
IMPLEMENTING DYNAMIC QUERYING SEARCH
IN K-ARY DHT-BASED OVERLAYS

Paolo Trunfio and Domenico Talia
DEIS, University of Calabria
Via P. Bucci 41C, 87036 Rende (CS), Italy

trunfio@deis.unical.it

talia@deis.unical.it

Ali Ghodsi and Seif Haridi∗
Swedish Institute of Computer Science
P.O. Box 1263, 164 29 Kista, Sweden

ali@sics.se

seif@sics.se

Abstract Distributed Hash Tables (DHTs) provide scalable mechanisms for implementing
resource discovery services in structured Peer-to-Peer (P2P) networks. However,
DHT-based lookups do not support some types of queries which are fundamental
in several classes of applications. A way to support arbitrary queries in struc-
tured P2P networks is implementing unstructured search techniques on top of
DHT-based overlays. This approach has been exploited in the design of DQ-
DHT, a P2P search algorithm that combines the dynamic querying (DQ) tech-
nique used in unstructured networks with an algorithm for efficient broadcast
over a DHT. Similarly to DQ, DQ-DHT dynamically adapts the search extent on
the basis of the desired number of results and the popularity of the resource to be
found. Differently from DQ, DQ-DHT exploits the structural constraints of the
DHT to avoid message duplications. The original DQ-DHT algorithm has been
implemented using Chord as basic overlay. In this paper we focus on extend-
ing DQ-DHT to work ink-ary DHT-based overlays. In ak-ary DHT, broadcast
takes onlyO(logkN) hops usingO(logkN) pointers per node. We exploit this
“k-ary principle” in DQ-DHT to improve the search time with respect to the
original Chord-based implementation. This paper describes the implementation
of DQ-DHT over ak-ary DHT and analyzes its performance in terms of search
time and generated number of messages in different configuration scenarios.

Keywords: Peer-to-peer, resource discovery, dynamic querying, distributed hash tables.

∗Also with the Department of Electronic, Computer, and Software Systems, Royal Institute of Technology,
Sweden.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/301002533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

1. Introduction

Distributed Hash Tables (DHTs) provide scalable mechanisms for imple-
menting resource discovery services in structured Peer-to-Peer (P2P) networks.
Structured systems like Chord [1], Tapestry [2], and Pastry [3], use a DHT to
assign to each node the responsibility for a specific part of the resources in the
network. When a peer wishes to find a resource with a given key, the DHT
allows to locate the node responsible for that key typically inO(logN) hops
using onlyO(logN) neighbors per node.

As compared to unstructured search techniques like flooding or random
walks, DHT-based lookups have significant scalability advantages in terms of
both time and traffic [4]. However, DHT-based lookups do not support ar-
bitrary type of queries (e.g., regular expressions [5]) since it is infeasible to
generate and store keys for every query expression. On the other hand, un-
structured systems can do it effortless since all queries are processed locally
on a node-by-node basis [6].

A way to support arbitrary queries in structured P2P networks is implement-
ing unstructured search techniques on top of DHT-based overlays. Following
this approach, an unstructured search method can be implemented over the
DHT to distribute the query to as many nodes as needed; the query can then be
processed on a node-by-node basis as in unstructured systems. In this way, the
DHT can be used for both key-based lookups and arbitrary queries, combining
the efficiency of structured networks with the flexibility of unstructured search.

The approach above has been exploited in the design of DQ-DHT [7], a P2P
search algorithm that combines the dynamic querying (DQ) technique used
in unstructured networks [8], with an algorithm for efficient broadcast over a
DHT [9].

The goal of DQ is to reduce the traffic generated by the search process in
unstructured P2P networks. The query initiator starts the search by sending
the query to a few of its neighbors and with a small Time-to-Live (TTL). The
main goal of this first phase (referred to as “probe query”) is to estimate the
popularity of the resource to be found. If such an attempt does not produce
a sufficient number of results, the search initiator sends the query towards the
next neighbor with a new TTL. Such TTL is calculated taking into account both
the desired number of results, and the resource popularity estimated during the
previous phase. This process is repeated until the expected number of results
is received, or until all the neighbors have been queried.

