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Abstract

Internet traffic volumes continue to grow at a great rate. Fornetwork opera-
tors it is important to understand and manage the traffic behaviour in order to
meet service-level agreements with their customers and to give end-users good
communication performance.

This thesis considers three aspects of Internet traffic management: web
traffic modelling, bandwidth allocation to TCP flows, and traffic engineering.
The areas all have in common the need to understand and handleInternet traffic
behaviour. For web traffic modelling the goal of the work itself is to understand
traffic behaviour and to be able to generate realistic trafficin simulations and
lab experiments. For traffic engineering and bandwidth allocation to TCP flows
the purpose is to develop methods to steer and control the traffic.

The web is one of the most popular Internet applications. In order to un-
derstand how aggregated Internet traffic behaves and to be able to generate
realistic traffic for simulations and lab experiments it is important to under-
stand web traffic behaviour. This thesis presents a simple model of web client
traffic. Starting from a packet trace of web traffic, we deriveempirical prob-
ability distributions describing session lengths, time between user requests for
web pages, and the amount of data that is transferred due to a single user re-
quest. Using these probability distributions we implementa web-client traffic
generator and show that the generated traffic has the same characteristics as the
original web traffic, including the traffic variability (self-similar properties).

TCP is the predominant Internet transport protocol. TCP is used by many
popular applications including the web and it is used for transporting 80-90%
of the Internet traffic. The second aspect of traffic management in this the-
sis is dynamic allocation of bandwidth to TCP flows. TCP provides a reliable
flow of data between two hosts and adapts its rate to the available capacity.
Network technologies such as Dynamic synchronous TransferMode (DTM)
provides channels with dynamically adjustable capacity. The issue is to adap-
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tively allocate bandwidth to TCP flows, when both TCP and the bandwidth
allocation scheme can react to changes in the network load. We use simula-
tion to investigate the behaviour of a bandwidth allocationscheme, its effect
on TCP flows and on a network that can vary its capacity. The results show
that the bandwidth allocation scheme usually works well forTCP flows but we
also highlight a scenario where packet loss makes the feedback mechanisms
interact in an unfavourable way.

The objective of traffic engineering is to avoid congestion in the network
and to make good use of available resources by controlling and optimising the
routing. The challenge for traffic engineering in IP networks is to cope with the
dynamics of Internet traffic demands. This thesis proposel-balanced routings
that route the traffic on the shortest paths possible but makesure that no link
is utilised to more than a given levell, if possible. L-balanced routing gives
efficient routing of traffic and controlled spare capacity tohandle unpredictable
changes in traffic. We present anl-balanced routing algorithm based on multi-
commodity flow optimisation. We also present a heuristic search method for
finding l-balanced weight settings for the legacy routing protocolsOSPF and
IS-IS. We show that the search and the resulting weight settings work well in
real network scenarios.
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Chapter 1

Introduction

1.1 Internet – a network of networks

The Internet is a worldwide communication network that connects hundreds of
millions of hosts and Internet users [1, 2]. It is a giant infrastructure of optical
fibres, copper wires and wireless connections that via packet switches connect
a wide variety of end-hosts: ranging from traditional web servers, PC:s and
laptop computers, to cell phones and smaller devices embedded in our homes,
in cars and in the environment around us. The Internet is alsoan infrastruc-
ture that supports a diversity of applications like the web,mail, file sharing,
telephony, radio, video and TV distribution, games, banking and commerce
of many kinds; and where new applications constantly are developed and de-
ployed.

Taken as a whole the Internet is a very complex system. To get some struc-
ture in this, one could notice two things: First, the Internet is a network of
networks. It consists of a large number of smaller and independently managed
networks. Secondly, the protocols that define how Internet communication is
done are structured into layers with different functionality.

The Internet is a network of interconnected heterogeneous networks of
different sizes, different capacities, and under different administrations. The
hundreds of thousands of networks that constitute the Internet are connected
together in a loose hierarchy. At the top there are a small number of tier-1
operators with large international high-capacity networks. The tier-1 networks
directly connect to each other and the operators have peering agreements that
allow data to flow between the networks without charging eachother for the
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4 Chapter 1. Introduction

data transmitted. A tier-2 network is typically a regional or national network.
It can have peering agreements with other tier-2 networks toexchange traffic
but it is also a customer to one or more tier-1 operators and need to buy transit
to reach some parts of the Internet. At the bottom of the network hierarchy are
the access networks that connects the end hosts to the Internet. These are typ-
ically local telephone companies, university or company networks that in turn
are customers to upper-tier networks to be able to communicate worldwide.

The Internet protocols are arranged in layers, each having adifferent re-
sponsibility. The TCP/IP protocol suite used for Internet communication fol-
lows a 4-layer model with different protocols at these layers. Figure 1.1 illus-
trates the layered architecture with example protocols at the different layers.
At the top is the application layer which includes many different protocols for

Figure 1.1: Layers with example protocols

handling the details of particular applications. For instance the Simple Mail
Transfer Protocol (SMTP) for transferring electronic mailmessages and the
HyperText Transfer Protocol (HTTP) for requests and transfers of web pages.

The transport layer provides a flow of data between two hosts.TCP (Trans-
mission Control Protocol) and UDP (User Datagram Protocol)are the two pre-
dominant transport layer protocols. TCP provides a connection-oriented, reli-
able, byte stream service to the application layer. It keepstrack of the packets
sent and retransmits packets that are lost in the network. TCP also provides
flow control and congestion control that adapts the transmission rate to what
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the endhosts and the network can handle.
The network layer contains the Internet protocol (IP) that defines the IP

packet as the unit of information passed across the Internet. The network layer
handles the movement of packets around the network using routing and for-
warding mechanisms. Routing determines the paths that packets should take
through the networks from sender to receiver. Routing protocols are used to
create forwarding tables. Routers then use the tables to forward packets to-
wards the receiver based on the destination IP-address in the packet. The net-
work layer and the IP protocol interconnect the many different networks that
constitute the Internet and provide communication across many kinds of link
layer technologies.

1.2 Internet traffic characteristics

How to best model and describe Internet traffic is still an open area of research.
The traffic characteristics depend on when and where on the Internet the traffic
is investigated. The traffic behaviour in a large backbone network differ from
that in a small company network, and the traffic characteristics changes with
new applications, new types of networks and with changing user behaviour.

Ten years ago, measurements on the Internet backbone showedthat 70-
75% of the traffic was web traffic [3]. Since then the total traffic volumes have
increased a lot, the share of web traffic is still high in many networks [4, 5, 6]
but now often file sharing is the application that dominates the traffic [7, 8].
Also, TV and video distribution over IP are becoming widespread and produce
increasing traffic volumes.

Figure 1.2 shows examples of Internet traffic behaviour. On short time
scales up to seconds the traffic is very bursty and on longer timescales there are
often predictable daily and weekly cycles and in between there can be unpre-
dictable shifts and changes in traffic demand.

1.3 Internet traffic management

Internet traffic management means handling the traffic situation in the net-
works; avoiding congestion and making good use of availablenetwork re-
sources.

Traffic management involves both the end hosts and the network operators.
It involves the end hosts in that they for many applications run TCP congestion
control and adapt the send rate to what the network can handle. TCP increases
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Figure 1.2: Example of Internet traffic behaviour. Top: Packets per second
during one hour in a company network. Middle: Web traffic per hour during
one week in a company network. The traffic data is described inpaper A [9].
Bottom: Total traffic in a backbone network during one week (normalised).
Traffic data from the Geant network [10].
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the send rate to find out the available network capacity. Whena packet is lost
this is interpreted as network congestion and the transmission rate is decreased.
From a network operator perspective traffic management involves monitoring
and understanding the traffic behaviour in the network. It also includes traffic
engineering where the routing of traffic through the networkis adapted to the
current traffic situation.

For network operators it is important to manage the traffic situation in the
network and meet service level agreements (SLAs) made with their customers.
The traffic demands in a network may fluctuate and changes overtime. Traffic
engineering mechanisms can then be used to adapt to the changes in traffic de-
mand and distribute traffic to benefit from available networkresources. Today,
the main alternative for traffic engineering within an IP network is to use dif-
ferent methods for setting the link costs (and so decide uponthe shortest paths)
in the routing protocols OSPF (Open Shortest Path First) andIS-IS (Interme-
diate System to Intermediate System). These are both link-state protocols and
the routing decisions are based on link costs and a shortest (least-cost) path
calculation. With the equal-cost multi-path (ECMP) extension to the routing
protocols the traffic can also be distributed over several paths that have the same
cost. These routing protocols were designed to be simple androbust rather than
to optimise the resource usage. They do not by themselves consider network
utilisation and do not always make good use of network resources. The traffic
is routed on the shortest path through the network even if theshortest path is
overloaded and there exist alternative paths. It is up to theoperator to find a set
of link costs that is best suited for the current traffic situation and that avoids
congestion in the network.

Network operators today have different strategies for coping with traffic
variability: ranging from just over-dimensioning networkcapacity a lot, to
occasionally tuning the link costs in OSPF to postpone upgrades of network
equipment, to more active use of traffic monitoring and traffic engineering
mechanisms to manage the traffic situation.





Chapter 2

Research Issues

This thesis presents work on three aspects of Internet traffic management: traf-
fic engineering, web traffic modelling, and bandwidth allocation to TCP flows.
The areas all have in common the need to understand and handleInternet traffic
behaviour. For web traffic modelling the goal of the work itself is to understand
traffic behaviour and to be able to generate realistic trafficin simulations and
lab experiments. For traffic engineering and bandwidth allocation to TCP flows
the purpose is to develop methods to control and steer the traffic.

2.1 Characterizing web traffic and generating syn-
thetic traffic

Surfing the web is one of the most popular Internet applications. Ten years ago,
measurements on the Internet backbone showed that 70-75% ofthe traffic was
web traffic [3]. Since then the total traffic volumes have increased a lot, other
applications like file sharing now often dominates the traffic, but the share of
web traffic is still high in many networks [4, 5, 6]. It is therefore important
to measure and model web traffic in order to understand and manage the be-
haviour of aggregated Internet traffic, and to be able to generate realistic traffic
in simulations and lab experiments.

The research issues are to collect web traffic, extract and model the im-
portant characteristics from the collected data, and from the model generate
realistic synthetic traffic.

A direct method to collect information about web traffic is touse a packet

9



10 Chapter 2. Research Issues

trace. But we do not want to model the number, size and inter-arrival times
of packets. These packet level characteristics depend on the TCP flow control
and congestion control algorithms and reflects the conditions in the network at
the time the trace was taken. To be able to generate realistictraffic for different
levels of network utilisation we want a higher level model ontop of TCP.

In paper A we present a simple model of web client traffic. We start with a
packet trace of web traffic and use a heuristic method to identify when a user
clicks on a link to retrieve the next web page. From this we derive empirical
probability distributions describing session lengths, time between user clicks,
and the amount of data that is transferred due to a single userclick. Using
these probability distributions we implement and evaluatea web-client traffic
generator.

2.2 Dynamic allocation of bandwidth to TCP flows

TCP is the predominant Internet transport protocol. TCP is used by many popu-
lar applications including the web and it is used for transporting approximately
80-90% of the Internet traffic [4, 6, 7, 5].

TCP is a reliable end-to-end transport protocol that adaptsits rate to the
available capacity. Network technologies such as Dynamic synchronous Trans-
fer Mode (DTM) provides channels with dynamically adjustable capacity. The
issue here is to adaptively allocate bandwidth to TCP flows, when both TCP
and the bandwidth allocation scheme can react to changes in the network load.

In paper B, we do a simulation study in ns-2 and investigate the behaviour
of a bandwidth allocation scheme, its effect on TCP flows and on a network
that can vary its capacity.

2.3 Robust traffic engineering

The objective of traffic engineering is to avoid congestion in the network and
to make better use of available resources by adapting the routing to the current
traffic situation. The main challenge for traffic engineering is to cope with the
dynamics of traffic demands and topology. Traffic is often bursty and there
can be unpredictable changes and shifts in traffic demand, for instance due to
hotspots and flash crowds, or because a link goes down, there are changes in the
inter-domain routing, or because traffic in an overlay is re-directed. For future
networks more variability in traffic demands is also expected due to mobility of
nodes and networks and more dynamic on-demand service levelagreements.
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The traffic variability means that, even if we could measure the current
traffic situation exactly, it would not always correctly predict the near future
traffic situation. Traffic engineering mechanisms need to berobust and able to
handle traffic variability and uncertainties in input traffic data.

The papers C, D and E in this thesis cover different aspects ofrobust traffic
engineering.

2.4 Contributions

The contributions of the web traffic work are the heuristics for detecting user
clicks in a packet trace, a simple empirical web client model(describing ses-
sion lengths, time between user clicks, and the amount of data that is trans-
ferred due to a single user click), and a realistic web clienttraffic generator.

For studying dynamic allocation of bandwidth to TCP flows we imple-
mented a simulation environment in ns-2. The contribution of this work is the
performance evaluation of an estimation algorithm, which measures the rate of
TCP flows and allocates capacity on a DTM network.

We show that the measurement-based bandwidth allocator usually works
well for TCP flows but we also identify a scenario where packetloss makes
the feedback mechanisms interact in an unfavourable way andwhere the band-
width allocator could be improved. If the bandwidth allocator somehow fails
to assign enough capacity and packets are dropped then TCP decreases its rate.
The measurement-based estimator then decreases rather than increases the al-
located bandwidth.

For robust traffic engineering we proposel-balanced routings as a way
for an operator to handle traffic variability and uncertainties in input traffic
data. Anl-balanced solution routes the traffic on the shortest paths possible
but makes sure that no link is utilised to more than a given level l. The con-
tributions are anl-balanced routing algorithm based on multi-commodity flow
optimisation and a heuristic search method for findingl-balanced weight set-
tings for the legacy routing protocols OSPF and IS-IS.

L-balanced routing gives the operator possibility to applysimple rules of
thumb for controlling the maximum link utilisation and control the amount
of spare capacity needed to handle sudden traffic variations. It gives more
controlled traffic levels than other cost functions and moreefficient routing for
low traffic loads when there is no need to spread traffic over longer paths.





Chapter 3

Summary of the Papers and
Their Contributions

The thesis is a collection of five papers. Paper A about web traffic charac-
terisation, paper B about bandwidth allocation to TCP flows,and paper C-E
on different aspects of robust traffic engineering. Paper A,B and C are all
published at refereed international conferences. Paper D was published at the
Swedish National Computer Networking Workshop and paper E is submitted
for publication.

3.1 Paper A

Using Empirical Distributions to Characterize Web Client Traffic and to
Generate Synthetic Traffic. Henrik Abrahamsson and Bengt Ahlgren. In
Proceedings of IEEE Globecom:Global Internet, San Francisco, USA, Novem-
ber 2000.
Summary:
This paper presents a simple model of web client traffic. The paper describes
how the model is derived, some characteristics of web traffic, and how the
model is used to implement a traffic generator.

A packet trace with HTTP traffic data captured at SICS is analysed to ob-
tain the traffic characteristics of web clients. A heuristicmethod is used to
identify user clicks in the packet trace and from this empirical probability dis-
tributions are derived describing session lengths, time between user clicks, and

13



14 Chapter 3. Summary of the Papers and Their Contributions

the amount of data that is transferred due to a single user click. Using these
probability distributions a web-client traffic generator is implemented and eval-
uated.
Contribution:
The contributions of this work are the heuristics for detecting user clicks in a
packet trace (based on the work by Mah [11]), a simple empirical web client
model and a realistic web client traffic generator.
My contribution:
I performed the work and wrote the paper under supervision ofBengt Ahlgren.
I analysed the packet traces, came up with the heuristic method used, and de-
rived the empirical probability distributions that make upthe model. I imple-
mented and evaluated the traffic generator. I wrote most of the paper except
for parts of introduction and conclusions. I later also implemented the traffic
generator in the ns-2 network simulator and used it for network dimensioning
in an industrial project with Teracom AB.

3.2 Paper B

TCP over High Speed Variable Capacity Links: A Simulation Study for
Bandwidth Allocation . Henrik Abrahamsson, Olof Hagsand and Ian Marsh.
In Proceedings of Protocols for High-Speed Networks (PfHSN 2002), Berlin,
Germany, April 2002.
Summary:
This paper presents a simulation study of bandwidth allocation to TCP flows.
Dynamic synchronous Transfer Mode (DTM) is a gigabit network technology
that provides channels with dynamically adjustable capacity. TCP is a reliable
end-to-end transport protocol that adapts its rate to the available capacity. Both
TCP and the DTM bandwidth can react to changes in the network load, creating
a complex system with inter-dependent feedback mechanisms.

