
A Secure Group-Based AKA Protocol for
Machine-Type Communications

Rosario Giustolisi, Christian Gehrmann, Markus Ahlström, Simon Holmberg

Swedish Institute of Computer Science, Stockholm, Sweden

Abstract. The fifth generation wireless system (5G) is expected to han-
dle with an unpredictable number of heterogeneous connected devices
while guaranteeing a high level of security. This paper advances a group-
based Authentication and Key Agreement (AKA) protocol that con-
tributes to reduce latency and bandwidth consumption, and scales up to
a very large number of devices. A central feature of the proposed protocol
is that it provides a way to dynamically customize the trade-off between
security and efficiency. The protocol is lightweight as it resorts on sym-
metric key encryption only, hence it supports low-end devices and can be
already adopted in current standards with little effort. Using ProVerif,
we prove that the protocol meets mutual authentication, key confiden-
tiality, and device privacy also in presence of corrupted devices, a threat
model not being addressed in the state-of-the-art group-based AKA pro-
posals. We evaluate the protocol performances in terms of latency and
bandwidth consumption, and obtain promising results.

1 Introduction

The evolution of mobile networks has made a key achievement in each of its
generations: 1G established the foundation of mobile networks; 2G increased
the voice connectivity capacity to support more users per radio channel; 3G
introduced high-speed internet access; 4G provided more data capacity. One of
the key achievement for 5G is to be the reference network for the Internet of
Things (IoT) connectivity. Analysts forecast more than 25 billion of devices to
be interconnected in 2020 [16]. Providing connectivity to such a large number of
devices, which may require simultaneous network access, will lead to a potential
signaling overload. Signaling data is growing 50% faster than data traffic in
mobile networks [22] and is expected to surpass the global IP traffic growth
within three years [23]. An increased level of signaling would affect speed and
data capacity of 5G. Thus, to fully support IoT connectivity, the contemporary
architecture of the mobile network should be revisited, including the aspects
related to security.

The Authentication and Key Agreement protocol (AKA) has a central role in
the security of mobile networks as it bootstraps the parameters needed to form
a security context that is agreed by the parties. The protocol provides mutual
authentication between device and serving network, and establishes session keys.
The state-of-the-art protocol used in 4G (EPS-AKA) [3] is almost identical to
its predecessor used in 3G, which was introduced in the late 90s. A limitation
of EPS-AKA is that, for each device that requires network access, the protocol
requires signaling among the device, the local serving network and the device’s
remote home network. In particular, the signaling between serving network and
home network may introduce a major delay when they are distant, which is the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/301006358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

case when users are roaming. This represents a bottleneck for the development
of 5G as a low delay and reliable network for IoT devices.

From this situation emerged the need of a group-based AKA, which allows
the serving network to authenticate a group of devices reducing the signaling and
communication latency with the home network. Groups may consist of devices
sharing similar features such as functions, locations, or ownership. In the scenario
of IoT, devices often operate in groups and some use cases have been recently
advanced [11, 21, 13]. While the functional goals of group-based AKA are clear,
new security aspects arise. The group approach introduces additional threats,
which mainly originate from colluding corrupted members [18]. This results to
a more powerful intruder than one historically considered in the current AKA
protocol. Thus, it seems to be an open challenge to design a group-based AKA
secure against the extended threats. This paper addresses this very challenge.
In particular, the contributions of this paper includes:

– A novel mechanism based on the inverted hash tree that allows the network
operator to balance dynamically the requirements of security and efficiency
of the designed protocol.

– The formal security analysis of the protocol in ProVerif.
– A prototype implementation of the protocol in the OpenAirInterface plat-

form.
– A performance analysis of the protocol in terms of latency and bandwidth

consumption.

Outline. The paper is organized as follows. Section 2 presents a primer on
AKA. Section 3 details the group-based AKA protocol. Section 4 describes the
formal analysis of the protocol in ProVerif. Section 5 details the implementation
of the protocol in OpenAirInterface and discusses its performances. Section 6
analyses some related work. Finally, Section 7 draws some conclusions.

2 Background

The three main roles that concern the AKA protocol are the User Equipment
(UE) or device, the Mobility Management Entity (MME) or serving network,
and the Home Subscriber Server (HSS) or authentication server. The UE role
concerns the tasks of the terminal device and USIM. A subscriber identity (imsi)
is permanently stored on the USIM so the network can identify the UE. The
USIM also stores a long-term secret key k that is shared with the HSS. With
the introduction of machine-type communication (MTC), the 3GPP consortium
released a dedicated specification for MTC devices to enhance the LTE suitability
for the IoT market [5]. Thus, we refer to the UE also using the term MTC.

The MME role concerns the tasks of covering the mobility of the MTC. The
MME serves a number of MTCs according to its geographical area. Each MTC
is connected to a base station (eNodeB), which in turn is directly connected to
an MME. In the context of AKA, the MME authenticates the MTC and agree
on a session master key kasme from which they can derive further keys to protect
the signaling data.

The HSS role concerns the tasks of assisting the MME for the mutual au-
thentication. The signaling between HSS and MME is secured with Diameter
[4]. The HSS shares with the MTC imsi, k, and a sequence number (sqn) to
support authentication.

Fig. 1: EPS-AKA message sequence chart

UE/MTC MME HSS

Attach request

imsi

Auth. data req.

imsi, snid

Generate
AV

Auth. response

rand,xres,
kasme, autnAuth. inf. request

rand, autn

Verify
AUTN

Auth. inf. response

res

Verify
RES

Compute
Kasme

2.1 EPS-AKA

The state-of-the-art AKA protocol is EPS-AKA, which is the standard for LTE.
The protocol is described in Figure 1 and consists of five main messages:

– The Attach request message bootstraps the protocol. It normally includes
the imsi of the MTC, when the device visits the MME for the first time.
Future attach requests will include the Globally Unique Temporary Identity
(guti), which is generated by the MME and assigned to the MTC. In doing
so, the MME can translate the guti to the corresponding imsi, preserving
the privacy of the MTC.

– The Authentication data request message, sent by MME with identity
snid, requires the HSS to generate an authentication vector consisting of:
• a random value rand that provides freshness to the session;
• the expected response xres, based on rand and k, that allows the MME

to authenticate the MTC;
• the session master key kasme, to encrypt the signaling between MTC and

serving network;
• the authentication token autn, based on rand, k, and sqn, that allows

the MTC to authenticate the serving network.
– The Authentication response message contains the authentication vector

and is transmitted to the MME.
– The Authentication information request message consists of rand and

autn, which the MME forwards to the MTC. The MTC checks that the
sqn matches a valid one and if so, it successfully authenticates the serving

network. The MTC computes the session master key kasme and the response
res, which is based on k and on the received rand.

