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Abstract

Virtualization has been used in computer servers for a long time as
a means to improve utilization, isolation and management. In recent
years, embedded devices have become more powerful, increasingly con-
nected and able to run applications on open source commodity operating
systems. It only seems natural to apply these virtualization techniques
on embedded systems, but with another objective. In computer servers,
the main goal was to share the powerful computers with multiple guests
to maximize utilization. In embedded systems the needs are different.
Instead of utilization, virtualization can be used to support and increase
security by providing isolation and multiple secure execution environ-
ments for its guests.

This thesis presents the design and implementation of a security
application, and demonstrates how a thin software virtualization layer
developed by SICS can be used to increase the security for a single
FreeRTOS guest on an ARM platform. In addition to this, the thin
hypervisor was also analyzed for improvements in respect to footprint
and overall performance. The selected improvements were then applied
and verified with profiling tools and benchmark tests. Our results show
that a thin hypervisor can be a very flexible and efficient software solu-
tion to provide a secure and isolated execution environment for security
critical applications. The applied optimizations reduced the footprint
of the hypervisor by over 52%, while keeping the performance overhead
at a manageable level.



Referat
Säkerhetstjänster på en Optimerad Tunn Hypervisor

för Inbyggda System

Virtualisering har använts i dataservrar under en lång tid som ett sätt
att förbättra utnyttjandet, isolering och drift av datorn. Under senare år
har inbyggda enheter dock blivit mer kraftfull, alltmer uppkopplad och
kör applikationer på operativsystem med öppen källkod. Det är bara
naturligt att tillämpa dessa virtualiseringstekniker på inbyggda system,
men med ett annat mål. I dataservrar var det främsta målet att dela
den kraftfulla datorn med flera gäster för att maximera utnyttjandet av
datorn. För inbyggda system är behoven annorlunda. Istället för att öka
nyttjandet av datorn så vill man använda virtualisering för att istället
stödja och öka säkerheten genom att erbjuda flera säkra exekverings
miljöer för sina virtuella maskiner.

Denna uppsats presenterar design och implementeringen av ett sä-
kerhetsprogram, och visar hur ett tunt virtualiseringslager som är ut-
vecklad av SICS, kan användas för att öka säkerheten för en enda Fre-
eRTOS gäst på en ARM plattform. Utöver detta, så analyserades den
tunna hypervisorn för förbättringar med tanke på främst utrymme och
prestanda. De utvalda förbättringarna applicerades sedan och bekräfta-
des av profileringsverktyg och prestandatester. Våra resultat visar att
tunna hypervisorer är en mycket flexibel och effektiv mjukvaralösning
för att tillhandahålla en säker exekveringsmiljö för säkerhetskritiska ap-
plikationer. De tillämpade optimeringarna minskade storleken med över
52% samtidigt som prestandan hölls i en hanterbar nivå.
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Chapter 1

Introduction

With the increasing use of computers to handle sensitive and secret information, the
issue of trusting a computer to perform a security critical task is becoming increas-
ingly important. Even if the trusted application has been designed with a very high
level of security, if the underlying operating system is compromised, any application
level protection will become useless. Regrettably, this is often a commodity operat-
ing system in where the writer of the trusted application has no control over. Not
only does the operating system have full control over the applications, they are also
immensely large and complex making it highly vulnerable to attacks. How can one
trust one’s computer under those circumstances? Previously, security was mainly
an issue in personal computers, but because of the rapid increase in both growth
and performance in embedded systems, it has become equally important there.

Embedded systems and consumer electronics such as smart phones are now run-
ning open and complex operating systems with connections to the outside world.
One can also see a huge increase in the embedded software domain with respect
to the number of applications and open software, and as expected, there is a clear
indication of threats increasing, targeting mobile and sensitive infrastructure de-
vices [8].

There is clearly a demand for a protected environment in which security critical
code and data can run isolated. The most direct way to protect a trusted appli-
cation is to create a completely independent execution environment in hardware
with its own memory and processing unit, that should only be accessible to the
user through well-defined interfaces. However, this solution tends to be quite in-
effective as building an entire secure execution environment in hardware is rather
expensive. Secondly, with this setup, it could only keep one application secure and
one would usually want to allow multiple stakeholders to run their secure services
independently from each other.

This can all be solved with a software solution called virtualization. In data
servers, virtualization has been used since the 1970s because of its ability to provide
multiple isolated execution environments. It is only natural to apply the virtual-
ization techniques to embedded systems, however, with a different approach as the
requirement and support for virtualization in embedded systems are quite different.
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CHAPTER 1. INTRODUCTION

Data servers strives to increase the utilization of the hardware, while in embedded
systems, the focus is put on security through isolation and a smaller trusted code
base.

1.1 Goals
This thesis aims to design and implement a security application on an existing SICS
developed hypervisor that runs on an ARM platform with a single OS guest. The
goal is to demonstrate that the hypervisor can protect the security critical appli-
cation from malicious software through the isolation properties of the hypervisor.
In addition to this, the hypervisor will also be enhanced by improving its footprint
and overall performance to better support memory constrained embedded systems.
In order to achieve this, these individual goals need to be accomplished:

• Familiarize with the ARM architecture, OVP simulation platform1 and the
SICS developed hypervisor.

• Define a suitable security application that demonstrates the potential power
of the hypervisor.

• Implement the selected security application as a secure service upon the hy-
pervisor.

• Analyze the current hypervisor implementation and search for improvements
with respect to the hypervisor’s footprint and overall performance.

• Implement the identified enhancements as well as verifying them through suit-
able test suites.

1.2 Thesis Overview
The thesis is organized as follows. Chapter 2 provides background information
relevant to the thesis, such as an overview of virtualization techniques, the basics
of ARM architecture, and how the SICS developed hypervisor works. Chapter 3
describes the design and implementation of the security services on the hypervisor,
including a demonstration of its security. Chapter 4 describes the optimization of
the hypervisor and various benchmark tests to confirm the improvements. Chapter
5 presents conclusions for the thesis and future work.

1Used to simulate the ARM platform
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Chapter 2

Background

2.1 Virtualization
In computer science, the term virtualization can refer to many things. Software can
be virtual, as can memory, storage, data and networks. In this thesis, virtualiza-
tion refers to system virtualization in which a piece of software, the hypervisor also
known as a virtual machine monitor (VMM), runs on top of the physical hardware
to share the hardware’s full set of resources between its guests called virtual ma-
chines (VM). Virtualization is not a new concept and has been used for a very long
time. It was invented by IBM in the 1960s [12], and at that time, server mainframes
were very expensive. To increase utilization, virtualization was applied to make the
mainframes sharable between several users and applications. Suddenly, it was now
possible to run multiple virtual machines which were exact copies of the underlying
host machine. This was revolutionary as the mainframes were now capable to host
multiple independent operating systems along with their applications within a single
physical machine. But as hardware became less expensive and the x86 architecture
server and desktop computers became industry standard, virtualization was almost
abandoned during the 1980s and 1990s. However, the growth in x86 servers and
desktops soon led to new IT infrastructure and operational challenges such as low
utilization, increasing physical infrastructure and IT management costs, and insuf-
ficient security and disaster protection. The situation was drastically changed when
VMware managed to virtualize the x86 systems in 1999 [27] and the popularity of
virtualization has once again been renewed.

2.1.1 Hardware Support for Virtualization
CPU architectures provides multiple operational modes, each with a different level
of privilege. For example the x86 architecture provides four protection rings, from
Ring 0, the highest privilege mode to ring 3 the lowest. The ARM architecture only
has two modes, User and Supervisor mode. These different modes enforce security
of the system’s resources and execution of privileged instructions.

Generally operating systems are designed to run on native hardware and expect
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CHAPTER 2. BACKGROUND

to run on the most privileged mode in order to take total control over the whole
computer system. However in a virtualized environment, the hypervisor will be
running in the most privileged mode while the operating system runs in a lower
privileged level inside a VM. This complicates matters as the operating system
will not be able to execute the privileged instructions necessary to configure and
drive the hardware directly. Instead, the privileged insructions are handled by the
hypervisor in order to be able to provide the hardware safely to the VM’s. Figure 2.1
describes the hypervisor architecture. We have the hypervisor running in the most
privileged mode right above the hardware. The guest VM’s in turn are running on
top of the hypervisor in a less privileged mode. The hypervisor thus manages and
provides the hardware resources to the guest VM’s.

Figure 2.1: Architecture of a hypervisor system

For the guest VM that is running its software, it gets the illusion as if it had
full access to the physical machine, while in reality it could be sharing the machine
with other software systems. The hypervisor thus maintains the resource allocation
between the guests, while it also has the power to intercept on important instructions
and events and handle them before they are executed on the real hardware. Another
important function of the hypervisor is that it provides isolation of the resources
for the virtual machines running on the same physical hardware.

8



2.1. VIRTUALIZATION

If the security of one virtual machine is compromised, the other virtual machines
can continue and run unaffected.

The following is a list of advantages that is achievable with virtualization [29]:

• Isolation

• Minimized size of trusted code base1

• Architectural independence

• Simplified development and management

• Resource sharing / Improved utilization

• Load balancing and power saving

• Simplified system migration

• Improved security

In the next section, we will describe how virtualization is achieved.

2.1.2 Classical Virtualization
Popek and Goldberg stated in their paper [23] formal requirements for a computer
architecture to be virtualizable. The classifications of sensitive and privileged in-
structions were introduced in their paper:

• Sensitive instructions, instructions that attempt to interrogate or modify the
configuration of resources in the system.

• Privileged instructions, instructions that trap if executed in an unprivileged
mode, but execute without trapping when run in a privileged mode.

To be able to fully virtualize an architecture, Popek and Goldberg stated that the
sensitive processor instructions had to be equal to the set of privileged instructions
or a subset of it. This criterion has now been termed classically virtualizable.

In the following section we present different types of virtualization techniques
as each has its own advantages and disadvantages.

2.1.3 General system
In order to understand virtualization, we need to know how a general computer
system works when operating without a hypervisor. In Figure 2.2 we show the
overview for a general OS running in privileged mode above the hardware. The OS
thus has the privilege to execute all machine instructions, including the privileged
instructions that control the hardware resources.

1Amount of code in the privileged mode
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CHAPTER 2. BACKGROUND

Figure 2.2: General system
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2.1. VIRTUALIZATION

2.1.4 Full Virtualization

As discussed earlier, because the hypervisor resides in the most privileged ring,
the guest OS which is residing in the less privileged mode, can not execute its
privileged instructions. Instead the execution of these privileged instructions has
to be delegated to the hypervisor. One way to do this is through applying full
virtualization. The idea behind it is, whenever a software is trying to execute
privileged instructions in an unprivileged mode, it will generate a so called ”trap“
into the privileged mode. Because the hypervisor resides in the most privileged
ring, one could write a trap handler that emulates the privileged instruction that
the guest OS is trying to execute. This way, through trap-and-emulate, all the
privileged instructions that the guest OS is trying to execute will be handled by the
hypervisor, while all other non-privileged instructions can be run directly on the
processor, as shown in figure 2.3. The advantage with full virtualization is that the
virtualized interfaces provided to the guest operating system has identical interfaces
compared to the real machine. This means that the system can execute binary code
without any changes, neither the operating systems nor their applications need any
adaptation to the virtual machine environment and all code that had originally been
written to the physical machine can be reused.

However to apply full virtualization it requires that all sensitive instructions are
a subset of the privileged instructions, in order for it to trap to the hypervisor. This
is why Popek and Goldberg’s criteria classically virtualizable have to be fulfilled in
order to apply full virtualization. In the 1970s, this particular hypervisor imple-
mentation style, trap-and-emulate was so widespread that, it was thought to be
the only practical method for virtualization. A downside with full virtualization is,
since a trap is generated for every privileged instruction, it adds significant overhead
as each privileged instruction is emulated with many more instructions. In turn we
get excellent compatibility and portability.

2.1.5 Binary Translation

In the 90s, the x86 architecture was prevalent in desktop and server computers but
still, full virtualization could not be applied to the architecture. Because the x86
architecture contains sensitive instructions that is not a subset of the privileged
instructions [27], it fails to fulfill Popek and Goldberg’s criteria ”classically virtu-
alizable“. These sensitive instructions would not trap to the hypervisor and it was
not possible to execute these sensitive instructions in the unprivileged mode, mak-
ing full virtualization not possible. VMware has however shown that, with binary
translation one could also achieve the same benefits as full virtualization on the x86
architecture. Binary translation solves this problem by scanning the guest code at
load or runtime for all sensitive instructions that do not trap before they are exe-
cuted, and replaces them with appropriate calls to the hypervisor, see Figure 2.4.
The technique used is quite complex and increases the code size running in the
highest privileged mode, increasing the chance of bugs. Through a security point of
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CHAPTER 2. BACKGROUND

Figure 2.3: Full virtualization

view, one would want the amount of code in the privileged mode to be as small as
possible in order to minimize the area of the attack surface. This could affect the
security and isolation properties of the entire system.

Because of the complex scanning techniques of binary translation, the perfor-
mance overhead is larger than full virtualization. However, binary translation has
provided the benefits of full virtualization on an architecture that was previously
not fully virtualizable. This has brought a renewed interest in virtualization as the
benefits for the x86 data servers were enormous.
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2.1. VIRTUALIZATION

Figure 2.4: Binary translation

2.1.6 Para-virtualization

Para-virtualization was designed to keep the protection and isolation found in the
full virtualization but without the performance overheads and implementation com-
plexity in the hypervisor. However to achieve this, you have to sacrifice the conve-
nience to run an operative system unmodified on the hypervisor.

In a para-virtualized system, all the privileged instructions in the operating
system kernel have to be modified to issue the appropriate system call that com-
municates directly with the hypervisor, also called hypercalls. This makes para-
virtualization able to achieve better performance compared to full virtualization
due to the direct use of appropriate hypercalls instead of multiple traps and in-
struction decoding. Examples on hypercall interfaces provided by the hypervisor
are critical kernel operations such as memory management, interrupt handling, ker-
nel ticks and context switching. As each hypercall offer a higher level of abstraction
compared to emulation at the machine instruction level, the amount of work that a
hypercall can do is a lot more efficient compared to emulating each sensitive machine
instruction. Figure 2.5 shows the para-virtualization approach.
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CHAPTER 2. BACKGROUND

Figure 2.5: Para-virtualization

A hypervisor that uses th para-virtualization approach is Xen on ARM [14]
which is able to run multiple isolated high level operating systems. The ARM ar-
chitecture is a very common CPU in embedded systems, however it is not ”classically
virtualizable“2. This means that virtualization on the ARM architecture can either
be achieved through binary translation or para-virtualization. Because embedded
systems generally are resource constrained, the performance overhead that binary
translation generates is too high, making para-virtualization the best approach for
the ARM architecture.