In this work we create a simulation environment using ns-2. We investigate
the behaviour of a bandwidth allocation scheme, its effect on TCP flows and
on a network that can vary its capacity. The results indicatethat the bandwidth
allocation scheme usually works well for TCP flows. But the paper also high-
light a scenario where packet loss make the feedback mechanisms interact in
an unfavourable way and where the allocation scheme could beimproved.
Contribution:
The contribution of this work is an assessment of a bandwidthallocation scheme
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for TCP flows on variable capacity technologies. For evaluating the bandwidth
allocator we implemented a simulation environment in ns-2.
My contribution:
This work was done in collaboration with Ian Marsh and Olof Hagsand. To-
gether with Ian Marsh, I implemented the ns-2 simulation environment, planned
and ran the experiments and analysed the results. I co-authored the paper.

3.3 Paper C

A Multi Path Routing Algorithm for IP Networks Based on Flow O ptimi-
sationH. Abrahamsson, J. Alonso, B. Ahlgren, A. Andersson and P. Kreuger.
In Proceedings of Third COST 263 International Workshop on Quality of Fu-
ture Internet Services(QoFIS 2002), Zurich, Switzerland, October 2002.
Summary:
Intra-domain routing in the Internet normally uses a singleshortest path to
forward packets towards a specific destination with no knowledge of traffic de-
mand. We present an intra-domain routing algorithm based onmulti-commodity
flow optimisation which enable load sensitive forwarding over multiple paths.
It is neither constrained by weight-tuning of legacy routing protocols, such
as OSPF, nor requires a totally new forwarding mechanism, such as MPLS.
These characteristics are accomplished by aggregating thetraffic flows des-
tined for the same egress into one commodity in the optimisation and using a
hash based forwarding mechanism. The aggregation also results in a reduction
of computational complexity which makes the algorithm feasible for on-line
load balancing. Another contribution is the optimisation objective function
which allows precise tuning of the tradeoff between load balancing and total
network efficiency.
Contribution:
There are two contributions in this paper: the modelling of the problem as an
optimisation problem, and the definition of an optimisationobjective function
for l-balanced solutions.

In the modelling of the optimisation problem we aggregate all traffic des-
tined for a certain egress into one commodity in a multi-commodity flow opti-
misation. It is this definition of a commodity that both makesthe computation
tractable, and the forwarding simple.

L-balanced solutions allows the network operator to choose amaximum
desired link utilisation level. The optimisation will thenfind the most efficient
solution, if it exists, satisfying the link level constraint. Our objective function



16 Chapter 3. Summary of the Papers and Their Contributions

thus enables the operator to control the trade-off between minimising the net-
work utilisation and balancing load over multiple paths.
My contribution:
This is joint work with Bengt Ahlgren, Juan Alonso, Anders Gunnar and Per
Kreuger. Juan Alonso did most of the mathematical work for this paper. In
discussion with Juan I contributed to the idea of only looking at the destination
of the traffic when formulating the optimisation problem. I co-authored the
paper.

3.4 Paper D

Traffic Engineering in Ambient Networks: Challenges and Approaches
H. Abrahamsson and A. Gunnar. InProceedings of Second Swedish National
Computer Networking Workshop (SNCNW), 2004, Karlstad, Sweden.
Summary:
This paper identifies the requirements and challenges for traffic engineering in
a dynamic environment. We give a short introduction to the Ambient Networks
project which aims to provide a novel mobile communication platform beyond
3G. Further, a framework for classification of traffic engineering methods is
introduced to facilitate the analysis and identification ofchallenges and alter-
natives for traffic engineering in Ambient Networks.
Contribution:
The contribution of this paper is in the identification of andreasoning about
requirements, challenges and alternatives for traffic engineering in a dynamic
environment.
My contribution:
I did this work in cooperation with Anders Gunnar. I wrote about half of the
paper.

3.5 Paper E

Robust Traffic Engineering using L-balanced Weight-Settings in OSPF/ISIS
H. Abrahamsson and M. Björkman. Submitted for publicationSeptember
2008.
Summary:
The focus of this work is on robust traffic engineering for thelegacy routing
protocols OSPF and IS-IS. The idea is to use the L-balanced solutions pro-
posed in paper C to make sure that there are enough spare capacity on all links
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to handle sudden hotspots and traffic shifts. Search heuristics are used to find
the set of weights that avoid loading any link to more than L and the resulting
routings are evaluated using real topologies and traffic scenarios.
Contribution:
The contributions are the idea ofl-balanced weight-settings for robust traf-
fic engineering, the search heuristics for finding such weight-settings, and the
evaluation of how different cost functions (includingl-balanced) manage to
handle faults in input traffic data due to traffic hotspots.
My contribution:
The idea of using thel-balanced solution for robust weight-settings was mine.
I implemented the search heuristics and did the evaluationsand wrote most of
the paper.





Chapter 4

Related Work

4.1 Characterizing web traffic and generating syn-
thetic traffic

In paper A from 2000 we model web client traffic and implement atraffic gen-
erator with the purpose of creating realistic background traffic in simulations
and lab experiments.

Two approaches can be used to generate network traffic that imitates real
web traffic. The first is simply to replay packet traces of realweb traffic. But,
because of TCP’s congestion control the timing of packets ina trace reflects the
condition in the network when the trace was taken and this timing would not
be the same in another context. The better alternative, as argued by Paxson and
Floyd [12], is to gather information about and model those aspects of the web
traffic that one believe is most important and from this modelgenerate traffic.

4.1.1 Methods for collecting information about web traffic

To get information about web traffic three different approaches have been widely
used: server logs, client logs and packet traces. Server logs cannot easily be
used to describe the client side since a client usually accesses many different
web servers.

To capture the client accesses between multiple servers, client logs can
be used. This approach requires that browsers can log their requests, that
the source code for the browser is available so that logging can be added, or
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that some other way to log the clients behaviour is available. Catledge and
Pitkow [13], Cunhaet al. [14] and Crovella and Bestavros [15] used instru-
mented versions of the Mosaic web browser and in Barfordet al. [16] HTTP
proxies were used to track all documents referenced by unmodified Netscape
Navigator clients. Later work that use this method include the tool Carena [17]
which together with the Mozilla web browser can be used to capture and replay
browsing sessions.

The third approach of gathering data, and the method we use in[9], is to
analyse packet traces taken from a subnet carrying HTTP traffic. This method
was used by Stevens [18] to analyse the traffic arriving at a server, and by
Mah [11] to model the client side of the HTTP traffic. A furtherstep is taken
by Anja Feldmann [19] when extracting full HTTP level as wellas TCP level
traces via packet monitoring. The method of investigating packet traces is
also used by Choi and Limb [20], Smithet al. [21], Molina et al. [22], and
Tranet al. [23]. Recently Caoet al. [24], Weigleet al. [25] and Vishwanath
and Vahdat [26] all use packet traces from a single point in the network to
characterise and generate traffic.

Simpsonet al. [27] use the NETI@home [28] software to collect statistics
from end-systems. The approach here is to sniff packets sentto and from the
host (that is running the software) and infer statistics based on these observed
packets. The dataset used in [27] to investigate web traffic includes 1700 users
in 28 nations.

4.1.2 Investigated characteristics of web traffic

Different studies of web traffic look at different properties of the traffic. The
two most common characteristics to investigate (and what wemodelled in pa-
per A) is user OFF times and response sizes. User OFF time (sometimes called
user view time or user think time) is the time from when a download of a web
page is completed to the next request. Response sizes are thenumber of bytes
that is downloaded in response to a web request.

Mah [11] investigate user OFF times and response sizes but also request
sizes, number of files per page, number of consecutive document from the same
server and web server popularity. Barford and Crovella [16]look at request
and response sizes, number of files per page, user OFF times, the popularity of
web pages, and temporal locality (meaning the likelihood that once a file has
been requested, it will be requested again in the near future). Smithet al. [21]
analyse request and response sizes. Choi and Limb [20] look at web request
and response sizes, number of objects per page, user viewingtime and web
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page caching. Molinaet al. [22] investigate response sizes, user think times,
and also number of TCP connections used to download a page. Simpsonet al.
[27] examine bytes sent and bytes received, user think time,and the frequency
distribution of contacting specific destinations.

4.1.3 Web traffic generators

One of the most well-known web traffic generators is SURGE [16]. The tool
generates traffic matching distributions of request and response sizes, number
of files per page, user OFF times, the popularity of web pages,and temporal
locality. Also, the web models described by Mah [11] and Choiand Limb [20]
has been used to generate synthetic traffic.

More recent work on traffic generators include the tools PackMime-HTTP [24],
Tmix [25] and Swing [26].

4.2 Dynamic allocation of bandwidth to TCP flows

Lundqvist [29] evaluates different algorithms for bandwidth allocation for DTM
channels transporting IP traffic. The algorithms were assessed with respect to
throughput, delay and bandwidth changes per second. TCP rate adjustment is
done by placing the incoming packets into a buffer and addingand removing
slots if the level of the buffer exceeds continuously maintained threshold val-
ues. He concludes that adaptive strategies are recommendedfor TCP, however
too frequent changes can be undesirable in a DTM network due to the process-
ing cost. The main conclusion from this work is that the choice of algorithm
can play a significant role in the performance. This work is similar to ours in
that the goal is a slot allocation for TCP traffic over DTM. It differs from ours
in that we measure the rate of each TCP flow, whilst he looks at the outgoing
buffer length as a sign to increase or decrease the number of slots.

Krishnan and Sterbenz investigate TCP over load-reactive links [30, 31].
They use a hysteresis control mechanism for capacity allocation. Buffer levels
are monitored (as in [29]) and if the occupancy is greater than a threshold the
capacity is increased and vice versa. Their scheme is dependent on keeping
buffers occupied all the time, otherwise the link capacity will fall and hence
the throughput. A single TCP flow is simulated and the authorsstate that the
control parameters should be carefully chosen. Poor parameter choice can have
the opposite effect, resulting in TCP not being able to operate. The work re-
sembles ours in that a method is presented to react to networkload and allocate
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bandwidth for TCP accordingly. It differs in that we measurethe throughput of
individual flows and allocate bandwidth from this measurements, where they
use the buffer length as a measure of the load.

Clark and Fang propose a framework for allocating bandwidthto different
users during congestion [32]. The focus of the work is TCP bulk-data transfers.
The authors attempt to keep TCP flows in congestion avoidancein the best
case, and fast recovery phase in the worst case, by avoiding dropping several
packets of the same flow in the same RTT. The work resembles ours in that
they attempt to allocate bandwidth between different flows in a fair manner.
It differs from ours in that we assume that the network can change its offered
bandwidth and we focus on maximising TCP throughput, ratherthan trying to
maintain a TCP state in the face of adverse network conditions. In addition, we
allocate bandwidth to flows not only when the network is congested but also in
normal situations as well.

Comprehensive studies have been done related to the performance of TCP
on ATM networks [33, 34]. The main conclusions of the works are similar, the
traffic classes of ATM are poorly suited to the bursty needs ofTCP, due to the
traffic contracts needed by ATM classes. The conclusion in Bonaventure [33] is
that the complexity of choosing traffic parameters for ABR isnot in proportion
to the benefits of carrying TCP/IP traffic. The CBR class is toosimple for TCP,
as only the peak rate is specified.

TCP can also interact with routing decisions and traffic engineering done
by operators on the network layer. TCP and traffic engineering work indepen-
dently of each other, but both try to avoid congestion and make good use of
network resources.

Gaoet.al[35] study the interaction between TCP and a route control mech-
anism for multihomed networks that selects egress link based on performance
measurements. They show that the route selection often can improve TCP
throughput and that the two mechanism interact well given that the route con-
trol react on longer timescales than TCP.

Anderson and Anderson [36] study the interaction between the feedback
mechanisms of adaptive routing and congestion control. They argue that adap-
tive routing can be designed to be stable in conjunction withcongestion control.

He et.al [37, 38] model the interaction between TCP congestion control
and traffic engineering in a network. They show through simulation that the
mechanisms are stable and work effectively together.
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4.3 Traffic engineering in IP networks

Traffic engineering by finding a suitable set of weights in OSPF/IS-IS is a well
studied area of research and it is described in recent textbooks in the area
[39, 40]. When we in paper E revisit the weight setting approach to traffic
engineering we are most inspired by the pioneering works by Fortz and Tho-
rup [41, 42] and Ramakrishnan and Rodrigues [43], in that we use a piece-wise
linear cost function and search heuristics to find suitable weight settings.

Several studies [41, 44, 45, 46] have shown that even though we limit the
routing of traffic to what can be achieved with weight-based ECMP shortest
paths, and not necessarily the optimal weights but those found by search heuris-
tics, it often comes close to the optimal routing for real network scenarios. How
the traffic is distributed in the network very much depends onthe objectives,
usually expressed as a cost function, in the optimisation. An often proposed
objective function is described by Fortz and Thorup [41]. Here the sum of the
cost over all links is considered and a piece-wise linear increasing cost function
is applied to the flow on each link. The basic idea is that it should be cheap
to use a link with small utilisation while using a link that approaches 100%
utilisation should be heavily penalised. Thel-balanced cost function used in
paper C and E is similar in that it uses a piecewise linear costfunction to ob-
tain desirable solutions. Additionally, it gives the operator the opportunity to
set the maximum wanted link utilisation. Cost functions fortraffic engineering
is further investigated by Balonet.al [47]

Paper E add to existing work on weight settings by focusing onrobust-
ness and the objective of achieving a controlled spare capacity for handling
unpredictable traffic shifts. For robust traffic engineering much of the focus is
on handling multiple traffic matrices and traffic scenarios [42, 48, 49, 50, 51]
and handling the trade-off between optimising for the common case or for the
worst case. Nucciet.al [52] investigate link weight assignments that take into
account SLA requirements and link failures.

Xu et.al [53] describe a method to jointly solve the flow optimisationand
the link-weight approximation using a single formulation resulting in a more
efficient computation. Their method can also direct traffic over non-shortest
paths with arbitrary percentages. Their results should also be directly appli-
cable to our problem of providing robustness to changes, by just substituting
their piece-wise linear cost function with our cost function. In a continuation
on this work Xuet.al [54] propose a new link-state routing protocol. The pro-
tocol splits traffic over multiple paths with an exponentialpenalty on longer
paths and achieves optimal traffic engineering while retaining the simplicity of
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hop-by-hop forwarding.
The advantage of optimising the weights in OSPF and IS-IS is of course

easy deployment of the traffic engineering mechanism. However, the disad-
vantage is the difficulties and constraints imposed by usinglegacy routing.
Much of the research also start to take a clean slate approach, not limited to
what can be achieved with todays protocols and argue that future protocols
should be designed with optimisation and manageability in mind from the be-
ginning [55]. The general problem of finding the best way to route traffic
through a network can be mathematically formulated as a multi-commodity
flow (MCF) optimisation problem. In paper C we present a routing algorithm
based of multi-commodity flow optimisation. By aggregatingthe traffic flows
destined for the same egress into one commodity in the optimisation we reduce
the computational complexity. The same approach is used by Fu et.al [56].
They use multi-commodity flow optimisation for centralisedtraffic engineering
combined with a scheme to quickly recompute routing paths when the topol-
ogy changes. MCF optimisation is also used by many other research groups to
address traffic engineering problems including [41, 45, 57]. See also the book
by Pioro and Medhi [39] and references therein.

Most traffic engineering methods (including the weight-setting and optimi-
sation methods described above) need as input a traffic matrix describing the
traffic demand between each pair of nodes in the network. Withthis network-
wide information the routing can often come close to optimal. But the draw-
back is that it is difficult to react quickly to changes without too much traffic
overhead. With local traffic engineering on the other hand the individual nodes
can quickly react to changes in traffic but can possibly create routing loops
and overload elsewhere in the network. An attempt to localise and distribute
the routing decisions is Adaptive Multi-path routing (AMP)[58]. In AMP in-
formation on the traffic situation on links is only distributed to the immediate
neighbours of each router. Hence, AMP relies on local information in neigh-
bouring routers to calculate next hop towards the destination. The Multi-Path
Routing with Dynamic Variance (MRDV) [59] combined with a Loop Avoid-
ance Protocol (LAP) [60] is another approach to localised traffic engineering.
In this approach no load information is exchanged between routers. Instead
the cost of each path towards the destination is weighted by avariance factor
which reflect load on the next hop. Hence, traffic is shifted from heavily loaded
links to links with less load. A related approach is introduced by Vutukuryet.al
[61]. Here the routing decision is divided into two steps. First, multiple loop-
free paths are established using long term delay information. In the second
step the routing parameters along the precomputed paths areadjusted using



4.3 Traffic engineering in IP networks 25

only local short-term delay information.
Local versus network-wide traffic information and novel routing mecha-

nisms versus optimising legacy routing are two ways of categorising traffic
engineering methods. A detailed taxonomy of traffic engineering methods can
be found in RFC 3272 [62] .





Chapter 5

Conclusions

Internet traffic volumes continue to grow at a great rate, nowpushed on by
video and TV distribution in the networks. Increasing traffic volumes and the
introduction of delay and loss sensitive services makes it crucial for operators
to understand and manage the traffic situation in the network. More traffic also
necessitate upgrades of network equipment and new investments for operators,
and keep up-to-date the question of over-dimensioning network capacity versus
using traffic engineering mechanisms for better handling the traffic.

