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Abstract. We describe the design and implementation of a finite do-
main constraint solver embedded in a Prolog system using an extended
unification mechanism via attributed variables as a generic constraint
interface. The solver is essentially a scheduler for indezicals, i.e. reactive
functional rules encoding local consistency methods performing incre-
mental constraint solving or entailment checking, and global constraints,
i.e. general propagators which may use specialized algorithms to achieve
a higher degree of consistency or better time and space complexity.
The solver has an open-ended design: the user can introduce new con-
straints, either in terms of indexicals by writing rules in a functional
notation, or as global constraints via a Prolog programming interface.
Constraints defined in terms of indexicals can be linked to 0/1-variables
modeling entailment; thus indexicals are used for constraint solving as
well as for entailment testing. Constraints can be arbitrarily combined
using the propositional connectives by automatic expansion to systems
of reified constraints.
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1 Introduction

We describe the design and implementation of the SICStus Prolog [11] finite
domain constraint solver. The solver is essentially a scheduler for two entities:
indezicals [24], i.e. reactive functional rules performing incremental constraint
solving or entailment checking within the framework of the Waltz filtering algo-
rithm [26], and global constraints, i.e. general propagators which may use spe-
cialized constraint solving algorithms.

An indexical for solving a constraint C(Xi,...,X,) has the form X; in r,
where the expression r, called range, specifies the feasible values for X; in terms
of the feasible values for Xi,...,X;—1,X;11,...,Xn. The basic idea is to ex-

press C' as n indexicals, one for each X;, encoding a local consistency method for
solving C'. Each indexical is a projection of C onto X;; hence, indexicals are also
known as projection constraints [21], and have been used in several implemen-
tations [9,21,6]. Ranges are defined using a “constraint programming assembly
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language”, which gives the programmer precise control over the level of consis-
tency, and can yield more efficient solutions than relying on the solver’s built-in
constraints.

An important feature of any constraint solver is reification, i.e. the ability to
link a constraint to a 0/1-variable reflecting the truth value of the constraint.
Thus constraints can be combined using propositional connectives to model car-
dinality and disjunction simply by flattening to systems of reified constraints
and arithmetic constraints over their 0/1-variables. Reification subsumes several
frequently used operations such as blocking implication [20] and the cardinality
operator [23]. These 0/1-variables may be used in other constraints, thus com-
plex constraints can often be decomposed into a system of many reified, simple
constraints.

A crucial operation in reification is entailment detection. It has been shown
that indexicals can be used not only for solving constraints, but also for incre-
mental entailment detection [24,5]. The solver handles both kinds of indexicals,
ensuring that certain preconditions are satisfied before admitting them for exe-
cution. We have built a general reification mechanism for constraints defined by
indexicals on top of this idea.

A problem with local propagation methods is the small grain size: each invo-
cation of an indexical does relatively little work (at most one domain is pruned),
and the overhead of scheduling indexicals for execution becomes noticeable. Fur-
thermore, consider a constraint C' expressing some complex relation. Expressing
this in terms of primitive constraints, usually through library constraints defined
with indexicals, perhaps combined with reification, means spawning many small
constraints each maintaining local consistency. However, the consistency for C'
as a whole can be poor and the large amount of suspensions incurs a schedul-
ing overhead. The alternative is to treat C' as a single global constraint, using
a specialized algorithm that exploits the structure of the problem and retains
a high degree of consistency. Also, specialized algorithms that outperform local
propagation are available for important classes of constraints. We have addressed
these problems by defining a clean interface by which global constraints can be
defined in Prolog.

The solver has an open-ended design: the user can introduce new constraints,
either in terms of indexicals by writing rules in a functional notation, or as global
constraints via a Prolog programming interface.

Constraints defined in terms of indexicals can be linked to 0/1-variables mod-
eling entailment; thus indexicals are used for constraint solving as well as for en-
tailment testing. Constraints can be arbitrarily combined using the propositional
connectives by automatic expansion to systems of reified constraints.

Our work has the following contributions.

— It is the first full implementation of an idea [24] to use indexicals to specify
the four aspects of a reified constraint, viz. solving the constraint or its
negation, and detecting entailment or disentailment of the constraint.

— It is a loosely coupled integration of indexicals into the Prolog abstract
machine, with truly minimal extensions on the Prolog side.



— It provides an API for defining global constraints in Prolog.