However, the drawback with para-virtualization is that each operating system
has to be adapted to the new interface of the hypervisor. This can be quite a
large task, and closed-source operating systems like Windows cannot be modified
by anyone other than the original vendor. Still, in embedded systems it is common
for the developers to have full access to the operating system’s source code. The
disadvantage to run a modified operating system is not always a big issue; the
operating system needs to be ported to the custom hardware either way and at the
same time, it performs better.

2Except for new ARMv7 architectures supporting TrustZone
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2.1. VIRTUALIZATION

2.1.7 Microkernel

Hypervisors are not the only way to achieve virtualization. It has been demonstrated
that using a microkernel such as L4 [19] can be used as a hypervisor to support
para-virtualized operating systems. However, the approach behind microkernels is
different when compared to hypervisors. While the hypervisor was mainly designed
to allow multiple VM’s to run concurrently on the host computer, microkernels
aim to reduce the amount of privileged code to a minimum but still provide the
basic mechanism to run an operating system on it. Following these principles,
the microkernel’s main function is to provide inter process communication, address
space management and thread management.

This way policies can be implemented by user level software, utilizing the micro-
kernel provided mechanism as necessary. Operating system services like I/O, device
drivers and file-systems can be moved out to the non-privileged mode, decreasing
its trusted code size and thus increasing security. This typically requires more adap-
tion from the guest system as it does not try to emulate traditional interfaces like
a hypervisor does. Given the different directions and purposes of microkernels and
hypervisors, they both share many similarities.

2.1.8 Hardware Virtualization Extensions

Intel and AMD

As the popularity of virtualization keeps rising, hardware vendors started to develop
new features to simplify virtualization. In 2006, Intel and AMD released their first
generation hardware virtualization extensions for the x86 architecture. Both the
Intel-VT [15] and AMD-V [2] processor allows the hypervisor to run in a new root
mode below ring 0, which was previously the highest privileged ring. All privileged
and sensitive calls have also been set up to automatically trap to the hypervisor,
removing the need for either binary translation or para-virtualization. This makes
the Intel VT-x and AMD-V classically virtualizable using a trap-and-emulate model
in hardware, as opposed to software.

The x86 hardware virtualization extensions was designed to improve virtual-
ization performance in the system, but in [1] the authors stated that, due to high
transition overhead between the hypervisor and guests, and a rigid programming
model, the first generation hardware virtualization extensions performs poorly. The
benchmarks in [1] show; for workload that performs I/O, process creation, and fast
context switches, the software outperforms the hardware. It should however be
stated that the authors of the paper work for VMware, which makes the research
paper biased, as it is in VMware’s interest to sell their virtualization software. The
authors however acknowledged that the virtualization extension remove the need for
binary translation and simplifies the hypervisor design. Both AMD and Intel have
announced the development of their second generation hardware virtualization ex-
tensions technologies that will have a greater impact on virtualization performance.

15



CHAPTER 2. BACKGROUND

ARM

The ARM architecture offers a security extension called TrustZone [26] in ARMv6
or later architectures. It offers support for switching between two separate states,
called worlds. One world is secure which is intended to run trusted software, while
the other world is normal, where the untrusted software runs. A single core is able
to execute code from both worlds, and at the same time ensuring that the secure
world software are protected from the normal world. Thus, the secure world controls
all partitioning of devices, interrupts and coprocessor access. To control the switch
between the secure and normal world, a new processor mode has been introduced
called Monitor mode, preventing data from leaking from the secure world to the
normal world.

In the latest ARMv7 architecture, the Cortex-A15 processor further introduced
hardware virtualization extensions that allow the architecture to be classically virtu-
alized by bringing a new mode called hyp as the highest privileged mode, hardware
support for handling virtualized interrupts, and extra functionality to support and
simplify virtualization. These extra extensions add features to make full virtualiza-
tion possible and improve the speed of virtualization [7].

2.1.9 Virtualization in embedded systems

As the thesis focuses on virtualization on embedded systems, we will look into the
functionality that is inherited from their previous use in servers and workstations.
The properties between the two systems are however completely different. For
server and desktop computers, power, space or weight are of no concern, while for
embedded systems the contrary often holds true. So a re-evaluation in the light of
embedded systems is necessary. [16] is an excellent book describing the overview of
virtualization for embedded systems.

Architectural coverage

Because the server and desktop markets are largely dominated by the x86 architec-
ture, virtualization approaches have been specifically tailored for this architecture.
However the embedded market presents a more divided environment. There is no
single dominating processor architecture where there are at least four major archi-
tectures in use: ARM, PowerPC, MIPS and Intel. Also for server and desktops,
usually the number one requirement is to be able to run all commodity operating
systems without modifications. This was the advantage that full virtualization had
over para-virtualization, but in embedded systems, it is common for the developer
to have access to the full source code of the operating system. Usually the develop-
ers have to port the operating system to the specialized embedded hardware, thus
using para-virtualization is not such big disadvantage anymore.
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Isolation

In servers and desktops, all virtualization approaches feature strong isolation be-
tween the VM’s and is usually all that is needed to provide a secure and robust
environment. A VM that is affected by malicious software will be confined to that
VM, as the isolation prevents it from spreading to other VM’s. For server and
desktop use, this is usually all that is needed because there is no need for VM’s to
interact with each other in any other ways from how real computers communicate,
that is through the network. However in embedded systems, multiple systems gen-
erally contribute to the overall function of the device. Thus the hypervisor needs
to provide a secure communication interface between the isolated VM’s, much like
a microkernel IPC, while still preserving the isolation of the system [16].

Code Size

In embedded systems, the size of the memory has a big effect on the cost of the
device. They are generally designed to provide their functionality with minimal
resources, thus cost and power sensitive devices benefit from a small code size.

In other devices where the highest levels of safety or security is required, every
code line represents an additional potential threat and cost. This is called the
trusted code base and includes all software that is run in privileged mode, which in
general cases includes the kernel and any software modules that the kernel relies on.
In security critical applications, all trusted code may have to go through extensive
testing. In some cases where security needs to be guaranteed, the security of the
system has to be proven mathematically correct and undergo a formal verification.
This makes it crucial that the size of the trusted code base is as small as possible
as it will make formal verification easier.

In virtualization, the trusted code base will include the hypervisor as it now
runs in the most privileged mode. For data server hypervisors like Xen [14], its code
base is about 100,000 lines of code which is quite large, but the biggest problem is
that it also relies on a full Linux system in the privileged mode. This makes the
trusted code base several millions lines of code which makes a formal verification
impossible. The reason the Xen and similar hypervisors is so large, is because it
is mainly designed for server stations. Most policies are implemented inside the
privileged code which embedded systems have very little, or no use of.

In a microkernel all the policies are provided by the servers, while the microkernel
only provide the mechanism to execute these policies. This results in a small trusted
code base and from a security perspective, for example the L4 microkernel has an
big advantage as the size is only about 10,000 lines of code and has also undergone
formal verification [17].

Performance

Most often performance is much more crucial and expensive for embedded systems.
To be able to get the most out of the hardware, a hypervisor for embedded systems
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must perform with a very low overhead as well as being able to provide good security
and isolation. The performance overhead that the hypervisor generates depends on
many factors such as the guest operating system, hypervisor design and hardware
support for virtualization. For embedded systems, it is almost always advantageous
to apply para-virtualization as a hypervisor design approach, for the reasons stated
in section 2.1.6.

2.1.10 Summary
Until recently, embedded virtualization has received very little interest compared to
virtualization of servers and desktops. However, awareness that embedded systems
also can benefit from virtualization as a mean to improve security, efficiency and
reliability have increased the popularity of embedded virtualization. As the per-
formance of embedded systems continues to grow, one single embedded system is
now powerful enough to handle workloads which previously had to be handled by
several dedicated embedded systems.

Taking advantage of virtualization, there is a potential to reduce the total num-
ber of embedded control units, reducing cost and at the same time increasing perfor-
mance. Another important aspect is the advances in the mobile embedded devices
as today’s smart phones provide desktop level software environments. Services like
internet banking and surfing the web are available, while the user also has the free-
dom to install various applications on their mobile device. With these changes,
security issues and malicious software has become a threat even in mobile environ-
ments. This makes virtualization very attractive as it can provide isolation between
different execution environments, separating your security critical applications from
the rest. For this reason, many research projects in embedded virtualization are in
progress, examples are Xen on ARM [14], OKL4 from Open Kernel Labs [18] and
Mobile virtualization platform from VMware [28].
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2.2 ARM Architecture
In order to understand virtualization of the ARM architecture, we provide an
overview over important components on the ARMv5 platform, especially the ARM-
926EJ-S as the SICS developed hypervisor is implemented on this CPU. More in-
formation can be found in [6] and [25].

2.2.1 ARM introduction
The ARM core is a reduced instruction set computer (RISC) architecture. RISC
philosophy concentrates on reducing the complexity of instructions performed by
the hardware, while putting a greater demand on the compiler. This way, each
instruction is of fixed length of 32-bits and can be completed in a single clock
cycle, while also allowing the pipeline to fetch future instruction before decoding
the current instruction.

In contrast to RISC, complex instruction set computer (CISC) architectures
relies more on hardware for instruction functionality, which consequently makes the
instructions more complex. The instructions are often variable in size and take
many cycles to execute.

As a pure RISC processor is designed for high performance, the ARM archi-
tecture uses a modified RISC design philosophy that also targets code density and
low power consumption. As a result, the processor has become dominant in mobile
embedded systems. It was reported that in 2005, about 98% of more than a billion
mobile phones sold each year used at least one ARM processor and as of 2009,
ARM processors accounted for approximately 90% of all embedded 32-bit RISC
processors [21].

2.2.2 Thumb instruction set
To be able to achieve higher code density, the ARM architecture includes support
for an alternative instruction set called Thumb. This allows all instructions to be
stored in a 16-bit format and be expanded into a 32-bit ARM instruction when they
are executed. Although this will result in a lower code performance because of the
increase in the number of instructions, it will achieve a higher code density. This
can save a lot of space, especially in memory constrained systems. On average, a
Thumb implementation of the same code takes up around 30% less memory than
the corresponding ARM implementation [25].

However, it offers less flexibility and less functionality due to the small instruc-
tion size. For example, only the lower registers r0-r7 are fully accessible, while the
higher registers r8-r12 are only accessible to a few instructions. The current pro-
gram status register (CPSR) and saved program status register (SPSR) registers
are also inaccessible when the CPU is in Thumb state.

In order to compensate for the shortcomings of Thumb, ARM released a new ver-
sion called Thumb-2. It was introduced to achieve similar code density as Thumb,
but with the performance and flexibility of ARM instructions. It adds some 32-bit
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instructions which allow it to support more functionality such as conditional execu-
tion, bit-field manipulation and table branches. However, the ARMv5 architecture
that the SICS hypervisor is using does not have support for Thumb-2 as only the
newer ARMv7 architectures support it [4].

2.2.3 Current program status register
Beside the 16 general purpose registers from r0 to r15 in the ARM architecture,
we have the CPSR which the ARM processor uses to monitor and control internal
operations. The CPSR is used to configure the following:

• Processor mode: Can be in seven different processor modes, discussed in the
next section.

• Processor state: The processor state determines if either ARM, Thumb or the
Jazelle instruction set is being used.3

• Interrupt masks: Interrupt masks are used to enable or disable the FIQ, IRQ
interrupts.

• Condition flags: For the condition flags, it contains the results of ALU oper-
ations which update the CPSR condition flags. These are instructions that
specify the S4 instruction suffix and are used for conditional execution to speed
up performance.

2.2.4 Processor mode
The ARMv5 contains seven processor modes, which are either privileged or unpriv-
ileged. It contains one unprivileged mode User and the following modes are all
privileged:

• Supervisor

• Fast interrupt request(FIQ)

• Interrupt request(IRQ)

• Abort

• Undefined

• System

When power is applied to the processor, it starts in Supervisor mode, which
is generally also the mode that the operating system operates in. FIQ and IRQ
correspond to the two interrupt levels available on the ARM architecture. When

3ARM - 32 bit, Thumb - 16-bit, Jazelle - 8 bit (Java byte code support)
4Certain instructions have the possibility to add an optional S suffix to the instruction
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there is a failed attempt to access memory, the processor switches to Abort mode.
System mode is used for other privileged OS kernel operations. Undefined mode is
used when the processor encounters an instruction that is undefined or unsupported
by the implementation. Lastly, the unprivileged User mode is generally used for
programs and applications running on the operating system. In order to have full
read/write access to the CPSR, the processor has to be in privileged mode.

2.2.5 Interrupts and Exceptions

Whenever an exception or interrupt occurs, the processor suspends the ongoing
execution and jumps into the corresponding exception handler in the vector table.
The vector table is located at a specific memory address and each four byte entry
in the table contains an address which points to the start of a specific routine:

• Reset: Location of the first instruction executed by the processor at power
up. The reset vector branches to the initialization code.

• Undefined: When the processor cannot decode an instruction, it branches to
the undefined vector. Also occurs when a privileged instruction is executed
from the unprivileged user mode.

• Software interrupt: Occurs when the software interrupt (SWI) instruction is
used. The instruction is unprivileged and is frequently used by applications
when invoking an operating system routine. When used, the processor will
switch from user mode to supervisor mode.

• Prefetch abort: Occurs when the processor trying to fetch an instruction from
an address without the correct access permissions.

• Data abort: Occurs when the processor attempts to access data memory
without correct access permissions.

• Interrupt request: Used by external hardware to interrupt the normal execu-
tion flow of the processor.

What the specific routine will do is generally controlled by the operative sys-
tem. However, when applying virtualization to the system, all the routines will be
implemented inside the hypervisor.

2.2.6 Coprocessor

The ARM architecture makes it possible to extend the instruction set by adding
up to 16 coprocessors to the processor core. This makes it possible to add more
support for the processor, such as floating-point operations.

Coprocessor 15 is however reserved for control functions such as the cache, mem-
ory management unit (MMU) and the translation lookaside buffer (TLB). In order
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to understand how the hypervisor can provide improved security by isolating dif-
ferent resources, it is important to understand the mechanics behind the memory
management of the ARM architecture.

2.2.7 Memory management unit

Through coprocessor 15 on the ARM architecture, the MMU can be enabled. With-
out an MMU, when the CPU accesses memory, the actual memory addresses never
change and map one-to-one to the same physical address. However with an MMU,
programs and data run in virtual memory, an additional memory space that is in-
dependent of the physical memory. This means that the virtual memory addresses
have to go through a translation step prior to each memory access. It would be
quite inefficient to individually map the virtual to physical translation for every
single byte in memory, so instead the MMU divides the memory into contiguous
sections called pages. The mappings of the virtual addresses to physical addresses
is then stored in the page table. In addition to this, access permission on the page
table is also configurable.

To make the translation more efficient, a dedicated hardware, the TLB han-
dles the translation between virtual and physical addresses and contains a cache
of recently accessed mappings. When a translation is needed, the TLB is searched
first and if it is not found, a page walk occurs, which means it continues to search
through the page table. When found, it will be inserted into the TLB, possibly
evicting an old entry if the cache is full.

