SICS Technical Report T2013:02
ISSN 1100-3154

VETE:

Virtualizing the Trusted
Execution Environment

Arash Vahidi, SICS 2013-03-05
Patrik Ekdahl, Ericsson Research

PPPPP

SWEDISH

ICT

Page 2

Table of Contents

INEEOAUCTION. ...ttt ettt et sbt et e e s bt et e st e s bt e b e et e s bt e b e e ab e bt e besasesbeensesaeesneesnnean 5
1\ (o077 L (o) 1 FO TP RS PUPPPPPTPTO 5
Project DaCKGIOUNG.........c.oovuiiiiiiiieeieeeeeeee ettt et ettt e st e e aa e st e e st e s sbeesssesnbeesennes 5
o o) [<Tad oo | LTSS PR 6
PrOJECE TESITICTIONS. ...eeeeeiieteeieiitee ettt ettt e e ettt e e ettt e e st e e s e eanbteeeenreeeeseasraeeseennseeeesnneaeessnsnnneeeeeeens 6

SYSLEIM ATCHITECIUTE. .. .eiiiiieeiieeeiee et eete ettt e et e e et e e et e e e teessaeeeeaaeeesaeesssaaesssaeassseeenssaesssssaeesensnnssees 7
The NovaThor U8500 Platform.........c.ceviiriuiiriiiieiiiesieeriesieest ettt ste et esbessseesaaeeseessnessneas 7
ARM COrteX-A9 arChiteCIUTE.eceiuieeeieiieeiieeeiteerieeesteeesteeesteeeseeeesaeeessseessseesssseesssseesssseessssseeessnnnns 7
Memory management il ARM......ccooiiiiieieieeeeee ettt e e e e s e s e e e e s 9
TTUStZONE tECHNOIOEYciiviieeiieieiieeeeeeeee ettt et eet e et e e e te e e s be e e sbeeesabeesssseesssseessssaesnsseesssaaaeas 12

GlODAIPIAtEOIIN. ¢ ettt st b et e b et s e be et e s st e be e s e sst e st et e e neeenee 13
THE CHENE APL.....eiiiieeeeieeee ettt ettt e e st e e ste e e s te e e aaeeessseeesaeesssseeessaeesssaeenssaeenssaesnsseneeenns 14
The Trusted Execution ENVIFONIMENL..........coc.iiiiriiiirieriereeieneesie ettt sttt esre et s v s 14
Remote Procedure CallS..........uiiieeiiiiiieeeieceite sttt et e ste e sae e s sate e s sae e e staeessaaeesssaessessnsnaeesennnns 14

5 77012 0 {0 &P PPPPPPPPPPRN 16
USES Of DY PEIVISOTS. ...eicuiiiiieiiiieiieeie et eete et eet e e vt es et e e teeseteesbeesaessseesseessseesssasssaessaassseessssseesnssaeesnnses 16
Different properties Of RYPeIrVISOIS.......c.civiiiriiiriiriieieeeeteee ettt e s saae e s sebeeeeenees 16
Hypervisor Privilege 1@VEIS.......c..uuiiiiiiiiieeteecteecte ettt ettt s saae e sae e s s ebaa e e e e s nraaaeessnnnnns 17
Hyprevisor operations: context storage, hypercalls and RPC............cccecceeriiriiiinienieeniieenieeerieeeene 18

The STH-TEE IMplemMentation.........cccccuieerieeeiieeeiieeniieeseieeesreeesteessseesssseessssesssssesssssesssseessssesssssssnssees 22
The SICS Thin HYPeIVISOT.......iiiuiieiieiierieiiteeteerite st st e ste et e stessseessbeesseessbesseesssesseesssessseessssesennns 22
Combined GlobalPlatform and STH archit@Cture............ccceeeiereiierieeiiieniecceeeeeeeeere e 22
The TEE @IMULALOT......coctiiiiiteiteeiteeet ettt ettt et e st sbe st st e b et esae e st s seeesneeeseeenneeenee 24
Memory organization il STH........cuuiiiiiiiiiiiiereee ettt e e e s rbe e e s s sbbeeesssaraeeesssennes 25
Memory management within the RYPeIViSOT.........ccoviirriiirieriieirieeieetere et 26

Dynamic Mmemory N STH.......oiiiiiiiiieeeeeteeeetee ettt e e sire e e e s sara e e s s abaeeeesasaaeesens 27
Physically aligned memory in STH.......cccciriiiiiiiniiiiienieeeerte sttt ettt e e e 27
Mapping databases iN STH.........cciiiiiiriiiiiiiieceecre ettt ssee e se e e s e e e s steeesbaeessaaessssaeessnnnnes 27
RPC implementation il STH.........ccceiiiriiiiriirieeieeie ettt ettt ee e e sbeesaaesssaessssneeennns 29
DeployMENt Of STH......ciiiiiiieeieeieeteeteee ettt ettt ste e s ae e be e s b e e beessaeesbaesssaeasssseeensseeesnnsns 30

SUITIIMIATY .ttt e e ettt e s et e e e e abe e e e s asb e e e s e snaeee e sseeessensnaeeseesssnnnnnnnnnnnnnee 31
Problems and ODSTACIES.......cc.uuiiiiiiiiieeieeeteeee ettt ettt e e e e e e e s a e e e e e nraaaeeeennnns 31
CUITENE STATUS. ...eerureeiiteeiitee ettt ettt et e et e bt e e sbb e e s sbae e s bbe e s ba e s s beeseabeesenbeesenbeesenseesanneesenns 31
L0003 el 1113 o) 1 13O SO UUSPRP 32
FULUI® WOTK. ..ottt ettt et et a et s e b e st e st b e te s e e e ne e e seeeneeennee 32

L1 0) FT0 oA 121 0] 1) 2RO PR SPRROURRRRPRRRRRRE 33

TOITIINOIOZYeeneteeieeieett ettt ettt et s e e bt e st e et e e st e e sbeessbe e seessbeensaessbesnsaesansaaesnssaeesnns 34

REVISION HISTOTY..ceiiiiiiiiiiiiiieeieitee ettt ettt e st e e s sttt e e s s bt e e e s s baaeesssssbaeeessssssssbsaaaaaeeeesesssssnnnns 35

Page 3

Page 4

Introduction

This document is the final report for the SICS project Virtualizing the Trusted Execution Environment
(VETE). This project was carried out in close collaboration with Ericsson Research and with support
from ST-Ericsson.

Motivation

Mobile computing devices such as smartphones are an important part of our lives. We are using phones
to make payments, to communicate with friends and family, and to carry out an ever increasing parts of
our jobs. In short, we are becoming more and more dependent on mobile computing devices and expect
such systems to work correctly and securely.

At the same time, phones (and embedded systems in general) are reaching a level of complexity where
existence of critical errors in their software is almost inevitable. At the same time, even minor software
glitches can have effect on our lives. For example, recently a software error in the alarm application of
a popular mobile OS resulted in a large number of people arriving late to their works, which in some
places also resulted in further problems with public transportation. These types of problems will only
accelerate when cyber-criminals start actively exploiting software glitches in phones and embedded
systems for financial gain.