Similarly to DQ, DQ-DHT dynamically adapts the search extent on the basis
of the desired number of results and the popularity of the resource to be located.
Differently from DQ, DQ-DHT exploits the structural constraints of the DHT
to avoid message duplications. Performance results presented in [7] show that
DQ-DHT generates much less network overhead than the enhanced DQ algo-



Implementing Dynamic Querying Search ink-ary DHT-based Overlays 3

rithm proposed in [10], with a comparable (and in some cases better) search
time, and with a higher success rate.

The original DQ-DHT algorithm has been implemented using Chord as ba-
sic overlay. In this paper we focus on extending DQ-DHT to work ink-ary
DHT-based overlays [11]. In ak-ary DHT, broadcast (as well as lookup) takes
only O(logkN) hops usingO(logkN) pointers per node. We exploit this “k-
ary principle” in DQ-DHT to improve he search time with respect to the orig-
inal Chord-based implementation. This paper describes the implementation of
DQ-DHT over ak-ary DHT and analyzes its performance in terms of search
time and number of messages in different configuration scenarios.

The remainder of the paper is organized as follows. Section 2 briefly de-
scribes the original DQ-DHT algorithm. Section 3 describes the implementa-
tion of DQ-DHT on top ofk-ary DHT-based overlays. Section 4 discusses the
performance of the algorithm. Finally, Section 5 concludes the paper.

2. Dynamic Querying over a DHT

Dynamic Querying over a DHT (DQ-DHT) uses a combination of the dy-
namic querying technique described above with an algorithm for efficient broad-
cast over DHTs proposed in [9]. In this section we first describe how the algo-
rithm of broadcast over a DHT works, and then we briefly describe the original
DQ-DHT algorithm.

2.1 Broadcast over a DHT

We describe the Chord-based implementation of the broadcast algorithm,
as it is presented in [9]. Chord assigns to each node anm-bit identifier that
represents the position of the node in a circular identifier space, ranging from
0 and2m − 1. Each node,x, maintains afinger tablewith m entries. Thejth

entry in the finger table at nodex contains the identity of the first node,s, that
succeedsx by at least2j−1 positions on the identifier circle, where1 ≤ j ≤ m.
Nodes is called thejth fingerof nodex.

If the identifier space is not fully populated (i.e., the number of nodes,N , is
lower than2m), the finger table contains redundant fingers. In a Chord network
of N nodes, the numberu of unique (i.e., distinct) fingers of a generic node
x is likely to be log2N [1]. In the following, we will use the notationFi to
indicate theith unique fingerof nodex, where1 ≤ i ≤ u.

To perform the broadcast of a data itemD, a nodex sends aBroadcast
message to all its unique fingers. TheBroadcast message containsD and
a limit argument, which is used to restrict the forwarding space of a receiving
node. Thelimit sent toFi is set toFi+1, for 1 ≤ i ≤ u − 1. The limit sent to
the last unique finger,Fu, is set to the identifier of the sender,x.



4

When a nodesy receives aBroadcast message with a data itemD and
a givenlimit, it is responsible for forwardingD to all its unique fingers in the
interval ]y, limit[. When forwarding the message toFi, for 1 ≤ i ≤ u − 1, y
supplies it a newlimit, which is set toFi+1 if it does not exceed the oldlimit,
to the oldlimit otherwise. As before, the newlimit sent toFu is set toy.

As shown in [9], in a network ofN nodes, a broadcast message originating
at an arbitrary node reaches all other nodes after exactlyN − 1 messages, with
log2N steps. The overall broadcast procedure can be viewed as the process
of passing the data item through a spanning tree that covers all nodes in the
network. As an example, Figure 1 shows the spanning tree corresponding to
the broadcast initiated by Node 0 in a fully populated Chord network with
N = 64 nodes.

0

4 81 2

3 5 6

7

9 10

11

12

13 14

15

16

17 18

19

20

21 22

23

25 26

27

28

29 30

31

24

32

33 34

35

36

37 38

39

41 42

43

44

45 46

47

40 48

49 50 52

53 54

55

57 58

59

60

61 62

63

56

51

Figure 1. Spanning trees corresponding to the broadcast initiated by Node 0 in a fully popu-
lated Chord network withN = 64.