The virtualization of memory efficiently supports multitasking environments
as the translation process allows the same virtual address to be held in different
locations in the physical memory. By activating different page tables during a
context switch, it is possible to run multiple tasks that have overlapping virtual
addresses. This approach allows all tasks to remain in physical memory and still be
available immediately when a context switch occurs.

2.2.8 Page tables

There are two levels of page tables in the ARM MMU hardware. The first level is
known as the master page table and contains 4096 page table entries, each describing
1MB of virtual memory, enabling up to 4GB of virtual memory. The level one master
page table can either be a section descriptor, coarse page table descriptor or a fine
page table descriptor. A section descriptor provides the base address of a 1MB
block of memory, while a coarse page table descriptor contains a pointer to a level
two coarse page table and the fine page table descriptor contains a pointer to a level
two fine page table.

A coarse page table has 256 entries while a fine page table has 1024 entries,
splitting the 1MB that the table describes into 4KB and 1KB blocks respectively.
The second level descriptor also defines a tiny, small or a large page descriptor.
Large page defines a 64KB page frame, small page defines a 4KB page frame and
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tiny page defines a 1KB page frame. Figure 2.6 shows the overview of the first and
second level page tables.

Figure 2.6: TLB fetch

The translation process always begins in the same way at system startup; the
TLB does not contain a translation for the requested virtual address so it initiates
a level one fetch. If the address is a section-mapped access it returns the physical
address and the translation is finished. But if it is a page-mapped access (coarse or
fine page table), it requires an additional level two fetch into either a large, small
or tiny page in where the TLB can extract the physical address.

Common for all levels of page tables is that it contains configuration for cache,
write buffer and access permission. The domain configuration5 is however only
configurable for the first level descriptors, associating the page table with one of
the 16 MMU domains. This means that it can only be applied at 1MB granularity;
individual pages cannot be assigned to specific domains.

5Domains are addressed in the next section
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2.2.9 Domain and Memory access permissions
Memory accesses are primarily controlled through the use of domains, and a sec-
ondary control is the access permission set in the page tables. As mentioned before,
the level one page descriptors could be assigned to one of the 16 domains. When a
domain has been assigned to a particular address section, any access to that section
must obey its domain access rights. Domain access permissions can be configured
through the CP15:c36 register and each of the 16 available domains can have the
following bit configurations.

• Manager (11): Access to this domain is always allowed

• Client (01): Access controlled by permission values set in the page table entry.

• No Access (00): Access to this domain is always denied

If the configuration is set to Client, it will look at the access permission of the
corresponding page table. Table 2.1 shows how the MMU interprets the two bits in
the AP bit field of the page table.

AP bit User mode Privileged mode
00 No access No access
01 No access Read and write
10 Read only Read and write
11 Read and write Read and write

Table 2.1: Page table AP Configuration

In addition to the access permission bits in the page table, there is the S (system)
and R (rom) bits in the CP15:c1 register that can modify access permission globally.

Setting the S bit changes all pages with ”No access“ permission to allow ”read
access“ for only privileged mode tasks while setting the R bit sets the permission
to ”read access“ for both privileged and user mode tasks. These two bits give the
possibility to speed access to large blocks of memory without the cost of going
through every page table entry and changing the AP for them. The S and R bit
only affects the configuration if the AP is set to ”00 - No Access“ and is ignored
in other cases. Access control decisions based on the S and the R bit are shown in
Table 2.2.

AP bit S bit R bit User mode Privileged mode
00 0 0 No access No access
00 0 1 Read only Read only
00 1 0 No access Read only
00 1 1 Unpredictable Unpredictable

Table 2.2: Page table S & R Configuration
6coprocessor 15, register c3
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With the help of the domain access control and page-level protection, we can
isolate different memory regions in the system to achieve the wanted security con-
figuration. Detailed examples on the domain and page table configurations are
discussed in Chapter 3.

2.3 SICS Hypervisor
The hypervisor software was developed by Heradon Douglas [9] as his Master Thesis
in 2010 and has since then been under continuous development. To understand the
implemented security services of my thesis, we are going to give a quick overview of
the SICS developed hypervisor.

The hypervisor was designed to run on the ARM architecture, specifically the
ARM926EJ-S CPU, and supports the FreeRTOS kernel as a single guest. All hard-
ware and peripherals are simulated using the Open Virtual Platforms (OVP) [22]
simulation environment. The main goal is to improve the security for an embed-
ded system, mainly with the help of the isolation properties that a hypervisor can
provide. Figure 2.7 shows the basic structure of the system.

Figure 2.7: Structure of the hypervisor system

The system has three central components:

• The core FreeRTOS kernel

• Platform dependent code that is used by the core kernel
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• The hypervisor

FreeRTOS kernel

The core FreeRTOS kernel has remained almost completely unchanged except from
some minor modifications on how the task applications are allocated. Previously,
the kernel allocated memory for all tasks from the same heap. Heradon added the
extra functionality to allocate task memory from a pool of separated heaps which
also gives you the possibility to create isolation between the different application
tasks. Except from this change, the core kernel was used as it was.

Platform dependent code

The platform dependent code7 is responsible for carrying out critical, low level
actions which requires privileged instructions. Because the kernel now runs in the
unprivileged mode, it meant that the platform dependent portion of the FreeRTOS
code was para-virtualized, replacing all the privileged instructions with hypercalls.

The hypervisor

The hypervisor was designed specifically for an ARM platform and contains boot
code, exception handlers, hardware setup code, and the hypercall interface to allow
safe implementation of critical, platform-dependent functionality. It also supports
multiple execution environments by having several virtual guest modes. As each
guest mode has its own memory access configuration, it uses the MMU to create
and enforce the memory isolation between the operating system, its applications
and most importantly the security critical applications. As the hypervisor is the
only one who can execute privileged code, it is also the only one who can modify
and configure the MMU.

2.3.1 Guest Modes

The hypervisor supports an arbitrary number of ”virtual“ guest modes. As each
guest mode has their own memory configuration and execution context, the hyper-
visor always controls which current guest mode is executing. There are currently
four guest modes defined in the hypervisor:

• Kernel mode: For executing kernel code

• Task mode: For executing application code

• Trusted mode: For executing trusted code

• Interrupt mode: For executing interrupt code
7In this case the ARM platform
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These virtual guest modes are necessary in the ARM architecture, because we
only have two security rings, privileged and unprivileged. The hypervisor has to
reside in the privileged ring while all other software such as, the operating system,
task applications and security critical application have to reside in the unprivi-
leged ring. Therefore to keep the separation between the software located in the
unprivileged ring, we need these virtual guest modes. With the new ARMv7 virtu-
alization extensions, most of these virtual guest modes would not be needed because
it introduces a new Hypervisor execution mode that is of higher priority than the
Supervisor mode. This enables the hypervisor to execute at a higher privilege than
the Guest OS, while the Guest OS can execute with its traditional operating system
privileges, removing the need to apply para-virtualization. We could thus simplify
the design drastically, and only need trusted and interrupt mode for monitoring the
security critical applications and interrupts.

The memory configuration of the system is set up so that it is easy to separate the
address space of the different guest modes8. Depending on which the current guest
mode is, the memory access to the different domains can be set up differently to suit
the security needs of the system. The hypervisor then make sure that the correct
corresponding virtual guest mode is running, depending on whether kernel, task or
trusted code is executing. Whenever an interrupt is generated, the hypervisor will
change the guest mode to interrupt mode9. In the next section we will go through
how memory isolation is achieved.

2.3.2 Memory Protection

With the help of the linker script file, we can control where the hypervisor, kernel,
task and trusted code are placed in the memory. Through the domain AP and the
page table AP we protect different parts of the system by separating the memory
addresses into several domains according to Figure 2.8.

Hypervisor protection

The hypervisor and the critical devices such as the timer and interrupt controller
are located in the hypervisor domain. This domain is only accessible in privileged
mode, which the system boots up in. At system boot, the hypervisor sets up the
hardware and configures the MMU according to our security configurations10. The
hypervisor then switches the processor to user mode and the current virtual guest
mode to kernel mode, and continues the execution to the FreeRTOS kernel appli-
cation. Transition back to privileged mode only occurs on hypercalls or hardware
exceptions, ensuring that no one except the hypervisor can tamper with the memory
configurations of the MMU.

8Detailed memory configuration of the system is shown in Chapter 3
9For DMA interrupts it will change to the guest mode that issued the DMA request

10The security configurations of the MMU domain and page tables are described in detail in
Chapter 3
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Figure 2.8: MMU Domains

Kernel protection

The kernel code and data are located in the kernel domain. In normal cases, the
FreeRTOS kernel API is available for task code, but it is now hidden behind a
collection of wrapper functions. Because we need to protect our kernel from the
task applications, the kernel functions are wrapped around the enter transition and
exit transition hypercall. The enter transition hypercall changes the current virtual
guest mode in the hypervisor to kernel mode, this in order to get access to the
kernel memory space. This provides a secure interface to use the kernel API without
compromising the security of the kernel. When the kernel API call is finished, an
end transition hypercall is issued to change the current guest mode back to task
mode, disabling the kernel domain and yielding back to the calling task. Figure 2.9
shows the memory domain access configuration for the kernel mode.

Task protection

All individual tasks are given their own domain in order to provide isolation between
each task. However this approach does limit the amount of applications because the
MMU only supports 16 domains. If feasible, tasks that are known to be trustworthy
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Figure 2.9: Kernel mode domain access

and mutually trusting can be located in the same domain together.
Figure 2.10 shows the memory domain access configuration for the task mode.

Figure 2.10: Task mode domain access

Security critical application protection

Lastly, a domain is reserved for our security critical applications. This domain will
be completely isolated from all other domains in order to protect the data. To use
these secure services, a secure well defined interface is provided that can be called
trough a remote procedure call (RPC). This will be described in the next section.
A typical scenario is a commodity operating system and an isolated service domain
offering secure services to the untrusted applications.

Figure 2.11 shows the memory domain access configuration for the trusted mode.
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Figure 2.11: Trusted mode domain access

2.3.3 Hypercall interface

To provide a safe access to privileged functionality, the hypervisor offers 11 hyper-
calls. These are used by the FreeRTOS platform-dependent code, tasks and the
MMU wrappers. A hypercall is triggered by the SWI instruction. Each hypercall
can be found in Table 2.3

ID Description Origin restriction
EIN Enable user mode interrupts kernel
DIN Disable user mode interrupts kernel
SCO Set mode context kernel
GCO Get mode context kernel
BTR Begin transition wrappers
ETR End transition wrappers
ENC Enter user mode critical section no restriction
EXC Exit user mode critical section no restriction
RPC Remote procedure call no restriction
ENR End remote procedure call no restriction
END End DMA no restriction

Table 2.3: Hypercall interface

The ”Origin restriction“ column in Table 2.3 refers to where the hypervisor
restricts the origin of the hypercall. The first four calls must originate from the
FreeRTOS kernel while the BTR and ETR must originate from the MMU wrappers.
For the ENC, EXC, RPC, ENR and END hypercalls, no origin restriction is needed
as it can be issued directly by tasks.

Enable and Disable user mode interrupts

EIN and DIN hypercalls are used to enable and disable the IRQ and FIQ interrupts
for user mode.
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Set and Get mode context

The SCO and GCO hypercalls are used by the kernel to save and restore execution
context. Used every time the kernel switches task context.

Begin and End transition

The BTR hypercall is used in the kernel API wrapper functions to change the
current guest mode to kernel mode. Most kernel functions are wrapped around
these two hypercalls in order to make sure that the virtual guest mode is in kernel
mode. Kernel mode is needed because it is the only mode that has access to the
kernel address space. The ETR hypercall is used to exit the kernel mode and switch
back to task mode in order to give back the execution context to task code.

Enter and Exit user mode critical section

A critical section is a piece of code that accesses a shared resource that must not be
concurrently accessed by more than one thread of execution. The ENC and EXC
hypercall can be called by any task to ensure that it will be the only task with
exclusive rights to the shared resource in the critical section. The hypercalls will
simply disable interrupts on entry of the critical section and enable it again on exit.
This prevents any other task, including an interrupt from getting the CPU until the
original task leaves its critical section.

Begin and End Remote procedure call

The RPC hypercall is used to communicate between different guest modes. This
requires that the mode offers an RPC interface and the parameters are shared via
general registers and special parameter structures.

Possible calls that can be made with RPC is starting the kernel scheduler and
Yielding tasks. The parameters that are sent with the RPC hypercall states what
kind of operation is to be performed. As the scheduler and Yield operation are both
kernel operations, the hypervisor changes guest mode to kernel mode first and then
returns execution to the kernel RPC handler where the functions can be performed
with kernel access. When the function call is finished, it should call the End RPC
hypercall to change back the guest mode to task mode and yield back execution to
the calling task. This is similar to the kernel wrapper functions.

For this thesis, we will add RPC functionality that can communicate with the
security critical applications by switching the execution context to trusted mode.

End Direct memory access

After a DMA transfer is finished, a DMA interrupt is generated to call the designated
guest handler and tell that the DMA transfer is complete. The handler will then use
the End DMA hypercall to yield back to the hypervisor, which in turn will check if
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there are any other DMA transfers in the queue and eventually give back execution
to the interrupted guest mode. DMA is explained in section 2.3.5.

2.3.4 Interrupts
Through the MMU mechanisms, the hypervisor protects critical hardware, such as
the interrupt controller and timer. No task can therefore manipulate the timer
interrupt.

Whenever a timer interrupt occurs, the hypervisor interrupt handler saves the
execution context of the interrupted task, which includes the CPU registers, state
and guest mode. The hypervisor then disables user mode interrupts, changes the
current guest mode to interrupt mode and returns to the designated kernel handler
function. The kernel handler can then perform other activities, such as scheduling
another task for execution by restoring its context and re-enabling the user mode
interrupts.

2.3.5 DMA Virtualization
Direct memory access (DMA) is a technique in where a specialized hardware is used
to copy data much faster, and at the same time free up the CPU to do other tasks
in the meantime. The DMA controller (DMAC) is the device used to control the
functions of DMA.

Because the DMA device is an independent hardware, it does not follow the
memory configurations of the processors MMU. This could easily be used to com-
promise the security of the system by getting access to protected memory, such
as the hypervisor. The common solution to this problem is using a special hard-
ware device, the Input Output Memory Management Unit (IOMMU), which main
purpose is to prevent illegal accesses on the bus. The IOMMU is much similar to
an ordinary MMU except that it also addresses peripheral devices. However, an
IOMMU does in general not even exist on the ARMv5 platform. Fortunately in
the ARM926EJ-S processor, it is possible to control the DMA accesses without the
IOMMU.

The SICS colleague Oliver Schwarz has in [24], implemented a DMA protection
mechanism purely based on software and MMU functionality. The approach is
to emulate the DMA controller, meaning the guests do no interact directly with
the physical controller. Instead each access attempt will result in a trap into the
hypervisor. This way, the hypervisor can control and check the access permission
according to a defined access policy and manage the tasks before forwarding it to
the physical DMAC. When the DMA transfer is finished, the hypervisor forwards
the interrupt it received from the DMAC to the respective guest.