– The Authentication information response message, which the MTC sends
to the MME, contains res. The MME successfully authenticates the MTC
if res = xres. The MME computes kasme so the signaling between serving
network and MTC can be protected with session keys derived from kasme.

The cryptographic functions for the generation of the different terms outlined
above are included in MILENAGE [2], which is a set of algorithms currently
supported by EPS-AKA. The limitation of EPS-AKA is that Authentication

response and Authentication data request are required for each device that
requires network access. The next section introduces a group-based AKA that
addresses this very limitation.

3 Group-based AKA

The design of the group-based AKA is pivoted on the inverted hash tree. Thus,
we briefly discuss the notion of inverted hash trees prior to providing a detailed
description of the protocol.

Inverted hash trees. An inverted hash tree (see Figure 2) is a data structure
in which a node is linked to at most two successors (children), and the value
of each node is computed using a family of hash functions h∗. The value of the
root is given, while the value associated with any other node is derived from the
hash value of its parent. In particular, we consider two hash functions h0 and h1

and recursively assign the value of each node nij located at ith position and jth

level as follows.

nij =

h0(nk(j−1)) if i = 2k (left children)
h1(nk(j−1)) if i = 2k + 1 (right children)
given value if i = j = 0 (root)

Fig. 2: An inverted hash tree of height 2

n00

n01 = h0(n00)

n02 = h0(n01) n12 = h1(n01)

n11 = h1(n00)

n22 = h0(n11) n32 = h1(n11)

The underlying idea of the proposed group-based AKA is to associate each
MTC to a value of the leaf node, and to reveal a sub-root node to the MME
so that it can authenticate the (sub)group of all MTC descendants. This allows
the HSS to control the trade-off between security and efficiency dynamically.
In fact, the HSS can reveal sub-roots at different levels. Revealing a sub-root
at a higher level supports security at the cost of efficiency because the MME
can authenticate a smaller group of MTC without involving the home network.

Conversely, revealing a sub-root at lower level supports efficiency at the cost
of security because the MME can authenticate a large group of MTC without
involving the home network. The proposed group-based AKA protocol supports
MILENAGE. It does not introduce new primitives (e.g., secret sharing or public
key encryption) to favour backward compatibility with existing mobile telephony
systems and uses most of the functions already available in MILENAGE (i.e.,
kdf, f2, f3, f4, and f5).

3.1 Protocol Description

The protocol assumes two inverted hash trees of height H, both generated by
the home network. The structures of the two inverted hash trees are identical,
and each MTCi is associated with the leaf nodes with path=(i,H) in both
trees. The GK tree serves as group key tree, and the value of its root can be
seen as a master group key. Each leaf node of the tree (gkiH) serves as master
individual key and is associated to each MTCi. Several session individual keys
Hgk(iH, n)= hash(gkij, n), which are keyed with a sequence number n, can
be derived from the master individual key. The generation of several session
individual keys enables for several secure AKA runs using the same gkiH. The
CH tree serves as challenge key tree. Also in this case, each leaf value of the tree
(chiH) is associated to an MTCi and acts as individual challenge key. Several
session challenge keys Hch(iH, n)= hash(chij, n) can be generated from chiH.

As we shall see later, the MME will send Hch(iH, n) to the MTC so that the
device can compute Hgk(iH, n). In fact, each MTCi knows no keys initially, but
is given an obfuscated value o(iH, n) = hash(k, Hch(iH, n)) ⊕ Hgk(iH, n).

As soon as the MTC receives Hch and n, it can use them with o and k
to retrieve Hgk. The obfuscation binds both session keys to k. This choice
prevents that two corrupted MTCs, say MTC1 and MTC2, swap their keys to
break authentication.

Table 1: Description of the terms introduced in the group-based AKA

Term Description

gid Group identifier

nonce Random number

gkij The key associated with the value of the node at the ith position
and jth level of the inverted hash tree GK.

chij The challenge key associated to the value of the node at the ith

position and jth level of the inverted hash tree CH.

Hgk(ij, n) The result of hashing gkij and n.

Hch(ij, n) The result of hashing chij and n.

o(ij, n) The obfuscated value that hides the hashed keys gkij and chij

with respect to the sequence number n.

autd The authentication parameter in the group authentication

resd The response parameter in the group authentication

kasmeD The session key generated in the group authentication

Each MTC that is member of the group shares with the home network the
following terms: the group identifier gid, the assigned path, and a number of
obfuscated values o(iH, 1), o(iH, 2),. . ., o(iH, n),. . .,o(iH, M). All the terms intro-
duced by the protocol are defined in Table 1.

We distinguish Case A and Case B. In Case A, the MME cannot derive the
needed keys to authenticate the MTC, hence the MME needs to communicate
with the HSS. In Case B, the MME can derive the keys to authenticate the MTC
without any interaction with the HSS.

Fig. 3: Message sequence chart of Case A

MTC MME HSS
Attach request

gid, path, nonce
Auth. data request

gid, path, snid

Generate
AV

Auth. data response

rand, xres, kasme, autn
gkkj, chkj, gid, path, n, imsi

Authentication inf. request

snid, rand, autn

Verify
AUTN

Authentication inf. response

res

Verify
RES

Compute
Kasme

The first message of the protocol is the Attach request, which the MTC
sends to the MME, and it is exactly the same in both cases. In fact, the MTC
cannot say beforehand which case applies. If this is the very first attach request
that the MME receives from a member of the group or the MME cannot derive
the needed keys associated to that MTC, the MME proceeds according to Case
A, otherwise it follows Case B. We now describe the two cases separately. The
message sequence charts for Case A and Case B are respectively depicted in
Figure 3 and Figure 4.

Case A. This case requires that the MME communicates with the HSS to obtain
the needed keys and then to authenticate MTCi. Hence, the MME generates the
Authentication data request message, which contains gid, path, nonce,
and snid. The MME then sends the message to the HSS via Diameter. The HSS
checks whether gid and path are valid and, according to the security policy of
the group, it chooses two indexes k and j, with j < H, such that gkkj and chkj

are ancestor nodes of gkiH and chiH respectively. The HSS then generates an
authentication vector in the same way it is generated in EPS-AKA, and sends the
Authentication data response message to the MME. The message includes

Fig. 4: Message sequence chart of Case B

MTC MME
Attach request

gid, path, nonce

Auth. request derivable

snid, Hch(iH, n), n, autd

Verify
AUTD

Auth. response derivable

resd

Verify
RESD

Compute
KasmeD

the same elements already specified in EPS-AKA plus the new elements gkkj,
chkj, gid, path, n, and imsi. The elements gkkj and chkj serve as root of two
subtrees. The MME will be able to derive the values of all the leaf nodes within
the subtrees without the need to communicate with the HSS. From now on, the
procedure for Case A continues exactly as in EPS-AKA.