This thesis approaches Internet traffic management on different levels: we
investigate web client behaviour and web traffic characteristics on the applica-
tion layer; we study bandwidth allocation to TCP flows on the transport layer;
and traffic engineering mechanisms for adapting the routingto the current traf-
fic situation on the network layer.

The thesis presents a simple model of web client traffic and based on this
model a traffic generator used for generating realistic traffic in simulations and
lab experiments. The traffic generator has also been implemented in the ns-2
simulator and used in an industrial project for dimensioning and investigation
of how many web users a given network can handle.

This work, presented in paper A, was done in the year 2000. Since then
many new applications have appeared. Today, even though webtraffic still
contribute to a large part of the total traffic in some networks, one would also
need to model other applications like file sharing to get a representative mixture
of traffic.

Also, the web itself has developed a lot and the use of the web has changed
during the last eight years. Web surfing is no longer a sequential transfer of
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static webpages consisting of a html document and a few images. Web pages
today are often much more complex, dynamic and interactive with videos and
advertisements. Downloading a commercial web page can involve communi-
cating with ten different servers including content delivery networks and ad-
vertising companies. The distribution of transfer sizes would look different
today.

Web users also often have many concurrent tabs and web browser windows
running at the same time; for instance having a music video running in the
background (over port 80), and at the same time reading emailand clicking on
links on other web pages. This means that the simple heuristic for detecting
user clicks in paper A no longer would work; and it would be difficult to model
the user behaviour using only packet traces.

If the purpose is to generate realistic traffic based on packet traces then an
alternative [25, 26] is to have a more abstract model of transfers above TCP.
This type of model can include off times and response sizes but does not nec-
essarily capture the high level user and application behaviour; i.e how often the
user clicks on links or how the application involves communication with many
different server.

The thesis also study dynamic allocation of bandwidth to TCPflows. We
evaluate an estimation algorithm, which measures the rate of TCP flows and al-
locates capacity to channels in a DTM network. We use simulation to study the
interaction between the TCP congestion control mechanism and the bandwidth
allocation scheme which both react to changes in network load.

Paper B shows that the measurement-based bandwidth allocator usually
works well for TCP flows but it also highlight a scenario wherepacket loss
make the feedback mechanisms interact in an unfavourable way.

The traffic demands in a network change over time and there canbe un-
predictable changes and shifts, for instance due to hotspots, or because a link
goes down, or because traffic in an overlay is re-directed. For future networks
(as discussed in paper D) more variability in traffic demandsis also expected
due to mobility of nodes and networks and more dynamic on-demand service
level agreements (SLA:s). This means that a network operator can not rely
only on long-term network planning and dimensioning that are done when the
network is first built. Robust traffic engineering mechanisms are needed that
can adapt to changes in traffic demand and distribute traffic to benefit from
available resources.

This thesis proposel-balanced routings as a way for an operator to handle
traffic variability and uncertainties in input traffic data.An l-balanced routing
algorithm based on multi-commodity flow optimisation was presented in pa-
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per C. A heuristic search method for findingl-balanced weight settings for the
legacy routing protocols OSPF and IS-IS was presented in paper E.

L-balanced routing gives the operator possibility to applysimple rules of
thumb for controlling the maximum link utilisation and control the amount
of spare capacity needed to handle sudden traffic variations. It gives more
controlled traffic levels than other cost functions and moreefficient routing
for low traffic loads when there is no need to spread traffic over longer paths.
Paper E shows that the search and the resulting weight settings work well in
real network scenarios.
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Engineering in Operational IP-Networks: An Experimental Study. In
Proceedings of 5th IEEE International Workshop on IP Operations and
Management, Barcelona, Spain, October 2005.
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Abstract

We model a web client using empirical probability distributions for user clicks
and transferred data sizes. By using a heuristic threshold value to distinguish
user clicks in a packet trace we get a simple method for analyzing large packet
traces in order to get information about user OFF times and amount of data
transferred due to a user click. We derive the empirical probability distributions
from the analysis of the packet trace. The heuristic is not perfect, but we believe
it is good enough to produce a useful web client model.

We use the empirical model to implement a web client traffic generator.
The characteristics of the generated traffic is very close tothe original packet
trace, including self-similar properties.
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6.1 Introduction

Measurements on the Internet backbone [1], [2] show that HTTP comprises
approximately 70-75 % of the total traffic. To understand thebehavior of the
aggregated traffic, it is therefore important to understandhow the HTTP traffic
behaves. We have the goal of implementing a traffic generatorwhich can be
used to generate realistic best-effort background traffic in lab networks. When
introducing multiple traffic classes, as in diffserv, the background best-effort
traffic will to some extent disturb higher priority traffic, such as voice, depend-
ing on queue management and scheduling algorithms. To be able to make
realistic lab experiments with traffic classes, we need a webtraffic generator.

We start with a packet trace of web traffic. But we do not want tomodel
the number, size and inter-arrival times of TCP packets since these quantities
are governed by the TCP flow control and congestion control algorithms. The
timing of a connection’s packets as recorded in a trace reflects the conditions in
the network at the time the connection occurred. Due to this adaptation to the
network done by TCP, a trace of a connection’s packets cannoteasily be reused
in another context, because the connection would not have behaved the same
way in the new context [3]. Instead we use the packet trace to characterize the
behavior at a higher level rather than at the packet level.

We base our web client model on user clicks and statistics of the amount
of data transferred as a result of each click. In the packet trace we detect when
a user clicks on a link to get the next web page and from that we deduce how
much data that was transferred in response from the web server, as well as the
time between the end of the transfer to the next click. This time of silence
preceding a click is here calleduser OFF time. The packet trace analysis uses
heuristics to deduce user clicks without the need to parse HTTP requests. This
makes it possible to analyze very large traces and traces which only has the
packet headers recorded.

We use the empirical model to implement a web client traffic generator.
We show that the resulting aggregated traffic from many sources have the same
properties, including self-similarity, as the traffic in the original trace.

The contributions of this paper include heuristics for detecting user clicks
in a packet trace, a simple empirical web client model and a realistic web client
traffic generator.

The remainder of the paper is organized as follows. Section 6.2 gives a
brief introduction to the HTTP protocols, a description of the packet trace and
the method used to extract information from the trace. The resulting empirical
distributions are presented in Section 6.3 and synthetic traffic generation using
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these distributions is described in Section 6.4. The paper is ended with related
work and conclusions.

6.2 Analyzing web traffic

6.2.1 The HTTP protocols

The application-level protocol HTTP exists and is used in more than one ver-
sion. There is yet no formal standard that everybody follows.

HTTP/1.0 [4] is a simple protocol. The web browser establishes a TCP
connection to the web server, issues a request, and reads back the server’s re-
sponse. The server indicates the end of its response by closing the connection.
When a browser using HTTP/1.0 fetches web pages it sets up a new TCP con-
nection for each requested document. Web pages often have many embedded
images, which each is retrieved via a separate HTTP request.Thus, to retrieve
a web page with five images, six different TCP connections arerequired. The
first TCP connection transfers an HTTP GET request to receivethe HTML
document that refers to the five images. A very simple browserwould, when
the HTML document is received, open one new TCP connection toget the first
image. After sending the response the connection is closed by the server and
another connection is opened to get the second image and so on. The use of a
new TCP connection for each image serializes the display of the entire page.
Netscape introduced the use of parallel TCP connections to compensate for
this serialization. When the HTML document is received normally four TCP
connections are opened in parallel for the first four images which decreases the
transaction time for the user.

HTTP/1.1, as it is described in RFC 2616 [5], differs from HTTP/1.0 in nu-
merous ways, both large and small. Of most interest here is the network con-
nection management. The problem in HTTP/1.0 that a new TCP connection
is required for each document is resolved by the use of persistent connections
and the pipelining of requests on a persistent connection. Persistent connec-
tions means that the client and server keep a TCP connection open instead of
the server closing the connection after sending the response. The same connec-
tion can be used to fetch several images and can be kept open even if the user
clicks to another web page as long as the page is located on thesame server.
Pipelining means that a client can send an arbitrarily largenumber of requests
over a TCP connection before receiving any of the responses.HTTP/1.0, in
its documented form, made no provision for persistent connections but some
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implementations use a Keep-Alive header to request that a connection persist.

6.2.2 The packet trace

To get information about user OFF times and the amount of datatransferred
due to a user click, web traffic was captured usingtcpdump[6]. Figure 6.1
shows the network at SICS. The machine runningtcpdump(called network

Gateway
Cisco 4500

Switch
Corebuilder 3500

Network
monitor

Internet

Switch Switch Switch

  station
Work

   station
Work

Figure 6.1: The network at SICS

monitor in the figure) was listening to the 100 Mb/s line connecting all work-
stations at SICS with the gateway. This was used to capture conversations
between machines at SICS and the outside Internet world. Only traffic where
users at SICS were clients was captured, not the HTTP traffic that arise from
people outside visiting the SICS web pages. The packet tracewas taken be-
tween 18:50:04 000222 and 11:17:51 000301 and includes 8317992 packets
transferred between TCP port 80 on web servers and 181 different clients at
SICS. The amount of HTTP traffic varies of course during the day and dur-
ing the week (Fig. 6.2) depending on how many people are usingthe network.
But also when the traffic is studied on lower time scales from hours down to
milliseconds there is a lot of variation in the number of bytes and packets sent.

Figure 6.3 shows the traffic during one of the busiest hours where at most
52 client were active. A few years ago Lelandet al. [7] showed that LAN
traffic is bursty on many time scales in a way that can be well described using
self-similar processesand later Crovellaet al. [8] showed that this also holds
for web traffic. The degree of self-similarity is expressed using the so called
Hurst parameter. This parameter can take any value between 0.5 and1 and
the higher the value the higher the degree of self-similarity. For Poisson traffic
the value isH = 0.5. An often used heuristic graphical method to estimate
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the Hurst parameter is the Variance-Time plot which relies on the fact that a
self-similar process has slowly decaying variances. For a detailed discussion
of self-similarity and the methods used for estimating the Hurst parameter see
Lelandet al. [7] and Crovella and Bestavros [8]. Figure 6.4 shows an estimate
of the Hurst parameter for the hour 11:00-12:00 000228 usingthe Variance-
Time plot. The value is 0.87 so the traffic during that hour canbe said to
be self-similar meaning bursty on many time scales. Self-similarity expressed
using the Hurst parameter seems to be a good way of describingthe behavior
of real web traffic and it would be good if the generated trafficalso have the
same properties.
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6.2.3 Detecting user clicks

When a user clicks on a link to get the next web page, the browser sends a
HTTP request to the server. We want to detect these requests and separate
them from requests for parts of a web page. To separate a request due to a user
click from other requests the time of silence preceding it isinvestigated. A
request is assumed to be due to a user click if it is preceded byenough time of
silence, an interval here calledTclick, where no HTTP traffic is sent to or from
this client. The packet trace doesn’t contain application level HTTP requests
and responses, but only lower level TCP/IP packet headers. Different users
use different browsers with different number of parallel TCP connections and
where some use persistent connections and some don’t. This means that the
start and end of connections cannot be used to determine if a user have clicked
on a link to fetch a new web page. Instead only the time betweenthe last
HTTP response (or request) and a new request is considered, irrespective of
which TCP connection the client uses for the transfer. Sincethe HTTP client
sends almost only requests, we assume that every TCP packet from a client
- carrying some payload data (not pure acknowledgment or control packet) -
is transferring a HTTP request. If the transfer of a TCP packet that carries a
request is preceded by a period ofTclick seconds where no data is transferred to
or from this client then we assume that this packet represents a user click. The
problem is to determine the value ofTclick. The value should be large enough,
so that requests for parts of the same web page is not counted as user clicks,
and small enough to separate different user clicks.

Similar problems have been addressed by Mah [9] and by Crovella and
Bestavros [8]. When investigating packet traces in order todetermine the num-
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ber of files per web page, Mah uses the threshold value 1 secondto sepa-
rate connections that belongs to different web pages. The main reason for the
choice of this value was that users will generally take longer than one second
to react to the display of a new page before they order a new document re-
trieval. When investigating causes of self-similarity in WWW traffic, Crovella
analyses OFF times and concludes that times in the range of 1 ms to 1 second
is likely to be strongly determined by machine processing and display time for
data items that are retrieved, not due to users examining data.

For each request we calculated the time of silence precedingit. From these
times the requests were sorted and counted. Figure 6.5 showsthe result with

0

0.5

1

1.5

2

2.5

3
x 10

5

# r
eq

ue
sts

0.0−0.2 0.2−0.4 0.4−0.6 0.6−0.8 0.8−1.0 1.0−1.2 1.2−1.4 1.4−1.6 1.6−1.8 1.8−2.0 > 2 seconds 

Figure 6.5: Time of silence preceding HTTP requests

time of silence in 0.2 second bins ranging from 0 to 2.0 seconds. We chose the
valueTclick = 1 second, even though the values in Figure 6.5 might suggest
that an even smaller value would have been reasonable.

In order to validate that the method and threshold value described really
gives reasonable results we used a proxy X-server that logged time-stamps on
the mouse button-up events when using Netscape. This was used to log the
actual clicks made and at the same time tcpdump was used to capture all web
traffic to and from the client. The packet trace was analyzed using the threshold
valueTclick = 1 second in order to detect user clicks. The time-stamps of the
detected clicks were compared to the time-stamps in the X-server log. The
result is shown in Table 6.1. If a click detected in the trace has a time-stamp
equal to (or very close to) a time-stamp in the log file it is called ahit. If a
detected click in the trace does not correspond to a real click it is called afalse
click and if a click in the log file is not detected in the packettrace it is said to
bemissed.
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# detected clicks in trace 629
# real clicks in log 532

Hits 519 (97%)
Missed 13 (3%)
False 110 (18%)

Table 6.1: Examination of the clicks detected

Approximately 97% of the real clicks were detected and 82% ofall detected
clicks were correct. It should be emphasized that since onlyquite a small
number of clicks have been investigated and the timing of requests depends
on the user, the machine used, what pages are visited and so onthe results in
Table 6.1 should only be seen as coarse estimates. A closer examination of the
packet trace shows that twelve of the false clicks were due toretransmissions
of requests but the main reason for the many false clicks is that requests for
part of a web page is sometimes preceded by more than one second of silence
and thus detected as user clicks. In general, clicks are missed because the
client quickly clicks to navigate to another web page beforethe transfer of the
previous one was completed. In that case there is no one-second interval of
silence preceding the request so the click is not detected. So, not all but too
many clicks are detected. A larger value ofTclick would give less false but
more missed clicks. The method used to detect clicks is not perfect but from
the results in Table 6.1 it seems to be good enough to be useful.

6.2.4 User sessions

Since a client that begins with an hour of silence or takes a two week vacation
is not very useful in a traffic generator we also need to break up the traffic into
user sessions. The notion of a session is supposed to cover the time interval
when a user is active and uses the browser to fetch and read webpages. This is
vague and hard to define, especially in terms of packets sent and received. We
define a session to be an interval in which a user creates WWW traffic without
being silent for more than a certain time. That is, a session starts when the first
web page is fetched (the first request is made) and ends when the last page is
received (but not yet read). If no request or response is sentfor a certain time, a
threshold value here calledTsession, then the next request is the start of a new
session. We used the valueTsession = 15 minutes.
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Figure 6.6: Histogram of time between end of response and next click

6.2.5 Data analysis

Awk was used to extract the needed information from the tcpdump file. The
extracted data was later investigated further using Matlab. Only information
about packets carrying payload data was extracted. The input to Matlab was a
matrix where each such packet was represented with a time-stamp in microsec-
onds, a unique client id, direction (client request or server response), and the
packet size without headers. A Matlab program was written which for each
client went through the times between requests and responses and usedTclick

to detect user clicks and determine user OFF-times and the amount of data
transferred as response to a user click.

6.3 Empirical distributions

In this section, we use the packet trace and the heuristics from the previous
section to develop the two empirical distributions needed to model web client
traffic.

6.3.1 OFF times

In Figures 6.6 and 6.7 a histogram and the cumulative distribution function
(CDF) of the time from the end of the response to the next user click are shown.
There were a total of 90621 user OFF-times in the data set. Theminimum time
was 1.000003 seconds, just above theTclick threshold of one second. The
maximum is determined by the value ofTsession=15 minutes. The median



6.3 Empirical distributions 51

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time from end of response to next click (seconds)

CD
F

Figure 6.7: Empirical CDF of time between end of response andnext click

time was 9.8 seconds and the mean 49.39 seconds with a standard deviation of
109.7 seconds. The coefficient of variation was 2.2.