2.3.6 Summary
This section described the overview of the SICS developed hypervisor on the ARM926
EJ-S CPU. With the help of different virtual guest modes and its memory isolation
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properties, it provides the tool to protect security critical applications from mali-
cious code. In the next chapter, we will demonstrate the usability and power of the
SICS hypervisor solution by implementing a security service upon the hypervisor.
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Implementation of a Security Service

In order to demonstrate the potential power of the hypervisor, an application that
offers secure services was implemented upon the hypervisor.

As the hypervisor gives us the possibility to switch between different execution
environments with their own memory configurations, we want to define a setup
that can provide us with memory isolation between our secure applications and our
regular applications. The next section shows how this was achieved.

3.1 Hypervisor Configuration
Before we start implementing the security services onto our hypervisor, we need to
make sure that the hypervisor is configured to enforce an access policy that is both
safe for the hypervisor, OS kernel and our security critical applications. Through
our linker script, we define where the different software regions are located in the
memory and it looks according to Figure 3.1. We have the following regions:

• Hypervisor: At the bottom address 0x0000, we have the privileged hyper-
visor region where it stores the hypervisor code and data, the vector table
and the stacks for handling exceptions. Dedicated memory addresses are also
provided for the page tables and all hardware peripheral devices.

• Task: The task region stores the MMU wrapper codes and the main function
that starts up kernel tasks and the scheduler.

• Kernel: Stores the OS kernel code and data.

• Trusted: The security critical code resides in this memory region.

• Shared: Stores library code and shared system resources.

• Taskpool: Contains five regions that are used by the kernel for its tasks.

• Shared RPC: Stores the RPC parameters.

• Flash: Stores flash data.
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Figure 3.1: Physical memory regions of the system

Now, in order to allow full resource control to the hypervisor, the boot file
sets up the vector table and boots into the hypervisor in the processors privileged
mode1. All other software such as the guest OS, the applications and trusted services
runs in the processors unprivileged mode2, in order to prevent access to privileged
instructions. Then through the use of the MMU domain AP and the secondary
control in the page table AP, we can control memory access for our system.

3.1.1 Assigning domain and AP to the page tables

Through the configuration in the page tables, each memory region in Figure 3.1 is
assigned to one of the 16 domains available in the MMU. In addition, through the
CP15:c3 register each domain is configurable to manager, client or no access. In
our system, only client and no access is used. If the domain is set to client access,
it means that it will check the AP in the page table. Compared to manager access,
which gives full access to all memory regions located in that domain, client access
provides us with a more fine grained control over our system. The assigned domain
and access permissions for the page tables in the different memory regions can be
seen in Table 3.1.

1Supervisor mode
2User mode
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Region Domain AP (User mode) AP (Privileged mode)
Hypervisor 0 No Access Read/Write
Device 0 No Access Read/Write
Shared 0 Read/Write Read/Write
Task 1 Read/Write Read/Write
Kernel 2 Read/Write Read/Write
Trusted 3 Read/Write Read/Write
TaskPool 0 4 Read/Write Read/Write
TaskPool 1 5 Read/Write Read/Write
TaskPool 2 6 Read/Write Read/Write
TaskPool 3 7 Read/Write Read/Write
TaskPool 4 8 Read/Write Read/Write
SharedRPC 9 Read/Write Read/Write
Flash 10 Read/Write Read/Write

Table 3.1: Page table AP Configuration

3.1.2 Domain access in Guest mode
We have defined three virtual guest modes that the hypervisor can switch between
and these are the following: kernel, task and the trusted mode. There is also a
fourth guest mode interrupt, however it is only used by the hypervisor to handle
interrupts and will not be shown here. By having different virtual guest modes, we
can have different domain access configurations for each mode that suits our security
needs. Regular applications are configured to run in the virtual guest mode task,
while the OS is configured to run in the virtual guest mode kernel. Most important,
the trusted secure applications are configured to run in the virtual guest mode
trusted. In our configurations, we have assigned a single domain that our trusted
applications reside in (domain 3). It is however possible, to expand this with another
trusted domain for other security critical applications to provide isolation between
them. The hypervisor will then be responsible for switching address spaces and
maintaining the virtual privilege level of the current mode. Table 3.2 shows how
each virtual guest mode’s memory configuration is set up.

Domain 10 9 8-4 3 2 1 0
MemRegions Flash Shared

RPC
TaskPool
0-4

Trusted Kernel Task Hypervisor
SharedLib
Devices

GuestMode
GM_TRUSTED 01 01 00 01 00 00 01
GM_KERNEL 01 01 01 00 01 01 01
GM_TASK 01 00 01 00 00 01 01

Table 3.2: Domain access configuration for the hypervisor guests modes.
00 - No access,
01 - Client (Access checked against AP bit in the page table, shown in table 3.1)
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If we look at the domain access permission for the virtual guest mode task,
the kernel memory area (domain 2) are set to no access. This effectively isolates
the kernel from the applications. At the virtual guest mode kernel, the domain
access permission to hypervisor (domain 0), task (domain 1), kernel (domain 2)
and taskpool (domain 4-8) are all set to client. This means that for these domains,
accesses are checked against the access permission bit in the page table settings.
Looking at the access permissions in table 3.1 for unprivileged mode, the access
permissions for these domains are all set to read/write except for the hypervisor
and device region. This protects the hypervisor software and the devices from illegal
accesses when the processor is in the unprivileged mode.

As we can see on the configuration, the trusted domain (domain 3) is not acces-
sible from the task or the kernel mode. Even if the task/kernel domain has been
infected by a malicious application it still cannot access the trusted domain. The
only virtual guest mode that can access the trusted domain is trusted mode which
only the hypervisor can switch to. This way, a secure configuration is achieved
by having our untrusted applications located in the task domain while our trusted
application reside in the trusted domain.

One thing worth mentioning again, not only do the different guest modes have
their own memory areas, they also have their own execution contexts. Whenever the
hypervisor is instructed to switch the virtual guest mode, it configures the domain
access permission on the MMU according to the configuration in table 3.1 and saves
and restores the context3 of the corresponding guest modes.

To summarize, each time a memory access is performed, the MMU looks at
which domain the page table belongs to. The next step is to check the domain AP
for the domain (Table 3.2). If it is set to no access, permission is denied. For client
access, it continues to check the AP in the page table (Table 3.1). With the help
of the MMU, page tables and the different virtual guest modes, we have defined a
secure access policy to our system. The hypervisor configuration code is included
in Appendix-A1.

3.1.3 Secure services in trusted mode

Because the trusted domain is isolated and inaccessible from the other domains, the
secure services running on the trusted domain are made available to the applications
through dedicated hypercalls implemented in the hypervisor. This is called remote
procedure call (RPC) and the arguments that are sent with the RPC tells which
guest mode to switch to and what kind of services that we want to perform. The
RPC will generate a software interrupt (SWI) which is a privileged operation causing
it to trap to the hypervisor. The hypervisor then analyze the parameters of the
RPC and checks the configurations if the accesses are correct and allowed. After
the hypervisor has switched to trusted mode, the secure services are then made sure
to only rely on encrypted and integrity protected data from external memories. This

3Saving and restoring the registers in the processor(r0-r15)
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provides us with a basic level of security against physical attacks on the system.
When the trusted service is finished with its operations it issues a hypercall “end
RPC” which yields back to the calling guest mode.

The hypervisor thus provides isolation between different execution environments
and communication between the untrusted domains and the trusted domain are only
allowed through secure interfaces on the trusted application.

3.2 Implementation Approach
Developing software in an ARM platform was at the beginning of the project a
completely new area for us. As we also were given an early deadline to present the
application at the SICS open house event, rather than invest too much time into
designing for future unknown challenges, we decided to create fast prototypes that
would handle the challenges as they were presented. Each prototype provided us
with results and experience, which we used in the subsequent phase. Much similar
to “code and fix” as time was pressed, we immediately started to produce code and
debugged it as it was being written.

The initial phase also provided us with a backbone on how to further optimize
the hypervisor on the next phase of the thesis, described in Chapter 4.

3.3 Scenario
The use case that we defined is the following; an application asks a trusted service
to see a bank contract and then digitally signs it. The signature is then verified for
its authenticity. The sample security application will be designed and implemented
by us and contains security services that you would expect from a real application.
In order to realize this use case, we need some cryptographic services.

3.3.1 Cryptographic Services
First of all, the bank contract contains confidential information. In order to pro-
tect this document we need a service to encrypt and decrypt our bank contract.
For this we use the advanced encryption standard (AES-128). It is suitable for
encrypting larger messages as it’s a symmetric-key algorithm which is faster than
the corresponding asymmetric-key4 algorithm [13]. A common security practice is
to encrypt the AES key with an asymmetric-key encryption, and for this we use
the RSA5 algorithm. As RSA uses larger keys (typically 1024-2048 bits) compared
to AES (128-256 bit), it makes it slower and more suitable for encrypting small
messages, like the AES key. So in summary, our bank contract is encrypted with
the AES key, while our AES key is encrypted with the RSA key. In order to decrypt
the bank document, one needs to first decrypt the AES key with the RSA key. Only

4Also called public key cryptography
5Stands for Rivest, Shamir and Adleman who first publicly described it
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then can we use the decrypted AES key to decrypt our bank contract.
For the digital signature, one also utilizes the functions of asymmetric cryptogra-

phy. In this case we can reuse the RSA algorithm. However, as we described earlier
RSA is a very slow algorithm so we first create a small unique hash value from the
bank contract. We will choose secure hash algorithm (SHA-256) for generating our
hash value as it is a commonly used standard.

With the help of the hypervisor we can utilize its memory isolation mechanism,
to store all the cryptographic services and keys in a trusted memory domain that
is isolated from all other domains. The hypervisor can then manage the communi-
cation between the different guest modes, for example when an application wants
to use a secure service.

3.4 Implementation

As most cryptographic libraries was not designed for the ARM platform, we tried to
find compatible cryptographic libraries. This was much harder than we expected,
and because of our initial inexperience of the hypervisor and the ARM platform, we
did not succeed to port the libraries to the ARM platform. The problem was that the
instructions that the ARM926EJ-S processor can perform is limited. For example,
it could only handle up to 32-bit operations, and no floating point operations were
supported [5] which led to compile errors when trying to incorporate the library to
our platform. The security application is also to be implemented in a constrained
embedded platform which makes a big cryptographic library undesirable with the
footprint in mind.

So as a fast solution, well known and portable C implementations of the various
cryptographic services were found on the Internet and we tailored it to work with
the ARM-EJ926 platform. Source code for the trusted service and the application
using the trusted service are included in Appendix-A2 and A3, respectively.

3.4.1 Material

For the AES-128 bit algorithm, Brian Gladman’s implementation was used [11].
It uses cipher-block chaining mode with cipher-text stealing and uses a random
generated initialization vector with the help of George Marsaglia’s pseudo random
number generator (PRNG). It is a multiply with carry (MWC) PRNG that con-
catenates two 16 bit MWC generators [20]. The SHA-256 implementation was also
used from Brian Gladman’s work [11].

For the RSA-1024 bit algorithm, Michael J Fromberger’s implementation was
used [10]. It uses an arbitrary precision integer arithmetic package to represent big
numbers as RSA uses 1024 bits to represent a number which the built in types of C
cannot handle. The possibility to sign and verify SHA-256 hash values were added
to the RSA algorithm. All the source code were ported to work with the hypervisor
and the ARM platform.
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3.4.2 Security application
The use case is repeated for the readers sake; an application asks a trusted service
to see a bank contract and then digitally signs it. The signature is then verified for
its authenticity. We will here describe the step through step processs of how the
hypervisor works together with the security application.

Depicted in Figure 3.2, we have the task, kernel and trusted domain in which
their respective applications reside in (other domains are not shown for clarity).
The external memory peripheral holds the AES encrypted bank contracts and the
RSA encrypted AES keys. The bank contract is encrypted with the AES key and
the AES key is encrypted with the public key of RSA (step 1). The private key that
is able to decrypt this AES key is located in the secure isolated trusted domain.

The application that wants to see the bank contract performs an RPC which
“ask’s” the hypervisor to switch the current guest mode task to trusted mode in
order to get access to the trusted services. Because the hypervisor configuration
does not allow switching directly from task mode to trusted mode, the RPC must
be forwarded to kernel mode first, then back into the hypervisor and finally into
trusted mode where the security service can be called (step 2). When the hypervisor
has switched to trusted mode it starts a direct memory access (DMA) transfer of
the chosen encrypted bank contract and respective encrypted key into the trusted
domain (step 3). One important point is that the DMA controller is also virtualized,
meaning that guests do not interact with it directly. Instead each access traps
into the hypervisor where it controls that the application has proper access before
forwarding it to the real DMA controller. When the transfer is finished a DMA
interrupt is generated to inform the issuer that the transfer operation is complete.

The trusted service then uses the private RSA key to decrypt the AES key,
which it then uses to decrypt the encrypted bank contract (step 4). All these
operations are performed inside the trusted domain in order to not leak out any
sensitive information. The contract is then securely displayed to the application
and the application decides to sign the contract. The trusted application generates
a SHA-256 hash value of the bank contract and signs this with a different private
RSA key6 (step 5). This signature is then passed with the RPC parameters back
to the application (step 6). The application now has the signature and can verify
it with a third party, for example a bank. In this demo application, we simply
send the signature back to trusted domain with the RPC arguments and verify the
signature there. The verification is done by extracting the SHA-256 hash value from
the signature with the corresponding public RSA key. It then compares this hash
value with the generated SHA-256 hash value from the plaintext bank contract. If
both matches, then the authenticity of the signature is valid.

To demonstrate the security of the hypervisor, a malicious application was also
implemented to try and hack into the trusted domain. The malicious application
was given the address of the unencrypted plaintext bank contract residing in the
trusted domain. Through regular memory accesses and DMA transfers, it tries to

6Security practice to not use the same RSA key to sign and encrypt data
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steal the contract. These accesses to the trusted domain will be interfered by the
hypervisor (step 7).

3.4.3 Conclusion
With the help of the hypervisor we have successfully managed to implement a secure
isolation between the different memory domains and as well provide a secure service
in the trusted domain. This way the cryptographic keys stored in the trusted domain
are not accessible by other domains, they can only ask trusted mode to use these
keys to perform the cryptographic services that it provides.

Keep in mind that for demonstration purposes we have defined one trusted
domain that offers security critical services, but we are by no means limited to
just one. One could allow multiple stakeholders (banks, mobile operators, media
services) to run their own secure services independently from each other and still
maintain complete isolation and security from each other.

The application implemented was the first part of the thesis and its main purpose
was to demonstrate the effectiveness of the hypervisor at the SICS Open House event
in Stockholm.
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Optimization

In order to provide a hypervisor designed for hardware constrained embedded sys-
tems, it is important that the software is as small as possible. Another important
aspect is that the small footprint will ease the formal verification of the hypervi-
sor. We have showed that the hypervisor provides secure isolation with our security
application that we demonstrated on the SICS open house. The next step is to
optimize the hypervisor and we are going to focus on the footprint. At the same
time, we will carefully profile the hypervisor as we do not want the optimization of
the footprint to have too big impact on performance.