Case B. This case assumes that the MME already knows some nodes gkkj and
chkj that are ancestors of gkiH and chiH. Hence, the MME computes gkiH
and chiH, and from those Hgk(iH, n) and the Hch(iH, n). If the MME has not
previously run the group-based AKA with MTCi, then the value of the sequence
number n is the one provided in Case A by the HSS. Otherwise, it sets n=n+1.
The MME periodically reports the updated sequence number to the HSS to keep
the synchronization of the values.

The MME computes the authentication token autd = f5(Hgk(iH, n),nonce),
MACHgk(iH, n)

(nonce, Hch(iH, n), gid, snid, path) and sends the Authentication
request derivable message, which contains snid, Hch(iH, n), and autd. The
MTC de-obfuscates the value o(iH, n), and retrieves the session individual key
Hgk(iH, n) = hash(k, Hch(iH, n)) ⊕ o(iH, n). Then, it sends the Authentication
response derivable message that contains resd = f2(Hgk(iH, n), Hch(iH, n)).
Both MTC and MME can compute the session key kasmeD = kdf (f5(Hgk(iH, n),
nonce), f3(Hgk(iH, n), Hch(iH, n)), f4(Hgk(iH, n), Hch(iH, n)), snid).

In the proposed group-based AKA one major modification is that the imsi
is not sent by the MTC. In Case A, the HSS sends the imsi to the MME se-
curely via Diameter. The attach request may still contain the temporal identity
GUTI due to legacy reason. However, lawful interception is always guaranteed
because the combination (gid, path) is unique and known to the HSS. Thus, if
needed, the MME can send gid and path of an MTC to the HSS, and obtain
the corresponding imsi.

Authentication request derivable has autd, which contains the data
f5(Hgk(iH, n), nonce). This data is not strictly necessary because autd already
contains a MAC for integrity check. However, we prefer to maintain the data to
meet the same structure of the traditional autn field.

We note that MME and HSS should periodically synchronize the current
value of sequence number. This prevents a corrupted MTC to successfully reuse
a session individual key when moving from an MME to another. However, such
attack can be easily mitigated if the HSS syncronizes the sequence number with
the old MME when the new MME sends to the HSS the Authentication data

request.

4 Security Analysis

We analyze the group-based AKA protocol in ProVerif [9], a protocol analyzer
that can prove reachability and equivalence-based properties automatically. The
input language of ProVerif is based on the applied pi-calculus [6]. Authentica-
tion can be expressed as correspondence assertions [28] based on events, while
privacy can be expressed as observational equivalence [24] property based on
processes that differ only in the choice of terms. We consider threats originat-
ing from a Dolev-Yao intruder [14] who has full control of the network. The
intruder can also inject messages of his choice into the public channels, and ex-
ploit the algebraic properties of cryptographic primitives due to an equational
theory. Moreover, we extend the capabilities of the intruder with threats deriv-
ing from colluding corrupted principals. Differently from other works on formal
analysis of AKA [1, 26, 10], we choose to model the communications between
MME and HSS using the cryptographic primitive of probabilistic symmetric en-
cryption rather than using ProVerif’s private channels. This choice allows us to
model corrupted principals by just sharing the private key with the intruder. It
also increases the chance that ProVerif successfully terminates the verification,
and gives the attacker more discretional power because it can observe when a
communication between MME and HSS happens. As result, we achieve stronger
security guarantees for the analysis of the protocol.

Table 2: Equational theory to model the proposed group-based AKA protocol

Primitive Equation

Probabilistic symmetric enc. sdec(senc(m, k, r), k) = m

XOR xor(m1, xor(m1,m2)) = m2

Hash hash(m) = d

MAC MAC (m, k) = d

Inverted hash tree
set node(parent, pos) = child

par path(ch path(par path, pos)) = par path

The cryptographic primitives adopted in the group-based AKA protocol are
illustrated in Table 2. The theory for hash, MAC, XOR, and probabilistic sym-
metric key encryption are well-known in ProVerif. We introduce a novel theory
in ProVerif to support inverted hash trees. The function set node allows us to
generate a new child node which value is given by hashing the parent’s value and
the position of the child node (i.e. left or right). The function ch path takes in

a parent’s path and a position and returns the corresponding child’s path. The
function par path takes in a child’s path and returns the parent’s path.

We check confidentiality of the session master keys kasme and kasmeD, mutual
authentication, and MTC identity privacy. The details of the formalisation in
the applied pi-calculus of the requirements are in Appendix A.

Results. The results of the automatic analysis in ProVerif indicate that the
protocol meets confidentiality, mutual authentication, and MTC identity privacy.
Table 3 reports the execution times over an Intel Core i7 2.6 GHz machine with
12 GB RAM. Our analysis considers an unbounded number of honest MTC,
HSS, and MME and an attacker in control of the network and of an unbounded
number of corrupted MTCs. Note that an inverted hash tree with an unbounded
number of leaves would require an unbounded number of intermediate nodes.
Unfortunately, ProVerif cannot handle this scenario. We overcome this situation
by fixing root and height of the tree and then generating an unbounded number
of sub-trees.

Table 3: Summary of the ProVerif analysis of the group-based AKA

Requirement Result Time

Session master key confidentiality X 1.8 s

Serving network authentication X 4.4 s

MTC authentication X 4.3 s

MTC identity privacy X 2.8 s

5 Implementation

We choose to implement the protocol in OpenAirInterface (OAI) [7], an open-
source wireless technology platform written in C. OAI is a fully-stacked EPS
implementation with the goal of being used for 5G development and research. It
supports MME, HSS, and a simulation of an MTC. It does not require any radio
hardware since it can simulate the radio interface used in EPS via Ethernet.
However, OAI supports radio hardware if needed. OPENAIR-CN and Openair-
interface5G are the two main modules that constitute OAI. OPENAIR-CN is
an implementation of the 3GPP specifications concerning the Evolved Packet
Core Networks, in particular the MME and HSS network elements. Openair-
interface5G is an implementation of a simulated MTC and provides a realistic
radio stack signaling when connected to OPENAIR-CN.