One method to improve security of computing devices is to create isolated layers of software such that
a problem in one layer does not affect other layers. For example, in general purpose operative systems,
memory protection is used to separate applications from each other and from the operative system.
Hence, an error in one application cannot directly affect any other applications. Hypervisor
technologies extend this idea by introducing another layer of isolation, which separates multiple
operative systems from each other and/or from the bare metal hardware. Hence, hypervisors can be
used as security enablers.

Project background

The SICS Thin Hypervisor (STH) is a small and portable hypervisor for embedded systems. The small
size of STH makes it suitable for many embedded systems where resources are scarce. The STH is
currently being updated to support more powerful systems and the ability to host more complex guests
such as the Linux kernel. At the same time, the implementation is being formally verified to ensure
correctness.

Another focus of this project is the Trusted Execution Environment (TEE) specification of
GlobalPlatform. The TEE specification defines an environment where Trusted Applications (TA) can
be executed in a secure manner, and normal (possibly untrusted) applications can utilise the
functionality of the TA. The specification also defines a method for secure communication between
applications.

NovaThor from ST-Ericsson is a family of advanced System-on-Chip (SoC) platform used primarily in
smartphones. The NovaThor utilizes a TrustZone enabled ARMv7 CPU, which adds a secondary
isolation layer. This isolation layer separates the Normal world from the new Secure world, inside

Page 5

which trusted application can run with full isolation from the rest of the system including whatever
general purpose operative system or applications the system is running.

Some devices in the NovaThor family (such as L9540 and 1.8540) fully support the TEE specification.
For the purpose of this work however, we have chosen the NovaThor U8500 platform which does not
fully implement a GlobalPlatform compliant TEE. The U8500 contains a light-weight Trusted
Execution Environment that separates Trusted Applications from untrusted applications but does not
provide separation between the trusted applications themselves. In theory, a buggy or malicious Trusted
Application could compromise security of the device.

Project goals

The goal of this project is to design and implement a hypervisor for the U8500 NovaThor platform that
operates inside the Secure world of the main CPUs. The hypervisor will virtualize the underlying
hardware in such way that the Trusted Execution Environment either directly or with the help of the
hypervisor can provide secure isolation between the Trusted Applications, and between Trusted
Applications and normal applications.
Project restrictions
Due to time constraints, in this project we will not consider the following subjects

* Multicore

* Scheduling

* Virtualization of other SoC components such as GPU and DSP

Page 6

System architecture

The target system for this project is the NovaThor family from ST-Ericsson [1]. The architecture and
the associated software is explained in this chapter.

The NovaThor U8500 platform

For this projects, we will use the NovaThor U8500. The U8500 combines a modern dual-core ARM
Cortex-A9 CPU with a HSPA+ modem on a single die.

DB8500

B s
HSPA ARM® Cortex™-A9 =
Py Video Dual
. .
-3 I3 Dl
Peripherals LD ISP
Graphics 2
AVE100

n]]
F Y Fs
XX
IR
] ABSB500
i |
@ @ .‘- ..@
[[
Y Y

&

¥ ¥
.'r I

@ @

Illustration 1: The NovaThor U8500 platform (source: stericsson.com)

-~

The U8500 incorporates a large number of components such as an ARM Mali 400 GPU and multiple
signal processing units. In this project however, we will limit us to the Cortex-A9 CPUs plus some
minor peripherals such as the USART for debugging.

ARM Cortex-A9 architecture

The ARM Cortex-A9 is a multicore capable 32-bit ARM processor that implements the ARMv7a
architecture [2]. It is currently the most popular architecture in mobile computing devices.

Page 7

Snoop
Control
Unit

Dual AMBA3 bus

Accelerator

NEON FPU

32-bit ARMv7

Coherency
Port

I-cache D-cache

Illustration 2: The ARM Cortex-A9 CPU.

The Cortex-A9 incorporates a number of interesting technologies such as NEON, Thumb-2 and a
subset of the ARMv7a security extensions including TrustZone. It does however not include the
virtualization extensions that are present in newer versions such as Cortex-A15.

The Cortex-A9 CPU implements the classic 32-bit ARM architecture. It uses a flat 32-bit memory
addressing mode and contains 16 32-bit general purpose registers (RO to R15) in addition to a status
register (PSR). The CPU can operate in a number of different state, some of which have higher
privileges than others.

Mode Privileged? |Entered by Remarks

User modes
USER No - User mode, the normal execution mode

Classic privileged modes
FIQ Yes Fast interrupt
IRQ Yes Interrupt
SVC Yes SVC Supervisor mode
ABT Yes Access error Abort: data or pre-fetch abort
SYS Yes -
UND Yes Invalid instructions
Hypervisor extensions
HYP Yes HVC Hypervisor mode (not used in this work)
Security extensions

MON Yes SMC Monitor call, TruztZone entry.

Also entered by secure IRQ/FIQ/aborts

Table 1: The ARM CPU states. Note that the hypervisor mode is not available in out target platform.

Some of the CPU register are banked in some CPU states. For example, when the CPU is running in

Page 8

the user mode, the stack pointer register (R13) is actually the program counter for that specific mode
(R13_user). When an interrupt arrives, the CPU will switch to IRQ mode and start using the R13_irq
register instead. This is in contrast to some other architecture such as x86, where the stack is used to

store main registers during mode-changes.

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
PSR

User

The ARM architecture defines a unified method to access up to 16 co-processors (CPO-CP15). The

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
CPSR

System

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_svc
R14_svc
R15
CPSR
SPSR

Supervisor

Illustration 3: Banked registers in ARM.

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 irq
R14_irq
R15
CPSR
SPSR

IRQ

RO
R1
R2
R3
R4
R5
R6
R7
R8_fiq
R9 fiq
R10_fiqg
R11 fig
R12 fiq
R13_fiqg
R14 fig
R15
CPSR
SPSR

FIQ

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13_und
R14_und

R15

CPSR
SPSR

Undefined

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13_abt
R14_abt

R15

CPSR
SPSR

Abort

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13_mon
R14_mon
R15
CPSR
SPSR

Monitor

ARM specification reserves two of these for debugging (CP14) and system control (CP15). The latter is
of most important when designing operative systems or hypervisors as it among other thing controls

caches and memory management hardware.

Memory management in ARM

Protection of system memory is a central part of hypervisor design. It is achieved by configuring the

Memory Management Unit (MMU), which is logically placed between the unmanaged CPU core and
the physical memory (including memory mapped I/0 registers) and translates physical memory into a
virtual memory representation based on a mapping table.

Page 9

CPU RAM

r adr 1200
Read adr 1200

CPU RAM

1300 --> 1000

Read adr 1200 1200 --> 400 L
adr 400

1100 --> 300

Illustration 4: Memory access with (top) and without memory
translation using MMU (bottom). The MMU with help of a
translation table, changes accessed address from 1200 to 400.

MMU in ARM architectures that are of interest to us (ARMvV5, v6 and v7a) can be configured in
different setups. The one of interest to us is the classic two-level page tables with 4KB pages. In short,
the mapping between the physical and virtual memory is defined by a level-1 page table containing
4096 entries each pointing to zero or one level-2 page table containing 256 entries. This creates a
mapping with a granularity of 2%%/(4096 * 256) = 4096 bytes in the memory, a 4KB page’.