4.1 Memory Footprint

When we are discussing the memory footprint of the hypervisor, we are referring
to how much memory space the hypervisor would use or reference while running.
This includes all memory regions such as text, static data sections, heap and stacks.
The text section is the place in computer memory where the compiled code of the
program itself resides. All variables that are declared and initialized before runtime
are stored in the stack (static allocation). Similar, all variables that are created or
initialized at runtime will reside in the heap (dynamic allocation).

Now, by optimizing the hypervisor code, we can reduce the size of each memory
section. The greatest reduction can be achieved by minimizing the size of the
compiled code; however we also have to address dynamic memory allocation in the
hypervisor. As dynamic memory can be allocated and freed during the execution
of the program, it is hard to guess how much dynamic memory is actually used. A
good approach is to analyze the utilization of the heap memory while the hypervisor
executes, in order to determine the peak memory usage. However, the hypervisor
rarely use dynamic memory allocation as there is only one use of malloc in the
hypervisor. Therefore, our optimization will concentrate on the footprint of the
compiled hypervisor and not the dynamic memory usage.
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4.2 Current structure of Hypervisor
The size of the hypervisor is currently 44 766 bytes with no optimization flags on
the compiler and with the debug flag turned off. Table 4.11shows the size of each
symbol. The tables were generated with the GNU Binutils tools [30] arm-elf-nm
and arm-elf-size.

Name Type Class Size Section
hyper_flpt d OBJECT 16384 fl_pt
hyper_slpt d OBJECT 12288 sl_pt
dmaAbortHandler t FUNC 1224 hyper_functions
dmaInterruptHandlerImpl t FUNC 872 hyper_functions
dataAbortHandler T FUNC 808 hyper_functions
hypercallRPC t FUNC 708 hyper_functions
hypercallImpl t FUNC 620 hyper_functions
dmaAccessCheck t FUNC 600 hyper_functions
hyperSetUpMMU t FUNC 528 hyper_functions
hypercallBeginTransition t FUNC 520 hyper_functions
hypercallEndTransition t FUNC 484 hyper_functions
try_to_submit t FUNC 476 hyper_functions
hypercallEndRPC t FUNC 448 hyper_functions
modeStates d OBJECT 400 hyper_data
hyperInitData t FUNC 372 hyper_functions
faultStatusSource t FUNC 340 hyper_functions
hyperChangeGuestMode T FUNC 308 hyper_functions
enqueue t FUNC 284 hyper_functions
hyperSetUpTimer t FUNC 224 hyper_functions
hypercallGetModeContext t FUNC 204 hyper_functions
hypercallSetModeContext t FUNC 200 hyper_functions
dmaBurst t FUNC 196 hyper_functions
hypercallEndInterrupt t FUNC 172 hyper_functions
setupDMA t FUNC 160 hyper_functions
hyperSetUpHW t FUNC 152 hyper_functions
popContextStack T FUNC 148 hyper_functions
dequeue T FUNC 148 hyper_functions
pushContextStack T FUNC 144 hyper_functions
hypercallHandler T FUNC 144 hyper_functions

Continued on next page

1The Type column shows the symbol type. If lowercase, the symbol is local; if uppercase, the
symbol is global (external). These are the following types used:
D - The symbol is in the initialized data section
R - The symbol is in a read only data section
T - The symbol is in the text (code) section
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Table 4.1 – continued from previous page
Name Type Class Size Section

progAbortHandler T FUNC 140 hyper_functions
hypercallEndDMA T FUNC 140 hyper_functions
dmaInterruptHandler T FUNC 124 hyper_functions
hyperTickHandlerImpl T FUNC 120 hyper_functions
hyperTickHandler t FUNC 104 hyper_functions
hyperMain T FUNC 100 hyper_functions
DEFAULT_MODE_STATE r OBJECT 100 .rodata
DMAQ d OBJECT 88 hyper_data
hyperInit t FUNC 72 hyper_functions
hypercallOriginError t FUNC 64 hyper_functions
hypercallNumError t FUNC 52 hyper_functions
hyperPanic T FUNC 48 .text
writeReg32 t FUNC 44 .text
readReg32 t FUNC 40 .text
setUpMode t FUNC 28 hyper_functions
interruptedMode d OBJECT 4 hyper_data
guestTickHandler d OBJECT 4 hyper_data
dmaInterruptedMode d OBJECT 4 hyper_data
dmaHandlingMode d OBJECT 4 hyper_data
currentModeState d OBJECT 4 hyper_data
currentModeContext d OBJECT 4 hyper_data
currentGuestMode d OBJECT 4 hyper_data

Table 4.1: Symbol size in hypervisor

Table 4.2 shows the total sum of the hypervisors sections.

Section Size
.text 448
.data 0
.bss 0
.rodata 4000
.hyper_data 516
.hyper_functions 11112
fl_pt 16384
sl_pt 12288
Total 44748

Table 4.2: Total hypervisor size

With the help of these tables, we are able to locate those parts of the hypervisor
that are suitable for optimization.
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4.3 Profiling

For the profiling of the software, we are using Imperas Verification, Analysis and
Profiling (VAP) tools. As we are using a simulated hardware platform, the recorded
performance is in OVP-simulated instruction counts. In order to maintain a bench-
mark baseline that we can compare our result with, we used the same benchmark
tests from Heradon’s thesis.

4.3.1 Benchmark

The tests covers the utilization of the MMU kernel wrappers, hypercalls, interrupts
and yielding which are the key performance burdens imposed by the hypervisor.
All the tests use five tasks to perform a parallelizable math workload which con-
sists of 10000 work units. The task takes work units in a loop inside a critical
section in where interrupts are disabled. It then leaves the critical section which
enables the interrupts and carries out the work unit. Each time a critical section is
entered/exited, hypercalls are utilized. The tests are both run in preemptive and
non-preemptive mode and the hypervisor is compiled with no optimization flags in
the benchmark.

In the first test called “MathTest”, the tasks will continue to take work units
until it is preempted by the FreeRTOS scheduler. One effect of running the test
in non-preemptive mode is that one task will carry the whole workload by itself
until it is finished and will never yield. In the second test “YieldingMathTest”,
the tasks yield after completing five work units which will result in a significant
execution of the yield mechanism. Whenever a task yields, it issues a hypercall
to the hypervisor which saves context and returns to the kernel handler function
which starts another task. In the third test “WrapperMathTest”, the tasks call
an arbitrary kernel function after completing five work units which results in a
significant execution of the wrapper mechanism. When a kernel API function is
called, hypercalls are issued to enter and exit guest kernel mode which modifies
MMU settings.

4.3.2 Problems

As the development of the hypervisor continued after Heradon’s thesis work, the
benchmark results from the original thesis are not longer relevant. The hypervisor
has gone through big design changes since the original thesis and more functionality
has been added such as, support for multiple execution environments and DMA
support. Also the new version of the hypervisor contains less assembler code, as it
has been rewritten to C code instead.

However, the further development of the hypervisor should not have a big impact
on the benchmarks. To get a new baseline benchmark that we can compare with
our optimized hypervisor, we reran the benchmark tests with the new version of
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the hypervisor2. To our surprise the performance overhead of the benchmark tests
was now 220% compared to the results from Heradon’s thesis. Trying to run the
benchmark in preemptive mode would also cause a data abort with a page domain
fault status, telling us that we dont have access to the kernel memory area. The
problem is that the hypervisor fails to change guest mode when the kernel tries to
pre-emptive a task and do a context switch. The results are shown in Table 4.3.

Benchmark Current
hypervisor

Heradon’s
Thesis
hypervisor

Baremetal
kernel

MathTest, Preemp N/A 10,696,343 10,472,960
MathTest, Non-premp 23,436,605 10,696,268 10,469,648
YieldingMathTest, Preemp N/A 11,885,640 11,109,395
YieldingMathTest, Non-preemp 25,964,590 11,880,823 11,105,748
WrapperMathTest, Preempt N/A 11,128,362 10,612,814
WrapperMathTest, Non-preemp 25,004,582 11,124,540 10,609,665

Table 4.3: Hypervisor benchmark

This indicates that the further development of the hypervisor has introduced
some errors as the added functionalities and design changes should not theoretically
have such a big impact on performance. Clearly this needed to be corrected before
we could continue with our optimizations as correct behavior from the hypervisor
is of utmost importance.

We used the VAP tool linecoverage to profile the version of the hypervisor that
was used on Heradon’s thesis benchmarks. The tool linecoverage outputs an html
file which shows how many times each line in the hypervisor source code is executed.
This was repeated with the current version of the hypervisor, and anomalies could
be detected by comparing both results. After investigating the problem with careful
comparisons and extensive debugging, we found out that the main problem was that
the enter and exit critical section hypercalls have been removed from the hypervisor
interface. Instead, the OS kernel had been changed to use the MMU kernel wrappers
to do the exact same function. As discussed earlier, the kernel wrapper functions
”wraps“ the kernel system call with begin and end transition hypercalls3, leading
to an exaggerated exercise of virtual guest mode changes. The core functionality of
the hypervisor was not affected, except it would run more than twice as slow.

The error was corrected and to improve performance making it match the former
benchmarks, the most executed methods were also rewritten to assembler. The new
benchmark results can be seen in Table 4.4. Unfortunately, as this error was found
in the very late phase of the thesis, we only managed to find time to tune up the
performance for MathTest. These results will now be our new baseline benchmark.

2The hypervisor version we got at the start of our thesis
3Hypercall interface was described in Chapter 2.3.3
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Benchmark Corrected
hypervisor

Heradon’s
Thesis
hypervisor

Baremetal
kernel

MathTest, Preemp 10,639,182 10,696,343 10,472,960
MathTest, Non-premp 10,631,831 10,696,268 10,469,648
YieldingMathTest, Preemp 13,235,897 11,885,640 11,109,395
YieldingMathTest, Non-preemp 13,221,812 11,880,823 11,105,748
WrapperMathTest, Preemp 12,066,224 11,128,362 10,612,814
WrapperMathTest, Non-preemp 12,054,816 11,124,540 10,609,665

Table 4.4: Hypervisor benchmark

4.3.3 Profiling function count
Table 4.5 shows how many times each functions in the hypervisor is called when
running the benchmark MathYieldTest.

Function name Count
hypercallHandler 28068
hcEnterCritical 10019
hcExitCritical 10019
hypercallImpl 8030
hyperChangeGuestMode 4045
hypercallSetModeContext 2001
hypercallGetModeContext 2000
hypercallRPC 2001
hypercallEndRPC 2001
hypercallEndInterrupt 16
hyperTickHandler 16
hyperTickHandlerImpl 16
setUpMode 6
hypercallEndTransition 5
hypercallBeginTransition 5
writeReg32 1
hyperMain 1
hyperSetUpMMU 1
hyperSetUpHW 1
hyperInitData 1
hyperInit 1
hyperSetUpTimer 1
setupDMA 1

Table 4.5: Hypervisor function count

This gives us valuable information on which parts of the hypervisor significant
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execution time is spent. These results will only be a guideline in where to put effort,
as these results depends on the software we are executing. Functions that are never
executed are not shown in the table.

4.4 Implementation of the optimization

With the help of our profiling results, we have a clear baseline that we can compare
with and confirm our progress, and in which parts to apply our optimizations. The
main objective of the optimization is to minimize the footprint of the hypervisor,
while maintaining the performance. The next sections describe the implemented
optimizations on the hypervisor.

4.4.1 Removing static variables

One obvious start is to look at the parts that occupy most space. Looking at the
top of Table 4.1, we can see that the symbols hyper_flpt and hyper_slpt are the
largest symbols in the hypervisor. They both take up 28 672 bytes in total, which is
about 64% of the hypervisor. These are the first and second level page tables used
by the MMU to translate virtual addresses and control access permission on the
different domains. Looking closer into the source code, the page tables are defined
as static 32-bit arrays with a length of 4096 that are located at a fixed specific
address (0x8000).

Now, the linker script is already configured to reserve space for the page tables
in memory, in order so that the hypervisor always has access to it. This makes it
unnecessary to create a static array structure in the hypervisor to hold the values
of all the page tables.

The static array was therefore removed from the hypervisor, and the page tables
were instead configured and accessed with direct pointers to the page table’s physical
address. As the goal with the thesis was to minimize the footprint of the hypervisor,
we also feel that the page tables are not something that should be part of the
hypervisors footprint. The amount of memory that the page tables occupy is directly
depending on how the page tables are configured in each system. Therefore, we
decide to omit the size of the page tables from our hypervisor optimization results
and start our baseline comparisons from this point. Table 4.6 shows the size of our
new baseline hypervisor.
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Section Size
.text 448
.data 0
.bss 0
.rodata 4000
.hyper_data 516
.hyper_functions 11144
Total 16108

Table 4.6: Total hypervisor size after removing static variables

4.4.2 Debug mode
The current hypervisor contains alot of debug information that demonstrates that
the hypervisor behaves correctly. This is implemented with various text output on
the screen, and for the SICS open house demonstration, we4 have also developed
a graphical user interface that collects these printouts and displays them in a user
friendly way. However, this has increased the footprint of the hypervisor and is not
needed in the real release.

By introducing a debug mode, we can define a regular printf macro when debug
is defined, and an empty macro otherwise. This way, we can save some footprint
when the hypervisor is not in debug mode by omitting all the printf statements.

Following table shows the updated size after we have implemented debug mode.

Section Size
.text 404
.data 0
.bss 0
.rodata 2572
.hyper_data 516
.hyper_functions 10064
Total 13556

Table 4.7: Total hypervisor size with debug mode implemented with the hypervisor
in release mode

4GUI implemented by SICS colleague Oliver Schwarz
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4.4.3 Thumb Mode

In order to minimize the footprint of the hypervisor, it is vital to compile the code
as a mixture of ARM and Thumb5 instructions. This process is called interworking
and is supported by the ARM GCC cross-compiler.

The processor is able to switch between ARM and Thumb mode dynamically
under run-time, but unfortunately the ARM GCC cross-compiler does not support
mixing ARM and Thumb code in the same object file. This led to that we had to
divide our hypervisor into two object files, one that only contains ARM code, and
one that only contains Thumb code. We had to break the design of the hypervisor
and rearrange all data variables and functions to each respective file. This leads to
poor overall design, but there was no other way to achieve this optimization with
our chosen compiler. For example if we had access to ARM’s own compiler [3],
we could add “#pragma thumb” before a function, and it would be compiled into
thumb instructions. In that case, there would be no need to change the design of
the hypervisor.