5.1 Approach

Our approach to the prototype implementation is to code the group-based AKA
as a patch of OAI. In doing so, we favour backward compatibility with the
existing standard. It follows that, when possible, we aim to reuse the existing
parameter and message structures as specified in 3GPP standards. For example,
we can reuse the structure of imsi for gid since they have a similar purpose.
However, some terms have no similar counterpart in EPS so we design them
from scratch. We also introduce new functions and commands that extend the

functionality currently in use in EPS with ones appropriate for group-based
AKA. For example, the algorithm traverse tree allows both MME and HSS
to find a node in the inverted hash tree. The function takes in the node’s depth,
the node’s path, and an ancestor node value. Then, it traverses the subtree
originating in the ancestor node according to the bit sequence in path: if the
current bit is 0 then a byte of zeros is appended to the current node value,
otherwise a byte of ones is appended to the current node value. The pseudo-code
is outlined in Algorithm 1. More details regarding configuration and parameters
are detailed in Appendix B.

Algorithm 1: traverse tree

input : gkkj, path, z=node depth
output: gkiz (descendant of gkkj)

Digest ← gkkj;
for l← 0 to node depth−1 do

current Bit ← bit l of path;
if current Bit = 0 then

Digest = (Digest ‖ 00000000);
else

Digest = (Digest ‖ 11111111);
end
Digest ← SHA256(Digest);
Digest ← truncate to 128 bits(Digest);

end
gkiz ← Digest;

5.2 Performance analysis

We present the performance analysis of the prototype implementation of the
group-based AKA in terms of latency and bandwidth consumption. The goal of
the analysis is to have a quantitative evaluation of the benefit that the protocol
provides with respect to the current EPS-AKA. We distinguish the analysis
of the non-access stratum (NAS), which concerns the communication between
MTC and MME, and of the S6a interface, which concerns the communication
between MME and HSS.

Bandwidth consumption. Our analysis considers the worst case for both
EPS-AKA and group-based AKA. This is because some of the existing and new
parameters can have variable sizes. Thus, we select the maximum possible value
for each parameter. The bandwidth consumption for EPS-AKA concerning both
NAS and S6a interface is given by the sum of the size of the parameters sent
within the messages, multiplied by the number of devices. The formula of the
bandwidth consumption for the group-based AKA is complicated by the inverted
hash tree. Given m MTCs devices, the formula is defined in Equation 1.

BAND GB NAS = m×
(
gid +

(dlog2 me × 2− 1)

8
+ 2 + nonce

)
+

(m− 1)× (Hch + autd + resd) + rand + autn + res.

(Equation 1)

Regarding the bandwidth consumption for the S6a interface, we consider
the values provided in the Authentication Information Request (AIR) and in
the Authentication Information Answer (AIA) messages, which are due to the
Diameter protocol. The bandwidth consumption for the group-based AKA can
be computed as Equation 2.

BAND GB S6a = imsi + 2× gid + rand + xres + autn + kasme+

gkij + chij +H+ snid + 2×
(
min(path) +

dlog2 me × 2− 1)

32
× 4

)
.

(Equation 2)

Overall, the group-based AKA consumes less bandwidth when already seven
MTC devices are considered. This is described by the left picture of Figure 5.

Latency. The latency analysis consists of the evaluation of the round-trip time
(RTT) between MTC, MME, and HSS. We consider fixed locations for MTC and
MME, and different geographic locations for the HSS. In so doing, we simulate
different scenarios of UE attaching from different countries. Since we focus on the
latency between MME and HSS, we can assume that the RTT between MTC and
MME is fixed. We select three different locations from the WonderProxy servers
[27] with various distances from the MME: Location 1 is 1 Km far; Location 2
is 2,000 Km far; Location 3 is 10,000 Km far. We compute the average RTT of
each location by pinging 100 times the corresponding servers. Then, we run 20
instances of EPS-AKA and group-based AKA in OAI. The results are described
in the right picture of Figure 5. They show that EPS-AKA and Case A for
the group-based AKA have similar values, with the latter having more latency
because more amount of data is communicated. As expected, there are very small
variations in Case B for the group-based AKA. This confirms that when an MTC
device is running within Case B there is a significant reduction in latency.

Fig. 5: On the left: The increase in NAS bandwidth consumption and the decrease in
S6a bandwidth consumption when the group-based AKA is used instead of EPS AKA.
On the right: latency comparison among different locations

0 5 10 15 20 25 30

Number of devices

-500

0

500

1000

1500

2000

2500

3000

B
y
te

s

NAS increase

S6a decrease

Location 1 Location 2 Location 3
0

100

200

300

400

500

600

700

A
v
g.

L
at
en
cy

(m
s)

EPS-AKA
Case A
Case B

6 Related Work

Recently, several amendments to the AKA protocol have been advanced [8, 17]
and new group-based AKA protocols have been proposed. Broustis et al. [11]

designed three group-based AKA schemes with the goal to reduce the overall
signaling between the parties. All the proposed schemes share the idea of using
global values based on a shared group key and to introduce a gateway that medi-
ates between MTC devices and MME. The use of global values and of a gateway
is beneficial to the bandwidth consumption. However, none of the schemes meets
authentication of the devices in presence of either a corrupted gateway or cor-
rupted colluding devices [18]. Lai et al. [21] proposed SE-AKA, a group-based
AKA protocol for LTE networks. The protocol uses public key encryption and
supports key forward and backward secrecy. It reduces the communication over-
head between MME and HSS to only one message exchange but increases the size
of the authentication data response linearly on the size of the group, which makes
the protocol not amenable for large groups. Choi et al. [13] use only symmetric
cryptography for their group-based AKA protocol. The underlying idea of the
protocol is to rely on a global authentication vector based on a group key shared
between HSS and MTC devices. Similarly to the schemes of Broustis et al., the
protocol introduces the role of a gateway, which contributes to minimizes the
bandwidth consumption. However, the protocol does not guarantee any security
property in presence of corrupted devices [18]. Cao et al. [12] proposed GBAAM,
a group-based AKA that relies on the idea of using short aggregate signatures to
reduce the overall signaling among the parties. The protocol benefits of pairing
cryptography, which removes the need of a PKI. However, it requires each MTC
device to run a classic AKA procedure to be registered with the same MME.
As the devices normally require to access the network in a different geographic
location than the location where they registered, this choice limits the suitability
of the protocol as group-based AKA. Sun et al. [25] developed an authenticated
group key agreement protocol for mobile environments. The general approach is
interesting but it cannot fit the constraints of AKA in mobile telephony.