CPU RAM

L adr 400

Page walker

Read adr 1200

3000 --> C 1300 --> 1000
= 2000 --> B r» 1200 --> 400 =—)
1000 --> A 1100 --> 300
L1 table L2 tables

Illustration 5: MMU memory access with two-level page tables.
The “walker” inspects L1/L2 tables to find a suitable mapping.

1 But for better readability, illustrations in this document mostly use L1 and L2 tables of granularity of 1000 and 100.

Page 10

When the CPU tries to access a memory location, the virtual address is converted to a physical address

by performing a page walk, i.e. by looking at the page table structures. Since this process is costly
(each CPU memory access requires up to two additional memory reads), a simple cache called

Translation Look-aside Buffer (TLB) is used to store some previous page walks. In ARM this is all
performed entirely in hardware, while in some other architecture such as MIPS the TLB is filled and

maintained by software.

CPU MMU

=) Read adr 1200 e—
TLB

' 3100 -> 800
| 1200 -> 400 =

Walker

AB

3000 --> C 1300 --> 1000

CD

RAM

adr 400

= 2000 --> B r> 1200 --> 400 =)
1000 --> A 1100 --> 300

L1 table L2 tables

Illustration 6: Memory management unit with TLB, which acts

as a translation cache.

Mappings for some memory locations may be invalid or inaccessible for various reasons (such as a
privilege level mismatch). In this case as the CPU reads from or writes to these locations an access
abort is generated. This redirects the CPU to an access abort handler” while changing the CPU state to

abort mode. The handler then decides how to continue, for example by terminating the offending

process or by creating the required mapping.

One important detail in memory management is that modifying page tables does not immediately affect
the active memory mapping. The TLB takes precedence over the page tables so to be 100% sure that

page tables changes are taken into account one must invalidate the TLB data. Also, as seen in

Mlustration 7, in some systems the cache operates on virtual addresses® and must be invalidated when

the address mappings change.

2 In ARMv5/6/7a, two such handlers exist, one for invalid data access (data abort) and one for execution at invalid

memory address (pre-fetch abort).

3 This arrangement is called Virtual Indexed Virtually Tagged (VIVT).

Page 11

MMU Cache RAM

vadr padr padr
S —_—
1200 400 || 400 -> xxxxxxxxx || 400

700 -> yyyyyyyyy |

d Cache

1200 1200 -> XXXXXXXXX|
3000 -> yyyyyyyyy

vadr
1200

MMU RAM

Illustration 7: Different cache placement strategies: ARMv6 and ARMvV?7 (top)

compared to ARMV5 (bottom).

Due to these cache and TLB issues, modifying the memory mapping is a very costly operation and
must be avoided as much as possible. In fact, performance of operative systems and hypervisors are
often closely related to how good they are at avoiding invalidating the cache/TLB.

TrustZone technology

The TrustZone security extension provides a simple
method for adding yet another isolation layer to the
processor [3]. It divides the CPU state into Secure
and a Normal “worlds”. Mode changes between
Normal and Secure worlds are performed by a
minimal software component called the Monitor.

Note that the two TrustZone worlds exists in parallel
to the traditional ARM CPU modes. The Secure
world maintains its own set of state registers and its
own virtual memory configuration.

Normal Secure

o

Q

o
é’ Normal Secure
E Unprivileged Unprivileged
o

c u n

- 3 g

5 N

o & &

Q

Y Normal Secure
E Privileged Privileged
) =

o

Monitor calls

K Monitor j

Illustration 8: ARM TrustZone.

Page 12

GlobalPlatform

GlobalPlatform is a non-profit association, which among other things publishes various specifications
for security in embedded system. The specification that is of interest to us in this project is the
specification for Trusted Execution Environment in devices. In particular, we are considering the
following parts of the specification:

* TEE System Architecture v1.0 [4]
¢ TEE Client API v1.0 [5]
e TEE Internal API v1.0 [6]

Which together present a framework for secure execution of Trusted Application within the Trusted
Execution Environment and define a standardized way to communicate with them. The GlobalPlatform
software architecture is pictured in Illustration 9.

REE TEE
Shared
" Shared
Client | Client Memory Memory | Trusted [Trusted
Application Application View | Application Application
°
(4]
()]
Q
PSSR, ¥ A ‘ £
! TEE Functional APl ' 2
.......... ' ;‘__--__-__.-__-___-_{'_.____ .o - R /A L L P PP PR —
- TEE Client API ‘;__ o . TEE Internal API
G e e e eieiaieie o o = e imieiere . = = aeierere = = = ieieieie o o o sieraieie & ' e T N T
[
i
Rich OS Components = Trusted OS Components
a
Public Device o
Drivers REE 2 TEE Trusted '
Communication Communication Core Trusted Functions
A Agent Agent Framework
A A | Trusted Kernel

¥

I / T Nessages Y ,
(Public Peripherals) T T T T T [Trusted Peripherals T
/ Platform Hardware ~ ~

Illustration 9: GlobalPlatform TEE Architecture (source: [4])

The two basic environments are the Rich Execution Environment (REE) and the Trusted Execution
Environment (TEE). The REE is were the normal operating system e.g. Linux/Android runs. The TEE
acts as a lightweight trusted operating system, running only verified and trusted applications. A Client
Application (CA) running in the REE would connect to a TA using the TEE Client API, which is a low
level functional interface to allow a CA to access and exchange data with a TA running in the TEE. The

communication between the REE and the TEE is handled by the communication agents over a channel
which is strictly controlled by the TEE.

Page 13

The Client API

When a CA would like to utilize the services of a TA, it will connect to that TA and create a session. A
session is a way to logically link a chain of command to a TA. The session has its own state and context
which the TA can use to bind together different commands from the same CA.

The GlobalPlatform specification does not specify the available commands that the TA should respond
to but leave that up to the TA developer to define. The Client API provides the means to execute those
commands from the CA in the REE, passing parameters and results back and forth.

The Trusted Execution Environment

Within the TEE, the GlobalPlatform architecture identifies three major components [4]:
1. The Trusted Applications, which make use of the TEE Internal API.
2. The TEE Internal API library implementation.
3. The Trusted OS components, which are shared amongst all TAs, and whose role is to handle the
system level functionality required by the TEE.

The TEE Internal API consists of five main services:

1. The Core API which handles the memory management, session-setup and command invocation
from the CA to the TA.

2. The Trusted Storage API, which provides a confidentiality and integrity protected storage on a
per TA basis.

3. A Cryptographic Operations API, which supports both symmetrical and asymmetrical
cryptography as well as hash functions.

4. ATime and Date API.

5. An Arithmetical API, which allows the TA developer to implement proprietary algorithms.

The TEE Internal API is the only interface for the TA to the rest of the system. It cannot access any
hardware resources on its own, and there is no notion of dynamic libraries in the TEE. It is possible for
a TA to become a client to another TA. In this case, the calling TA acts much in the same way as a
normal CA from the REE, and have to use the same TEE Client Protocol. The caller cannot directly call
functions in the callee, but must use the Remote Procedure Call scheme defined by the specification.

Remote Procedure Calls

In GlobalPlatform, a Remote Procedure Call (RPC) is a well defined method for performing calls into
other applications, possibly in a different security domain. As secure RPC is the basis of all security
services, the specification takes special care of the defined RPC mechanism. In fact, the Client API is
essentially a very detailed definition for secure RPC.