It is clear that we need an approach to decide how to mix ARM and Thumb
code that simultaneously provides compact code size and good performance. This
is where we can use the information that we extracted from the VAP profiling
tools in order to obtain small footprint without causing loss in performance. As a
starting point we will move as much code as possible into thumb code and analyze
the benchmark and size. As a second step, we will look at the hypervisor functions
in where most execution time is spent. If moving these functions to ARM code
generate increased speed with an acceptable small increase in code size, we will
choose to move it to ARM code instead. Where it is possible, the remainder of the
program will be compiled into Thumb code.

Table 4.8 on the left side shows the size of the hypervisor that has been com-
piled into ARM instructions while Table 4.9 on the right side shows the size of the
hypervisor that has been compiled into Thumb instructions.

Section Size
.text 456
.data 0
.bss 0
.rodata 284
.hyper_data 536
.hyper_functions 2840
Total 4116

Table 4.8: Size of hyper.o

Section Size
.text 4732
.data 0
.bss 0
.rodata 2456
.hyper_data 0
.hyper_functions 220
Total 7408

Table 4.9: Size of hyperThumb.o

Adding the size of these two files together, the hypervisor is 11 524 bytes.
Introducing THUMB mode has thus saved us 2032 bytes, a 15,0% decrease in foot-
print counting from the last optimization. This has increased the cycle count to

5Thumb was discussed in section 2.2.2
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13,798,549, an increase with 4,4% compared to our baseline value 13,221,812
which is a acceptable overhead.

Our next step was to investigate if moving the most executed functions to ARM
code would achieve any significant increase in performance. Looking at Table 4.5
we chose to move hyperCallImpl, hyperChangeGuestMode, hypercallRPC and hy-
percallEndRPC to ARM code and analyze the data. The other functions with high
counts were already located in ARM code. The results are in Table 4.10.

Size (bytes) Performance (instructions)
Function Thumb ARM % Thumb ARM %
hypercallImpl 11 524 11 548 0,2% 13,798,548 13,638,739 1,2%
hyperChangeGuestMode 11 548 11 652 0,9% 13,638,739 13,362,074 2,1%
hypercallRPC & hyper-
callEndRPC

11 652 12 024 3% 13,362,074 13,302,044 0,4%

Table 4.10: Benchmark

The results for moving hypercallImpl and hyperChangeGuestMode to ARM code
had improved the performance with a very small size increase and was kept. How-
ever, hypercallRPC and hypercallEndRPC were moved back to Thumb code as a
3% increase in code size while only getting a 0,4% increase in performance was not
worth it. The end result for the Thumb optimization is 11 548 bytes in total size for
the hypervisor and 13,362,074 instruction cycles. A total of 14,8% in reduction
of code size and 1.0% increase in instruction counts.
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4.4.4 GCC Optimization flags
There are four different optimization flags O1, O2, O3 and Os where the last one
optimizes the code with the size in focus. Table 4.11 and 4.12 shows the hypervisor
compiled with the optimization flag -Os.

Section Size
.text 280
.data 0
.bss 0
.rodata 972
.hyper_data 536
.hyper_functions 2924
Total 4712

Table 4.11: Size of hyper.o

Section Size
.text 1968
.data 0
.bss 0
.rodata 1560
.hyper_data 0
.hyper_functions 156
Total 3684

Table 4.12: Size of hyperThumb.o

The total size of the hypervisor is 8396 bytes and the performance is 12,558,289
instruction counts. Next we tested with the optimization flag -O3 on the ARM
compiled part of the hypervisor as we know that this part contains most of the
performance critical code. The results are shown in Table 4.13 and 4.14.

Section Size
.text 292
.data 0
.bss 0
.rodata 0
.hyper_data 536
.hyper_functions 3860
Total 4688

Table 4.13: Size of hyper.o

Section Size
.text 1968
.data 0
.bss 0
.rodata 1560
.hyper_data 0
.hyper_functions 156
Total 3684

Table 4.14: Size of hyperThumb.o

The total size of the hypervisor is now 8372 bytes with a instruction count of
12,335,662. It was expected that the -O3 flag would increase the performance of
the hypervisor, it was however unexpected that it would also decrease the size.
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4.4.5 Summary

Figure 4.1: Footprint of the hypervisor

After applying all the mentioned optimizations, the size of the hypervisor are
shown in Figure 4.1 and the benchmark are shown in Table 4.2. We have managed
to reduce the size of the hypervisor by 52% and at the same time managed to keep
the performance overhead to an acceptable level.

Looking at the comparison in performance for the baremetal kernel (no hyper-
visor), the performance overhead was at 0.4% for the benchmark MathTest that
we managed to performance optimize. However as time was limited and focused
on optimization on the footprint, we did not have time to optimize the context
switching and guest mode transition on the hypervisor. The consequence was that
YieldingMathTest had an overhead as high as 11.1% while WrapperMathTest had
an overhead of 7.9%. It should however be remembered that these benchmarks
demonstrates the exaggerated use of hypercalls, context switching and kernel to
task transitions.

Also if time allowed, one could continue and reduce the footprint of the hyper-
visor. One example is to have the possibility to configure what kind of functionality
that you want for the hypervisor. By removing unwanted functionality, the foot-
print can be reduced even further so that the hypervisor can be used in extremely
memory limited systems. For example, the DMA functionality adds up to 1888
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Figure 4.2: Benchmark performance of hypervisor

bytes in total6, reducing the size of the hypervisor to 6484 bytes, if it is decided
that DMA functionality is not needed. A simple hypervisor configuration script
could easily be written to remove these parts if it is ever needed.

As the goal with the thesis was to optimize the size of the hypervisor, we feel
that it was achieved as the footprint of the hypervisor has decreased by 52%, to
8372 bytes.

6Used arm-elf-nm tool on the optimized hypervisor to control the size of DMA functions
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Conclusion

The thesis work was not easy as a major part of the hypervisor is written in ARM
assembly code. This was mainly because it is the only way to communicate with
hardware, peripherals and the processor registers. The second reason is because; in
some situations the compiler does not have as much information as the developer
regarding the system, in these cases hand written assembly results in more efficient
code.

When things went wrong, it was very hard and burdensome to debug the envi-
ronment. Debugging assembler code such as hypercalls required dumping the stack
and processor registers on the debug console after each instruction step, which re-
quires great patience. The learning curve in the beginning of the thesis was very
high, as I had no prior experience of working with hypervisors, the ARM architec-
ture and the hardware emulation platform OVP. It was thus very suitable to begin
the thesis with the implementation of the security service in order to get familiar
with the developing environment.

As a result of this thesis, we have demonstrated that with the help of the SICS
developed hypervisor, we managed to increase the security of our embedded system.
With the hypervisor offering multiple virtual guest modes, each with its own exe-
cution environment, we can enforce an access policy that is secure for our security
critical applications. This was demonstrated by implementing a security service
that offered cryptographic services such as AES-128, RSA-1024 and SHA-256. By
storing all the cryptographic keys in the isolated trusted domain, we could make
sure that it is kept safe from all other software. This successfully demonstrates the
usability and power of the hypervisor.

As for the second part of the thesis, the goal was to optimize the hypervisor
with respect to footprint and overall performance. With the help of the OVP profil-
ing tools, we could extract useful information on how to approach the optimization
of the hypervisor. The goal was to reduce the footprint of the hypervisor while
keeping the performance at an acceptable level. The results shows that this was
also achieved. The hypervisor’s footprint decreased by 52% while the performance
increased in all benchmarks if we compare it to the baseline hypervisor. However,
comparing the performance against the baremetal kernel gives a performance over-

59



CHAPTER 5. CONCLUSION

head of 11% at most1 which certainly can be improved.

Future Work
While we successfully managed to demonstrate the power of the hypervisor in this
thesis, the hypervisor was built to support the very simple operating system FreeR-
TOS. This is not a rich OS such as Linux, and for future work it is desired that a
suitable Linux derivative is ported to work with the SICS hypervisor.

Formal verification of the hypervisor is also desired to guarantee security with
the assurance level of a mathematical proof. In fact, Oliver Schwarz which is a PhD
student at KTH and employed by SICS, is currently working on formal verification
of the hypervisor.

Currently the hypervisor supports the ARMv5 architecture, specifically the
ARM926EJ-S CPU. It would be advantageous if the hypervisor could support addi-
tional hardware platforms such as the new ARMv7 architecture as it has additional
hardware support for virtualization.

1YieldingMathTest benchmark
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Source Code

A.1

Listing A.1: Hypervisor config file

#include "hyperconfigbase.h"
#include "hyperconfig.h"
#include "hyper.h"

extern void kernelRPCHandler(unsigned callNum, void* params);
extern void trustedRPCHandler(unsigned callNum, void* params);
extern void appMain(void);
extern void kernelTickHandler(void);
extern void dmaAppHandler(uint32_t channel);
extern void dmaTrustedAppHandler(uint32_t channel);

/* Linker symbols. */
extern const int __fiq_sp__, __irq_sp__, __svc_sp__, __abt_sp__,

__und_sp__, __sys_sp__,
__kernel_sp__, __trusted_sp__, __interrupt_sp__, __page_size__,
__hyper_mb_start__, __hyper_mb_count__, __hyper_mapped_pages__,
__trusted_mb_start__, __trusted_mb_count__, __trusted_mapped_pages__

,
__kernel_mb_start__, __kernel_mb_count__, __kernel_mapped_pages__,
__task_mb_start__, __task_mb_count__, __task_mapped_pages__,
__shared_libs_mb_start__, __shared_libs_mb_count__,

__shared_libs_mapped_pages__,
__guest_entry_sp__,
__kernel_transition_start__, __kernel_transition_end__,
__dom_pool_task_mb_start__,
__shared_rpc_mb_start__,
__sl_pt_size__;

/* Standard definitions of Mode bits and Interrupt (I & F) flags in
PSRs */

#define MODE_USR 0x10 /* User Mode */
#define MODE_FIQ 0x11 /* FIQ Mode */
#define MODE_IRQ 0x12 /* IRQ Mode */
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#define MODE_SVC 0x13 /* Supervisor Mode */
#define MODE_ABT 0x17 /* Abort Mode */
#define MODE_UND 0x1B /* Undefined Mode */
#define MODE_SYS 0x1F /* System Mode */
#define I_BIT 0x80 /* when I bit is set, IRQ is disabled

*/
#define F_BIT 0x40 /* when F bit is set, FIQ is disabled

*/

#define HC_DOM_DEFAULT 0
#define HC_DOM_TASK 1
#define HC_DOM_KERNEL 2
#define HC_DOM_TRUSTED 3

#define HC_DOM_SHARED_RPC 9
#define HC_DOM_FLASH 10

#define HC_DOM_POOL_TASK_BITMAP \
((1 << HC_DOMPOOL_TASK_BASE) | \
(1 << (HC_DOMPOOL_TASK_BASE + 1)) | \
(1 << (HC_DOMPOOL_TASK_BASE + 2)) | \
(1 << (HC_DOMPOOL_TASK_BASE + 3)) | \
(1 << (HC_DOMPOOL_TASK_BASE + 4)))

#define HC_DOMAC_POOL_TASK_ALL \
((1 << (2 * HC_DOMPOOL_TASK_BASE)) | \
(1 << (2 * (HC_DOMPOOL_TASK_BASE + 1))) | \
(1 << (2 * (HC_DOMPOOL_TASK_BASE + 2))) | \
(1 << (2 * (HC_DOMPOOL_TASK_BASE + 3))) | \
(1 << (2 * (HC_DOMPOOL_TASK_BASE + 4))))

HYPER_DATA static const HC_MemDomain
DomDefault = {.name = "default"},
DomTask = {.name = "task"},
DomKernel = {.name = "kernel"},
DomTrusted = {.name = "trusted"},
DomTaskPool0 = {.name = "task_pool_0"},
DomTaskPool1 = {.name = "task_pool_1"},
DomTaskPool2 = {.name = "task_pool_2"},
DomTaskPool3 = {.name = "task_pool_3"},
DomTaskPool4 = {.name = "task_pool_4"},
DomSharedRPC = {.name = "shared_rpc"},
DomFlash = {.name = "flash"};

#define HC_DOMAC_ALL \
((1 << (2 * HC_DOM_DEFAULT)) | \
(1 << (2 * HC_DOM_TASK)) | \
(1 << (2 * HC_DOM_KERNEL)) | \
(1 << (2 * HC_DOM_TRUSTED)) | \
(1 << (2 * HC_DOM_SHARED_RPC)) | \
(1 << (2 * HC_DOM_FLASH)) | \
HC_DOMAC_POOL_TASK_ALL)
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#define HC_DOMAC_KERNEL \
((1 << (2 * HC_DOM_DEFAULT)) | \
(1 << (2 * HC_DOM_TASK)) | \
(1 << (2 * HC_DOM_KERNEL)) | \
(1 << (2 * HC_DOM_SHARED_RPC)) | \
(1 << (2 * HC_DOM_FLASH)) | \
HC_DOMAC_POOL_TASK_ALL)

#define HC_DOMAC_TRUSTED \
(1 << (2 * HC_DOM_DEFAULT)) | \
(1 << (2 * HC_DOM_TRUSTED)) | \
(1 << (2 * HC_DOM_FLASH)) | \
(1 << (2 * HC_DOM_SHARED_RPC))

#define HC_DOMAC_INTERRUPT HC_DOMAC_ALL

#define HC_DOMAC_TASK \
((1 << (2 * HC_DOM_DEFAULT)) | \
(1 << (2 * HC_DOM_TASK)) | \
(1 << (2 * HC_DOM_FLASH)) | \
HC_DOMAC_POOL_TASK_ALL)

#define HC_CAP_TASK \
(HC_CAP_RPC | \
HC_CAP_BEGIN_TRANSITION)

#define HC_CAP_INTERRUPT \
(HC_CAP_GET_MODE_CONTEXT | \
HC_CAP_SET_MODE_CONTEXT | \
HC_CAP_RPC | \
HC_CAP_RESTORE_MODE)

#define HC_CAP_KERNEL \
(HC_CAP_RPC | \
HC_CAP_DISABLE_INTERRUPTS | \
HC_CAP_ENABLE_INTERRUPTS | \
HC_CAP_SET_MODE_CONTEXT | \
HC_CAP_GET_MODE_CONTEXT)

#define HC_CAP_TRUSTED \
(HC_CAP_DISABLE_INTERRUPTS | \
HC_CAP_ENABLE_INTERRUPTS | \
HC_CAP_SET_MODE_CONTEXT | \
HC_CAP_GET_MODE_CONTEXT)

/*
* Bitmask constants for specifying guest mode

* contexts that can be get/set.