— It provides mixed execution strategies with indexicals encoding local con-
sistency methods within a Waltz-like algorithm combined with global con-
straints encoding specialized consistency algorithms. We maintain separate
scheduling queues for the two; a global constraint is only resumed when no
indexicals are scheduled for execution.

— It extends the indexical language with constructs that e.g. admit arbitrary
binary relations to be encoded.

— It shows that a fully-fledged open-ended finite domain system with nega-
tive integers, non-linear arithmetic, reification, mixed execution strategies,
loosely coupled to a Prolog abstract machine, is possible with competitive
performance.

These contributions will be described in detail later. The rest of the paper is
structured as follows. Section 2 defines the constraint system and our extended
indexical language. Section 3 describes the architecture of the constraint solver,
how the Prolog engine had to be extended to provide services specific for FD con-
straints, and briefly how constraints are compiled to calls to library constraints
and/or to indexicals. Section 4 describes the global constraint API. In Sec. 5,
we evaluate the basic performance of our reification mechanism, and compare
the performance of our solver with four similar systems. Section 6 compares our
results with other work. We end with some conclusions about our work.

2 The Constraint System

2.1 Domain Constraints, Indexicals, Entailment and Disentailment

The constraint system is based on domain constraints and indexicals. A domain
constraint is an expression X € I, where I is a nonempty set of integers. A set S
of domain constraints is called a store. [X]s, the domain of X in S, is defined as
the intersection of all I such that X € I belongs to S (if no such X € I belongs
to S, [X]s = Z). A store S’ is an extension of a store S iff VX : [X]g C [X]s.

The following definitions, adapted from [25], define important notions of con-
sistency and entailment of constraints wrt. stores. Let [[X]]s denote the interval
min([X]g).. max([X]s):

A constraint C is domain-consistent wrt. S iff, for each variable X; and
value V; in [X;]g, there exist values V} in [Xj]|g, 1 < j < n,i # j, such that
C(V1,...,Vy)is true. A constraint C'is domain-entailed by S iff, for all values V;
in [X;]s,1<j<n,C(Vi,...,V,) is true. A constraint C is interval-consistent
wrt. S iff, for each variable X; there exist values Vj in [Xj]]s, 1 < j < n,i # 4,
such that C(V4, ... ,min([X;]s),... ,V,) and C(V1,... ,max([X;]s),... ,V,) are
both true. A constraint C'is interval-entailed by S iff, for all values V; in [[X;]]s,
1<j<n,CVi,...,V,) is true. Finally, a constraint is domain-disentailed
(interval-disentailed) by S iff its negation is domain-entailed (interval-entailed)
by S.



N =z |4, wherei € Z | oo | —oc0

Tu=N|T+T|T—T|T*T|[T/T]||T/T]|T mod T
| min(z) | max(z) | card(z)

R:=T.T|RNR|RUR|R?R|\R
| R+T|R—T|Rmod T
| unionof(z, R, R) | switch(T', F') | dom(z)
| a finite subset of Z

F ::= a finite mapping from Z to R

Fig. 1. Syntax of range expressions

An indexical has the form z in r, where r is a range (generated by R in
Fig. 1). When applied to a store S, x in r evaluates to a domain constraint
x € rg, where rg is the value of 7 in S (see below).

The value of a term ¢ in S, tg, is an integer computed by the scalar functions
defined by T in Fig. 1. The expressions min(y), max(y), and card(y) evaluate to
the minimum, maximum, and size of [y]s, respectively.

The value of a range r in S, rg, is a set of integers computed by the func-
tions defined by R in the figure. The expression dom(y) evaluates to [y]s. The
expression t..t' denotes the interval between tg and t's, and the operators U, N
and \ denote union, intersection and complement respectively. The conditional
range r 7 r' [21,4] evaluates to rg if rg # (0 and @ otherwise. The expressions
r+t, r —t, and r mod ¢ denote the integer operators applied point-wise.

We have introduced two new range expressions that make it possible to en-
code arbitrary binary relations as indexicals:

— The value of the expression switch(t, f) in S is the set f(ts)sg, if ts is in the
domain of f, or () otherwise. This is implemented as a simple hash table.

— The value of the expression unionof(z,d,e) is U,c4, €s i-e. T is quantified
by the expression and is assumed to occur in e only. The implementation
resembles a “for” loop over the elements of dg.