Somewhat simplified, an RPC between Client and Trusted Applications has the following structure:

Page 14

—

InitializeContext: a context is created
OpenSession: A session in attached to this context. The user may
also specify the receiving TA and user credentials here

Set up 2

3. The user now declares the shared memory to be used during RPC

calls
Allocate or add 1. AllocateSharedMemory: A new buffer can be allocated
memory buffers specifically for RPC calls

2. RegisterSharedMemory: The user can also declare any of its

own memory buffers to be used for RPC

4. InvokeCommand: The user now invokes any number of
synchronous RPC calls with the intended parameters, such as the
shared memories previously registered

Call remote
procedure

5. ReleaseSharedMemory/CloseSession/FinalizeContext: Before
Clean up exiting, the user should clean up by releasing the allocated buffers,
session and the context.

Each InvokeCommand call carries up to 4 parameters of one of the following types:
* VALUE: A 32-bit value
* MEMREF_WHOLE/PARTIAL: A memory buffer allocated for RPC.
* MEMREF_TEMP: A user memory buffer

The direction of these parameters are also declared by the caller. For example
TEEC_VALUE_OUTPUT is a 32-bit value that is written by the callee while
TEEC_MEMREF_TEMP_INOUT is a memory location that is written to/read from by both the caller
and the callee.

This additional information allows the TEE, as the RPC provider, to examine and process RPC and its

parameters without any prior knowledge about the functions that are being called. This will be used in
later chapters in this document to provide similar functionality using a hypervisor.

Page 15

Hypervisors

Virtualization of hardware is a method to provide “virtual” hardware resources (such as CPU or RAM)
to software. This virtualized hardware may be called a virtual machine and the software operating this

hardware is called a hypervisor or a Virtual Machine Monitor [7]. The software running on the virtual

machine is called the guest software.

Uses of hypervisors

Virtualization have many benefits. The most obvious benefit is probably the ability to simultaneously
run multiple systems on a single CPU. Another benefit is the ability to migrate software between
different identical machines, which is often used in data centers to minimize number of active machines
and consequently electricity costs.

There are other interesting uses of hypervisors that are probably more apparent in embedded systems.
For example, hypervisors can be used to abstract hardware. One may run identical software on different
hardware platforms and use the hypervisor as a hardware abstraction layer. This has important
economical benefits: when upgrading hardware, vendors can shorten development and testing time and
avoid re-certification. Manufacturers may also employ virtualization to easily replace end-of-life
components with more modern components. Another advantage of hypervisors in embedded system is
that designers can use hypervisors to “patch” hardware bugs. For chip designers, this may translate to
significant economical wins by reducing NRE costs and improving time to market.

The focus of this this project however is on security properties of hypervisors. By providing isolation
between different software components, we use a hypervisor as a very powerful security enabler.
Different properties of hypervisors

As seen in Illustration 10, Hypervisors exists in two flavors: type 1 hypervisors which run directly on
the bare metal hardware and type 2 hypervisors which are themselves hosted in an operative system.
For example, XEN is a type 1 hypervisors while Oracle VirtualBox is a type 2 hypervisor. The
operative system running below a type 2 hypervisors is called the host OS.

Fe
(ON)

OS

pplicatig a plicati‘ L I
applicatiq B

OS OS

[}
@

Hypervisor
Hypervisor Host OS
Hardware Hardware

Illustration 10: Type 1 hypervisors (left) run directly on hardware
while type 2 hypervisors execute within a host OS

Page 16

Type 1 hypervisors are normally utilized in resource constrained embedded systems and in data centers
where a host OS is not available or needed. Type 2 hypervisors are mostly used on personal computers,
for example to run legacy software.

Hypervisor privilege levels

Popek and Goldberg define three interesting properties of a hypervisor [8]:
1. Fidelity: the virtualized software should behave essentially identical to that when running
without a hypervisors.
2. Safety: the hypervisor must have full control over the virtualized resources (i.e. the virtualized
software cannot directly change the hypervisors or the underlying hardware).
3. Performance: as many instructions as possible should be executed without the intervention of
the hypervisor.

The safety requirement of Popek and Goldberg have some important impacts on the implementation of
hypervisors. First and fore most, a hypervisor must run in a higher privilege level than the guest
software. Assuming that the guest software consists of a guest operative system and its applications,
ideally three privilege levels are required. This is sometimes not available, thus one may need to
integrate guest OS and applications into the same privilege level, as shown in Illustration 11.

Illustration 11: Rings of power and privilege separations. Normal execution with two privilege levels
(left), virtualized execution with three privilege levels (middle) and a virtualized solution with only two
privilege levels (right).

Sensitive (“dangerous”) CPU operations should be exclusive to the privilege level of the hypervisor.
Some examples of such operations are

* operations modifying the memory protection

» operations modifying the privilege levels

* operations modifying the entry and exit to other privilege levels

* operations modifying how interrupts, aborts and system calls behave

Sensitive operations can generally be divided into privileged memory access (access to memory
containing sensitive data or I/O-registers) and privileged instructions (instruction only available to
certain privilege modes). The former is easy to handle in modern CPUs by means of memory
management units. Privileged instructions however can be a bit harder to virtualize.

Page 17

Traditionally, sensitive operations have been limited to the operative system with the applications
requesting such operations through a system call. With virtualization, it is the responsibility of the
hypervisor to perform sensitive operations on behalf of the OS. There are multiple approaches to this:
1. binary translation: the guest software is at runtime translated to another software where
sensitive operations are replaced with other operations or with calls to the hypervisor
2. para-virtualization: the guest software is modified at compile time in such way that sensitive
operations are replaced with calls to the hypervisors
3. full virtualization: guest software executes on the hardware at a lower privilege level. Attempts
to perform sensitive operations are detected and forwarded to the hypervisors which then takes
appropriate action.
The last approach is closest to the Popek and Goldberg definition of a hypervisor. In practice however,
it may be the least efficient (e.g. due to exception handling cost) and secure approach (e.g. due to not
all unprivileged operations being “safe”).

Hyprevisor operations: context storage, hypercalls and RPC

Thread 1 context Thread 2 context
RO, R1, ... e | RO, R1, ...
)
o X
% 2
>r<r o\) [
— Thread 2 >
(o)
\/@\'
-4 Threadl |} >
W_J

Context switch
Illustration 12: Context switching between two threads.

State of any software running on a CPU is identified by its memory in addition to the internal state of
the CPU. This generally translates to the accessible contents of its address space in addition to the CPU
registers®. In a time-sharing system, one switches between different software by replacing the state of a
software by that of another one. This operation is generally referred to as context switching.

Normally, the operative system handles context switching between applications. In a virtualized
environment, this task is at least partially performed by the hypervisors. Furthermore, the hypervisor
handles context switching between guests themselves if more than one is present. Hypervisor performs
context switching during scheduling but may also at other occasions such as during interrupts,
exceptions and hypercalls.