2.2 DQ-DHT algorithm

The DQ-DHT algorithm works as follows. Letx be the node that initiates
the search,U the set of unique fingers not yet visited, andRd the desired
number of results. InitiallyU includes all unique fingers ofx. Nodex starts by
choosing a subsetV of U and sending the query to all fingers inV (this phase
corresponds to the “probe query” of DQ). These fingers will in turn forward
the query to all nodes in the portions of the spanning tree they are responsible
for, following the broadcast algorithm described above. When a node receives
a query, it checks for local items matching the query criteria and, for each
matching item, sends a query hit directly tox. The fingers inV are removed
from U to indicate that they have been already visited.

After sending the query to all nodes inV , x waits for an amount of time
TL, which is the estimated time needed by the query to reach all nodes, up to
a given levelL, of the subtrees rooted at the unique fingers inV , plus the time
needed to receive a query hit from those nodes. Then, if the current number of



Implementing Dynamic Querying Search ink-ary DHT-based Overlays 5

received query hitsRc is equal or greater thanRd, x terminates. Otherwise, an
iterative procedure takes place.

At each iteration, nodex: 1) calculates the item popularityP as the ratio
betweenRc and the number of nodes already theoretically queried; 2) calcu-
lates the numberHq of hosts in the network that should be queried to hitRd

query hits based onP ; 3) chooses, among the nodes inU , a new subsetV ′ of
unique fingers whose associated subtrees contain at leastHq nodes; 4) sends
the query to all nodes inV ′; 5) waits for an amount of time needed to propagate
the query to all nodes in the subtrees associated toV ′.

The iterative procedure above is repeated until the desired number of query
hits is reached, or there are no more fingers to contact. Note that, if the item
popularity is properly estimated after the probe query, only one additional iter-
ation may be sufficient to obtain the desired number of query hits.

A key point in the implementation of DQ-DHT is estimating the properties
of the spanning tree associated to the broadcast process. This can be done
easily by observing that the spanning tree associated to the broadcast over a
Chord network is - in the ideal case - a binomial tree [12] (see Figure 1).
The basic properties of binomial trees can therefore be used to calculate with
good approximation the number of nodes present in the different subtrees, and
at different levels, of the spanning tree associated to the broadcast process,
as shown in [7]. These values can be in turn used to calculate the number
of nodes already theoretically queried, or to be queried, during the iterative
dynamic querying process described above.

3. Dynamic Querying over ak-ary DHT

In ak-ary DHT, pointers are placed to achieve a time complexity ofO(logkN),
whereN is the number of nodes in the network andk is some predefined con-
stant. This is referred to as doingk-ary lookup or placing pointers according
to the “k-ary principle” [11].

To achievek-ary lookup, each nodex keepsnp = (k− 1)logk(M) pointers
(or fingers) in its finger table, whereM = km is the size of the identifier space,
andm is the number of bits used for node identifiers. Each of these fingers can
be chosen to be the first node that succeeds the start of every intervalf(j),
wheref(j) = (x+ c) modM , andc = (1+ ((j− 1) mod(k− 1)))× kb

j−1
k−1

c,
for 1 ≤ j ≤ np. It is easy to prove that fork = 2 intervals coincide with those
of Chord.

If the identifier space is not fully populated (i.e.,N < M ), the finger table
contains redundant fingers. In a network ofN nodes, the numberu of unique
fingers of a generic nodex is likely to be(k − 1)logk(N).



6

The broadcast algorithm described in Section 2.1, which is exploited by
DQ-DHT as described in Section 2.2, can also be used in ak-ary DHT. In such
case, the whole broadcast process takes onlyO(logkN) hops.

This can be illustrated as in Section 2.1 using a spanning tree view to repre-
sent the broadcast process over ak-ary DHT. As an example, Figure 2 shows
the spanning tree corresponding to the broadcast initiated by Node 0 in a fully
populatedk-ary DHT withk = 4 andN = 64.

168 123 41 2

5 6 7 9 10 11 13 14 15 17 18 19 24 2820

21 22 23 25 26 27 29 30 31

0

32

33 34 35 40 4436

37 38 39 41 42 43 45 46 47

48

49 50 51 56 6052

53 54 55 57 58 59 61 62 63

Figure 2. Spanning trees corresponding to the broadcast initiated by Node 0 in a fully popu-
latedk-ary DHT withk = 4 andN = 64.