There are several peaks in the histogram, most noticeable at10, 60, 120,
180 and 300 seconds. A closer examination of the packet traceshows that
for each of these peaks there is a single client that causes most of them. For
instance, the peak at 10 seconds originates from a client that for 12 hours re-
peatedly sends requests to check if the web page has been modified and the
peak at 300 is due to somebody updating their stock-exchangerates every five
minutes. It is not obvious whether these periodic OFF-timesshould be in-
cluded or characterized as anomalies and thus be removed from the data set.
The requests are not really user clicks but the OFF times are apart of the real
traffic so we let them contribute to the empirical distribution in Figure 6.7.

6.3.2 Amount of data transferred due to a single user click

The amount of data transferred from servers as response to a single user click
varies a lot. On one occasion 31940163 bytes were transferred and at other
times no data at all was received by the client. In Figure 6.8 only the part of
the CDF that covers values below 250000 bytes is shown. The median was
7145 bytes and the mean was 39142 bytes with a standard deviation of 317753
bytes. The coefficient of variation was 8.1.
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Figure 6.8: Empirical CDF of the amount of data transferred as response to a
user click (linear x-axis at top and logarithmic at bottom).

6.4 Generating traffic

By using the distributions in Section 6.3, traffic can be generated that resembles
a number of users surfing the web — reading web pages (OFF times) and
clicking on links to get the next one (data transfer).

6.4.1 The traffic generator

The traffic generator was implemented in the C programming language and has
a client and a server part. Values from the empirical distribution for OFF-times
(Fig. 6.7) and data transferred (Fig. 6.8) was pre-computedand written to a file
using the inverse transformation method described, for instance, by Jain [10].
The client reads from the file the OFF time and the amount of data that should
be transferred and sends the latter as a request to the server. The server side
just accepts requests and replies by sending the demanded amount of data. The
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number of different clients is given as input to the program and each client is
represented by a process that repeatedly goes through the loop of requesting
and receiving data according to the distribution of data transferred due to a
single user click and then goes to sleep for a time described by the distribution
of OFF times until the next request is made.

6.4.2 Evaluation

Traffic resembling 60 clients was generated on a 10 Mb/s link between two
machines. In order to validate that the OFF times and the amount of data
transferred follows the distributions the generated traffic was captured using
tcpdump and analyzed in the same way as the original packet trace. Figures 6.9
and 6.10 show the distributions for the generated traffic anda comparison with
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Figure 6.9: OFF times

the originals (dotted line). In the traffic generator no request is sent for a zero
bytes response so the CDF for the amount of data transferred lies somewhat
lower than the original.

There is a lot of variation in the number of packets that are transferred in
one second (Fig. 6.11) and a Hurst parameter value of 0.76 (Fig. 6.12) indicates
that the generated traffic, like real web traffic, is bursty onmany time-scales.

6.5 Related work

Two approaches can be used to generate network traffic that imitates real web
traffic. The first is simply to replay packet traces of real webtraffic. But, be-
cause of TCP’s flow and congestion control the timing of packets in a trace
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reflects the condition in the network when the trace was takenand this timing
would not be the same in another context. The alternative is to gather infor-
mation about, and mathematically describe, those aspects of the web traffic
that one believe is most important and from this model generate traffic. This
approach was used by Barford and Crovella [11].

To get information about web traffic three different approaches have been
widely used: server logs, client logs and packet traces. Server logs cannot
easily be used to describe the client side since a client usually accesses many
different web servers. To capture the client accesses between multiple servers,
client logs can be used. This approach requires that browsers can log their re-
quests, that the source code for the browser is available so that logging can be
added, or that some other way to log the clients behavior is available. Catledge
and Pitkow [12], Cunhaet al. [13] and Crovella and Bestavros [8] use instru-
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Figure 6.12: Estimate of the Hurst parameter

mented versions of the Mosaic web browser. Barfordet al. [14] use HTTP
proxies to track all documents referenced by unmodified Netscape Navigator
clients. The third approach of gathering data, and the method used here, is to
analyze packet traces taken from a subnet carrying HTTP traffic. This method
was used by Stevens [15] to analyze the traffic arriving at a server, and by
Mah [9] to model the client side of the HTTP traffic. A further step is taken
by Anja Feldman [16] when extracting full HTTP level as well as TCP level
traces via packet monitoring.

6.6 Conclusions and future work

We have presented an empirical model for web client traffic. The model is
based on user click behavior combined with statistics of theamount of data
transferred per click. The user clicks, or actually the silence times before a
click, and the amount of data are modeled using cumulative distribution func-
tions. By using a heuristic threshold value to distinguish user clicks in a packet
trace, we get a simple method for analyzing large packet traces without the
need for parsing HTTP requests. The result of the analysis are data defin-
ing the two distribution functions. The simplicity of the heuristic packet trace
analysis may have a price in accuracy. A verification, however, shows that the
heuristics correctly detect 82 % of the actual user clicks from the packet trace.
We believe that this is sufficiently accurate to produce a good empirical model.

We have implemented a web client traffic generator which takes the cu-
mulative distribution functions as input. We have shown that the generated
synthetic traffic have the same characteristics as the original packet trace by
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applying the same analysis to a trace of the generated traffic. We have also
verified that the aggregated generated traffic from many clients has self-similar
properties just like the original trace.

Future work include analyzing packet traces from more networks and com-
paring the resulting distribution functions. We plan to usethe traffic generator
to generate best-effort background traffic in lab experiments with voice-over-
IP and multiple traffic classes. We also plan to release the source code to the
analysis software and the traffic generator shortly.
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Abstract

New optical network technologies provide opportunities for fast, controllable
bandwidth management. These technologies can now explicitly provide re-
sources to data paths, creating demand driven bandwidth reservation across
networks where an applications bandwidth needs can be meet almostexactly.
Dynamic synchronous Transfer Mode (DTM) is a gigabit network technology
that provides channels with dynamically adjustable capacity. TCP is a reli-
able end-to-end transport protocol that adapts its rate to the available capacity.
Both TCP and the DTM bandwidth can react to changes in the network load,
creating a complex system with inter-dependent feedback mechanisms. The
contribution of this work is an assessment of a bandwidth allocation scheme
for TCP flows on variable capacity technologies. We have created a simulation
environment using ns-2 and our results indicate that the allocation of bandwidth
maximises TCP throughput for most flows, thus saving valuable capacity when
compared to a scheme such as link over-provisioning. We highlight one situ-
ation where the allocation scheme might have some deficiencies against the
static reservation of resources, and describe its causes. This type of situation
warrants further investigation to understand how the algorithm can be modified
to achieve performance similar to that of the fixed bandwidthcase.
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7.1 Introduction

Reliable transfer of data across the Internet has become an important need.
TCP [1] is the predominant protocol for data transfer on the Internet as it offers
a reliable end-to-end byte stream transport service. Emerging optical network-
ing technologies provide fast, cheap and variable capacitybandwidth links to
be setup in milliseconds allowing data-driven virtual circuits to be created when
needed. One example of an application that could use such a service is the
backup of critical data.

Exact allocation of bandwidth to TCP flows would alleviate complex traf-
fic engineering problems such as provisioning and dimensioning. Allocating
bandwidth to TCP is a complex problem; the TCP congestion control mech-
anism plus network dynamics can make exact allocation for TCP data flows
difficult. The contribution of this paper is the performanceevaluation of an
estimation algorithm, which measures the rate of TCP flows and allocates ca-
pacity on a DTM network.

Dynamic Synchronous Transfer Mode [2] [3] is a gigabit ring based net-
working technology that can dynamically adjust its bandwidth. DTM offers a
channel abstraction, where a channel consists of a number ofslots. The num-
ber of slots allocated to a channel determines its bandwidth. The slots can be
allocated statically by pre-configured parameters, or dynamically adjusted to
the needs of an application. In DTM it is possible to allocatea channel to
a specific TCP connection, or to multiplex several TCP connections over the
same channel. We mostly investigated cases where each TCP connection is as-
signed to a separate channel, but show one case in which two TCP connections
compete for a single channel. The DTM link capacity is only allocated in the
forward direction in this study, we have not performed any allocation for TCP
acknowledgements.

TCP uses an end-to-end congestion control mechanism to find the optimal
bandwidth at which to send data. In order to get good throughput with TCP
operating over a technology such as DTM, it is important to understand the dy-
namic behaviour of the two schemes, especially when evaluating a bandwidth
allocation strategy. TCP is capable of adjusting itsratewhilst DTM is capable
of changing itscapacity. In dynamically interacting systems, it is possible to
create unwanted oscillations resulting in under allocation or over allocation of
bandwidth to TCP flows. In order to evaluate the performance of the DTM
bandwidth allocator, we have implemented the algorithm in the network simu-
lator ns-2. We have performed a number of simulations that include single and
multiple TCP flows, links with varying delay characteristics, different buffer
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sizes, plus TCP Reno and Tahoe variants.
Section 7.2 outlines DTM and our estimation algorithm, simulation experi-

ments are given in Section 7.3, related work follows in Section 7.4, and finally
conclusions and a discussion are given in Section 7.5.

7.2 Dynamic Synchronous Transfer Mode

DTM uses a TDM scheme where time slots are divided into control and data
slots. The control slots are statically allocated to a node and are used for sig-
nalling. Every node has at least one control slot allocated that corresponds to
512 kbps of signalling capacity. The data slots are used for data transmission
and each slot is always owned by a node. A node is only allowed to send in
slots that it owns. The ownership of the slots is controlled by a distributed al-
gorithm, where the nodes can request slots from other nodes.The algorithms
for slot distribution between the nodes affect the network performance. Each
slot contains 64 bits and the slots are grouped in 125 microsecond long cycles.
The bit rate is determined by the number of slots in a cycle, soone slot corre-
sponds to a bit rate of 512 kbps. By allocating a different numbers of slots, the
transmission rate for a channel can be changed in steps of 512kbps.

7.2.1 TCP Rate Estimation and DTM Capacity Allocation

TCP’s rate is simply estimated as the number ofincoming bytes per second.
The algorithm which is presented next calculates the rate bydividing the num-
ber of bytes by the time elapsed. The rate of each flow is calculated ten times
per second, i.e. every 100 ms. This value has been chosen as a compromise
between good measurement granularity and processing overhead. DTM tech-
nology however, has the ability to sample flows up to gigabit speeds, i.e. at
sampling rates higher than 100 ms. Actual slot allocation orchanges are done
only onceevery second, this is slightly coarser due to the overhead ofnodes
potentially having to negotiate slots.

We now describe the TCP bandwidth estimator. Figure 7.1 shows the al-
gorithm used to estimate the rate of a given flow. As stated, every 100 ms the
estimator measures the ratenew in bits per second and compares it with the
previous value,current. A delta of the difference is reduced byDTM SHIFT
in the algorithm. Note this delta is simply shifted, keepingthe complexity of
the calculation to a minimum. In this case it is three, so the current value is
changed by one eighth towards the recently measured flow value, as shown
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dtm calc bw ( new ){
DTM SHIFT = 3
MARGIN = 0.75
CORRIDOR = 2

/* first half - Move last estimate closer */
diff = new - current
if ( diff < 0 ) {

diff = (-diff) ≫ DTM SHIFT
current = current - diff // Decreasing

} else{
diff = diff ≫ DTM SHIFT
current = current + diff // Increasing

}
curr slot = current / slotbw

/* Second half - Last estimate within bounds ? */
if ( curr slot> upperbound )|| (curr slot< lower bound ){

dynBw = currslot + MARGIN + ( CORRIDOR / 2 )
/* only change bw once per sec */
changelink bw (dynBw)
}

}

Figure 7.1: Algorithm for bandwidth estimation

in the first half of the algorithm. This shift effectively determines how ag-
gressively TCP’s rate can be tracked. This default value hasbeen chosen ex-
perimentally, as DTM is a deployed technology. The technical report version
of this paper shows the affect of using other values [4]. Finally the units are
changed from bits per second to slots per second by dividing the rate by the
channel bandwidth and assigning this value to the variablecurr slot.

The second half of the algorithm determines whether it is necessary to
change the slot allocations. The current slot value is compared to upper and
lower bounds before making any changes. An offset, 0.75 of a slot, MARGIN
equivalent to 394 kbits, is added to the TCP throughput estimate so the DTM
allocation will be a little over the estimated rate. Figure 7.2 shows two plots us-
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Figure 7.2: Measured Throughput and Slot Allocation

ing the topology shown in Figure 7.3, the leftmost plot is theactual measured
bandwidth of a single TCP flow. The right plot shows the effectof adding
MARGIN and measuring the rate in slots. If the allocation was based purely on
this estimate it would under allocate bandwidth, causing TCP reduce its win-
dow because of congestion on the link. The rightmost graph iscoarser due to
the second granularity of the bandwidth changes. The plots illustrate how the
estimation can be used to give TCP the bandwidth it needs and hence maximise
throughput. One can also see in this figure that estimation starts after 100 ms
but a change is not applied to the offered bandwidth before the first second.
Note also the y-axis in Figure 7.2b) is in slots per second andnot bits per sec-
ond as in the left figure. Additionally, aCORRIDOR is an amount the estimate
is allowed to vary before slots are added or decreased for a channel. This is not
visible in the plots but will be illustrated later. The purpose is to avoid small
fluctuations causing unnecessary costly slot allocation changes. As mentioned,
slot changes can be time consuming due to the distributed nature of DTM [5].

7.3 Simulation Tests

This section presents simulation results that show how the DTM estimation
algorithm adapts the offered bandwidth to TCP flows. Figure 7.3 shows the
topology we used for the following simulations. The 5 Mbits per second link
between nodes two and three is the bottleneck link. The link between nodes
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Figure 7.4: Dynamically allocated bandwidth on a DTM link (50 packet queue)

three and four is the DTM link with dynamically allocated bandwidth. Ini-
tially the DTM link is set to 10 Mbits per second. This value was chosen
simply for convenience, since simulating a 622 Mbits per second link with
large bandwidth flows is not feasible in a packet level simulator like ns-2. The
other two links also have a capacity of 10 Mbits per second. A bulk trans-
fer TCP Reno flow was setup between nodes one and five and the throughput
measured at node three, in order to allocate bandwidth on theoutgoing DTM
link. In this first simulation the queue length in node 2 was set to 50 packets,
figure 7.4 shows the result. In congestion avoidance the TCP flow increases
the congestion window by the maximum segment size bytes eachRTT sec-
onds. However, the increase is not made each RTT. Instead TCPwill increase
MSS/congestion window bytes each time an ACK is received. This means
that after RTT seconds, the congestion window was increasedby MSS bytes.
This continues until the TCP flow has filled the buffer space atthe bottleneck
link, resulting in a packet drop. TCP Reno, using fast retransmit and fast recov-
ery, then reduces the congestion window by half and continues with conges-
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Figure 7.5: Dynamically allocated bandwidth on a DTM link (10 packet queue)

tion avoidance. The congestion window, therefore, followsa sawtooth curve.
If enough buffer space is available at the bottleneck link, the rate of the TCP
flow, perceived after the second link, is not affected when the congestion win-
dow is reduced. This mechanism and result can be seen in left and middle plots
of Figure 7.4. The rightmost plot shows the dynamically allocated bandwidth
on the DTM link. It can be seen that TCP actually manages to getabout one
Megabit per second more on the DTM link due to the extra capacity allocated
to the flow through the addition ofMARGIN. It should be stated in a real de-
ployment of TCP over DTM that this value is settable by network operators.
Its affect can be tested in simulation environments such as this if necessary.

Figure 7.5 shows the results when the queue size at the bottleneck link is
limited to ten packets. This could be the case if a static allocation over the
DTM network has been setup. Now the rate of the TCP flow changeswith
the congestion window, but the changes are too small to affect the dynamic
allocation of bandwidth. This is due to the corridor mentioned earlier to avoid
small changes from incurring changes in the slot allocationscheme. Figure 7.6
shows the case in which the simulation with a small queue sizeand a 50 ms
link delay has been repeated using TCP Tahoe instead of TCP Reno. TCP
Tahoe only relies on the retransmission timer and does not use fast retransmit.
When a packet is dropped, the congestion window is set to one and slow-start
is invoked. We can see that the allocation on the DTM link closely follows the
sharp saw tooth behaviour of TCP Tahoe Figure 7.6c).
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node 2 node 5node 3node 1 node 4

Sender 1

Sender 2

node 6 node 7

Receiver 1

Receiver 2

.