7 Conclusion

This paper demonstrates that a twenty-year-old protocol can meet modern chal-
lenges without revolutionary changes. The proposed group-based AKA is pivoted
on the idea of using an inverted hash tree to manage a large number of devices ef-
ficiently. The cryptographic primitives of the protocol are based on MILENAGE
so that the protocol can be adopted in the current standards. The implementa-
tion in OAI confirms that only minor modifications to EPS are needed to support
the group-based AKA. The formal analysis of the protocol corroborates the se-
curity guarantees of the proposed solution, which proved to resist to threats
due to colluding corrupted devices. The performance analysis yields promising
results in term of latency and bandwidth consumption, with a remarkable gain
when considering a large number of devices.

Future work includes the extension of the group-based AKA with support
for secure handover among different MME and the resyncronization procedure
of the sequence numbers. One approach is to use techniques from different areas,
such as mobile cloud computing [29]. Another research direction is to support
dynamic groups with key forward/backward secrecy: linkable group signature
schemes [15, 20, 19] might be used on top of the protocol.

While research on areas of fundamental importance for 5G has already started
(i.e, cloud security, IoT), research on 5G security is in its early stages. The re-
sults of our current implementation are promising since OAI relies on 4G network

standards. We expect even better results if the group-based AKA is implemented
in the future 5G architecture.

References

1. 3GPP: Formal Analysis of the 3G Authentication Protocol. Technical Report
33.902 (2001)

2. 3GPP: Specification of the MILENAGE Algorithm Set. Technical Specification
35.205 (2001)

3. 3GPP: 3GPP System Architecture Evolution (SAE); Security architecture. Tech-
nical Specification 33.401 (2008)

4. 3GPP: MME Related Interfaces Based on Diameter Protocol. Technical Specifica-
tion 29.272 (2008)

5. 3GPP: Service requirements for Machine-Type Communications (MTC); Stage 1.
Technical Report 22.368 (2011)

6. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL’01. pp. 104–115. ACM, New York (2001)

7. Alliance, O.S.: Openairinterface. http://www.openairinterface.org/ (August 2016)
8. Alt, S., Fouque, P.A., Macario-rat, G., Onete, C., Richard, B.: A Cryptographic

Analysis of UMTS/LTE AKA, pp. 18–35. Springer International Publishing (2016)
9. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.

In: CSFW. pp. 82–96. IEEE Computer Society, Cape Breton, Canada (2001)
10. van den Broek, F., Verdult, R., de Ruiter, J.: Defeating imsi catchers. In: 22Nd

ACM SIGSAC Conference on Computer and Communications Security. pp. 340–
351. CCS ’15, ACM (2015)

11. Broustis, I., Sundaram, G.S., Viswanathan, H.: Group authentication: A new
paradigm for emerging applications. Bell Labs Technical Journal 17(3), 157–173
(2012)

12. Cao, J., Ma, M., Li, H.: Gbaam: group-based access authentication for mtc in LTE
networks. Security and Communication Networks 8(17), 3282–3299 (2015)

13. Choi, D., Choi, H.K., Lee, S.Y.: A group-based security protocol for machine-type
communications in LTE-advanced. Wireless Networks 21(2), 405–419 (2014)

14. Dolev, D., Yao, A.C.: On the security of public key protocols. Information Theory,
IEEE Transactions on 29(2), 198–208 (1983)

15. Emura, K., Hayashi, T.: A Light-Weight Group Signature Scheme with Time-Token
Dependent Linking, pp. 37–57. Springer International Publishing, Cham (2016)

16. Ericsson: Ericsson mobility report. Technical Report (2015)
17. Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3gpp aka

protocol. IACR Cryptology ePrint Archive 2016, 480 (2016)
18. Giustolisi, R., Gehrmann, C.: Threats to 5G group-based authentication. In: SE-

CRYPT 2016 - Proceedings of the 13th International Conference on Security and
Cryptography, August. SciTePress (2016)

19. Hwang, J.Y., Eom, S., Chang, K.Y., Lee, P.J., Nyang, D.: Anonymity-based au-
thenticated key agreement with full binding property. Journal of Communications
and Networks 18(2), 190–200 (2016)

20. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Group signatures with
controllable linkability for dynamic membership. Information Sciences 222, 761 –
778 (2013)

21. Lai, C., Li, H., Lu, R., Shen, X.S.: SE-AKA: A secure and efficient group authenti-
cation and key agreement protocol for LTE networks. Computer Networks 57,(17)
(2013)

22. Nokia Siemens Networks: Signaling is growing 50% faster than data traffic. Tech-
nical Report (2012)

23. Oracle: Oracle communications lte diameter signaling index. 4th edition. White
Paper (2015)

24. Ryan, M.D., Smyth, B.: Applied pi calculus. In: Formal Models and Techniques
for Analyzing Security Protocols, chap. 6. IOS Press (2011)

25. Sun, H.M., He, B.Z., Chen, C.M., Wu, T.Y., Lin, C.H., Wang, H.: A provable
authenticated group key agreement protocol for mobile environment. Information
Sciences 321, 224 – 237 (2015)

26. Tang, C., Naumann, D.A., Wetzel, S.: Analysis of authentication and key estab-
lishment in inter-generational mobile telephony. In: IEEE 10th International Con-
ference on Embedded and Ubiquitous Computing (HPCC EUC). pp. 1605–1614
(2013)

27. WonderNetwork: Wonderproxy servers. https://wonderproxy.com/servers (August
2016)

28. Woo, T.Y., Lam, S.S.: A semantic model for authentication protocols. In: Research
in Security and Privacy, 1993. Proceedings., 1993 IEEE Computer Society Sympo-
sium on. pp. 178–194 (1993)

29. Yang, X., Huang, X., Liu, J.K.: Efficient handover authentication with user
anonymity and untraceability for mobile cloud computing. Future Generation Com-
puter Systems 62, 190 – 195 (2016)

A Formal Specification of Security Requirements

ProVerif allows for syntactical extension of the applied pi-calculus, such as events
and choices, to ease the specification of security requirements. Confidentiality can
be modelled as a reachability property. The secrecy of a term m is preserved if
an attacker, defined as an arbitrary process, cannot construct m from any run
of the protocol. More precisely, the definition of reachability-based secrecy says
that an attacker cannot build a process A that can output the secret term m.

Authentication can be defined using correspondence assertions. An event e

is a message emitted into a special channel that is not under the control of the
attacker. To model correspondence assertions, we annotate processes with events
such as e〈M1, ...Mn〉 and reason about the relationships () between events and
their arguments in the form “if an event e〈M1, ...Mn〉 has been executed, then
an event e′〈N1, ...Nn〉 has been previously executed”.