The guest communicates with the hypervisor by means of
hypercalls. This is normally identical to the mechanisms
of performing system calls if the system was running
without a hypervisors. On the classic ARM architecture
hypercalls translate to a software interrupt using the
assembler instruction “SVC” (Supervisor Call)°. This

4 For the sake of simplicity, we will ignore state of the co-processors, caches and so on for now.

Page 18

instruction can be given a 24-bit parameter, for example to
identify the type of the hypercall. Additional parameters
@ can be passed along in the general purpose registers.

hypercall handler:

[Nlustration 13 Outlines a hypercall sequence. Initially,
when at (1) the CPU is in an unprivileged state. After the
user executes the SVC instruction, the CPU state is
changed to privileged mode (supervisor mode, SVC, to be
exact) and the execution flow is redirected to the hypercall
handler defined by the hypervisors (2). Here, the
hypervisor may store the context of the calling guest for
later use.

Hypervisor

Exactly what a hypercall means is defined by the
hypervisor API. Normally, a number of hypercalls are
dedicated for executing privileged operations that the
guest OS no longer is allowed to perform by itself (e.g.
enabling/disabling interrupts or modifying virtual
memory). Furthermore, one or more hypercalls are used
for performing Remote Procedure Calls (RPC) between
different applications and guests.

SVC #n

°

Guest

Illustration 13: A hypercall
from the guest into the
hypervisor.

Often, calls from the hypervisors into the guests (see this as a reverse hypercall) are performed as an
RPC from the hypervisor to the guest. For example, interrupts and access aborts can be forwarded to
the guest OS as an RPC. This would mean that a large number of hypervisors operations revolve
around RPC, hence the RPC implementation is significant to the security and efficiency of the
hypervisor.

5 On platforms supporting virtualization extensions, there is also a dedicated hypercall instruction.

Page 19

Address

Address Address space 1
space 1 space 2
@ interrupt_handler: [<€——
hypercall handler: hypercall handler:
5 3 2 @
> -
)
4 Q
~ >
T I
RPC send @
= e N ‘_| interrupt_handler: | <€————
',) +J @
)] 9] n
()))
>) >
E 3| @ 3
—> | RPC receiver:

Illustration 14: Communication between guests
by using hypercalls. Guest one performs an
RPC send (1), which is intercepted by the
hypervisor (2). The RPC is forwarded to guest
2 and its RPC handler (3 & 4).

Illustration 15: Interrupt
forwarding. A hardware
interrupt is received by the
hypervisor (1), which
forwards it to the guest (2 &
3).

Like any function call, an RPC may be accompanied with a number of parameters. Some such
parameters can be stored in CPU registers. However, if the data to be transferred between caller and
callee exceeds is too large, the hypervisors must either manually copy the required data between the

two parties or utilize shared memory regions. The latter can be performed in a number of different
ways

» pre-allocated share buffers: a number of memory sections are reserved for RPC data

* session-allocated share buffers: a number of memory buffers are allocated in advance for a
series of RPC calls (an RPC session)

* automatic memory sharing: during the RPC, address spaces of the caller and callee are modified
in such way that the required memory buffers from one is available to the other.

Page 20

Address Address

space 1 space 2 Memory sharing, as seen in Illustration 16: Guest
1 prepares some memory area to be used with the
@ RPC (1). When guest 1 initiates the RPC (2), the
hypercall handler: | hypercall handler: hypervisor intercepts it (3) and maps the required
- @ a memory into the memory space of the receiving
8 guest (4). The hypervisor then redirects the
'S execution flow to the receiving guest (5 & 6).
-
)
o
>
E
@ |) &)
l.u;(.: send 4
4
— ,N
+J ¢ +J
n ;0
] y Q@
> 4)]
O 1O
(D II —> | RPC re@iver:
/

Illustration 16: Mapping of shared memory
during RPC calls.

Page 21

The STH-TEE Implementation

One of the main objective with this project was to demonstrate a new architecture where Trusted
Applications can be isolated from each other using a hypervisor-based solution. The benefit would be
that if the hypervisor is small enough to be formally verified, we would have a formally verified
separation of the TAs. This means that we will not specifically be running different operating systems
and applications on top as virtual machines but the TAs themselves would run directly on a virtual
machine. Since the hypervisor in itself does not provide much application support, there is a need for
an application framework to support the trusted applications. As mentioned earlier, good choice for
such a framework is the GlobalPlatform TEE framework [5].

The SICS Thin Hypervisor

The SICS Thin Hypervisor (STH) is a minimal type 1 hypervisor for embedded systems on the ARM
architecture. The STH differs from other hypervisors in a number of key areas
* The code is very small (between 8 and 32 KB depending on the configuration). The small code
base makes development and verification very easy. In fact, STH is currently in the process of
being formally verified.
* Performance is relatively high, the overhead introduced by virtualization is usually negligible.
* It has been designed to function on any CPU that implements an MMU hence it can function on
old hardware that do not naively support hypervisors and virtualization extensions.
* High portability. The hypervisor has a modular design that allows easy migration to new
platforms.

As mentioned before, hypervisors can be used as a security-enablers in embedded systems. By adding
the hypervisor isolation layer to a system, one can limit the power of the guest OS and/or applications.
For example, we have in the past demonstrated use of STH to transparently add memory protection to
an unprotected embedded system [9]. Furthermore, given that embedded systems are often cost
sensitive, one may use the hypervisors to combine multiple hardware component into a single
virtualized component running different guests with possibly different security objectives in parallel.

In this particular project, we will use the isolation layer provided by the hypervisor to ensure that
highly sensitive software can securely run on the same CPU as less sensitive software.

Combined GlobalPlatform and STH architecture

To achieve the hypervisor-based separation of TAs they should run as virtual machines on top of the
hypervisor. This provides us with a problem regarding how the TEE Internal API and Trusted OS
components should be implemented. We could link the complete TEE Internal API library to each TA
running in its virtual machine (VM) and have the Trusted OS parts implemented directly in the
hypervisor.

This solution, however, has several downsides. Firstly, the memory available inside TrustZone is
generally very limited and to have a copy of the TEE Internal API library in each VM would consume a
lot of memory. Secondly, if the TEE Trusted OS parts are incorporated into the hypervisor, the
hypervisor code base will grow and that makes any formal verification of the separation much harder.

We have chosen to implement the TEE Trusted OS and Internal API in a separate VM, and have the
TAs communicate to the TEE Internal API using the generic RPC provided by the hypervisor.

Page 22

Normal Secure

k5
(@) i
Q .
S apps TA | VEE
5 :
o I e
c Android
o
§o) e
N i
o]
g Linux ¥ STH ! TEE
>
2 | T
o Monitor

r

Illustration 17: The combined STH and
GlobalPlatform TEE solution. The picture
highlights that TEE can be implemented inside and
outside of the hypervisor.

The architecture consists of three main data flows as pictured in Illustration 18:
1. from the Client Application (CA) to the TEE Core
2. from the TEE Core to the TAs
3. from the TEE Core to the Hypervisor

TEE Trusted OS and
Internal API library
TA
A A A

o)l
® o
.

Illustration 18: Architectural data flows.

e

The channel from the CA to the TEE Core (1) implements the GlobalPlatform Client API. This protocol
is used to talk to the TA from the CA. So far we have only implemented the five basic commands:
TEEC_InitializeContext, TEEC_FinalizeContext, TEEC_OpenSession, TEEC_CloseSession and

Page 23

TEEC_InvokeCommand. For simplicity, we have not yet implemented any shared memory
functionality in the emulator.