5Mbits/sec
10ms

100Mbits/sec
10ms

. .
10 packets

TCP Rate
Estimator

DTM Link
10 Mbits/sec

Experiment 1) Fixed Capacity

100 Mbits/sec
10ms

5Mbits/sec
10ms

100Mbits/sec
10ms

Experiment 2) Variable Capacity
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7.3.1 Two Flows Per Channel and Small Router Buffers

So far, we have shown cases where the dynamic allocation of bandwidth has
allowed TCP to maximise its throughput. We illustrate one case next when the
algorithm has weaknesses to allocate sufficient bandwidth to two TCP Reno
flows. In this scenario the fixed link case performs better. Figure 7.7 shows
the topology that we used. It differs from previous simulations in that the flows
have their own input buffer at node two but share a common output buffer in the
same node. This buffer is also served ten times faster than inprevious cases
by the fact that the link feeding the DTM network was set to 100Mbits per
second. In this case the queue length of a DTM link, node three, was limited
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to ten packets.
Figure 7.8 shows the results when the link capacity between nodes 3 and

4 was fixed at 10 Mbits per second. We can see that both flows manage to
reach their 5 Mbits throughput, effectively sharing equally one DTM channel.
If we now turn our attention to the same simulation but replace the static link
between nodes three and four with a variable one the results are quite differ-
ent. Figure 7.9 shows the dynamically allocated bandwidth on the DTM link.
Neither of the flows manage to reach 5 Mbits per second on theiroutput links.
In this case packets are being dropped in the output buffer ofnode three. This
can be seen in the congestion windows of the two flows, they never manage to
maintain the size of the static case, about 100 segments. Theproblem in this
case is the estimation algorithm should notdecreasethe estimationif packets
are being dropped. The algorithm is symmetric, it increasesor decreases de-
pending on the measured rate. Additionally the effect of theshort queue does
not help, there is not sufficient pressure with a small queue to keep the rate up,
with a larger buffer there is more pressure due to accumulated packets. Inter-
estingly, the algorithm actually correctly allocates for the observed throughput,
however does not maximise the TCP throughput.

Some researchers have put forward TCP variants which are capable of es-
timating the bandwidth such as TCP Westwood [6], which do notsolely rely
on packet loss for congestion. It is not clear whether TCP variants such as this
will improve on the situation above without substantial simulations. However
other TCP variants would be worthy of investigation. The important point to
note is that it is important to detect loss early and this can be done by monitor-
ing queues for the local node or even via mechanisms such as RED or ECN for
upstream nodes.

Our conclusion is that in the face of loss at a node the estimation algo-
rithm should not decrease to allow TCP to recover. So a special case for
loss could be introduced,during lossthe rate could be estimated but no ac-
tion is taken to adjust the bandwidth. One other solution would be to adjust
the rate more slowly when allocatingless bandwidth. This is trivial in the
present scheme, theDTM SHIFT variable can be split intoDTM SHIFT INC
andDTM SHIFT DEC where a decrease in bandwidth takes place at a slower
rate. This might have adverse affects on a normal behaving system so, once
again would need to be validated with further simulations. We note that [7]
also performed comparisons with the fixed link case and show in one experi-
ment that the dynamically allocated link was not able to achieve the throughput
of a fixed link case. With a certain selection of parameters itwas only possible
to allocate slightly over half of the fixed link case. We conclude that it is not
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always possible to perform as the fixed link case, however comparisons, wher-
ever possible should be performed. The savings of allocating just the required
bandwidth, however can be considerable. This was the methodology employed
during our investigation.

7.4 Related Work

Work on estimating and maximising TCP throughput for variable capacity links
is relatively scarce. However comprehensive studies have been done related to
the performance of TCP on ATM networks [8] [9] [10]. The main conclusions
of the works are similar, the traffic classes of ATM are poorlysuited to the
bursty needs of TCP, due to the traffic contracts needed by ATMclasses. The
conclusion of [8] is that the complexity of choosing traffic parameters for ABR
is not in proportion to the benefits of carrying TCP/IP traffic. The CBR class
is too simple for TCP, as only the peak rate is specified. Most of the DTM
research in this area focuses on the distributed slot allocation for example [5].

Clark and Fang propose a framework for allocating bandwidthto different
users during congestion [11]. The focus of the work is TCP bulk-data transfers.
The authors attempt to keep TCP flows in congestion avoidancein the best
case, and fast recovery phase in the worst case, by avoiding dropping several
packets of the same flow in the same RTT. The conclusions of thegiven work
are similar to those of [8], that TCP connections can have difficulties to fill their
alloted bandwidth. The work resembles ours in that they attempt to allocate
bandwidth between different flows in a fair manner. It differs from ours in that
we assume that the network can change its offered bandwidth and we focus
on maximising TCP throughput, rather than trying to maintain a TCP state in
the face of adverse network conditions. In addition, we allocate bandwidth to
flows not only when the network is congested but also in normalsituations as
well.

Sterbenz and Krishnan investigate TCP over Load-Reactive Links in a ICNP
publication [12] and a technical memorandum [7]. They use a hysteresis con-
trol mechanism for capacity allocation. Buffer levels are monitored (as in [13])
and if the occupancy is greater than a threshold the capacityis increased and
vice versa. This approach is not the same as ours, we measure the rate of in-
coming TCP flows at the router before the DTM link rather than the buffer
level in the router at the outgoing DTM link. Their scheme is dependent on
keeping buffers occupied all the time, otherwise the link capacity will fall and
hence the throughput. A single TCP flow is simulated and the authors state that
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the control parameters should be carefully chosen. Poor parameter choice can
have the opposite effect, resulting in TCP not being able to operate, as stated
previously. The work resembles ours in that a method is presented to react to
network load and allocate bandwidth for TCP accordingly. Itdiffers in that
we measure the throughput of individual flows and allocate bandwidth from
this measurements, where they use the buffer length as a measure of the load.
Our system is less scalable, but more accurate, as we can ascertain exactly the
bandwidth of the incoming TCP connections. Also there is no need to keep
buffers occupied to allocate bandwidth for TCP connections. Also there is no
potential interaction between several dynamic allocationschemes running on
the same node.

Lundqvist evaluates different algorithms for bandwidth allocation for DTM
channels transporting IP traffic [13]. The algorithms were assessed with respect
to throughput, delay and bandwidth changes per second. TCP rate adjustment
is done by placing the incoming packets into a buffer and adding and removing
slots if the level of the buffer exceeds continuously maintained threshold val-
ues. He concludes that adaptive strategies are recommendedfor TCP, however
too frequent changes can be undesirable in a DTM network due to the process-
ing cost. The main conclusion from this work is that the choice of algorithm
can play a significant role in the performance. This work is similar to ours in
that the goal is a slot allocation for TCP traffic over DTM. We also agree it
is important to keep the computational complexity low and DTM bandwidth
changes as infrequent as possible. It differs from ours in that we measure the
rate of each TCP flow, whilst he looks at the outgoing buffer length as a sign to
increase or decrease the number of slots. We look more into network scenarios
such as different link delays, buffer lengths and use two different TCP types,
TCP Reno and Tahoe.

7.5 Conclusions

We have analysed a complex problem, allocating bandwidth toa protocol that
can adapt its rate. The benefits of guaranteeing throughput for an application
using TCP can be very beneficial, in particular the cost savings when paying
per unit of transmission. The goal was to investigate the behaviour of our
bandwidth estimation scheme, its affect on TCPand on a network that can
vary its capacity, in this case DTM. Our work however is not only limited to
DTM technology, we can draw the same conclusions about TCP performance
on any high speed network technology that offers variable capacity.
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We have written a simulation environment using ns-2, and found that in
almost all cases, TCP could be allocated a share of the channel identical to its
measured throughput on a fixed network. We identified one scenario in which
the algorithm could be improved, when packets are dropped ata router with
a small buffer. In this situation the estimation algorithm should not reduce
the offered bandwidth further, resulting in less offered bandwidth and further
packet loss. Instead it should allow TCP to find the new capacity available in
the network. The combination of the small buffer size plus high speed input
link aggravates this observed deficiency.

There are some other open issues, the system as described relies on measur-
ing individual TCP flows, therefore methods that encapsulation such as MPLS
would hinder us from measuring single flows. An alternative is to monitor and
measure aggregate flows, however this was not the focus of ourwork. DTM
is a fast MAN technology and can monitor flows at gigabit speeds, however if
a bandwidth allocation scheme would be used in a non-DTM environment, es-
pecially in a backbone, some consideration would be needed for the sampling
and measuring rate one can achieve with thousands of TCP flows. Aggregation
of flows in this context would be a viable alternative.

We have only considered bulk data transfers, as the scheme measures flow
bandwidths, it is not feasible to allocate bandwidth for allTCP flows, partic-
ularly http transfers as most data is transferred during theslow-start phase of
a TCP connection, e.g. banners, buttons etc. Another issue is capacity pro-
visioning for ACKs, we assumed the return path for acknowledgements is not
constrained. In our experiments we had a return channel of 512 kbits per sec-
ond which was more than adequate to support the forward data rates we were
using, a maximum of 100Mbits per second. Further investigation is needed to
state where problems could arise as well as potential solutions.

We have not considered well known scenarios such as satellite links with
large bandwidth-delay products or more interestingly, where the control loops
are sensitive to delay. We believe some benefit would be gained by looking
at this problem (and others with time sensitive mechanisms)from a control
theory perspective rather than the traditional networkingapproach, Westwood
referenced earlier, takes exactly this approach.

In a simulation environment the parameter space is large. Due to space
limitations we have only discussed a key subset of possible buffer sizes, link
bandwidths, link delays and TCP variants. Parameters that are worthy of fur-
ther investigation include sampling times and estimation thresholds. Further
results, plus validation tests for using ns-2 in these kind of simulations, can be
found in the technical report [4].
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Abstract

Intra-domain routing in the Internet normally uses a singleshortest path to
forward packets towards a specific destination with no knowledge of traffic de-
mand. We present an intra-domain routing algorithm based onmulti-commodity
flow optimisation which enable load sensitive forwarding over multiple paths.
It is neither constrained by weight-tuning of legacy routing protocols, such
as OSPF, nor requires a totally new forwarding mechanism, such as MPLS.
These characteristics are accomplished by aggregating thetraffic flows des-
tined for the same egress into one commodity in the optimisation and using a
hash based forwarding mechanism. The aggregation also results in a reduction
of computational complexity which makes the algorithm feasible for on-line
load balancing. Another contribution is the optimisation objective function
which allows precise tuning of the tradeoff between load balancing and total
network efficiency.
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8.1 Introduction

As IP networks are becoming larger and more complex, the operators of these
networks gain more and more interest intraffic engineering[1]. Traffic en-
gineering encompasses performance evaluation and performance optimisation
of operational IP networks. An important goal with traffic engineering is to
use the available network resources more efficiently for different types of load
patterns in order to provide a better and more reliable service to customers.

Current routing protocols in the Internet calculate the shortest path to a des-
tination in some metric without knowing anything about the traffic demand or
link load. Manual configuration by the network operator is therefore necessary
to balance load between available alternate paths to avoid congestion. One way
of simplifying the task of the operator and improve use of theavailable network
resources is to make the routing protocol sensitive to traffic demand. Routing
then becomes a flow optimisation problem.

One approach taken by others [2, 3, 4] is to let the flow optimisation re-
sult in a set of link weights that can be used by legacy routingprotocols, e.g.,
open shortest path first (OSPF), possibly with equal cost multi-path (ECMP)
forwarding. The advantage is that no changes are needed in the basic routing
protocol or the forwarding mechanism. The disadvantage is that the optimisa-
tion is constrained by what can be achieved with tuning the weights. Another
approach is to use MPLS [5], multi-protocol label switching, for forwarding
traffic for large and long-lived flows. The advantage is that the optimisation is
not constrained, but at the cost of more complexity in the routing and forward-
ing mechanisms.

Our goal is to design an optimising intra-domain routing protocol which
is not constrained by weight-tuning, and whichcanbe implemented with mi-
nor modifications of the legacy forwarding mechanism based on destination
address prefix.

In this paper we present a routing algorithm for such a protocol based on
multi-commodity flow optimisation which is both computationally tractable
for on-line optimisation and also can be implemented with a near-legacy for-
warding mechanism. The forwarding mechanism needs a modification similar
to what is needed to handle the ECMP extension to OSPF.

The key to achieve this goal, and the main contribution of this paper, is in
the modelling of the optimisation problem. We aggregate alltraffic destined for
a certain egress into one commodity in a multi-commodity flowoptimisation.
This reduces the number of commodities to at mostN , the number of nodes,
instead of beingN2 when the problem is modelled with one commodity for
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each pair of ingress and egress nodes. As an example, the computation time
for a 200 node network was in one experiment 35 seconds. It is this definition
of a commodity thatbothmakes the computation tractable,andthe forwarding
simple.

Another important contribution is the definition of an optimisation objec-
tive function which allows the network operator to choose a maximum desired
link utilisation level. The optimisation will then find the most efficient solu-
tion, if it exists, satisfying the link level constraint. Our objective function thus
enables the operator to control the trade-off between minimising the network
utilisation and balancing load over multiple paths.

The rest of the paper is organised as follows. In the next section we de-
scribe the overall architecture where our optimising routing algorithm fits in.
Section 8.3 presents the mathematical modelling of the optimisation problem.
We continue with a short description of the forwarding mechanism in Sect. 8.4.
After related work in Sect. 8.5 we conclude the paper.

8.2 Architecture

In this work we take the radical approach to completely replace the traditional
intra-domain routing protocol with a protocol that is basedon flow optimisa-
tion. This approach is perhaps not realistic when it comes todeployment in real
networks in the near future, but it does have two advantages.First, it allows
us to take full advantage of flow optimisation without being limited by current
practise. Second, it results in a simpler overall solution compared to, e.g., the
metric tuning approaches [2, 3, 4]. The purpose of taking this approach is to
assess its feasibility and, hopefully, give an indication on how to balance flow
optimisation functionality against compatibility with legacy routing protocols.

In this section we outline how the multi-commodity flow algorithm fits
into a complete routing architecture. Figure 8.1 schematically illustrates its
components. Flow measurements at all ingress nodes and the collection of the
result are new components compared to legacy routing. The measurements
continuously (at regular intervals) provide an estimate ofthe current demand
matrix to the centralised flow optimisation. The demand matrix is aggregated
at the level of all traffic from an ingress node destined for a certain egress node.

If a more fine-grained control over the traffic flows are desired, for instance
to provide differentiated quality of service, a more fine-grained aggregation
level can be chosen. This results in more commodities in the optimisation,
which can be potential performance problem. One approach isto introduce two
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Figure 8.1: Routing architecture with flow optimisation.

levels in the optimisation, one with a longer time-scale forquality of service
flows.

The demand matrix is input to the flow optimiser together witha model
of the network. The result of the optimisation is a set of valuesyt

ij , which
encode how traffic arriving at a certain node (i), destined for a certain egress
node (t) should be divided between the set of next hops (j). These values are
used at each node together with a mapping between destination addresses and
egress nodes to construct forwarding tables. Finally, the packet forwarding
mechanism is modified to be able to distinguish packets destined for a certain
egress node, and to forward along multiple paths toward those egresses.

The computation of the multi-commodity flow optimisation algorithm is
inherently centralised. In this paper we also think of the computation as im-
plemented in a central server. If a so-called bandwidth broker is needed or
desired for providing a guaranteed quality of service, it isnatural to co-locate
it with optimisation. We however see the design of a distributed mechanism
implementing flow optimisation as an important future work item.

The timescale of operation is important in an optimising routing architec-
ture. There are several performance issues that put lower bounds on the cycle
flow measurement–optimisation–new forwarding tables. Theflow measure-
ment need to be averaged over a long enough time to get sufficiently stable
values. Our current research as well as others [6] indicate that the needed sta-
bility exists in real networks at the timescale of a few, maybe five to ten, min-
utes. Other performance issues are the collection of the flowmeasurements, the
computation of the optimisation algorithm, and the distribution of the optimi-
sation result. Our initial experiments indicate that a new optimisation cycle can
be started in approximately each five minutes for typical intra-domain sizes.

An issue that we have identified is how to handle multiple egresses for a
destination injected into the domain by BGP, the border gateway protocol. A
straightforward way to solve this is to introduce additional virtual nodes in
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the network to represent a common destination behind both egresses. This
approach may however introduce a large number of additionalnodes. This will
need to be more carefully considered in the future.

8.3 Optimisation

The routing problem in a network consists in finding a path or multiple paths
that send traffic through the network without exceeding the capacity of the
links. When using optimisation to find such (multiple) paths, it is natural to
model the traffic problem as a (linear) multi-commodity network flow problem
(see, e.g., Ahuja et al. [7]), as many authors have done.

First, the network is modelled as a directed graph (this gives the topology,
i.e., the static information of the traffic problem), and then the actual traffic
situation (i.e., the dynamic part of the problem, consisting of the current traffic
demand and link capacity) as a linear program. In modelling the network as a
graph, a node is associated to each router and a directed edgeto each directional
link physically connecting the routers. Thus, we assume a given graphG =
(N, E), whereN is a set of nodes andE is the set of (directed) edges. We will
abuse language and make no distinction between graph and network, node and
router, or edge and link.