The applied pi-calculus supports the notion of observation equivalence. In-
formally, two processes are observational equivalent if an observer cannot dis-
tinguish the processes even if they handle different data or perform different
computations. The indistinguishability characterization of the definition of ob-
servation equivalence allows us to capture privacy requirements.

Confidentiality. We check confidentiality of the session master key by proving
that a fresh secret, which is encrypted with the key and sent in form of ciphertext
on the public channel, cannot be obtained by the attacker. As soon as MTC and
MME derive the session master key, each of them generates a ciphertext that
encrypts the secret. They send the ciphertexts at the very end of the protocol
run, accordingly the case. We specify the session master key confidentiality in
ProVerif with the following query:

query attacker (secret).

ProVerif is suitable to prove confidentiality as it attempts to prove that a
state in which the attacker knows the secret is unreachable. It follows that the
secret is known only to MTC and MME.

Authentication. We specify MTC and serving network authentication re-
quirements as correspondence assertions. Each assertion consists of a number
of events. Events normally need to agree with some arguments to capture au-
thentication. Thus, we introduce the terms that serve as arguments in our events
as follows.

– imsi refers to the permanent subscribe identity of the MTC;
– gid refers to the group identifiers of the MME;
– sn denotes the identifiers of the MME;
– kasme denotes the session master key;
– path mtc denotes the path assigned to the MTC;
– Hgk mtc refers to the session individual key derived from the GK tree and

associated to the MTC;
– rand refers to the random value generated by the HSS;
– Hch mtc refers to the session challenge key derived from the CH tree and

associated to the MTC;

Having seen the arguments, we can define the list of events needed to specify
mutual group authentication between MTC and MME. The events reflect the
two cases defined in the group-based AKA protocol.

– begin mtc A〈imsi,gid, sn,kasme〉 means that the MME with identity sn be-
gins the authentication of the MTC with identity imsi and group gid, and
associates it with the key kasme. The event regards the case A and is emitted
by the MME after the authentication data response message.

– begin mtc B〈path mtc,gid, sn,Hgk mtc〉means that the MME with iden-
tity sn begins the authentication of the MTC with path path mtc and group
gid, and associates it with the key Hgk mtc. The event regards the case B
and is emitted by the MME after the attach request.

– begin mme A〈imsi,gid, sn,rand,kasme〉 means that the MTC with identity
imsi and group gid begins the authentication of the MME with identity sn,
and associates it with the random value rand and key kasme. The event
regards the case A and is emitted by the MTC after the authentication
request.

– begin mme B〈path mtc,gid, sn,Hch mtc,kasme〉means that the MTC with
path path mtc and group gid begins the authentication of the MME with
identity sn, and associate it with the keys Hch mtc and kasme. The event
regards the case B and is emitted by the MTC after the authentication
request derivable message.

– end mtc A〈imsi,gid, sn,kasme〉 means that the MTC with identity imsi and
group gid concluded the authentication of the MME with identity sn, and
computed the key kasme. The event regards the case A and is emitted by the
MTC after the authentication response.

– end mtc B〈path mtc,gid, sn,Hgk mtc〉 means that the MTC with path
path mtc and group gid concluded the authentication of the MME with
identity sn, and computed the key Hgk mtc. The event regards the case
B and is emitted by the MTC after the authentication response derivable
message.

– end mme A〈imsi,gid, sn,rand,kasme〉 means that the MME with identity sn
concluded the authentication of the MTC with identity imsi and group gid,
and associates it with the random value rand and key kasme. The event re-
gards the case A and is emitted by the MME after the successful verification
of res.

– end mme B〈path mtc,gid, sn,Hch mtc,kasme〉 means that the MME with
identity sn concluded the authentication of the MTC with path path mtc
and group gid, and associates it with keys Hch mtc and kasme. The event
regards the case B and is emitted by the MME after the successfully verifi-
cation of resd.

To formalize mutual authentication we need to distinguish the authentication
of the MME to MTC and the authentication of the MTC to the MME. Moreover,
we need to distinguish the two cases. We formalize the authentication of the
MME to MTC in Case A and Case B as follows.

Definition 1 (Serving network authentication (Case A)) The protocol en-
sures serving network authentication for Case A if the correspondence assertion

end mtc A〈imsi,gid, sn,kasme〉
begin mtc A〈imsi,gid, sn,kasme〉

is true on every execution trace.

Definition 2 (Serving network authentication (Case B)) The protocol en-
sures serving network authentication for Case B if the correspondence assertion

end mtc B〈path mtc,gid, sn,Hgk mtc〉
begin mtc B〈path mtc,gid, sn,Hgk mtc〉

is true on every execution trace.

In a similar way, we can formalize the authentication of the MTC to the
MME in Case A and Case B.

Definition 3 (MTC authentication (Case A)) The protocol ensures the au-
thentication of MTC for Case A if the correspondence assertion

end mme A〈imsi,gid, sn,rand,kasme〉
begin mme A〈imsi,gid, sn,rand,kasme〉

is true on every execution trace.

Definition 4 (MTC authentication (Case B)) The protocol ensures the au-
thentication of MTC for Case B if the correspondence assertion

end mme B〈path mtc,gid, sn,Hch mtc,kasme〉
begin mme B〈path mtc,gid, sn,Hch mtc,kasme〉

is true on every execution trace.

Privacy. To model MTC identity privacy as equivalence property, we use the
definition of labelled bisimilarity (≈l) as defined by Abadi and Fournet. We
reason about the processes of MTC, MME, and HSS, which map to the cor-
responding roles. Each device playing the role of MTC execute the same process
MTC but are instantiated with different variable values (e.g. imsi, k). The re-
quirement of MTC identity privacy can be conveniently specified as follows:

Definition 5 (MTC identity privacy)
MTC{imsiA/id} | MME | HSS ≈l MTC{imsiB/id} | MME | HSS

The definition above states that two processes instantiated with two different
IMSI values have to be observationally equivalent. Such equivalence means that
an attacker cannot distinguish whether the MTC participating in the protocol
run is the one associated with imsiA or imsiB , hence the privacy of the MTC
identity is guaranteed. Note that the formulation of MTC identity privacy based
on observational equivalence is more stringent than any formulation based on
reachability. The latter formulation would need to assume that the attacker does
not know any imsi value in advance, an assumption that can be lifted up using
observational equivalence.

The ProVerif code that describes the processes for MTC, MME, and HSS
are respectively in Figure 6,7, and 8.