By comparing Figure 1 with Figure 2, it can be noted that the number of
hops (that is, the depth of the spanning tree) needed to complete the broadcast
in k-ary DHT withN = 64 nodes passes from 5 withk = 2 (i.e., with Chord),
to 3 with k = 4. We exploit this principle by extending DQ-DHT to improve
the search time with respect to the original Chord-based implementation.

3.1 Properties of the spanning tree associated to the
broadcast over ak-ary DHT

As DQ-DHT iteratively calculates the number of nodes already theoretically
queried, as well as the number of nodes that must be queried to reach the
desired number of results, we need to estimate the number of nodes in the
different subtrees, and at different levels, of the spanning tree associated to the
broadcast process.

Since fork 6= 2 the resulting spanning tree is no more a binomial tree, we
experimentally generalized the formulas presented in [7] to be applicable to
the broadcast over ak-ary DHT, for any fixedk. In particular, Table 1 show
how we calculate the properties of the spanning tree associated to the broadcast
process in case of fully populated identifier space.

To verify the validity of the formulas also in case of not fully populated
identifier spaces, we employed a custom network simulator (the same used for
the performance evaluation presented in Section 4). Through the simulator we
built severalk-ary DHT overlays with different values ofk, and compared the
real properties of the broadcast spanning tree with the ideal values calculated



Implementing Dynamic Querying Search ink-ary DHT-based Overlays 7

Table 1. Properties of the spanning tree rooted at a node withu unique fingersF1..Fu in a
fully populatedk-ary DHT.

Notation Description Value

Ni Number of nodes in the subtree rooted atFi, for 1 ≤ i ≤ u N/(k(b u−i
k−1

c+1))
Di Depth of the subtree rooted atFi, for 1 ≤ i ≤ u logk(Ni)

N l
i

Number of nodes at levell of the subtree rooted atFi, for
1 ≤ i ≤ u and0 ≤ l ≤ Di

(
Di
l

)× (k − 1)l

using the formulas above. The results of such experiments are summarized in
Figure 3.

Figure 3a compares the real (i.e., measured) and ideal (i.e., calculated) val-
ues ofNi for different values ofi, in ak-ary DHT with 20000 nodes and 20-bit
node identifiers, considering the following values ofk: 2, 3, 5, and 8. As
shown by the graph, the means of the real values (represented as points) are
very close to the calculated values (represented as lines) for any value ofi and
k.

The graph in Figure 3b considers again ak-ary DHT with N = 20000 and
m = 20, but with k fixed to 3, and compares the real and ideal values ofN l

i
for different values ofi, with l ranging from 1 to 4. As before, the mean of the
real values resulted very close to the ideal values for any value ofi andl.

 1

 10

 100

 1000

 10000

30252015105

N
i (

lo
g 

sc
al

e)

Finger index (i)

N=20000

k=2 ideal
k=2 real 
k=3 ideal
k=3 real 
k=5 ideal
k=5 real 
k=8 ideal
k=8 real 

 1

 10

 100

 1000

15105

N
l i (

lo
g 

sc
al

e)

Finger index (i)

N=20000, k=3

l=1 ideal
l=1 real 
l=2 ideal
l=2 real 
l=3 ideal
l=3 real 
l=4 ideal
l=4 real 

(a) (b)

Figure 3. Comparison between ideal and real values ofNi andN l
i for different values of

k, i and l, in a simulatedk-ary DHT with N = 20000 andm = 20. Lines represent the
ideal values. Single points with error bars represent the real values. The error bars of the real
values represent the standard deviations from the mean, obtained from 100 simulation runs. The
following values ofu are assumed: 15 fork = 2; 18 fork = 3; 24 fork = 5; 32 fork = 8.



8

In summary, the experimental results reported in Figure 3 demonstrate that
the formulas reported in Table 1 can also be used to estimate - with high accu-
racy - the properties of the spanning tree associated to the broadcast process in
not fully populatedk-ary DHTs.