Every edge(i, j) ∈ E has an associated capacitykij reflecting the band-
width available to the corresponding link. In addition, we assume a givende-
mand matrixD = D(s, t) expressing the traffic demand from nodes to node
t in the network. This information defines the routing problem. In order to
formulate it as a multi-commodity flow (MCF) problem we must decide how
to model commodities. In the usual approach [7, 2, 8] commodities are mod-
elled as source-destination pairs that are interpreted as “all traffic from source
to destination”. Thus, the set of commodities is a subset of the Cartesian prod-
uctN×N ; consequently, the number of commodities is bounded by the square
of the number of nodes. To reduce the size of the problem and speed-up com-
putations, we model instead commodities as (only destination) nodes, i.e., a
commodityt is to be interpreted as “all traffic tot”. Thus, our set of commodi-
ties is a subset ofN and, hence, there are at most as many commodities as
nodes. The corresponding MCF problem can be formulated as follows:

min {f(y) | y ∈ P12} (MCF 12)

wherey = (yt
ij), for t ∈ N, (i, j) ∈ E, andP12 is the polyhedron defined by
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the equations:

∑

{j|(i,j)∈E}

yt
ij −

∑

{j|(j,i)∈E}

yt
ji = d(i, t) ∀i, t ∈ N (8.1)

∑

t∈N

yt
ij ≤ kij ∀(i, j) ∈ E (8.2)

where

d(i, t) =











−
∑

s∈N

D(s, t) if i = t

D(i, t) if i 6= t

.

The variablesyt
ij denote the amount of traffic tot routed through the link(i, j).

The equation set (1) state the condition that, at intermediate nodesi (i.e., at
nodes different fromt), the outgoing traffic equals the incoming traffic plus
traffic created ati and destined tot, while att the incoming traffic equals all
traffic destined tot. The equation set (2) state the condition that the total traffic
routed over a link cannot exceed the link’s capacity.

It will also be of interest to consider the corresponding problemwithoutre-
quiring the presence of the equation set (2). We denote this problem (MCF 1).
Notice that every pointy = (yt

ij) in P12 or P1 represents a possible solution
to the routing problem: it gives a way to route traffic over thenetwork so that
the demand is met and capacity limits are respected (when it belongs toP12),
or the demand is met but capacity limits are not necessarily respected (when it
belongs toP1). Observe thaty = (0) is in P12 or in P1 only in the trivial case
when the demand matrix is zero.

A general linear objective function for either problem has the formf(y) =
∑

t,(i,j) bt
ij yt

ij . We will, however, consider only the case when allbt
ij = 1

which corresponds to the case where all commodities have thesame cost on
all links. We will later use different objective functions (including non-linear
ones) in order to find solutions with desired properties.

8.3.1 Desirable Solutions

In short, the solutions we consider to be desirable are thosewhich areefficient
andbalanced. We make these notions precise as follows.

We use the objective function considered above,f(y) =
∑

t,(i,j) yt
ij , as

a measure of efficiency. Thus, giveny1, y2 in P12 or P1, we say thaty1 is
more efficientthany2 if f(y1) ≤ f(y2). To motivate this definition, note that



84 Paper C

whenever traffic between two nodes can be routed over two different paths of
unequal length,f will choose the shortest one. In case the capacity of the
shortest path is not sufficient to send the requested traffic,f will utilise the
shortest path to 100% of its capacity and send the remaining traffic over the
longer path.

Given a pointy = (yt
ij) as above, we letYi,j =

∑

t∈N yt
ij denote the

total traffic sent through(i, j) by y. Every suchy defines autilisationof edges
by the formulau(y, i, j) = Yij/kij , andu(y, i, j) = 0 whenkij = 0. Let
u(y) denote the maximum value ofu(y, i, j) where(i, j) runs over all edges.
Given anℓ > 0, we say thaty ∈ P12 (or y ∈ P1) is ℓ-balancedif u(y) ≤ ℓ.
For instance, a solution is (0.7)-balanced if it never uses any link to more than
70 % of its capacity.

8.3.2 How to Obtain Desirable Solutions

Poppe et al. [8] have proposed using different linear objective functions in order
to obtain traffic solutions that are desirable with respect to several criteria (in-
cluding balance, in the form of minimising the maximum utilisation of edges).
Fortz and Thorup [2, 3], on the other hand, considers a fixed piece-wise linear
objective function (consisting of six linear portions for each edge) which makes
the cost of sending traffic along an edge depend on the utilisation of the edge.
By making the cost increase drastically as the utilisation approaches 100 %,
the function favours balanced solutions over congested ones. As the authors
express it, their objective function “provides a general best effort measure”.

Our contribution is related to the above mentioned work in that we use
different objective functions to obtain desirable solutions, and the functions are
piece-wise linear and depend on the utilisation. In contrast, our work defines
different levels of balance (namely,ℓ-balance). For each such level, a simple
piece-wise linear objective function consisting of two linear portions for each
edge isguaranteedto find ℓ-balanced solutions provided, of course, that such
solutions exist. Moreover, the solution found is guaranteed to be more efficient
than any otherℓ-balanced solution.

Another distinctive feature of our functions is that they are defined through
a uniform, theoretical “recipe” which is valid for every network. We thus elim-
inate the need to use experiments to adapt our definitions andresults to each
particular network. Finally, the fact that our functions consist of only two linear
portions, shorten the execution time of the optimisation.
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Figure 8.2: The link cost functionCℓ,λ.

8.3.3 The Result

To formulate our result we need to introduce some notation. Let y = (yt
ij) be

a point ofP12 or P1, and suppose given real numbersλ > 1 andℓ > 0. We
define the link cost function (illustrated in Fig. 8.2)

Cℓ,λ(U) =

{

U if U ≤ ℓ

λ U + (1 − λ) ℓ if U ≥ ℓ
.

We use this function in the definition of the following objective function:

f ℓ,λ(y) =
∑

(i,j)∈E

kij Cℓ,λ(u(y, i, j))

We also need to define the following constants:

v = min {f(y) | y ∈ P12} and V = max{f(y) | y ∈ P12}

Notice thatv > 0 sinceD(s, t) > 0, andV < ∞ since the network is finite
and we are enforcing the (finite) capacity conditions. At a more practical level,
v can be computed by simply feeding the linear problem min{f(y) | y ∈ P12}
into CPLEX and solving it. Then, to computeV , one changes the same linear
problem to a max problem (by replacing ”min” by ”max”) and solves it.

Finally, let δ > 0 denote the minimum capacity of the edges of positive
capacity. We can now state the following theorem whose proofis given in a
technical report [9]:

Theorem 1. Let ℓ, ǫ be real numbers satisfying0 < ℓ < 1 and0 < ǫ < 1 − ℓ.
Suppose thaty ∈ P1 is ℓ-balanced, and letλ > 1 + V 2

vδǫ
. Then any solutionx

of MCF 1 with objective functionf ℓ,λ is (ℓ+ ǫ)-balanced. Moreover,x is more
efficient than any other(ℓ + ǫ)-balanced point ofP1.

Observe that, sinceℓ < 1 andy ∈ P1 is ℓ-balanced, we can useMCF 1

instead ofMCF 12. Informally, the theorem says that if there areℓ-balanced
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solutions, thenf ℓ,λ will find one. The numberǫ > 0 is a technicality needed
in the proof. Notice that it can be chosen arbitrarily small.

Theorem 1 can be used as follows. Given a target utilisationℓ, sayℓ =

0.7, computeV 2

vδǫ
, choose aλ as in Theorem 1, and chooseǫ > 0, sayǫ =

0.01. Finally, compute a solution, sayx, of MCF 1 with objective function
f ℓ,λ. Then there are two exclusive possibilities: eitherx is 0.71-balanced or
there is no such solution. In the last case,x can be thought of as a “best
effort” solution since we have penalised all utilisation above0.7 (which forces
traffic using edges to more than 70 % of capacity to try to balance) but no0.71-
balanced solution exists. At this point we can either acceptthis best effort
solution or iterate, this time setting the balance target to, say,0.85, etc. After
a few iterations we arrive at a solution which is “sufficiently” balanced or we
know that there is no solution that isℓ-balanced for the current value ofℓ which,
we may decide, is so close to1 that it is not worthwhile to continue iterating.

8.3.4 A Generalisation

Theorem 1 has a useful generalisation that can be described as follows. Par-
tition the set of edgesE into a family (Ei) of subsets, and choose a target
utilisation ℓi for eachEi. The generalised theorem says that for smallǫ > 0
we can define a function corresponding tof ℓ,λ in Theorem 1, such that solv-
ing MCF 1 with this objective function will result in efficient solutions that are
(ℓi + ǫ)-balanced onEi provided, of course, that such solutions exist. The
generalised theorem is more flexible in that it allows us to seek solutions with
different utilisation in different parts of the network.

8.3.5 Quantitative Results

We have used CPLEX 7.11 on a Pentium laptop to conduct numerical exper-
iments with a graph representing a simplified version of a real projected net-
work. The graph has approximately 200 nodes and 720 directededges. If we
had modelled MCF with source-destination pairs as commodities, the linear
problem corresponding toMCF 12 would consist of some 8 million equations
and 30 million variables. Modelling commodities as traffic to a node,MCF 12

contains, in contrast, “only” about 40 000 constraints and 140 000 variables.
SolvingMCF 1 with objective functionf ℓ,λ takes approximately 35 seconds.

Solving the same problem with the objective function considered by Fortz
and Thorup [2, 3] takes approximately 65 seconds. Our experiments suggest

1ILOG CPLEX 7.1 http://www.ilog.com



8.4 Multi-Path Forwarding 87

egress

egress

next
hop

next
hop

next
hop

Figure 8.3: Address lookup data structure for multiple pathforwarding.

that this function picks solutions that minimise balance. In contrast, withf ℓ,λ

we can choose any desired level of balance (above the minimum, of course).

8.4 Multi-Path Forwarding

By modelling the routing problem as “all traffic tot”, as described in the pre-
vious section, we get an output from the optimisation that iswell suited for
packet forwarding in the routers. The result from the optimisation, theyt

ij val-
ues, tells how packets at a certain node (i) to a certain egress node (t) in the
network should be divided between the set of next hops (j). We thus need a for-
warding mechanism that can distinguish packets destined for a certain egress,
and that can forward along multiple paths.

To enable forwarding along multiple paths, we introduce onemore step in
the usual forwarding process. An egress data structure is inserted in the address
lookup tree just above the next hop data structure as illustrated in Fig. 8.3. A
longest prefix match is done in the same manner as in a standardforwarding
table, except that it results in the destination egress node. The egress data
structure stores references to the set of next hops to which traffic for that egress
should be forwarded, as well as the desired ratios (theyt

ij for all js) between
the next hops.

In order to populate the forwarding tables a mapping has to becreated
between destination addresses and egress nodes. The neededinformation is the
same as a regular intra-domain routing protocol needs, and is obtained in much
the same way. For destinations in networks run by other operators (i.e., in other
routing domains), the mapping is obtained from the BGP routing protocol. For
intra-domain destinations, the destination prefix is directly connected to the
egress node.
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Mechanisms for distributing traffic between multiple linkshave been thor-
oughly evaluated by Cao et al. [10]. We propose to use a table based hashing
mechanism with adaptation, because it can distribute the load according to
unequal ratios, is simple to compute, and adapts to the properties of the ac-
tual traffic.

Similar mechanisms already exist in commercial routers in order to handle
the equal cost multi-path extension to OSPF and similar protocols.

8.5 Related Work

With the prospect of better utilising available network resources and optimis-
ing traffic performance, a lot of research activity is currently going on in the
area of traffic engineering. The general principles and requirements for traffic
engineering are described in the RFC 3272 [1] produced by theIETF Internet
Traffic Engineering working group. The requirements for traffic engineering
over MPLS are described in RFC 2702 [5].

Several researchers use multi-commodity flow models in the context of
traffic engineering. Fortz and Thorup [2, 3] use a local search heuristics for op-
timising the weight setting in OSPF. They use the result of multi-commodity
flow optimisation as a benchmark to see how close to optimal the OSPF routing
can get using different sets of weights. Mitra and Ramakrishnan [11] describes
techniques for optimisation subject to QoS constraints in MPLS-supported IP
networks. Poppe et al. [8] investigate models with different objectives for cal-
culating explicit routes for MPLS traffic trunks. Multi-commodity flow and
network flow models in general have numerous application areas. A compre-
hensive introduction to network flows can be found in Ahuja etal. [7].

A somewhat controversial assumption when using multi-commodity flow
optimisation is that an estimate of the demand matrix is available. The prob-
lem of deriving the demand matrix for operational IP networks is considered by
Feldmann et al. [12]. The demand matrix only describes the current traffic situ-
ation but, for an optimisation to work well, it must also be a good prediction of
the near future. Current research in traffic analysis by Bhattacharyya et al. [6]
and Feldmann et al. [12] indicate that sufficient long term flow stability ex-
ists on backbone links in timescales of minutes and hours andin manageable
aggregation levels to make optimisation feasible.
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8.6 Conclusions

We have taken the first steps to introduce flow optimisation asa routing mech-
anism for an intra-domain routing protocol. We have presented a routing algo-
rithm based on multi-commodity flow optimisation which we claim is compu-
tationally tractable for on-line routing decisions and also only require a small
modification to the legacy packet forwarding mechanism. More work is how-
ever needed on other components in order to design and implement a complete
routing protocol using our algorithm.

The key issue, and our main contribution, is the mathematical modelling
of commodities. Traffic destined for a certain egress node isaggregated into
a single commodity. This results in computational requirements an order of
magnitude smaller than in the traditional models where the problem is mod-
elled with one commodity for each flow from one ingress to one egress node.

Multi-path forwarding of the aggregates produced by the optimiser is then
handled by a hash based forwarding mechanism very similar towhat is needed
for OSPF with ECMP.

Another contribution is the design of a generic objective function for the
optimisation which allows the network operator to choose a desired limit on
link utilisation. The optimisation mechanism then computes a most efficient
solution given this requirement, when possible, and produces a best effort so-
lution in other cases. The process can be iterated with, e.g., binary search to
find a feasible level of load balance for a given network load.
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Abstract

The focus of this paper is on traffic engineering in ambient networks. We de-
scribe and categorize different alternatives for making the routing more adap-
tive to the current traffic situation and discuss the challenges that ambient net-
works pose on traffic engineering methods. One of the main objectives of traf-
fic engineering is to avoid congestion by controlling and optimising the routing
function, or in short, to put the traffic where the capacity is. The main chal-
lenge for traffic engineering in ambient networks is to cope with the dynamics
of both topology and traffic demands. Mechanisms are needed that can han-
dle traffic load dynamics in scenarios with sudden changes intraffic demand
and dynamically distribute traffic to benefit from availableresources. Trade-
offs between optimality, stability and signaling overheadthat are important for
traffic engineering methods in the fixed Internet becomes even more critical in
a dynamic ambient environment.
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9.1 Introduction

The existing mobile and wireless link layer technologies like WLAN, GSM,
3G, etc, lack a common control plane in order to enable end-users to benefit
fully from the offered access connectivity. For instance, operators only grant
access to users with whom they have previously signed an agreement. Simi-
larly, there is no technology to automatically and transparently select the best
and most cost effective link technology for the end-user. The Ambient Net-
works project [1] aims to address these issues and to providean affordable,
robust and technology independent communication platformbeyond 3G. Am-
bient networks also support cooperation between operatorsto handle control
functions such as managing mobility, security, and qualityof service. The
key concept of ambient networks is network composition. Networks estab-
lish inter-network agreements on-demand without human interaction. Network
composition will provide access to any network instantly anywhere at any time.

Instant network composition brings new challenges to traffic engineering
and monitoring of the network. Traffic engineering encompasses performance
evaluation and performance optimization of operational networks. An impor-
tant goal is to avoid congestion in the network and to make better use of avail-
able network resources by adapting the routing to the current traffic situation.
More efficient operation of a network means more traffic can behandled with
the same resources which enables a more affordable service.As ambient net-
works compose and decompose the topology and traffic patterns can change
rapidly. This means that one can not rely only on long-term network plan-
ning and dimensioning that are done when the network is first built. Traffic
engineering mechanisms are needed to adapt to changes in topology and traffic
demand and dynamically distribute traffic to benefit from available resources.

In this paper we identify and analyse the challenges ambientnetworks pose
to traffic engineering. At this stage, we intend to identify research issues and
discuss how we intend to address them. Consequently, we do not aim to pro-
vide integrated solutions to the problems identified.

The rest of the paper is organized as follows. In the next section we intro-
duce Ambient Networks. In the following section we give a short introduction
to traffic engineering. Section 4 discuss the challenges andresearch issues for
traffic engineering in Ambient Networks. Finally, in the last section we give a
short summary and discussion.
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9.2 Ambient Networks

The Ambient Networks project [1], started in 2004, is an integrated project
within the EU’s 6th Framework Programme. The overall purpose of the project
is to build an architecture for mobile communication networks beyond 3G [2].
Ambient networks represents a new networking concept whichaims to enable
the cooperation of heterogeneous networks belonging to different operators or
technology domains.