For example, let p(X,Y") denote the binary relation
{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)}
Using the new range expressions, p(X,Y’) can be encoded by the two indexicals

X in unionof (B,dom(Y),switch(B, [1-{1,2,3},2-{2,3},3-{3}1)),
Y in unionof (B,dom(X),switch(B, [1-{1},2-{1,2},3-{1,2,3}1)).



z|s related to rs |r monotone in S r anti-monotone in S
z]sNrs =10 inconsistent may become entailed
[z]s Crs may become inconsistent|entailed

[z]s # ([x]s N'rs) # @|may become inconsistent|may become entailed

Table 1. Entailment/Inconsistency of z in r in a store S

2.2 Monotonicity of Indexicals

A range r is monotone in S iff for every extension S’ of S, rsr C rg. A range
r is anti-monotone in S iff for every extension S’ of S, rs C rs. By abuse of
notation, we will say that z in 7 is (anti-)monotone iff r is (anti-)monotone.

The consistency and entailment of z in r in a store S is checked by considering
the relationship between [z]s and rg, together with the monotonicity of r in
S (see Tab. 1). Suppose an indexical z in r is executed in store S where r is
monotone in S. If [z]s Nrg = @, an inconsistency is detected. Otherwise, if
[z]s C rg, [z]s is already contained in the set of values that are compatible with
rs. Otherwise, [z]s contains some values that are incompatible with rg. Hence,
x € rg is added to S, and we say that z is pruned.

3 The Constraint Solver

3.1 Design

The solver is essentially a scheduler for two entities: indexicals performing con-
straint solving within the framework of the Waltz filtering algorithm [26], and
global constraints, i.e. general propagators which may use specialized consis-
tency algorithms. At the heart of the solver is an evaluator for indexicals, i.e. an
efficient implementation of the decision table shown in Tab. 1.

Indexicals and global constraints can be added by the programmer, giving
precise control over aspects of the operational semantics of constraints. Trade-offs
can be made between the computational cost of the constraints and their pruning
power. They can yield more efficient solutions than relying on the solver’s built-in
constraints.

The indexical language provides many degrees of freedom for the user to select
the level of consistency to be maintained depending on application-specific needs.
For example, the constraint X = Y +C may be defined as indexicals maintaining
domain-consistency or interval-consistency as eqcd/3 or eqci/3 respectively of
Fig. 2. The notation is explained in Sec. 3.2.

It is of course possible to write indexicals which don’t make sense. Basically,
an indexical only has declarative meaning if the set denoted by the range is
monotonically decreasing. Consider the definition of a constraint C' containing
an indexical X in r. Let T(X, C, S) denote the set of values for X that can make
C true in some ground extension of the store S. Then the indexical should obey
the following coding rules:



eqcd (X,Y,C) +:
X in dom(Y)+C,
Y in dom(X)-C.

eqci(X,Y,C) +:
X in min(Y)+C. .max(Y)+C,
Y in min(X)-C..max(X)-C.

Fig. 2. Indexicals expressing X =Y + C

1. if r is ground, rs = T (X, C, S)
2. if r is monotone, rs O T (X, C,S)
3. all arguments of C' except X should occur in r

Fig. 3. Coding rules for a propagating indexicals X in r

Rule 1 says that it is safe to consider C entailed after pruning X if r is ground.
This is a significant optimization [5], and is exploited as follows: Indexicals that
are projections of the same constraint, as e.g. in eqcd/3 in Fig. 2, are connected
by references to a common flag. Whenever one of the indexicals is decided en-
tailed, the flag is set. Before any indexical is executed, its associated entailment
flag is checked and if set the indexical is ignored. The same optimization is used
elsewhere [9,6].

Rule 2 is implied by rule 1 as follows: For all extensions S’ of S that make r
ground, if r is monotone, rg: C rg and hence T (X,C,S") C rs. Rule 2 follows
from this since, by definition, 7(X,C, S) is the union of all 7(X,C,S"). The
solver relies on this rule by requiring that X in r be monotone before admitting
it for execution.

Finally, rule 3 is a natural consequence of rule 1 for any reasonable constraint.

It has been shown that anti-monotone indexicals can be used for expressing
logical conditions for entailment detection [5]. As we will show in the following
section, a reification mechanism can be built on top of indexicals. Coding rules
analogous to those in Fig. 3 apply for indexicals detecting entailment.

The solver has been extended to handle both kinds of indexicals, and ensures
that the (anti-)monotonicity precondition is satisfied before admitting any in-
dexical for execution. This is achieved by suspending the indexicals until certain
variables are ground. The set of variables to suspend on is easily computed at
compile time [5]. For example, in eqcd/3 in Fig. 2, the first indexical is not
admitted for execution until C' is known.