3.2 Minor modifications to the original DQ-DHT
algorithm

The original DQ-DHT algorithm (Section 2.2) works correctly over ak-ary
DHT using the formulas defined in Section 3.1. In particular:i) theN l

i formula
is used during the probe query to calculate the number of nodes theoretically
queried after a predefined amount of time (which corresponds to the number of
nodes up to a given depth in the subtrees rooted at the fingers queried during
the probe phase);ii) the Ni formula is used both to calculate the number of
nodes already theoretically queried (given the set of unique fingers already
contacted), and to choose a new subset of unique fingers to contact based on
the theoretical number of nodes to query.

Even if the original DQ-DHT algorithm works properly for any value of
k, we slightly modified it to obtain a more uniform comparison of its perfor-
mance when different values ofk are used. The difference between the original
version and the new one is explained in the following.

As discussed in Section 2.2, to perform the probe query the original algo-
rithm needs two parameters : 1) the initial value ofV , which is the first subset
of unique fingers to which the query has to be sent to; and 2)L, the last level of
the subtrees associated toV from which to wait a response before to estimate
the resource popularity.

In the k-ary version, we replaced the two parameters above with the fol-
lowing: 1) HP , defined as the number of hosts that will receive the query as
a result of the probe phase; 2)HE , the number of hosts to query before to
estimate the resource popularity.

GivenHP and the setU of unique fingers of the querying node, the algo-
rithm calculates the initial setV of unique fingers to contact as the subset of
U whose associated subtrees have the minimum number of nodes greater or
equal toHP . In other terms, while in the original algorithm the fingers to con-
tact during the probe query are chosen explicitly, in thek-ary version they are
selected automatically based on the value ofHP .

WhileHP indicates the total number of nodes in subtrees that will be flooded
as a result of the probe phase,HE is the minimum number of nodes that must
have received the query before to estimate the resource popularity (HE ≤ HP ).
GivenHE and the initial setV (calculated throughHP ), the algorithm calcu-
lates the minimum numberL of levels of the subtrees associated toV that



Implementing Dynamic Querying Search ink-ary DHT-based Overlays 9

contain a number of nodes greater or equal toHE . Therefore,HE is used in
thek-ary version as an indirect way of specifying the value ofL.

As HP andHE are independent from the actual number of unique fingers
and from the depth of the corresponding subtrees, their use allows to compare
the algorithm performance using different values ofk, independently from the
number of pointers per node they produce in the resulting overlay.

4. Performance evaluation

We evaluated the performance of the algorithm using a discrete-event sim-
ulator. Two performance parameters have been evaluated: thenumber of mes-
sagesand thesearch time. The first parameter is the total number of messages
generated during the search process, while the second parameter is the time
needed to receive the desired number of results.

The network parameters are: the number of nodes in the networkN , and
the resource replication rater, defined as the ratio between the total number of
resources satisfying the query criteria andN . The algorithm parameters are:
HP andHE , introduced in the previous section, andRd, which is the desired
number of results.

We performed all the tests in a network withN = 50000 nodes and a value
of r ranging from 0.25 % to 32 %. Different combinations of theHP andHE

have been experimented, whileRd was fixed to 100. All the results presented
in the following have been calculated as an average of 100 independent sim-
ulation runs, where at each run the search is initiated by a randomly chosen
node.

We run a first set of simulations in ak-ary DHT with k = 2 (i.e., a Chord
network), withHP fixed to 2000, andHE ranging from 250 to 2000. The goal
of these first experiment was evaluating the behavior of the algorithm (i.e.,
number of messages and search time) varying the numberHE of nodes that
have received the query before to estimate the resource popularity.

The graphs in Figure 4 show number of messages and search time in func-
tion of the replication rate. The search time is expressed in time units, where
one time unit corresponds to the average time to pass a message from node to
node.

As expected, Figure 4a shows that the number of messages decreases as
the replication rate increases, for any value ofHE . In general, the number of
messages is lower for higher values ofHE . In fact, the generated number of
messages depends on the accuracy of the popularity estimation, which is better
when aHE is higher. This is particularly true in presence of low replication
rates. For example, the number of messages forr = 0.5 % passes from 25889
with HE = 2000, to 31209 withHE = 250.