The basis for communication in Ambient Networks is IP. However, the ar-
chitecture should overcome the diversity in access networktechnologies. To be
specific, Ambient Networks should support present access technologies as well
as enable incremental introduction of new access technologies and services to
the communication architecture. Further, the project aimsto enable coopera-
tion between operators to handle control functions such as managing mobility,
security, and quality of service.

A key concept in ambient networks is network composition. The vision is
to allow agreement for cooperation between networks on demand and without
the need of preconfiguration or offline negotiation between network operators.
The composition should also be rapid enough to handle adaptation to moving
networks such as a train with an internal access network passing through an
operators network. This instant network composition brings new challenges to
network management and traffic engineering in ambient networks [3].

In conventional IP backbone networks the variability both in traffic pat-
terns as well as in topology is small. The network topology only changes if
routers or links go up/down or when new links are added to the network. In-
ternet traffic has been shown to have very bursty and self-similar behaviour on
short time-scales but if we consider timescales of tens of minutes the variabil-
ity in traffic basically follow diurnal patterns in a highly predictable manner. In
Ambient Networks on the other hand, network topology and traffic patterns is
expected to be under constant change as networks compose andde-compose.
This is further illustrated in Figure 9.1. The figure shows variability in traffic
patterns along the x-axis and variability in topology alongthe y-axis. To some
extent the characteristics of Ambient Networks overlap thecharacteristics of
conventional IP networks. However, Ambient Networks covera much broader
spectrum of variability in both topology and traffic patterns.

In ambient networks we can expect both conditions similar tocurrent IP
backbone networking as well as conditions where the topology changes are
similar to ad-hoc networks and traffic demands shift due to mobility of net-
works and network composition. However, this paper is focused on traffic



9.3 Traffic Engineering 97

Figure 9.1: Characteristics of Ambient Networks compared to conventional IP
networks.

engineering under varying traffic patterns. The behaviour of network topology
is considered to be similar to the conditions in conventional IP networks.

9.3 Traffic Engineering

For a network operator it is important to analyse and tune theperformance of
the network in order to make the best use of it. The process of performance
evaluation and optimization of operational IP-networks isoften referred to as
traffic engineering. One of the major objectives is to avoid congestion by con-
trolling and optimizing the routing function. The traffic engineering process
can be divided in three parts as illustrated in Figure 9.2. The first step is the
collection of necessary information about network state. To be specific, the
current traffic situation and network topology. The second step is the optimisa-
tion calculations. And finally, the third step is the mappingfrom optimization
to routing parameters. Current routing protocols are designed to be simple and
robust rather than to optimize the resource usage. The two most common intra-
domain routing protocols today are OSPF (Open Shortest PathFirst) and IS-IS
(Intermediate System to Intermediate System). They are both link-state proto-
cols and the routing decisions are typically based on link costs and a shortest
(least-cost) path calculation. While this approach is simple, highly distributed
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and scalable these protocols do not consider network utilization and do not al-
ways make good use of network resources. The traffic is routedon the shortest
path through the network even if the shortest path is overloaded and there exist
alternative paths. With an extension to the routing protocols like equal-cost
multi-path (ECMP) the traffic can be distributed over several paths but the ba-
sic problems remain. An underutilized longer path cannot beused and every
equal cost path will have an equal share of load.

Figure 9.2: The traffic engineering process.

This section introduces and analyses different approachesto traffic engi-
neering in IP networks. In the next subsection we present a framework to
categorize different methods of traffic engineering. This framework is used in
the following section to analyse a selection of suggested methods for traffic
engineering.

9.3.1 Classification of Traffic Engineering
Methods

A classification of traffic engineering schemes is possible along numerous axis.
Our framework is intended to facilitate the analysis and help us identify the
requirements for traffic engineering in Ambient Networks.

• Optimize legacy routing vs novel routing mechanisms. One approach
is to optimize legacy routing protocols. The advantage is easy deploy-
ment of the traffic engineering mechanism. However, the disadvantage
is the constraints imposed by legacy routing.

• Centralized vs distributed solutions. A centralized solution is often
simpler and less complex than a distributed, but is more vulnerable than
a distributed solution.

• Local vs global information. Global information of the current traffic
situation enables the traffic engineering mechanism to find aglobal op-
timum for the load balancing. The downside is the signaling required
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to collect the information. In addition, in a dynamic environment, the
information quickly becomes obsolete.

• Off-line vs on-line traffic engineering. Off-line traffic engineering is
intended to support the operator in the management and planning of the
network. On-line traffic engineering on the other hand, reacts to a signal
from the network and perform some action to remedy the problem.

The taxonomy above is intended to assist us in the analysis oftraffic en-
gineering methods in Ambient Networks and should not be regarded as com-
plete. A detailed taxonomy of traffic engineering methods can be found in RFC
3272 [4].

9.3.2 Previous Work

The general problem of finding the best way to route traffic through a network
can be mathematically formulated as a multi-commodity flow (MCF) optimiza-
tion problem. This has recently been used by several research groups to address
traffic engineering problems [5, 6, 7, 8, 9]. In the simplest case the optimiza-
tion result can be used as just a benchmark when evaluating the performance of
the network to see how far from optimal the current routing is. A number of at-
tempts has been made to optimize legacy routing protocols [6, 8, 9]. Fortzet.al
[6] uses a search heuristic to optimize the OSPF link weightsto balance load
in a network and the MCF optimization serves as a benchmark for the search
heuristic. Similarly, Wanget.al attempts to find the optimal link weights for
OSPF routing. However, they formulate the problem as a linear program and
find the link weights by solving the dual problem. The optimization can also
be used as a basis for allocating Label Switch Paths (LSP) in MPLS [7, 10].
A more long-term research goal would be to construct a new multi-path rout-
ing protocol based on flow optimization [5]. A somewhat different approach is
taken by Sridharanet.al [8]. Instead of calculating the link weights the authors
use a heuristic to allocate routing prefixes to equal-cost multi-paths. Again the
MCF optimization serves as a benchmark for the heuristic.

All global optimization methods require an estimate of the current traf-
fic situation as input to the estimation. The current traffic situation can be
succinctly captured in a traffic matrix that has one entry foreach origin-to-
destination traffic demand. However, the support in routersto measure the
traffic matrix is only rudimentary. Instead operators are forced to estimate the
traffic matrix from incomplete data. This estimation problem has recently been
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addressed by many researcher. An evaluation of a wide selection of estimation
methods and further references can be found in Gunnaret.al [11].

An attempt to localize and distribute the routing decisionsis Adaptive
Multi-path routing (AMP) [12]. In AMP information on the traffic situation
on links is only distributed to the immediate neighbors of each router. Hence,
AMP relies on local information in neighboring routers to calculate next hop
towards the destination. Andres-Colaset.al[13] introduces Multi-Path Routing
with Dynamic Variance (MRDV), where load on the next hop towards the des-
tination is included in the selection of next hop towards thedestination. In this
approach no load information is exchanged between routers.Instead the cost
of each path towards the destination is weighted by a variance factor which re-
flect load on the next hop. Hence, traffic is shifted from heavily loaded links to
links with less load. A related approach is introduced by Vutukuryet.al [14].
Here the routing decision is divided into two steps. First, multiple loop-free
paths are established using long term delay information. Inthe second step the
routing parameters along the precomputed paths are adjusted using only local
short-term delay information.

9.4 Challenges for Traffic Engineering in Ambi-
ent Networks

The main challenge for traffic engineering in Ambient Networks is to cope with
the dynamics of both topology and traffic demands. Mechanisms are needed
that can handle traffic load dynamics in scenarios with sudden changes in traffic
demand and dynamically distribute traffic to benefit from available resources.
As described in section 9.3.1 , different traffic engineering methods can be
categorized by how much network state information they use.This ranges from
methods that only use local state information to improve theload-balancing to
optimization methods that need global state information inthe form of link
capacities and a traffic matrix as input. The trade-offs between optimality,
stability and signaling overhead are crucial for traffic engineering methods in
the fixed Internet and it is even more critical in a dynamic ambient environment.

The traffic engineering problem can best be modeled as a multi-commodity
flow optimisation problem. This type of optimisation techniques take as input
global information about the network state (i.e., traffic demands and link capac-
ities) and can calculate the global optimal solution. In practice though, there
might be several reasons why we need to deviate from the optimal use of the
network. This could be because the calculations are too resource consuming
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and take too long time. It could also be because the input needed is hard to
measure and collect and that it varies too much over time so itwould create too
much signaling overhead or create instabilities.

MCF optimisation problems easily becomes large with tens ofthousands
of variables and constraints. But it is possible to calculate the global optimal
solution in tens of seconds even for large networks [5] if no constraints are
given on the number of paths that can be used. Finding the optimal set of
weights in OSPF though usually has to rely on heuristic methods.

One can argue that, if it is important to make the best possible use of
network resources then the routing should not be restrictedto what can be
achieved by tuning the weights in the legacy routing protocols. Instead, the op-
timisation should come first and the result should be implemented using new
routing mechanisms if needed. On the other hand, the study byFortz et.al
[6] shows that in practice the solutions that can be achievedby proper weight
settings in OSPF are close to the optimal at least for the networks they investi-
gated.

Multi-commodity flow optimization as well as heuristic methods for set-
ting optimal weights in OSPF are both typical examples of centralised schemes
that use global information in the form of topology and traffic matrix and pro-
duce global optimum routing or at least results that are goodfor the network
as a whole. The problems with this type of solution is measuring the traffic
demands that are needed as input and the signaling overhead created when col-
lecting this data. A centralised solution also creates a possible bottleneck and
a single point of failure. Further, in a dynamic environmentthe traffic data
quickly becomes obsolete. If the routing decisions are based on the wrong
input we may create congestion that would not be there if justshortest-path
routing had been used. This sensitivity to the traffic dynamics of course holds
for all types of load-sensitive routing.

Examples of other schemes that uses global information about both the
topology and the traffic situation but takes local decisions(and so avoids some
of the problems with a centralised solution) is different kinds of QoS-routing
schemes. Here information about for instance delay or load on each link in the
network is flooded to all nodes. Each node then makes shortest-path (or least-
cost) calculations in this metric. Each node chooses the best paths through
the network from its own perspective but the decisions are all local decisions
without consideration of the network as a whole. So care mustbe taken with
this type of mechanism to avoid hot-spots where everybody moves traffic to
underutilised links and route flapping were nodes constantly shift load back
and forth.
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Another possibility would be to only use local information when taking
local decisions and so avoid all the signaling overhead [13]. If we can assume
that the topology is much more constant than the traffic load then we can use
global information about the topology i.e using legacy protocols like OSPF to
calculate the connectivity (shortest paths) and use only local information about
the traffic situation to balance the load in the network. Thisis an interesting
approach in a dynamic environment such as ambient networks,with sudden
changes in traffic demand. For instance in a scenario with a moving network
such as a train with an internal access network passing through an operators
network. Instead of flooding the network with load information and wait for
a new routing to be calculated a node can make local decisionsand adapt to
the situation. A node that experiences a sudden increase in traffic demand
can directly shift load from heavily loaded links to underutilised paths. The
drawback of this is of course that the consequences of the local decisions for
the network as a whole are difficult to grasp. Care must be taken so that local
improvements don’t create overload somewhere else in the network. So, a
careful evaluation of this type of mechanism is needed.

There are different timescales for traffic engineering. An interesting ap-
proach would be if global information reflecting the traffic situation in a coarser
and longer time perspective could be used to make a tentativerouting calcula-
tion for the whole network. And let the nodes fine-tune the routing parameters
with respect to local information in the nodes or information gained from the
immediate vicinity of respective node. But this is a topic for further study.

9.5 Summary

This paper identifies the requirements and challenges for traffic engineering in
a dynamic environment. We give a short introduction to the Ambient Networks
project which aims to provide a novel mobile communication platform beyond
3G. Further, a framework for classification of traffic engineering methods is
introduced to facilitate the analysis and identification ofchallenges for traffic
engineering in Ambient Networks. This framework is used to discuss the prop-
erties a traffic engineering scheme must hold in order to meetthe requirements
of Ambient Networks.
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Abstract

Internet traffic volumes continue to grow at a great rate, nowpushed by video
and TV distribution in the networks. This brings up the need for traffic engi-
neering mechanisms to better control the traffic. The objective of traffic engi-
neering is to avoid congestion in the network and make good use of available
resources by controlling and optimising the routing function. The challenge
for traffic engineering in IP networks is to cope with the dynamics of Internet
traffic demands. Today, the main alternative for intra-domain traffic engineer-
ing in IP networks is to use different methods for setting theweights in the
routing protocols OSPF and IS-IS. In this paper we revisit the weight setting
approach to traffic engineering but with focus on robustness. We proposel-
balanced weight settings that route the traffic on the shortest paths possible but
make sure that no link is utilised to more than a given levell. This gives ef-
ficient routing of traffic and controlled spare capacity to handle unpredictable
changes in traffic. We present a heuristic search method for findingl-balanced
weight settings and show that it works well in real network scenarios.
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10.1 Introduction

Internet traffic volumes continue to grow at a great rate, nowpushed on by
video and TV distribution in the networks. Increasing traffic volumes neces-
sitate upgrades of network equipment and new investments for operators, and
keep up-to-date the question of over-dimensioning networkcapacity versus us-
ing traffic engineering mechanisms for better handling the traffic. In addition,
as new bandwidth demanding and also delay and loss sensitiveservices are
introduced, it is even more important for the operator to manage the traffic
situation in the network.

The main challenge for traffic engineering is to cope with thedynamics of
traffic demands and topology. How to best model and describe aggregated In-
ternet traffic is still an open area of research. On short timescales up to seconds
the traffic is very bursty and on long timescales there are often predictable daily
and weekly cycles. In between there can be unpredictable changes and shifts
in traffic demand, for instance due to hotspots and flash crowds, or because a
link goes down, there are changes in the inter-domain BGP routing, or because
traffic in an overlay is re-directed. For future networks more variability in traf-
fic demands is also expected due to mobility of nodes and networks and more
dynamic on-demand service level agreements (SLA:s).

The traffic variability means that, even if we could measure the current
traffic situation exactly, it would not always correctly predict the near future
traffic situation and this needs to be taken into account whendoing traffic en-
gineering. Network operators often handle this by relying on simple well-tried
techniques (like OSPF and IS-IS routing), over-dimensioning of network ca-
pacity, and simple rules of thumb (i.e upgrade the link capacity when mean
utilisation reaches 70-80%) rather than introducing complex traffic engineer-
ing techniques.

In this paper we take this need for spare capacity and simple rules of
thumb as our starting point. We revisit the approach of usingweight settings
in OSPF/IS-IS for traffic engineering but now with focus on robustness. We
propose weight settings that we calll-balancedwhere the operator, by setting
the parameterl (to say 80%), control the maximum utilisation level in the net-
work and how much spare capacity is needed to handle unpredictable traffic
changes. With anl-balanced routing the traffic takes the shortest paths possible
but makes sure that no link is utilised to more than a given level l, if possible.

The main contributions in this paper are:

• We proposel-balanced weight settings in OSPF/IS-IS for robust traffic
engineering.
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• We present a heuristic search method for findingl-balanced weight set-
tings and show that it works well in real network scenarios.

• We evaluatel-balanced routing and compare it with other proposed traf-
fic engineering objectives for several real network topologies and traffic
data sets.

If traffic levels continue to grow then of course network capacity needs to
be added at some point. But traffic engineering withl-balanced routing can
extend the upgrade cycle and postpone the investment, or be applied to better
use the existing resources in the network until the highly utilised links have
been upgraded.

The paper is organized as follows. Section 10.2 gives a shortintroduction
to traffic engineering in IP networks and Section 10.3 discusses related work.
We then present thel-balanced cost function in Section 10.4 and describe the
search heuristic used for findingl-balanced weight settings. In Section 10.5
we evaluate the proposed methods. We show that the search heuristic works
well for finding l-balanced weight settings in real traffic scenarios. Further,
we compare the robustness of different weight-setting methods and investigate
what happens to link utilisations in the network if a traffic demand suddenly
increases. Finally, in Section 10.6 we make some concludingremarks about
our findings.

10.2 Traffic Engineering in IP networks

The objective of traffic engineering is to avoid congestion in the network and
to make better use of available network resources by adapting the routing to
the current traffic situation. The traffic demands in a network changes over
time and for network operators it is important to tune the network in order
to accommodate more traffic and meet service level agreements (SLAs) made
with their customers. This means that a network operator cannot rely only on
long-term network planning and dimensioning that are done when the network
is first built. Robust traffic engineering mechanisms are needed that can adapt
to changes in traffic demand and distribute traffic to benefit from available re-
sources.

The first step in the traffic engineering process is to collectthe necessary
information about network topology and the current traffic situation. Most traf-
fic engineering methods need as input a traffic matrix describing the demand
between each pair of nodes in the network. The traffic matrix is then used as
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input to the routing optimization step, and the optimized parameters are finally
used to update the current routing.