The TEE Core handles the bookkeeping of TAs, and the ongoing sessions from the CAs as well as the
TEE Internal Core API, as defined by GlobalPlatform. The channel from the TEE Core to the TAs (2) is
used to route requests from the CA to the correct TA, based on the session. And also to forward TEE
Internal API calls in the TA to the library implementation.

Most of the TEE Core functionality is self-contained in the TEE Core VM but some actions requires
the aid of the hypervisor. For instance the loading of a TA. The hypervisor will get a system call (a
hypercall) utilizing channel (3) from the picture above. For example, the TEE can ask the hypervisor to
load a specific TA and the hypervisor will answer back with an RPC address for the newly loaded TA.
This address is then used by the TEE in the communication over channel (2). Conversely, when the
hypervisor needs to inform the TEE that some event has occurred, for example an unexpected
termination of a TA, it will perform a reversed hypercall.

The TEE emulator

To be able to speed up the development, we started to implement a hypervisor emulator running on a
unix platform. The emulator provides the two basic needs; to be able to load other programs (virtual
machines) and to be able to relay RPC messages between those programs. It does not handle any
scheduling as that is left to the underlying OS. In this way we could more easily develop the TEE Core
and the test TAs and CAs.

The emulator uses TCP sockets to provide both the RPC and the hypercalls. The TAs and the TEE are
single threaded to allow for a more easy deployment on the target hardware. Thus, requests coming
from a CA or Internal API calls from a TA into the TEE are queued and served on a FIFO basis. The
main TEE workflow is pictured in Illustration 19.

TEE Main work flow:

¥

Read incoming RPCs and
put them in the internal
incoming queue

y

Process each request in the
queue as much as possible.
Putting responses in the outgoing
queue.

v

Send outgoing responses and
hypercalls to the hypervisor RPC
switch.

Loop while the
hypervisor hasn't
shut us down.

|
Illustration 19: Main TEE Work flow.

Page 24

Some requests cannot be fully served directly. For example an Open Session request from a CA might
trigger a series of events in the TEE where it has do perform a hypercall to ask the hypervisor to load
the TA for which the session is intended. Hence, we process each request as much as we can in each
iteration of the run loop, and when an additional RPC communication is needed we put that request on
hold, picking it up again as soon as we have received a response.

Due to the serial nature of the communication channels, each function call and its parameters and
return value must be serialized before sending it over the RPC channel. This of course slows down the
implementation but we did not have time to implement a robust shared memory architecture.

Memory organization in STH

Address Address Address

The STH runs in privileged mode and executes space 1 space 2 space 3

. . . - dom prv = {0} dom prv = {0} dom prv = {0}
the guest OS and applications in unprivileged dom uprv = {1} dom uprv = {2} dom uprv = {3}
mode. The STH is always present in virtual H

memory but only accessible in privileged mode.

The STH makes heavy use of Address Space dom 0 dom 0 || dom 0

Identifiers (ASID) to minimize address space
switching cost. In the ARM architecture this
translates to ARM memory domains, which are 16
in number. Memory domains can be connected to
different sections of the virtual memory and be
enabled/disabled individually. This allows the
hypervisors to hold multiple guests or applications
in the same address space as the hypervisor and
switch between these without any need to perform
expensive TLB and (in some cases) cache flushing
operations.

Hypervisor

Guest 1

won | P | PG
||

D | dom 2z ‘ D
An example is seen in Illustration 18: At each M M d 3
point in time, the MMU domain of exactly one I om

guest is active. The hypervisor is always active in I |
a privileged domain. Illustration 20: Multiple guests sharing a
single memory map by using MMU domains.

Guest 2

Guest 3

The target device for this project contains a small amount embedded memory which can be used for
security sensitive applications (since the data never leaves the chip) or low-power or multimedia
applications. We decided to place the hypervisor within 256KB of this memory, which should leave
enough space for other application and still provide us with enough memory to experiment. This
memory is mapped at the top of the virtual address space. The current hypervisor implementation has
the memory configuration shown in Illustration 21.

Page 25

o
§ TCB 16KB - '£
— Initial page c
c tables 17KB b dom 0
(O]
S dom 0 @
g Page table :|>:"
T pool 127KB
hypervisor data @
'-I‘_J dom 1 + stacks, 4KB — A
% — IS
— S
< dom 2 Poan |<_l: dom 2
=
N
< | dom 3
|_
m
data, ~4 KB g dom 4
Code, 8-32 KB < d
< omb5
. (o
Reserved §

Illustration 22: Suggested GP
Illustration 21: Hypervisor internal memory memory configuration.

configuration.

For the sake of simplicity, we have assumed that trusted applications require less than 32MB and are
not more than 8 in number. This allows us to squeeze the whole GlobalPlatform implementation into a
single page table. To switch between the hypervisor, the TEE kernel and the trusted applications, one
only needs to enable / disable the corresponding MMU domains with no need for updating the page
table or clearing the TLB or flushing the caches.

Memory management within the hypervisor

The STH needs to perform a number of memory operations to function and to serve its guests. In this
particular implementation, we have divided the memory operations into three types:

1. Dynamic memory used by the hypervisor itself.
2. Memory that must be physically aligned to a page or a fraction or a multiple of it.
3. Memory databases for mapping physical and virtual memory.

As these operations are crucial to the safety of the system, we decided to keep them as simple as
possible. This would allow us to document and verify all memory operations with ease.

Page 26

Dynamic memory in STH

An efficient implementation of a heap allocator (i.e. malloc() and free()) can be quite large and
complex. In fact, the one currently used in GNU libc is larger than the entire STH [10]. Given that
dynamic memory is rarely used in the hypervisor and that maximum performance is of less importance
to us, we decided to instead create our own very simple and small heap allocator.

The STH heap allocator is based on the simple “reservation list” design outlined in [11]. We use a
first-fit approach and do not allow the heap to grow or shrink after initialization. The location of STH
heap is defined by the static memory map shown in Illustration 21.

While the above limitations result in a somewhat inefficient heap allocator, it is also more than an order
of magnitude smaller than traditional heap allocators. This in turn makes verification and security
evaluation much easier.

Physically aligned memory in STH

Some memory buffers must have certain physical attributes. For example, level-1 page tables must
align to 16 KB boundaries. Such memories can be allocated using the heap allocator, but that can lead
to a very bad use of available memory. We decided to implement a separate allocator for this type of
memories where some physical pages are allocated during boot and placed into a memory pool. If the
pool is dynamic, it will be administrated using a simple bit-set.

The level 1 and 2 page tables, which are 1 and 16 KB in size and aligned with the same amount, are
allocated using this approach. Given that the whole pool is linear in physical and virtual memory, the
physical and virtual address of the each table can be computed very quickly and without any need for a
separate mapping table. This allows a very simple, fast and efficient memory allocation scheme for
page tables.

Mapping databases in STH

In order to implement the functionality required for secure memory management, the hypervisor must
maintain a number of databases. For example, consider the following hypothetical mapping operations:

void *get more memory(PROCESS *proc, size t size) {
adr t p = get free physical memory(size);
adr_t v = get_free virtual memory(proc, size);
add mapping(proc, p, v, size);
return (void *)v;

}

Listing 1: A hypothetical memory mapping operation.