*/
#define HC_GM_TRUSTED_MASK (1 << HC_GM_TRUSTED)
#define HC_GM_KERNEL_MASK (1 << HC_GM_KERNEL)
#define HC_GM_INTERRUPT_MASK (1 << HC_GM_INTERRUPT)
#define HC_GM_TASK_MASK (1 << HC_GM_TASK)
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#define HC_GM_ALL_MASK \
(HC_GM_TRUSTED_MASK | \
HC_GM_KERNEL_MASK | \
HC_GM_INTERRUPT_MASK | \
HC_GM_TASK_MASK)

#define HC_PAGE_SIZE LINKER_SYM_UINT(__page_size__)

#define HC_RPC_KERNEL_MASK (1 << HC_RPCHANDLER_KERNEL)
#define HC_RPC_TRUSTED_MASK (1 << HC_RPCHANDLER_TRUSTED)

#define HC_TRANSITION_KERNEL_MASK (1 << HC_TRANSITION_KERNEL)

HYPER_DATA static const HC_GuestMode
GM_Trusted = { .name = "trusted",
.domainAC = HC_DOMAC_TRUSTED,
.domainPool = -1,
.capabilities = HC_CAP_TRUSTED,
.rpcHandlers = 0,
.transitionAreas = 0,
.setModeContexts = 0,
.getModeContexts = 0,
.restoreModes = 0,
.dmaAllowed = true,
.shadowDMAC = NULL,
.dmaHandler = dmaTrustedAppHandler},

GM_Kernel = { .name = "kernel",
.domainAC = HC_DOMAC_KERNEL,
.domainPool = -1,
.capabilities = HC_CAP_KERNEL,
.rpcHandlers = HC_RPC_TRUSTED_MASK,
.transitionAreas = 0,
.setModeContexts = HC_GM_TASK_MASK,
.getModeContexts = HC_GM_TASK_MASK,
.restoreModes = HC_GM_TASK_MASK,
.dmaAllowed = true,
.shadowDMAC = NULL,
.dmaHandler = NULL},

GM_Interrupt = { .name = "interrupt",
.domainAC = HC_DOMAC_INTERRUPT,
.domainPool = -1,
.capabilities = HC_CAP_INTERRUPT,
.rpcHandlers = 0,
.transitionAreas = 0,
.setModeContexts = HC_GM_TASK_MASK,
.getModeContexts = HC_GM_TASK_MASK,
.restoreModes = HC_GM_TASK_MASK,
.dmaAllowed = false,
.shadowDMAC = NULL,
.dmaHandler = NULL},

GM_Task = { .name = "application",
.domainAC = HC_DOMAC_TASK,
.domainPool = HC_DOMAINPOOL_TASK,
.capabilities = HC_CAP_TASK,
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.rpcHandlers = HC_RPC_KERNEL_MASK,

.transitionAreas = HC_TRANSITION_KERNEL_MASK,

.setModeContexts = 0,

.getModeContexts = 0,

.restoreModes = 0,

.dmaAllowed = true,

.shadowDMAC = NULL,

.dmaHandler = dmaAppHandler};

HYPER_DATA static const HC_RPCHandler
RPCHandler_Kernel = {
.name = "kernel_rpc_handler",
.mode = HC_GM_KERNEL,
.entryPoint = kernelRPCHandler,
.sp = LINKER_SYM_UINT(__kernel_sp__)
},

RPCHandler_Trusted = {
.name = "trusted_rpc_handler",
.mode = HC_GM_TRUSTED,
.entryPoint = trustedRPCHandler,
.sp = LINKER_SYM_UINT(__trusted_sp__)
};

HYPER_DATA static const HC_DomainPool DomPoolTask = {
.name = "domain_pool_task",
.domains = HC_DOM_POOL_TASK_BITMAP};

/* many linker symbols */
HYPER_DATA static const HC_MemRegion

MemHyper = {.name = "hypervisor",
.mbStart = LINKER_SYM_UINT(__hyper_mb_start__),
.mbCount = LINKER_SYM_UINT(__hyper_mb_count__),
.mappedPages = LINKER_SYM_UINT(__hyper_mapped_pages__),
.accessControl = HC_MEM_USERNOACCESS,
.domain = HC_DOM_DEFAULT},

MemTask = {.name = "task",
.mbStart = LINKER_SYM_UINT(__task_mb_start__),
.mbCount = LINKER_SYM_UINT(__task_mb_count__),
.mappedPages = LINKER_SYM_UINT(__task_mapped_pages__),
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOM_TASK},

MemKernel = {.name = "kernel",
.mbStart = LINKER_SYM_UINT(__kernel_mb_start__),
.mbCount = LINKER_SYM_UINT(__kernel_mb_count__),
.mappedPages = LINKER_SYM_UINT(__kernel_mapped_pages__),
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOM_KERNEL},

MemTrusted = {.name = "trusted",
.mbStart = LINKER_SYM_UINT(__trusted_mb_start__),
.mbCount = LINKER_SYM_UINT(__trusted_mb_count__),
.mappedPages = LINKER_SYM_UINT(__trusted_mapped_pages__),
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOM_TRUSTED},
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MemSharedLibs = {.name = "shared_libs",
.mbStart = LINKER_SYM_UINT(__shared_libs_mb_start__),
.mbCount = LINKER_SYM_UINT(__shared_libs_mb_count__),
.mappedPages = LINKER_SYM_UINT(__shared_libs_mapped_pages__),
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOM_DEFAULT},

MemTaskPool0 = {.name = "task_pool_0",
.mbStart = LINKER_SYM_UINT(__dom_pool_task_mb_start__),
.mbCount = 1,
.mappedPages = 256,
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOMPOOL_TASK_BASE},

MemTaskPool1 = {.name = "task_pool_1",
.mbStart = LINKER_SYM_UINT(__dom_pool_task_mb_start__) + 1,
.mbCount = 1,
.mappedPages = 256,
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOMPOOL_TASK_BASE + 1},

MemTaskPool2 = {.name = "task_pool_2",
.mbStart = LINKER_SYM_UINT(__dom_pool_task_mb_start__) + 2,
.mbCount = 1,
.mappedPages = 256,
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOMPOOL_TASK_BASE + 2},

MemTaskPool3 = {.name = "task_pool_3",
.mbStart = LINKER_SYM_UINT(__dom_pool_task_mb_start__) + 3,
.mbCount = 1,
.mappedPages = 256,
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOMPOOL_TASK_BASE + 3},

MemTaskPool4 = {.name = "task_pool_4",
.mbStart = LINKER_SYM_UINT(__dom_pool_task_mb_start__) + 4,
.mbCount = 1,
.mappedPages = 256,
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOMPOOL_TASK_BASE + 4},

MemSharedRPC = {.name = "shared_rpc",
.mbStart = LINKER_SYM_UINT(__shared_rpc_mb_start__),
.mbCount = 1,
.mappedPages = 256,
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOM_SHARED_RPC},

MemFlash = {.name = "flash",
.mbStart = 0x10,
.mbCount = 1,
.mappedPages = 256,
.accessControl = HC_MEM_USERREADWRITE,
.domain = HC_DOM_FLASH},

/* Devices occupy last megabyte in memory. */
MemDevices = {.name = "devices",
.mbStart = 0xFFF,
.mbCount = 1,
.mappedPages = 0x100,
.accessControl = HC_MEM_USERNOACCESS,
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.domain = HC_DOM_DEFAULT};

HYPER_DATA static const HC_TransitionArea TransitionAreaKernel = {
.name = "KernelTrans",
.fromMode = HC_GM_TASK,
.toMode = HC_GM_KERNEL,
.startAddress = LINKER_SYM_UINT(__kernel_transition_start__),
.endAddress = LINKER_SYM_UINT(__kernel_transition_end__)

};

HC_Config hyperConfig = {
.guestEntryPoint = appMain,
.guestEntrySP = LINKER_SYM_UINT(__guest_entry_sp__),
.guestEntryMode = HC_GM_TASK,
.privModes = {
{.sp = LINKER_SYM_UINT(__fiq_sp__), .initialCPSR = MODE_FIQ |

I_BIT | F_BIT},
{.sp = LINKER_SYM_UINT(__irq_sp__), .initialCPSR = MODE_IRQ |

I_BIT | F_BIT},
{.sp = LINKER_SYM_UINT(__svc_sp__), .initialCPSR = MODE_SVC |

I_BIT | F_BIT},
{.sp = LINKER_SYM_UINT(__abt_sp__), .initialCPSR = MODE_ABT |

I_BIT | F_BIT},
{.sp = LINKER_SYM_UINT(__und_sp__), .initialCPSR = MODE_UND |

I_BIT | F_BIT},
{.sp = LINKER_SYM_UINT(__sys_sp__), .initialCPSR = MODE_SYS |

I_BIT | F_BIT}},
.memDomains =
{&DomDefault,
&DomTask,
&DomKernel,
&DomTrusted,
&DomTaskPool0,
&DomTaskPool1,
&DomTaskPool2,
&DomTaskPool3,
&DomTaskPool4,
&DomSharedRPC,
&DomFlash, 0, 0, 0, 0, 0},

.guestModes = {&GM_Trusted, &GM_Kernel, &GM_Interrupt, &GM_Task},

.rpcHandlers = {&RPCHandler_Kernel, &RPCHandler_Trusted},

.transitionAreas = {&TransitionAreaKernel},

.memRegions = {&MemHyper, &MemTask, &MemKernel, &MemTrusted,
&MemSharedLibs, &MemTaskPool0, &MemTaskPool1, &MemTaskPool2,
&MemTaskPool3, &MemTaskPool4, &MemDevices,&MemSharedRPC,&MemFlash

},
.domainPools = {&DomPoolTask},
.interruptConfig = {
.interruptMode = HC_GM_INTERRUPT,
.sp = LINKER_SYM_UINT(__interrupt_sp__),
.tickHandler = kernelTickHandler

}
};
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A.2

Listing A.2: Trusted service

/*
* trustedservice.c

*
* Created on: 30 mar 2011

* Author: Viktor Do

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "trusted_service.h"
#include "dmacRegisters.h"
#include "hyper.h"
#include "impTypes.h"
#include "rsa.h"
#include "aescbc.h"
#include "sha2.h"
#include "mprsa.h"
#include "report.h"

//TODO remove buffer and use only decrypted for immediate storage?
Check string lengths in program.

//TODO Use memset to reset sensitive memory

FLASH_DATA static unsigned char *encryptedStorage[10]; // vector with
pointer to encrypted data

FLASH_DATA static unsigned char encryptedAESKey[128]; //key is
encrypted with RSA

TRUSTED_DATA static char decrypted[50000];
TRUSTED_DATA static unsigned char buffer[50000+16]; //buffer to hold

the transfered data from flash

TRUSTED_DATA static unsigned char decryptedAESKey[128]; //key is
encrypted with RSA

//TRUSTED_DATA static unsigned int nbytes;

TRUSTED_DATA static unsigned int nbytesVector[10];

// 1024-bit RSA keys in HEX
//The RSA-keys are generated from http://www.mobilefish.com/services/

rsa_key_generation/rsa_key_generation.php
TRUSTED_DATA static char *g_modulus =
"f0f4fa85b4ad3f6d9171995085b31640c4c8ed28e5c9eb5106f62acea46ee83c"
"0c575f03ab918d9aee62fdd5fc7b5a350d4775618f646583ef6a0c50985123ac"
"4271ae3cdaba97f5d6527217971f2cc0bdbbfa2886afedfe783e1b170ca5e279"
"e6fd07e9efffd99c1f4f35c30644f86227cfc32a5253a89ebfb22862f1085b35";

TRUSTED_DATA static char *g_d =
"e2d4cc0e18834b859af8c4ea6fa2a29d406322177112bfaa9c921ac4433980f8"
"1e6a15b0ffcf5aedf1e250b12428ff479803a035c26631c69d18491589fe4043"
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"f2cf8d591c93256dda125bb1466a2199fab20081b6806ddda740b73e35e73c63"
"e794ba34197aa423064286feb2e019b4521a05405b27b2f232619a00bedeac95";

TRUSTED_DATA static char *sign_modulus =
"dcc03cf173394f9befe0a2d51fcd4b24e952efcd0b657663826d6d3ad3c94e5e"
"219d8e5353c842356247f9a1e4a2dd6b20b17163127cfd2c0cdcc93788fb63b3"
"cee562af937530a2f2a1036b2bf4a12de36480e92b32ec8d1217d1579a471de1"
"5295ee666cf7638af85acc2fcc9efc61bea0c930c776dcea792fd2694fb85fdd";

TRUSTED_DATA static char *sign_d =
"a8b6a3dd455affe50628814ab1cb8d2ae0c86a4e23ef9fd3ddd3143069bce910"
"3850da7e050280d79c0db6546d11ac783bbc62147e04d8d9d9dac44e957acc6f"
"2c94b8d78e1df4c0fb0b40e05cf1cbb35337633afe48cc2c2fbe052ef31f6e08"
"80fe7aab8a78b8dcd2472d383e923146031d6c4a6b217340beda6b19fa7c3761";

TRUSTED_DATA static char *g_e = "10001";

///////////////////// MACROS ///////////////////

#define LOGT(_FMT, ...) tellf(REP_TRUSTED_NAME, _FMT, ## __VA_ARGS__
)

////////////////////////////////////////////////////

static void useDMA(int dataID) TRUSTED_FUNCTION;
void trustedRPCHandler(unsigned callNum, void* params)

TRUSTED_FUNCTION;
static void finishRPC() TRUSTED_FUNCTION;
static void initFlashData(TrustedArgs *args) TRUSTED_FUNCTION

;
static void calculateSHA(char *message, unsigned char *hval)

TRUSTED_FUNCTION;
static void getSignature(TrustedArgs *args) TRUSTED_FUNCTION

;
static void signContract(TrustedArgs *args) TRUSTED_FUNCTION

;
static void verifySignature(TrustedArgs *args)

TRUSTED_FUNCTION;

//void srand_mwc(); //pseudo random number generator

static inline void writeReg32(Uns32 address, Uns32 offset, Uns32 value
)

{

*(volatile Uns32*) (address + offset) = value;
}

static inline Uns32 readReg32(Uns32 address, Uns32 offset)
{

return *(volatile Uns32*) (address + offset);
}

static void dmaBurst(Uns32 ch, void *from, void *to, Uns32 bytes)
{
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Uns32 offset = ch * DMA_CHANNEL_STRIDE;
// printf("dmaBurst ch:%d bytes:%d\n", ch, bytes);

writeReg32(DMA_BASE, DMA_C0_SRC_ADDR + offset, (Uns32)from);
writeReg32(DMA_BASE, DMA_C0_DST_ADDR + offset, (Uns32)to);
writeReg32(DMA_BASE, DMA_C0_CONTROL + offset, bytes /*| 0

x80000000*/);
writeReg32(DMA_BASE, DMA_C0_CONFIGURATION + offset, 0x8001);

}

/*Called to initialize the encrypted data and encrypted aes key in
flash data**/

static void initFlashData(TrustedArgs *args){
int aesErr = 0; //error handling
int rsaErr = 0;
int i;

// hello(REP_TRUSTED_NAME);
// tell(REP_TRUSTED_NAME,"In trusted mode initFlashData");

TRUSTED_DATA static char data[50000] = "Transfer of 20.000 SEK from
Sven Svensson (Nordea, 1234-56789) to Anna Svensson (SEB,
987654321). ";