B Implementation and Analysis in OAI

The configuration used by our patched version of OAI is depicted in Figure 9. It
includes three virtual machines running Linux inside a single host Intel Core i7
processor with 4GB RAM. In particular, one machine (VM1) runs the Openair-
interface5G module that simulate an MTC device and the eNodeB base station.
The other two machines (VM2 and VM3) run the OPENAIR-CN module. Note
that OAI does not currently support multiple MTC device, namely the Openair-
interface5G module include only a device. However, we can run multiple runs
of Openairinterface5G module in different machines to instantiate several MTC
devices at cost of instantiating the same number of base stations.

The communication between MTC device, MME, and HSS are performed
through Ethernet interfaces. The communication between MTC device and eN-
odeB is done within VM1 and represents the S1-U interface in the 3GPP stan-
dard. The channel between VM1 and VM2 represent the S1-MME interface
according the standard. VM3 is dedicated to the HSS, which uses a MySQL
server for the storage of subscriber data.

B.1 Parameters

Some terms have no similar counterpart in the existing standards so we design
them from scratch. This is the case of the two auxiliary parameters tree height
and node depth. The first gives the height H of the inverted hash trees. It is
used as an indicator of how many bits of the path should be used. This parameter
is needed because the path is communicated in full bytes even though the size
of the actual path might not be divisible by eight. We thus specify that the size
of tree height is one byte. The parameter node depth gives the level on
which the sub-root nodes gkij and chij are placed in the inverted hash trees.
The knowledge of path, tree height, and node depth allows the MME to
deduce the structure of the inverted hash tree and to assess whether next MTC
devices can be served according Case A or Case B.

To compute the bandwidth consumption at NAS level, we consider the pa-
rameters and the sizes described in Table 4. We recall Equation 1 and Equation
2 concerning the bandwidth consumption for the group-based protocol for the

Fig. 6: The process of MTC in ProVerif

let MTC (imsi_mtc: id, key_mtc: key, gid: id, path_mtc: path,

sqn: bitstring, o_mtc: bitstring, pos: bit) =

new nonce_mtc: rand;

out(ch, (gid, path_mtc, nonce_mtc, pos));

in (ch, (case_x: int, aut_x: bitstring, sn_id: id, rand_x: rand));

if case_x=caseA then

(let (xored_sqn: bitstring, mac_sn: bitstring)=aut_x in

if sqn=xor(f5((key_mtc, rand_x)),xored_sqn) then

(if mac_sn=f1((sqn, rand_x), key_mtc) then

let res=f2((key_mtc, rand_x)) in

let ck=f3((key_mtc, rand_x)) in

let ik=f4((key_mtc, rand_x)) in

let kasme=kdf((xored_sqn, ck, ik, sn_id)) in

event beginMMEa (imsi_mtc, gid, sn_id, rand_x, kasme);

out(ch, res);

let knasenc_mtc = kdf_nas_enc(kasme) in

let knasint_mtc = kdf_nas_int(kasme) in

out(ch, senc(secret, knasenc_mtc));

in (ch, (nasmsgmac: bitstring , mac_nas: bitstring));

if mac_nas=nas_mac(nasmsgmac, knasint_mtc) then

let enc_complete_msg=senc(nas_complete_msg, knasenc_mtc) in

out (ch , (nas_complete_msg, enc_complete_msg,

nas_mac(enc_complete_msg, knasint_mtc)));

event endMTCa (imsi_mtc, gid, sn_id, kasme)

else 0)

else 0)

else if case_x=caseB then

let (f5_hgkmtc_nonce: bitstring, mac_hgkmtc: bitstring)=aut_x in

let hgk_mtc=xor(h((key_mtc, rand_x)),o_mtc) in

if f5((hgk_mtc, nonce_mtc))=f5_hgkmtc_nonce then

if mac_hgkmtc=f1((nonce_mtc, rand_x, gid, sn_id, path_mtc),

bs_to_key(hgk_mtc)) then

let res_b=f2((hgk_mtc, rand_x)) in

let ck_b=f3((hgk_mtc, rand_x)) in

let ik_b=f4((hgk_mtc, rand_x)) in

let kasme_b=kdf((f5_hgkmtc_nonce, ck_b, ik_b, sn_id)) in

event beginMMEb (path_mtc, gid, sn_id, rand_x, kasme_b);

out(ch, res_b);

let knasenc_mtc = kdf_nas_enc(kasme_b) in

let knasint_mtc = kdf_nas_int(kasme_b) in

out(ch, senc(secret, knasenc_mtc));

in (ch, (nasmsgmac: bitstring , mac_nas: bitstring));

if mac_nas=nas_mac(nasmsgmac, knasint_mtc) then

let enc_complete_msg=senc(nas_complete_msg, knasenc_mtc) in

out (ch , (nas_complete_msg, enc_complete_msg,

nas_mac(enc_complete_msg, knasint_mtc)));

event endMTCb (path_mtc, gid, sn_id, hgk_mtc).

Fig. 7: The process of MME in ProVerif

let MME_init (sn_mme: id, hss_mme: key) =

in(ch, (gid: id, path_mtc: path, nonce_mtc: rand, =sn_mme, pos: bit));

if (path_mtc=get_child(get_parent(path_mtc), left) && pos=left) ||

(path_mtc=get_child(get_parent(path_mtc), right) && pos=right) then

(MME_a(gid, path_mtc, sn_mme, hss_mme) |

MME_b(gid, path_mtc, nonce_mtc, sn_mme, pos)).

let MME_a (gid: id, path_mtc: path, sn_mme: id, hss_mme: key) =

out(ch, senc((gid, path_mtc, sn_mme), hss_mme));

in(ch, from_hss: bitstring);

let (=gid, GKij: bitstring, CHij: bitstring, autn: bitstring,

xres: bitstring, rand_hss: rand, kasme: key, imsi_mtc: id,

n: bitstring, =path_mtc)=sdec(from_hss, hss_mme) in

let pathx=get_parent(path_mtc) in

insert mme_keys(GKij, CHij, gid, pathx, n);

event beginMTCa (imsi_mtc, gid, sn_mme, kasme);

out(ch, (caseA, autn, sn_mme, rand_hss));

in(ch, =xres);

let knasenc_mme = kdf_nas_enc(kasme) in

let knasint_mme = kdf_nas_int(kasme) in

out(ch, senc(secret, knasenc_mme));

new nasmsgmac: bitstring;

out(ch, (nasmsgmac, nas_mac(nasmsgmac, knasint_mme)));

in(ch, (=nas_complete_msg, enc_msg: bitstring, mac_nas: bitstring));

if mac_nas=nas_mac(enc_msg, knasint_mme) &&

nas_complete_msg=sdec(enc_msg, knasenc_mme) then

out(ch, senc(secret, knasenc_mme));

event endMMEa (imsi_mtc, gid, sn_mme, rand_hss, kasme).