To manage this, the hypervisor must maintain a number of databases of free, allocated and shared
memories in a very complex system of tables and lists with non-trivial dependencies that can cause all
sorts of problems. For example, in many modern operative systems the kernel may need to investigate a
memory access violation by looking up something in a table that itself is not currently accessible,
which results in another memory access violation which starts a chain reaction that sometimes is very

Page 27

hard to understand.

Another common problem is that the memory management and security subsystems are more or less
separated. Our hypothetical mapping function above does not receive any information about the
purpose of this mapping and can therefore not take any security measures. In the best case, security is
handled in a separate step after the call to our hypothetical function...

The STH port for U8500 continues our tradition of prioritizing simplicity and security over
performance by using a very simple scheme to maintain the memory mapping databases, while
enforcing the least privilege principle. To do this, first, we classify physical and virtual memory as
follows

P TYPE = { private RAM, private IO, public RAM, public IO, ..}
V_TYPE = { Hypervisor, Kernel, Task, .. }
V_SUBTYPE = { Code, Stack, Heap, IO, Shared, ..}

We define some policies for how these types can be associated. For example, private physical memory
is exclusive to the hypervisor and Stack/Code/Heap cannot reside inside a physical 10 region. We also
divide the physical and virtual memory into memory areas:

M _AREA = <BASE, SIZE>
V_AREA: P_TYPE - list of M AREA
V_SUBAREA: (V_TYPE, V_SUBTYPE) - list of M AREA

The physical memory areas are machine dependent and non-overlapping. The virtual memory areas are
defined by the system software and also non-overlapping. Finally, the hypervisor maintains a list of
mappings for each process:

M TYPE = <V_SUBTYPE, permissions, .. >
MAPPING = <M AREA, V_ADR, M TYPE>
PROCESS = < V_TYPE, list of MAPPING, AddressSpace, .. >

This allows us to us to extend our hypothetical mapping function to take into account the intent of the
operation and ensure the security policies are followed:

void *get more memory(PROCESS *proc, P_TYPE ptype, V_SUBTYPE vsubtype,

size_t size) {

adr_ t p get free physical memory(proc, ptype, size);

adr_t v get_free virtual memory(proc, vsubtype, size);
permissions pm = get_ allowed permissions(ptype, p->V_TYPE, vsubtype);
add mapping(proc, pm, p, Vv, size);

return (void *)v;

Listing 2: Extended version of the hypothetical memory mapping operation.

This extension can be used to enforce our security policies. For example, from

Page 28

get_allowed_permissions() one may enforce the MMU NS and NX bits (for pages that are in the
Normal world and not executable, respectively) and by modifying get_free_physical_memory() one
can could verify that the requesting process is allowed to access the requested memory area.

While this approach does limit the way memory is used, it will also simplify the implementation
greatly. Furthermore, all security policies will be built-in and inherent instead of, as it usually is the
case, an afterthought. Another advantage of this approach is that creates a unified method for managing
memory of both guests and the hypervisor, which significantly reduces the complexity and the

code/memory footprint of the STH.
In fact, such simplification of the memory management components is more or less a requirement if
formal verification is to be applied.

RPC implementation in STH

The STH implementation of RPC was chosen to mimic that of secure RPC in GlobalPlatform closely.
Recall from previous discussion (page 14) that RPC mechanism in the Client API also specifies format
of the parameters. This information is visible to the hypervisor as the RPC provider, hence it can
without any prior knowledge about the Trusted Application and the provided functions ensure that
parameters are transferred between caller and callee in a correct and secure manner.

Secure transportation of parameters is trivial for value parameters: from the stored contexts, simply
copy the involved register in correct direction. For shared memories however, much more work is
needed. The STH handles shared memories by temporarily mapping pages into the memory space of
callee TA, as previously seen in Illustration 16. Furthermore, the hypervisor can use the page table
access flags to ensure that parameter directions are maintained. For example, if a parameter is of the
type TEEC_MEMREF_PARTIAL_INPUT, then the corresponding temporary page table entries are set
to read-only to stop the callee from modifying it.

Unfortunately, user allocated shared memories (i.e. TEEC_MEMREF_TEMP_xxx) introduce their own
set of security problems. As seen in Illustration 23, such memories are not always aligned to page
boundaries and when mapped into the callee address space they may also reveal adjacent memory

locations to the callee.

Address Address
space 1 space 2
——r———
leaked data
A
] [
TA 1 TA 2 ! Page 4C

/ other data shared buffer other data

' - —
—

shared memory pages

Illustration 23: Data leakage when sharing memory pages.

Page 29

This can be addressed by creating a copy of the user memory when adjacent memory locations has
been erased. This has some performance implication if the shared memory is very large. Fortunately we

can utilize some simple optimizations to reduce their effect:
Copy only pages that contain other data, the rest are mapped as before. This is shown in

Ilustration 24

Map and copy lazily: pages are not copied in either direction before they have been read from/

write to by the callee.

Address Address
space 1 space 2
' I, "< Page copied data
{ shared page
?4 ~ -~ | new page
TA 1 K -I—A 2 1 page, 4KB
' pre >
I, ‘
| shared buffer | |
} v
shared memory pages

Deployment of STH

Normally, the STH is distributed as a single binary that also includes some support functions required
to load the first guests into the memory. In most embedded system this binary can be programmed into
flash memory and ran immediately at boot.

In this project however, the target platform boots from an internal ROM and continues to load signed

binaries from ROM or flash memory. We can not control or modify any aspects of this boot process.
The earliest time we can upload and execute the STH is as the bootloader (u-boot) is being activated.

At this point of time however, the CPU is in the Normal world.
To be able to run the STH in privileged mode with the Secure world, we needed to perform the

following operations:
1. Create a TA that can take over the Secure world TEE and its TA's plus the TrustZone and the

structures provided by the ROM code. This must be done in a “live” system.
2. This TA will be able to receive the STH payload from the Normal world and execute in

privileged Secure state.
3. Modify the bootloader to load our TA into the original TEE and activate it before Linux is

loaded.
Note that all binaries must have been signed with the appropriate keys for this to work.

Page 30

Summary

This chapter summarizes the project and discusses the problems we faced, lessons we learned and
outlines possible future directions.

Problems and obstacles

During this project we encountered a number of problems that need to be mentioned. The first problem
was the complexity of the target system, which not only affected our porting efforts but also had some
implications on the security of the hypervisor: The U8500 contains a number of components that, if not
configured properly, may be used to circumvent the memory isolation enforced by our hypervisor. To
solve such issues, one must carefully analyze all SoC components and limit user access to sensitive
parts. This was however left out of this project due to time constraints.

Another problem we faced was the high memory usage of the hypervisor. Ideally, one would like to
place the hypervisor code and data in embedded SRAM inside SoC to avoid exposing it to the outside
world. It was however noticed that only a small part of the tiny embedded SRAM could be allocated to
the hypervisors as the remainder was reserved for various multimedia buffers. We have currently
limited the hypervisors to 256 KB (this includes a small guest and all page tables), but this is still twice
as large as the preferred size for this platform. We are however confident that the hypervisors size can
be reduced significantly once a stable development base have been found (the original version of STH
required only 32KB of memory).