10

 0

 10000

 20000

 30000

 40000

 50000

321684210.50.25

N
um

be
r 

of
 m

es
sa

ge
s

Replication rate (%)

k=2, N=50000, Rd=100, HP=2000

HE=250
HE=500
HE=750

HE=1000
HE=1250
HE=1500
HE=1750
HE=2000

 0

 5

 10

 15

 20

 25

 30

 35

321684210.50.25

S
ea

rc
h 

tim
e 

(t
im

e 
un

its
)

Replication rate (%)

k=2, N=50000, Rd=100, HP=2000

HE=250
HE=500
HE=750

HE=1000
HE=1250
HE=1500
HE=1750
HE=2000

(a) (b)

Figure 4. Effect of varying the value ofHE , with HP = 2000 andk = 2: (a) number of
messages; (b) search time.

As shown by Figure 4b, also the search time decreases as the replication rate
increases. Moreover, the search time decreases as the value ofHE decreases,
since lower values ofHE correspond to a lower duration of the probe query.
For instance, the search time forr = 0.5 % passes from 29.58 withHE =
2000, to 22.53 withHE = 250. However, since lower values ofHE generate
more messages, an intermediate value ofHE should be preferred. For example,
HE = 1000 represents a good compromise since it generates the same number
of messages ofHE = 2000, but with a search time close to that ofHE = 250.

Then, we compared the performance of the algorithm with different values
of k. Based on the first set of simulations, we chosen the following algorithm
parameters:HP = 2000 andHE = 1000. Figure 5 shows how number of
messages and response time vary in this configuration withk ranging from 2
to 8.

As shown by Figure 5b, the search time strongly depends on the arity of
the DHT. The maximum gain (nearly 48 %) is obtained forr = 0.5 %, with
the search time passing from 24.46 withk = 2, to 12.74 withk = 8. The
minimum gain (20 %) is obtained for the highest replication rate (r = 32 %),
when the search time passes from 5.02 withk = 2, to 4.0 withk = 8.

The number of messages is less related to the value ofk than the search time
(see Figure 5a), but - in general - lower values ofk generate lower number of
messages. The maximum difference betweenk = 2 andk = 8 is reached with
r = 0.5 % (about 14 %), but it is counterbalanced by a search time gain of
48 %, as shown in Figure 5b.

We repeated the comparison above using the following configuration:HP =
4000 andHE = 2000. SinceHP is the minimum number of messages that will
be generated during the search process, a so high value should be used when it



Implementing Dynamic Querying Search ink-ary DHT-based Overlays 11

 0

 10000

 20000

 30000

 40000

 50000

321684210.50.25

N
um

be
r 

of
 m

es
sa

ge
s

Replication rate (%)

N=50000, Rd=100, HP=2000, HE=1000

k=2
k=3
k=4
k=5
k=6
k=7
k=8

 0

 5

 10

 15

 20

 25

 30

321684210.50.25

S
ea

rc
h 

tim
e 

(t
im

e 
un

its
)

Replication rate (%)

N=50000, Rd=100, HP=2000, HE=1000

k=2
k=3
k=4
k=5
k=6
k=7
k=8

(a) (b)

Figure 5. Effect of varying the value ofk, with HP = 2000 andHE = 1000: (a) number of
messages; (b) search time.

is fundamental to minimize the search time. The simulation results are reported
in Figure 6.

The trends are similar to those shown in Figure 6. In general, the search time
is lower of 1-2 units w.r.t. that measured forHP = 2000 andHE = 1000. For
r = 4 %, the search time is significantly improved because the probe query,
with HP = 4000, resulted in most cases sufficient to obtain the desired number
of results.

In summary, the simulation results presented above demonstrate that imple-
menting dynamic querying over ak-ary DHT allows to achieve a significant
improvement of the search time with respect to a Chord-based implementation.

 0

 10000

 20000

 30000

 40000

 50000

321684210.50.25

N
um

be
r 

of
 m

es
sa

ge
s

Replication rate (%)

N=50000, Rd=100, HP=4000, HE=2000

k=2
k=3
k=4
k=5
k=6
k=7
k=8

 0

 5

 10

 15

 20

 25

 30

321684210.50.25

S
ea

rc
h 

tim
e 

(t
im

e 
un

its
)

Replication rate (%)

N=50000, Rd=100, HP=4000, HE=2000

k=2
k=3
k=4
k=5
k=6
k=7
k=8

(a) (b)

Figure 6. Effect of varying the value ofk, with HP = 4000 andHE = 2000: (a) number of
messages; (b) search time.



