences,
Tasks1-Lim1, Tasks2-Lim2, Tasks3-Lim3, Tasks4-Lim4) :-
nbjobs(Dir, NJ),
bounds(Rel, LCT, _),
see(Abs),
skip_lines(19),
( for(_,1,NJ),

foreach(Succs,Succss)
do read_ints([_,_,_|Succs])
),
skip_lines(6),
( for(_,1,NJ),

foreach(S,Ss),
foreach(Dur,Ds),
foreach(Hs,Hss),
foreach(E,Es),
fromto(Tasks1,Tasks1a,Tasks1b,[]),
fromto(Tasks2,Tasks2a,Tasks2b,[]),
fromto(Tasks3,Tasks3a,Tasks3b,[]),
fromto(Tasks4,Tasks4a,Tasks4b,[]),
param(LCT,Algo)

do read_ints([_,_,Dur|Hs]),
Hs = [R1,R2,R3,R4],
S in 0..LCT,
E in 0..LCT,
S + Dur #= E,
( R1=:=0, nomulti(Algo) -> Tasks1a = Tasks1b
; Tasks1a = [task(S,Dur,E,R1,1)|Tasks1b]
),
( R2=:=0, nomulti(Algo) -> Tasks2a = Tasks2b
; Tasks2a = [task(S,Dur,E,R2,1)|Tasks2b]
),
( R3=:=0, nomulti(Algo) -> Tasks3a = Tasks3b
; Tasks3a = [task(S,Dur,E,R3,1)|Tasks3b]
),
( R4=:=0, nomulti(Algo) -> Tasks4a = Tasks4b
; Tasks4a = [task(S,Dur,E,R4,1)|Tasks4b]
)

),
skip_lines(4),
read_ints([Lim1,Lim2,Lim3,Lim4]),
seen,
gen_precedences(Algo, NJ, Succss, Es, Ss, Precedences).
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gen_precedences(multi_precedences, NJ, Succss, _, _, Precedences1) :- !,
( count(I1,1,_),

foreach(Succs1,Succss),
fromto(Precedences1,Precedences2,Precedences5,[]),
param(NJ)

do ( foreach(J,Succs1),
fromto(Precedences2,Precedences3,Precedences4,Precedences5),
param(I1,NJ)

do J1 is J-1,
( J1 =< NJ -> Precedences3 = [I1-J1|Precedences4]
; Precedences3 = Precedences4
)

)
).

gen_precedences(_, _, Succss, Es, Ss, []) :-
( foreach(Succs1,Succss),

foreach(Ei,Es),
foreach(Si,Ss),
param(Ss)

do ( foreach(J,Succs1),
param(Si,Ei,Ss)

do J1 is J-1,
(nth1(J1, Ss, Sj) -> Ei #=< Sj ; true)

)
).

skip_lines(N) :-
( for(_,1,N)
do \+ \+ read_line(_)
).

read_ints(Ints) :-
read_line(Line),
parse_ints(Line, Ints).

parse_ints([], []).
parse_ints([Dig|Line], [Int|Ints]) :-

Dig >= 0’0, Dig =< 0’9, !,
Int0 is Dig - 0’0,
parse_ints(Line, Int0, Int, Ints).

parse_ints([_|Line], Ints) :-
parse_ints(Line, Ints).

parse_ints([Dig|Line], Int0, Int, Ints) :-
Dig >= 0’0, Dig =< 0’9, !,
Int1 is 10*Int0 + Dig - 0’0,
parse_ints(Line, Int1, Int, Ints).

parse_ints(Line, Int, Int, Ints) :-
parse_ints(Line, Ints).
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