let MME_b (gid: id,path_mtc: path,nonce_mtc: rand,sn_mme: id,pos: bit)=

get mme_keys(GKij, CHij, =gid, =get_parent(path_mtc), n) in

let GKmtc=set_node(GKij,pos) in

let hgkmtc=hash(GKmtc, n) in

event beginMTCb (path_mtc, gid, sn_mme, hgkmtc);

let CHmtc=set_node(CHij,pos) in

let hchmtc=hash(CHmtc, n) in

let f5_hgkmtc_nonce=f5((hgkmtc, nonce_mtc)) in

let mac_hgkmtc=f1((nonce_mtc, hchmtc, gid, sn_mme, path_mtc),

bs_to_key(hgkmtc)) in

out(ch, (caseB, (f5_hgkmtc_nonce, mac_hgkmtc), sn_mme, hchmtc));

let ck=f3((hgkmtc, hchmtc)) in

let ik=f4((hgkmtc, hchmtc)) in

let kasme=kdf((f5_hgkmtc_nonce, ck, ik, sn_mme)) in

in(ch, res_d: bitstring);

if res_d=f2((hgkmtc, hchmtc)) then

let knasenc_mme = kdf_nas_enc(kasme) in

let knasint_mme = kdf_nas_int(kasme) in

out(ch, senc(secret, knasenc_mme));

new nasmsgmac: bitstring;

out(ch, (nasmsgmac, nas_mac(nasmsgmac, knasint_mme)));

in(ch, (=nas_complete_msg, enc_msg: bitstring, mac_nas: bitstring));

if mac_nas=nas_mac(enc_msg, knasint_mme) &&

nas_complete_msg=sdec(enc_msg, knasenc_mme) then

event endMMEb (path_mtc, gid, sn_mme, bs_to_rand(hchmtc), kasme).

Fig. 8: The process of HSS in ProVerif

let HSS (sn_mme: id, mme_hss: key) =

in(ch, from_mme: bitstring);

let (gid: id, path_mtc: path, =sn_mme)=sdec(from_mme, mme_hss) in

get hss_keys(=path_mtc, imsi, key_mtc, =gid, sqn, rootG, rootR, n) in

new rand_hss: rand;

let xored_sqn=xor(f5((key_mtc, rand_hss)),sqn) in

let mac_hss=f1((sqn, rand_hss), key_mtc) in

let xres=f2((key_mtc, rand_hss)) in

let ck=f3((key_mtc, rand_hss)) in

let ik=f4((key_mtc, rand_hss)) in

let kasme=kdf((xored_sqn, ck, ik, sn_mme)) in

let autn=(xored_sqn, mac_hss) in

out(ch, senc((gid, rootG, rootR, autn, xres, rand_hss, kasme, imsi, n,

path_mtc), mme_hss)).

Table 4: Sizes of parameters of EPS-AKA and group-based AKA at NAS level. 1The
size of PATH is variable because it depends on the number of MTC devices considered.

Parameter Size (bytes) EPS-AKA Group-based AKA
Case A Case B

imsi 9 X × ×
rand 16 X X ×
autn 17 X X ×
res 9 X X ×
gid 9 × X X
path Variable1 × X X
nonce 16 × X X

n 6 × X X
Hch 16 × × X
autd 15 × × X
res D 9 × × X

Fig. 9: Minimal network configuration needed for our patched version of OAI.

NAS and the S6a interface.

BAND GB NAS = m×
(
gid +

(dlog2 me × 2− 1)

8
+ 2 + nonce

)
+

(m− 1)× (Hch + autd + resd) + rand + autn + res.

(Equation 1)

BAND GB S6a = imsi + 2× gid + rand + xres + autn + kasme+

gkij + chij +H+ snid + 2×
(
min(path) +

dlog2 me × 2− 1)

32
× 4

)
.

(Equation 2)

The bandwidth consumption for EPS-AKA at NAS level is

Band EPS NAS = m× (imsi + rand + autn + res). (Equation 3)

Table 5: Sizes of parameters of EPS-AKA and group-based AKA in the S6A interface.
1The size of PATH is variable because it depends on the number of MTC devices
considered.

Parameter Size (bytes) EPS-AKA Group-based AKA
Case A Case B

imsi 16 X X ×
rand 28 X X ×
autn 28 X X ×
xres 20 X X ×
kasme 44 X X ×
snid 16 X X ×
n 18 × X ×
gid 16 × X ×
path Variable1 × X ×
chij 28 × X ×
gkij 28 × X ×

node depth 16 × X ×
tree height 16 × X ×

Regarding the bandwidth consumption for the S6A interface, Diameter adds
to each parameter 12 bytes for header and flags. Hence, the size of parameters

are bigger in S6A interface than in NAS. The values of the parameters are syn-
thesized in Table 5. The bandwidth consumption for EPS-AKA can be computed
as

Band EPS s6A = m× (imsi + rand + autn + xres + kasme + snid) (Equation 4)

Fig. 10: Bandwidth consumption comparison between EPS AKA and the group-based
AKA on the NAS.

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6

7

8
x 10

7

Number of devices

B
y
te

s

EPS AKA

The group−based AKA

Figure 10 shows that the group-based AKA has more bandwidth consump-
tion than the EPS-AKA at NAS level. This is because the attach request message
in the group-based AKA includes the parameters path and nonce in addition
to the standard parameters. However, the bandwidth consumption rate is in-
verted in the S6a interface, as described in Figure 11. The group-based AKA
consumes less bandwidth already when more than two MTC devices are con-
sidered. Notably, when the number of MTC devices to be served are more then
three, the overall bandwidth consumption of group-based AKA is less than the
one of EPS-AKA. This is depicted in Figure 12.

Fig. 11: Bandwidth consumption comparison between EPS AKA and group-based AKA
on the S6a interface

0 50 100 150 200 250 300 350 400 450 500

Number of devices

0

1

2

3

4

5

6

7

8
B

y
te

s

×104

EPS AKA

The group-based AKA

Fig. 12: Increase in NAS bandwidth consumption and decrease in S6a bandwidth con-
sumption when the group-based AKA is used instead of EPS-AKA.

0 2 4 6 8 10

x 10
5

−2

0

2

4

6

8

10

12

14

16
x 10

7

Number of devices

B
y
te

s

NAS increase

S6a decrease