12

5. Conclusions

Implementing unstructured search techniques on top of DHT-based overlays
is an efficient way to support arbitrary queries in structured P2P networks.
This approach has been followed in the design of DQ-DHT [7], a P2P search
algorithm that combines the dynamic querying technique used in unstructured
networks with an algorithm for efficient broadcast over DHTs.

The original DQ-DHT algorithm has been implemented using Chord as ba-
sic overlay. This paper focused on extending DQ-DHT to work ink-ary DHT-
based overlays [11]. As demonstrated by the experimental results presented
in this paper, the “k-ary principle” allowed DQ-DHT to achieve a significant
improvement of the search time with respect to the original Chord-based im-
plementation.

Dynamic querying over a DHT can be effectively used to implement a re-
source discovery service in large distributed environments, as demonstrated by
the dynamic querying-based Grid resource discovery system proposed in [13].
Thek-ary DQ-DHT algorithm proposed in this paper could be therefore used
to implement a more efficient version of that Grid system. Another applica-
tion of this work could be adding the capability to perform dynamic querying
search to existing distributedk-ary systems like DKS [14].

References

[1] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, H. Balakrishnan. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. ACM SIGCOMM’01, San Diego,
USA, 2001.

[2] B. Y. Zhao, J. D. Kubiatowicz, A. D. Joseph. Tapestry: An Infrastructure for Fault-
Tolerant Wide-Area Location and Routing. Technical Report UCB/CSD-01-1141, UC
Berkeley, 2001.

[3] A. Rowstron, P. Druschel. Pastry: Scalable, Decentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systems. Middleware 2001, Heidelberg, Germany, 2001.

[4] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M. Pennanen, K.
Popov, V. Vlassov, S. Haridi. Peer-to-Peer Resource Discovery in Grids: Models and
Systems, Future Generation Computer Systems, vol. 23 n. 7, pp. 864-878, 2007.

[5] M. Castro, M. Costa, A. Rowstron. Debunking Some Myths About Structured and Un-
structured Overlays. 2nd Symp. on Networked Systems Design and Implementation
(NSDI’05), Boston, USA, 2005.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker. Making Gnutella-like
P2P Systems Scalable. ACM SIGCOMM’03, Karlsruhe, Germany, 2003.

[7] D. Talia, P. Trunfio. Dynamic Querying in Structured Peer-to-Peer Networks.Submitted
for publication.

[8] A. Fisk. Gnutella Dynamic Query Protocol v0.1, May 2003.
http://www9.limewire.com/developer/ dynamicquery.html



Implementing Dynamic Querying Search ink-ary DHT-based Overlays 13

[9] S. El-Ansary, L. Onana Alima, P. Brand, S. Haridi. Efficient Broadcast in Structured
P2P Networks. 2nd Int. Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley, USA,
2003.

[10] H. Jiang, S. Jin. Exploiting Dynamic Querying like Flooding Techniques in Unstructured
Peer-to-Peer Networks. 13th IEEE Int. Conf. on Network Protocols (ICNP 2005), Boston,
USA, 2005.

[11] A. Ghodsi. Distributedk-ary System: Algorithms for Distributed Hash Tables. Ph.D.
Thesis, Dept. of Electronic, Computer, and Software Systems, The Royal Institute of
Technology (KTH), Stockholm, Sweden, 2006.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. MIT Press,
1990.

[13] H. Papadakis, P. Trunfio, D. Talia, P. Fragopoulou. Design and Implementation of a Hy-
brid P2P-based Grid Resource Discovery System. Tech. Rep. TR-0105, Institute on Ar-
chitectural issues: scalability, dependability, adaptability, CoreGRID Network of Excel-
lence, 2007.

[14] L. O. Alima, S. El-Ansary, P. Brand, S. Haridi. DKS (N, k, f): A Family of Low Commu-
nication, Scalable and Fault-Tolerant Infrastructures for P2P Applications. 3rd Int. Symp.
on Cluster Computing and the Grid (CCGrid 2003), Tokyo, Japan, 2003.