TRUSTED_DATA static char data1[50000] = "Buying 5 shares of the
Ericsson stock."; //TODO cant get atmel_ram.ld to put the string
in trusted rodata, it puts it in kernel space

TRUSTED_DATA static char *dataStorage[10];

dataStorage[0] = data;
dataStorage[1] = data1;
FLASH_DATA static unsigned char encrypted[50000+16]; //data in flash

memory is encrypted (16 is size of IV added to message)
FLASH_DATA static unsigned char encrypted1[50000+16];

encryptedStorage[0] = encrypted;
encryptedStorage[1] = encrypted1;

nbytesVector[0] = strlen(data); //setting the global variable, used
in aesDecrypt

nbytesVector[1] = strlen(data1);

//32 bytes HEX key digits used as key to AES-128
//TRUSTED_DATA static char sessionKey[33] = "0123456789

abcdeffedcba9876543210"; AES key
char sessionKey[33]; //TODO memset this area to 0 at end of

function, dont need this is trusted domain?
generateAESKey(sessionKey); //generates a random 16 byte AES key (

AES-128)
//tellf(REP_TRUSTED_NAME,"Generated a AES sessionKey: %s",sessionKey);
//tell(REP_TRUSTED_NAME,"Encrypting AES session key with RSA");

rsaErr = rsaEncrypt(sessionKey,g_e,g_modulus,encryptedAESKey);
if(rsaErr != 0){
tell(REP_TRUSTED_NAME,"RSA encryption failed.\n");

*args->success = 0;
}
else{
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// tellf(REP_TRUSTED_NAME,"Encrypting message with random generated
AES-128 one time session key:\n\t\"%s\"\n",sessionKey);

for(i = 0;i < 2; i++){ //how many messages to encrypt
aesErr = 0;

aesErr = aesEncrypt(sessionKey,dataStorage[i],encryptedStorage[i
],i);

if(aesErr != 0){
tell(REP_TRUSTED_NAME,"AES encryption failed.\n");

*args->success = 0;
}
else{

// tellf(REP_TRUSTED_NAME,"Encryption successfull,trying to
print encrypted data! \n %s \n\n", encryptedStorage[i]);

*args->success = 1;
}
}

}
}

volatile static bool bReceived[2] = {false, false};

/**DMA Contract into trusted domain space, decrypt and send back to
task*/

static void getSignature(TrustedArgs *args){

int rsaErr = 0, aesErr = 0;

hello(REP_TRUSTED_NAME);
tell(REP_TRUSTED_NAME,"In trusted mode getSignature()");
tell(REP_TRUSTED_NAME,"Starting DMA transfer of the encrypted

document and key from external memory into trusted domain.");
useDMA(args->dataID); //DMA the encrypted data into trusted space

while(!bReceived[0] || !bReceived[1]);

rsaErr = rsaDecrypt(encryptedAESKey,g_d,g_modulus,decryptedAESKey);
if(rsaErr != 0){
tell(REP_TRUSTED_NAME,"RSA encryption failed.\n");

*args->success = 0;
}
else{

aesErr = aesDecrypt(decryptedAESKey,encryptedStorage[args->dataID
],decrypted,nbytesVector[args->dataID]);

}

if(aesErr != 0){
tell(REP_TRUSTED_NAME,"AES encryption failed.\n");

*args->success = 0;
}
else if(aesErr == 0 && rsaErr == 0){

*(args)->success = 1;
signContract(args);
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}

}

static void calculateSHA(char *message, unsigned char *hval){
sha256_ctx sha_ctx[1];

sha256_begin(sha_ctx);
sha256_hash(message, strlen(decrypted), sha_ctx);
sha256_end(hval, sha_ctx);

}

static void signContract(TrustedArgs *args){
hello(REP_TRUSTED_NAME);
tell(REP_TRUSTED_NAME,"In trusted mode signContract()");

sha256_ctx sha_ctx[1];
unsigned char hval[SHA256_DIGEST_SIZE];
sha256_begin(sha_ctx);
sha256_hash(decrypted, strlen(decrypted), sha_ctx);
sha256_end(hval, sha_ctx);
tell(REP_TRUSTED_NAME,"SHA-256 DIGEST of message:");
pr_hex_block(REP_TRUSTED_NAME,hval,SHA256_DIGEST_SIZE,1);

//e is default 0x10001;
mp_int modulus, d;
mp_err err;
int olen;

mp_init(&modulus);
mp_init(&d);

mp_read_radix(&modulus, sign_modulus, 16);
mp_read_radix(&d, sign_d, 16);

args->signature = malloc(129);

err = mp_pkcs1v15_sign(hval,SHA256_DIGEST_SIZE,&d, &modulus,&args->
signature,&olen);

if(err != 0){
tell(REP_TRUSTED_NAME,"Signature failed in Application.\n");

}
else{
tell(REP_TRUSTED_NAME,"Signature successfully generated, passing

to App!");
}

mp_clear(&d);
mp_clear(&modulus);

}

/*Should be provided by extern source, here for demonstration purpose

**/
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static void verifySignature(TrustedArgs *args){
hello(REP_TRUSTED_NAME);
tell(REP_TRUSTED_NAME,"In trusted mode verifySignature()");

char *ptx;
int olen;

unsigned char *g_e = "10001"; //public key is always 0x10001, will
not effect security

mp_int modulus, e;
mp_err err;
mp_init(&modulus);
mp_init(&e);

mp_read_radix(&modulus, sign_modulus, 16);
mp_read_radix(&e, g_e, 16);
err = mp_pkcs1v15_verify(args->signature,128,&e,&modulus,&ptx,&olen)

;
if(err != 0){
tell(REP_TRUSTED_NAME,"Verify Signature failed\n");

}
else{
tell(REP_TRUSTED_NAME,"This is the hash value we got from senders

signature");
pr_hex_block(REP_TRUSTED_NAME,ptx,SHA256_DIGEST_SIZE,1); //print

hashvalue that we got from signature //crashes here sometimes

// decrypted[5] = ’g’;//sabotage message
tell(REP_TRUSTED_NAME,"This is our own calculated hash value!");
unsigned char hval[SHA256_DIGEST_SIZE];
calculateSHA(decrypted,hval); //input contact, output hvalue

tell(REP_TRUSTED_NAME,"SHA-256 TRUSTED DIGEST:");
pr_hex_block(REP_TRUSTED_NAME,hval,SHA256_DIGEST_SIZE,1);

if(!strncmp(hval,ptx,32)){
tell(REP_TRUSTED_NAME,"Message signature is valid!");

}
else
tell(REP_TRUSTED_NAME,"Message signature is wrong. Signature

failed\n");

mp_clear(&e);
mp_clear(&modulus);

}
}

static void useDMA(int dataID){

// write to DMAC registers to start burst
int nbytes = nbytesVector[dataID];
//We use the two channels to send the encrypted message into the

buffer
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if(nbytes % 2){ //odd bytes
dmaBurst(0, encryptedStorage[dataID], buffer, ((nbytes-1) / 2));

//transfer encrypted data from flash to buffer in trusted
domain

dmaBurst(1, encryptedStorage[dataID] + ((nbytes-1)/2), buffer + ((
nbytes-1)/2), ((nbytes-1) / 2) + 1 + 16);// 16 is the size of
the IV and 1 is the extra byte because we subtracted to get a
even division

}
else{ //even bytes
dmaBurst(0, encryptedStorage[dataID], buffer, nbytes / 2); //

transfer encrypted data from flash to buffer in trusted domain
dmaBurst(1, encryptedStorage[dataID] + (nbytes / 2), buffer + (

nbytes / 2), (nbytes / 2) + 16); // 16 is the size of the
IV

}

}

void trustedRPCHandler(unsigned callNum, void* params)
{

switch(callNum){
case 0:

initFlashData(params);
break;

case 1:
getSignature(params);
break;

case 2:
verifySignature(params);
break;

default:
printf("Unknown trusted operation: %d\n", callNum);

}
finishRPC();

}

void dmaTrustedAppHandler(uint32_t channel)
{

bReceived[channel] = true;
tellf(REP_TRUSTED_NAME, "DMA-data #%d received.", (channel+1));

// go back to HV
bye(REP_TRUSTED_NAME);
ISSUE_HYPERCALL(HYPERCALL_END_DMA);

}

void finishRPC()
{

ISSUE_HYPERCALL(HYPERCALL_END_RPC);
}
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A.3

Listing A.3: Task using trusted service

/////////////////// INCLUDES //////////////////////////
#include "FreeRTOS.h"
#include "task.h"
#include <stdio.h>
#include <string.h>
#include "dmacRegisters.h"
#include "impTypes.h"
#include <stdlib.h>

#include "report.h"
#include "trusted_service.h"
#include "sha2.h"
#include "mprsa.h"
#include "mwc.h"
///////////////////// CONSTANTS ///////////////////

#define DMAT_STACK_SIZE (configMINIMAL_STACK_SIZE*2)

#define IE_STACK_SIZE (configMINIMAL_STACK_SIZE*2)

///////////////////// MACROS ///////////////////

#define LOGT(_FMT, ...) printf( "TEST DMA - TASK: " _FMT, ##
__VA_ARGS__)

///////////////////// PROTOTYPES ///////////////////

static portTASK_FUNCTION( vDMATestTask, pvParameters );
static portTASK_FUNCTION( vDMAMaliciousTask, pvParameters );

///////////////////// HELP FUNCTIONS ///////////////////

void taskDoRPC(unsigned dest, unsigned callNum, void* params);

static inline void writeReg32(Uns32 address, Uns32 offset, Uns32 value
)

{

*(volatile Uns32*) (address + offset) = value;
}

static inline Uns32 readReg32(Uns32 address, Uns32 offset)
{

return *(volatile Uns32*) (address + offset);
}

static void dmaBurst(Uns32 ch, void *from, void *to, Uns32 bytes)
{

Uns32 offset = ch * DMA_CHANNEL_STRIDE;
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//LOGT("dmaBurst ch:%d bytes:%d\n", ch, bytes);
writeReg32(DMA_BASE, DMA_C0_SRC_ADDR + offset, (Uns32)from);
writeReg32(DMA_BASE, DMA_C0_DST_ADDR + offset, (Uns32)to);
writeReg32(DMA_BASE, DMA_C0_CONTROL + offset, bytes /*| 0

x80000000*/);
writeReg32(DMA_BASE, DMA_C0_CONFIGURATION + offset, 0x8001);

}

void pr_hex(const unsigned char *bytes, int nbytes,int compact);
///////////////////// TASKS ///////////////////

void vStartDMATestTask( unsigned portBASE_TYPE uxPriority, char**
strings)

{
xTaskCreate( vDMATestTask, ( signed char * ) "DMAT", DMAT_STACK_SIZE

, (void *) strings, uxPriority, ( xTaskHandle * ) NULL );
}

void vStartMalicousTask( unsigned portBASE_TYPE uxPriority)
{

xTaskCreate( vDMAMaliciousTask, ( signed char * ) "MAL",
DMAT_STACK_SIZE, NULL, uxPriority, ( xTaskHandle * ) NULL );

}

static portTASK_FUNCTION( vDMATestTask, pvParameters )
{

srand(0); //for random number generator in aescbc
srand_mwc(); // Automatically generates a seed, must be called once

before calling rand_mwc()

TrustedArgs *tru_arg;
tru_arg = malloc(sizeof(TrustedArgs));
tru_arg->success = malloc(sizeof(int));
tru_arg->dataID = 1; //which file to get from flash

doRPC(RPC_KERNEL,KERNEL_RPC_TRUSTED_INIT,tru_arg); //init the
crypted contract in flash space domain, dont need argument

// hello(REP_APP_NAME);
// tell(REP_APP_NAME,"Back in application after initialisation of

encrypted data in trusted mode.");
if(*tru_arg->success != 1)

printf("Initialization of encrypted data failed in trusted mode\n
");

else{
hello(REP_APP_NAME);
tell(REP_APP_NAME,"In application");
tell(REP_APP_NAME,"Doing an RPC into trusted domain to get

signature of document.");
doRPC(RPC_KERNEL,KERNEL_RPC_TRUSTED_GET_SIGNATURE,tru_arg); //get

the signature
hello(REP_APP_NAME);
tell(REP_APP_NAME,"Back in application after get signature in

trusted mode."); //should we copy it into task domain space?
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if(*tru_arg->success != 1){
tell(REP_APP_NAME,"Get Signature failed in trusted mode\n");

}
else{
tell(REP_APP_NAME,"We are in task mode and we got this signature

from trusted app:");
pr_hex_block(REP_APP_NAME,tru_arg->signature,128,0);
tell(REP_APP_NAME,"Lets Verify the signature.\n");
doRPC(RPC_KERNEL,KERNEL_RPC_TRUSTED_VERIFY_SIGNATURE,tru_arg);

}
}

// printf("Address of signature:%x\n",tru_arg->signature);
portYIELD ();
free(tru_arg->signature);
free(tru_arg->success);
free(tru_arg);
while(1); //wait for other task to finish
exit(0);

}

static portTASK_FUNCTION( vDMAMaliciousTask, pvParameters )
{

portYIELD();
int apa = 42;
printf("\nn\tMAL Variable located in address space: %x",&apa);
hello(REP_MAPP_NAME);
tell(REP_MAPP_NAME,"\n\nIn Malicious task application");
//This task will try access the decrypted contract from trusted

domain space with DMA
char stealContract[16];
char putStuffHere[11];
int a;
for(a=0; a<15; a++)
stealContract[a] = a*3+30;

stealContract[15] = ’\0’;

// unsigned char *stealSignature;
// stealSignature = (char*)0x42fad0; //this changes sometimes, point

to address of signature
// tell(REP_MAPP_NAME,"We have stolen the signature from other task

!");
// pr_hex(stealSignature,128,0);

/*We assume that the malicious user got hold of the address to the
decrypted contract

*,he try to use DMA to transfer this information from trusted
domain into the local pointer stealContract**/

tell(REP_MAPP_NAME,"Try to use DMA to steal decrypted contract from
trusted domain");

dmaBurst(0,(void*)0x326a2c,putStuffHere , 10);
//This generated a Illegal access try from the DMA abort handler
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//now he tries to use a pointer to point to the address of the
decrypted contract

//This will generate a Page domain fault when he is trying to access
the trusted domain

tell(REP_MAPP_NAME,"Try to access decrypted contract in trusted
domain without DMA.");

stealContract[0] = *((char*) (0x326a2c));

tellf(REP_MAPP_NAME,"Buffer content: %s",stealContract);
tell(REP_MAPP_NAME,"Attack not successful. Giving up.");
bye_for_good(REP_MAPP_NAME);
exit(0);

}

////////////////// DMA Interrupt ///////////////////////////////
void dmaAppHandler(uint32_t channel)
{

// report
hello(REP_TRUSTED_NAME);
LOGT("\nDMA handler of task mode called.\n");
LOGT("(but nothing to be done)\n");
bye(REP_TRUSTED_NAME);

// back to hypervisor
ISSUE_HYPERCALL(HYPERCALL_END_DMA);

}
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