A much larger problem we faced was incorporating the hypervisor and its guests into a device that
already had some security mechanisms in place. Normally, the hypervisor executes firsts of all, and can
then configure the system to its liking. In this case however the system was already set up by existing
ROM code and subsequent TEE code stored in flash memory. While we eventually found a way to
circumvent this, it required a major portion of the allocated project time to get there.

Current status
This project was divided into a number of milestones:

1. Port the hypervisor to the U8500 platform and demonstrate this by running two instances of an
RTOS simultaneously in the Normal world

2. Implement an emulator that can be used for development of TA and CA on a desktop PC.
Move the hypervisor to the Secure world

4. Create a simple TEE guest and some simple Trusted Applications to run on the hypervisor.

After some small initial problems with the platform (the public documentation we used at this time did
not cover some, to the hypervisor, essential information about power management, which took some
time to discover), the first milestone was reached without any major issues.

For the second milestone, we have implemented an emulator capable of handling Open and Close
Session and Invoke Command requests from the CA to the TA. The TEE supports several sessions from
different CAs towards the same TA and several different sessions to different TAs from the same CA.

The Third milestone proved to be harder to reach. Ideally, one would only need to re-program the

Page 31

device new firmware containing the hypervisor. This however turned out to be impossible since, as
mentioned earlier, the devices booted of ROM code inside the U8500 that could not be replaced.
Furthermore, the ROM code started other software components that in turn set up the TrustZone
barriers and shut us out of the Secure world. In order to, in a secure fashion, get the hypervisor past
these barriers and into the Secure world we eventually came up with the complex procedure presented
at page 30. Nevertheless, the time spent on this milestone was much larger than planned.

At the time of writing this document, we are working towards the fourth milestone. Due to delays in the
project we have not been able to test the GlobalPlatform framework within an STH running on real
hardware. We hope however to demonstrate a simple TEE guest on top of the hypervisor in the
beginning of next year.

Conclusions

After carefully examining the GlobalPlatform architecture, we noted that some parts of the APIs can be
built upon a hypervisor. We further noticed that the isolation and RPC mechanisms in GlobalPlatform
are of special interest to us and can be implemented on top of an existing hypervisor with relativity
small amount of work.

Given that a hypervisor implementation can be quite small and efficient, a hypervisor-based approach
to GlobalPlatform may allow high security at a very low cost. To demonstrate this, the SICS Thin
Hypervisor was modified to support a simplified Trusted Execution Environment and some simple
Trusted Application.

We have not yet performed any in depth analysis of the security of this new system.

Future work

During this project, we learned a great deal about the involved technologies, software and hardware.
We believe that at this point, there are a number of interesting directions for continuing this road:

1. An in-depth analysis of the Trusted Execution Environment inside the Secure world provided
by the TrustZone and the hypervisor.

2. Formal verification of the STH U8500 implementation to ensure its correctness.

3. Implementation of multiple guests inside the Secure world and upon a single hypervisors. For
example, we would like to completely separate the trusted system services (such as SIM
services) and secure services provided by third-parties (for example, Digital Rights
Management services). If we were to maintain two virtualized guests for fully trusted and “less
trusted” services, both confirming to the GlobalPlatform specification, a number of interesting
applications would be possible.

4. An implementation that takes advantage of the ARM virtualization extension and a comparison
with the current approach.

We also believe that the hypervisor can be used for other purposes than security. For example

1. Implementation of a power saving mechanism that take advantage of virtualization. For
example, by transparently moving software components to different types of memory.

2. Use of a hypervisor for testing and diagnostics in complex software stacks. For example, using
the hypervisor to override the cache management in Linux and study its effect on various types
of software.

Page 32

Bibliography

[1] ST-Ericsson, "St-Ericsson NovaThor Platforms - Powering the next generation of mobile devices".
ST-Ericsson fact sheets, 2012

[2] ARM, "Cortex-A9 Technical Reference Manual". ARM technical documentation, 2012

[3] ARM, "ARM Security Technology - Building a Secure System using TrustZone Technology". ARM
technical documentation, 2009

[4] GlobalPlatform, "TEE System Architecture v1.0". GlobalPlatform specification, December 2011
[5] GlobalPlatform, "TEE Client API Specification". GlobalPlatform specification, July 2010

[6] GlobalPlatform, " TEE Internal API Specification v1.0". GlobalPlatform specification, December
2011

[7] J. Smith, R. Nair, "The architecture of virtual machines". IEEE Computer 38, 2005

[8] G.Popek, R. Goldberg, "Formal Requirements for Virtualizable Third Generation Architectures".
Communications of the ACM 17, 1974

[9] H. Douglas, "Thin Hypervisor-Based Security Architectures for Embedded Platforms". Masters
thesis, Royal Institute of Technology, 2010

[10] D. Lea, "A Memory Allocator". Technical Report, State University of New York, 1992

[11] D. Knuth, "The Art of Computer Programming. Volume 1: Fundamental Algorithm". Addison-
Wesley, 1997

Page 33

Terminology

Abbreviation Meaning

ARM A CPU architecture designed by ARM Holdings

API Application Programming Interface

GP GlobalPlatform

ASID Address Space Identifier. Normally a hardware assisted memory-area tagging
mechanism

FIFO First-in First-out, a queue

SoC System-on-chip

STH The SICS Thin Hypervisor

TA Trusted Application (GlobalPlatform)

CA Client Application (GlobalPlatform)

TEE Trusted Execution Environment (GlobalPlatform)

VMM Virtual Machine Monitor (a hypervisor)

TLB Translation Look-aside Buffer. Small hardware cache for speeding up memory
translation.

RPC Remote procedure call. Call between processes, guests, etc.

Page 34

http://sv.wikipedia.org/wiki/Application_Programming_Interface

Revision History

Revision |Date Owner | Notes

1.0 2012-12-01 |AV Document created

1.1 2012-12-7 |AV Created intro chapter

1.2 2012-12-11 |AV Created hypervisor chapter

1.3 2012-12-12 |AV Created system architecture chapter

1.4 2012-12-20 |AV+PE |STH/TEE stuff gets its own chapter. So does GP

1.5 2012-12-21 |AV+PE |Added STH-TEE picture, added missing references + STH boot
1.6 2013-02-20 |AV+PE |Clarified the part about U8500 TEE implementation.

1.7 2013-03-05 |AV+PE |Released

Page 35

	Introduction
	Motivation
	Project background
	Project goals
	Project restrictions

	System architecture
	The NovaThor U8500 platform
	ARM Cortex-A9 architecture
	Memory management in ARM
	TrustZone technology

	GlobalPlatform
	The Client API
	The Trusted Execution Environment
	Remote Procedure Calls

	Hypervisors
	Uses of hypervisors
	Different properties of hypervisors
	Hypervisor privilege levels
	Hyprevisor operations: context storage, hypercalls and RPC

	The STH-TEE Implementation
	The SICS Thin Hypervisor
	Combined GlobalPlatform and STH architecture
	The TEE emulator
	Memory organization in STH
	Memory management within the hypervisor
	Dynamic memory in STH
	Physically aligned memory in STH
	Mapping databases in STH
	RPC implementation in STH

	Deployment of STH

	Summary
	Problems and obstacles
	Current status
	Conclusions
	Future work

	Bibliography
	Terminology
	Revision History