Today, the main alternative for intra-domain traffic engineering in IP net-
works is to use different methods for setting the weights (and so decide upon
the shortest paths) in the routing protocols OSPF (Open Shortest Path First)
and IS-IS (Intermediate System to Intermediate System). These are both link-
state protocols and the routing decisions are based on link costs and a shortest
(least-cost) path calculation. With the equal-cost multi-path (ECMP) extension
to the routing protocols the traffic can also be distributed over several paths that
have the same cost. These routing protocols were designed tobe simple and
robust rather than to optimize the resource usage. They do not by themselves
consider network utilisation and do not always make good useof network re-
sources. The traffic is routed on the shortest path through the network even if
the shortest path is overloaded and there exist alternativepaths. It is up to the
operator to find a set of link costs (weights) that is best suited for the current
traffic situation and that avoids congestion in the network.

The general problem of finding the best way to route traffic through a net-
work can be mathematically formulated as a multi-commodityflow (MCF)
optimization problem (see, e.g., [1, 2, 3]). The network is then modeled as a
graph. The problem consists of routing the traffic, given by ademand matrix,
in the graph with given link capacities while minimizing a cost function. With
no limitations on how the traffic flows can be divided over the network links
the MCF optimal routing problem can be formulated and efficiently solved as
a linear program. Introducing integer weights and ECMP shortest paths con-
straints, where the traffic no longer can be split arbitrarily, makes the problem
computationally much harder. For reasonably sized networks one usually has
to rely on search heuristics for determining the set of weights, rather than cal-
culating the optimal weights.

10.3 Related work

Traffic engineering by finding a suitable set of weights in OSPF/IS-IS is a well
studied area of research and it is described in recent textbooks in the area [3, 4].
When we now revisit the weight setting approach to traffic engineering we are
most inspired by the pioneering works by Fortz and Thorup [2,5] and Ramakr-
ishnan and Rodrigues [6], in that we use a piece-wise linear cost function and
search heuristics to find suitable weight settings.

Several studies [2, 7, 8, 9] have shown that even though we limit the rout-
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ing of traffic to what can be achieved with weight-based ECMP shortest paths,
and not necessarily the optimal weights but those found by search heuristics,
it often comes close to the optimal routing for real network scenarios. How
the traffic is distributed in the network very much depends onthe objectives,
usually expressed as a cost function, in the optimisation. An often proposed
objective function is described by Fortz and Thorup [2] (andwe will refer to
it as the FT cost function further on). Here the sum of the costover all links
is considered and a piece-wise linear increasing cost function is applied to the
flow on each link. The basic idea is that it should be cheap to use a link with
small utilization while using a link that approaches 100% utilisation should
be heavily penalized. Thel-balanced cost function [1, 10] used in this paper
is similar in that it uses a piecewise linear cost function toobtain desireable
solutions. Additionaly, it gives the operator the opportunity to set the maxi-
mum wanted link utilisation. Cost functions for traffic engineering is further
investigated by Balonet.al [11]

The main difference in this paper compared to previous work on weight
settings is our focus on robustness and the objective of achieving a controlled
spare capacity for handling unpredictable traffic shifts. For robust traffic engi-
neering much of the focus is on handling multiple traffic matrices and traffic
scenarios [5, 12, 13, 14, 15] and handling the trade-off between optimizing for
the common case or for the worst case.

Xu et.al [16] describe a method to jointly solve the flow optimizationand
the link-weight approximation using a single formulation resulting in a more
efficient computation. Their method can also direct traffic over non-shortest
paths with arbitrary percentages. Their results should also be directly appli-
cable to our problem of providing robustness to changes, by just substituting
their piece-wise linear cost function with our cost function. In a continuation
on this work Xuet.al [17] propose a new link-state routing protocol. The pro-
tocol splits traffic over multiple paths with an exponentialpenalty on longer
paths and achieves optimal traffic engineering while retaining the simplicity of
hop-by-hop forwarding.

10.4 L-balanced solutions

10.4.1 Optimal l-balanced routing

A routing is said to bel-balancedif the utilisation is less than or equal tol on
every link in the network. For instance a solution is (0.7)-balanced if it never
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uses any link to more than 70% of its capacity.
The l-balanced cost function, its theoretical foundation, and use in MCF

optimisation is described in [1, 10]. The idea is to use a simple piece-wise
linear cost function as shown in Figure 10.1 and apply it to the utilisation of
each link in the network. The cost function consists of two linear portions
where the slope of the second line segment should be large enough to penalise
utilisation abovel and balance traffic over longer paths.

The work in [1, 10] present a formula to calculate the cost function, for
a given network topology and traffic situation, that guarantees to find al-
balanced optimal routing (provided, of course, that such solutions exist) that
takes the shortest paths possible and makes sure that no linkis utilised to more
thanl.
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Figure 10.1: The link cost function.

10.4.2 Search for l-balanced weight settings

To apply thel-balanced routing in real OSPF/IS-IS networks we need to find
l-balanced weight settings. For weight settings we dont havethe guarantee to
find an l-balanced routing in the same way as described for optimal routing
above. But we want to use thel-balanced cost function to find weights settings
that achieve the same effect of taking the shortest paths possible while routing
the traffic so that no link is utilised to more than a given level l.

The optimal weights are often too computationally hard and time consum-
ing to calculate for real networks and traffic scenarios. Instead we use a prob-
lem specific local search heuristic to determine the set of weights. An overview
of local search methods can be found in [18]. Our search method can be placed
under the Tabu search meta-heuristic in that we allow cost-increasing solutions
to direct the search away from local minima, and use a tabu list to prevent
from looping back to old solutions. A solution is a vectorw = {w1, .., wn}
of weights, with one weight per directed link in the network.We have a solu-
tion spaceW where each weight can take integer values between1 and65535.
We generate a neighboring solutioni ∈ N(w) by increasing one weight in the
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current solutionw to divert traffic from the most utilised link(s, t) or change
weights to create paths with the same cost to get ECMP routingof traffic over
several links froms. We use al-balanced cost function (as described in the
previous section) calculated for the given topology, traffic matrix and required
utilisation levell. The costf(w) for a given weight vector is determined by
calculating the shortest paths routing with these weights using Dijkstra’s algo-
rithm, adding the traffic matrix, and applying the cost function to the resulting
link loads. The starting point is to set all weights to the same value, for instance
wi = 10. The search terminates either when we find a solution with utilisation
under the thresholdl or it stops after a fixed number of iterations.

At the core of our search method is a simple descent search [18] where we:

1. choose an initial weight vectori ∈ W

2. find the neighborj ∈ N(i) with lowest cost i.e.f(j) <= f(k) for any
k ∈ N(i).

3. If f(j) >= f(i) then stop. Else seti = j and go to step 2.

This type of search may stop at a local minimum. We therefore allow the
search to continue by doing new descents starting from weight sets with higher
cost. We use information that becomes available during the search to build a
candidate list of weight sets that are used as starting points, and a tabu list of
weight sets are used to avoid cycling.

We start by setting all weights to the same value. This gives the shortest
paths in number of hops which probably is a good starting point for most real
networks; if the link capacities are uniform and the networkwas built with
OSPF/IS-IS routing in mind. Given the network topology, traffic matrix and
initial weights, we calculate the ECMP shortest paths, add the traffic matrix,
and find the most loaded link(s, t) in the network. If the utilisation is less than
l then we are done. We have a routing that takes the shortest paths possible
and makes sure that no link is utilised to more than the limitl. If the link is
utilised to more thanl we start searching for a better weight setting using two
strategies:

• the first search strategy is to increase the weight on the overloaded link
in controlled steps so to divert more and more demands (or part of de-
mands) from the link. See details in 10.4.3.

• the second search strategy is to find weights to get ECMP routing froms
for the demands over(s, t), and so balance the traffic over the outgoing
links froms. See details in 10.4.4.
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In each iteration of a descent we have a number of neighbor weight settings
that we evaluate (one for each weight step and ECMP set described above).
If a neighbor weight setting gives a lower cost than the current best (in this
iteration) it is saved and used as the starting point in the next iteration. If a
candidate weight setting gives a routing with a higher cost than the current best
but with a different link than(s, t) as most utilised, then that weight-setting
is saved in the candidate list and used as a starting point foranother descent
search later on.

10.4.3 How to determine weight increments for a link?

If a link (s, t) is over-utilised we want to increase the weight on the link in
controlled steps so to divert more and more traffic demands from the link.

To decide the steps in which to increase the weight on(s, t) we first deter-
mine the current total weight-cost for each demand routed over (s, t). We then
temporarily take away the link(s, t) from our representation of the topology
and calculate a new shortest-path routing. For all demands that before were
routed over(s, t) we then check how much the weight cost have increased and
use this for determining the steps with which to increase theweight on(s, t).

In the example in Figure 10.2, we assume that the two demandsD(1, 2)
andD(4, 2) overload the link(1, 2). We thus want to divert traffic from the
link (1, 2) by increasing the weightw(1, 2).

We start by determining the increase steps in which to increase the weight
w(1, 2):

The total weight costs forD(1, 2) andD(4, 2) are 10 and 40, respectively.
If we take away the link(1, 2), we get total weight costs of 30 and 50, an
increase by 20 and 10 units respectively. From this we decideon the increase
steps 10, 15 (mid-point between 10 and 20), 20 and 21 units. Weadd this to
the originalw(1, 2) = 10 and get the candidate weightsw(1, 2)= 20, 25, 30
and 31 to evaluate.

With the first incrementw(1, 2) = 20 we divert half of demandD(4, 2) by
ECMP while the other half ofD(4, 2) and all of demandD(1, 2) is still routed
on (1, 2). The next incrementw(1, 2) = 25 diverts all ofD(4, 2) but keeps all
of D(1, 2). With w(1, 2) = 30 we also route half ofD(1, 2) on another path
and withw(1, 2) = 31 we divert all traffic from(1, 2).
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Figure 10.2: Example with an overloaded link (1,2) where traffic can be di-
verted to other paths by increasing the weight on (1,2) in controlled steps
w(1,2)= 20, 25, 30 and 31. With the first increment w(1,2)=20 we divert half of
demand D(4,2) by ECMP. The next increment w(1,2)=25 divertsall of D(4,2),
and with w(1,2)=30 we route also half of D(1,2) on another path. Finally,
w(1,2)=31 diverts all traffic from (1,2).

10.4.4 How to determine ECMP weight settings?

If we have a weight set that results in an overloaded link(s, t) then we want to
also evaluate neighbor weight settings where we split traffic demands evenly
over the outgoing links froms using ECMP. In order to split a traffic demand
ECMP the total weight for each path froms to the demand destinationd need
to be the same.

Consider, as in Figure 10.3, a nodes, the next hopsti, and the shortest path
Pi from eachti to the destinationd. Also consider the corresponding weights
w(s, ti) and total weight costw(Pi) for a pathPi from ti to d. One way to
achieve ECMP weights is to adjust the weightsw(s, ti) on the outgoing links
from s such that:

w(s, ti) = 1 + maxj=1,..,n{w(Pj)} − w(Pi)

This gives the same total cost for each path from s to d.
A possible extension to this is to not always spread the traffic over all pos-

sible links but also evaluate different subsets of ECMP weights setting with
varying number of outgoing links froms.
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Figure 10.3: Determining ECMP weights

10.4.5 Increment weight on a less utilised link in a path

With high traffic load in the network, link weights can becomesensitive to
change after some iterations in the search. For instance if we on an overloaded
link already have adjusted the weight to split a large demandwith ECMP then
we can not easily increase the link weight to divert yet another flow without
disturbing the existing load balancing.

In order to divert traffic demands to other paths but without disturbing ex-
isting splits on the most utilised link we extend the neighborhood in the search.
We evaluate weight sets where we instead of changing the weight on the over-
loaded link(s, t) increment the link weight some step away closer to the de-
mand destination.

10.5 Evaluation

10.5.1 Method

In order to evaluate thel-balanced routing and our search method for find-
ing l-balanced weights we use real network topologies and trafficmatrix data
that we scale up to get high loads in the networks. First in Section 10.5.2 we
evaluate that the search method works well for findingl-balanced weight set-
ting in these scenarios och compare the resulting network loads with optimal
l-balanced routing and routing with other traffic engineering objectives. The
main objective ofl-balanced routing is to give spare capacity to handle traffic
changes. In Section 10.5.2 we investigate how different weight settings handle
hotspots where one traffic matrix entry increases.

For the evaluation we use three different data sets that include network
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topologies and traffic matrix data from the Geant network [19], and from the
European and American sub-networks of a global IP network.

• Network I: the Geant network with 23 nodes, 74 links and 506 demands.

• Network II: the American network with 24 nodes, 110 links and552
demands.

• Network III: the European network with 11 nodes, 38 links and110 de-
mands.

The details of the global IP-network, the subnetwork topologies and traffic
demands, are described in [20]. For the Geant network we set all link capacities
to 10 Gb and scaled up the traffic data to create high loads in the network.

10.5.2 Static scenario: Evaluating the search method

The evaluation shows that thel-balanced objective and our search method for
finding l-balanced weight settings work well. Figure 10.4 shows comparisons
of optimal and weight-basedl-balanced routing (withl=80%) for increasing
levels of traffic demand in the Geant network (Network I) and the American
network (Network II). Thel-balanced routing sends the traffic on the shortest
paths as long as the utilisation is low in the network. The shape of the curves
shows that when we scale up the traffic demand thel-balanced method tries to
keep the utilisation underl=0.8. The figures also show that the weight-based
routing is close to the optimal routing which validates thatour search method
for setting the weights works well. Note that optimal routing minimises the
total cost when thel-balanced cost function is applied to the utilisation of each
link in the network. The utilisation for an individual link (and so the maximum
link utilisation) can be higher in the optimal solution if itfinds a shorter path
that still keeps the utilisation belowl.

Figure 10.5 shows a comparison between thel-balanced routing and other
traffic engineering objectives. The minimum-hop routing (with all weights set
to 1) , where no attempt is done to adapt the weight setting to the current traffic
demand, quickly leads to overload in the network when the traffic demands are
increased. Thel-balanced method sends the traffic on the shortest paths as long
as the utilisation is less than the chosen valuel=0.8. With a low utilisation of
the network there is no reason to split the traffic over several paths. The FT
cost function used in [2], pushes down the maximum link utilisation already
at lower traffic levels. This piece-wise linear cost function consists of several
segments which is reflected in the shape of the curve with plateaus where the
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maximum link utilisation is pushed down. With minmax routing the objec-
tive is to minimise the maximum link utilisation in the network. This routing
always balance the load over the network to keep the highest link utilisation
down to a minimum. The optimal minmax routing gives a lower bound on how
much it is possible to keep down the maximum link utilisation.

10.5.3 Dynamic scenario: Evaluation of robustness

The main purpose withl-balanced routing is to give a controlled traffic level
and spare capacity to handle uncertainties and sudden changes in the traffic
situation. To confirm that thel-balanced weight settings fulfil this, we added
hotspot traffic (in a magnitude that thel-balanced routing should be able to
handle) and investigated the resulting link utilisations.Figure 10.6 shows
the maximum link utilisations for minimum hop routing,l-balanced and FT
weight-settings under assumed hotspot traffic in the Geant network scenario.
After determining the weights and the routing for a given traffic matrix each of
the 506 demands was increased one at a time by 20% of the link capacity. The
minimum hop routing gives overloaded links for many of the hotspots at this
traffic demand level while thel-balanced and FT routing manage to handle the
traffic increase without exceeding the capacity of any link.In Figure 10.7 we
increase the traffic level. Now the FT routing sometimes results in overloaded
links when the hotspot traffic is added. Thel-balanced routing (withl=0.8) on
the other hand gives 20% spare capacity and so handle the increase for any of
the demands. The minimum hop routing without any traffic engineering gives
link overload even without adding hotspot traffic at this demand level and is
not shown in the figure.

10.6 Conclusions

L-balanced weight settings give the operator possibility to apply simple rules
of thumb for controlling the maximum link utilisation and control the amount
of spare capacity needed to handle sudden traffic variations. It gives more
controlled traffic levels than other cost functions and moreefficient routing for
low traffic loads when there is no need to spread traffic over longer paths. In
this paper we have presented a heuristic search method for finding l-balanced
weight settings and shown that the search and the resulting weight settings
work well in real network scenarios.
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Figure 10.4: Comparison of maximum link utilisations for optimal and weight-
based L-balanced routing for different scaled traffic demands in the Geant net-
work (top) and the American network (bottom). The utilisation is kept under
the chosen limitl and the weights found by the search heuristic gives a routing
close to optimal.
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Figure 10.5: Comparison of maximum link utilisations for different traffic en-
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Figure 10.6: Hotspot traffic scenario in the Geant network. Comparison of
maximum link utilisations for three weight setting strategies. Minimum hop
routing exceeds the link capacity whilel-balanced and FT routing can avoid
overload.
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Figure 10.7: Hotspot traffic in the Geant network with scaledup traffic de-
mands. FT routing here gives overloaded links while the L-balanced routing
can handle the traffic increase.
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