We maintain separate separate scheduling queues for indexicals and global
constraints; a global constraint is only resumed when no indexicals are scheduled
for execution. Thus, global constraints can be seen as having lesser priority than
indexicals. This is reasonable, since indexicals are cheap to invoke (but may
perform little useful work), while specialized algorithms for global constraints can



be expensive (but yield many conclusions when invoked). Some other systems
can assign different priorities to individual constraints [12,22].

The solver also provides the usual predefined search strategies (fixed order,
fail-first principle, branch and bound for minimization or maximization) and
utility predicates for accessing domains, execution statistics, controlling aspects
of the answer constraint, etc.

3.2 FD Predicates and Reification

We have minimally extended the Prolog system by admitting the definition of
constraints as the one shown in Fig. 2. The constraints become known to the Pro-
log system as FD predicates, and when called, the Prolog engine simply escapes
to the constraint solver. In our design, contrary to e.g. clp(FD), indexicals can
only appear in the context of FD predicate definitions; they are not constraints
but projections of constraints.

The definitions in Fig. 2 provide methods for solving X =Y + C constraints.
If we want to reify such constraints, however, we need methods for detecting
entailment and disentailment, and for solving the negated constraint. Thus, FD
predicates may contain up to four “clauses” (for solving the constraint or its
negation, and for checking entailment or disentailment). The role of each clause is
reflected in the “neck” operator. Indexicals used for constraint solving are called
propagating. Those used for entailment checking are called checking. Table 2
summarizes the different cases. Figure 4 shows the full definition of our example
constraint with all four clauses for domain-consistency and -entailment. The
reified constraint may be used as follows, expressing the constraint U+V =5 <
B:

?7- eqcd(U,V,5) iff B.

The implementation spawns two coroutines corresponding to the clauses for
detecting entailment and disentailment. Eventually, one of them will bind B to 0
or 1. A third coroutine is spawned, waiting for B to become bound, at which time
the clause for posting the constraint (or its negation) is activated. In the mean
time, the constraint may have been detected as (dis)entailed, in which case the
third coroutine is dismissed.

role neck symbol|indexical type|precondition
solve C +: propagating monotone
solve =C' - propagating monotone
check C +7 checking anti-monotone
check -C -7 checking anti-monotone

Table 2. Roles of FD predicate clauses

Alternative encodings of reification are described in Sec. 5.1.




eqcd(X,Y,C) +: % positive constraint solving
X in dom(Y)+C,
Y in dom(X)-C.

eqcd(X,Y,C) -: % negative constraint solving
X in \{Y+C},
Y in \{X-C}.

eqcd(X,Y,C) +7 % entailment detection
X in {Y+C}.

eqcd(X,Y,C) -7 % disentailment detection
X in \dom(Y)+C.

Fig. 4. Indexicals for reifying X =Y + C

3.3 Prolog Engine Extensions

The Prolog engine had to be extended to be able to cope with calls to FD
predicates. This was done by introducing the FD predicate as a new predicate
type known to the Prolog emulator. The emulator’s call instruction dispatches
on the type of the predicate being called, and if FD predicates are called as
Prolog goals, the emulator will escape to the solver. No new abstract machine
instructions were introduced.

FD predicate definitions are compiled by a source-to-source translation mech-
anism into directives that will store the object code and insert the new predicate
into the Prolog symbol table. The Prolog compiler proper was not extended at
all. Indexical ranges are compiled into postfix notation, which is then translated
by the loader into byte code for a threaded-code stack machine. A small set
of solver primitives provides the necessary back-end, managing memory, storing
byte code in-core, etc.

The interface between the Prolog engine and the solver is provided in part
by the attributed variables mechanism [13], which has been used previously
to interface several constraint solvers into CLP systems [10,12,25,9,6,22]. This
mechanism associates solver-specific information with variables, and provides
hooks for extended unification and projection of answer constraints.

Thus, the only extension to the Prolog kernel was the introduction of a new
predicate type, a truly minimal and modular extension.

3.4 Macro-expansion of Goals

The indexical language can be regarded as a low-level language for programming
constraints. It is usually not necessary to resort to this level of programming—
most commonly used constraints are available via library calls and /or via macro-
expansion.

A very common class of constraints are equations, disequations and inequa-
tions, and propositional combinations of these. These are translated by a built-in
macro-expansion mechanism into sequences of library constraint goals. The ex-
panded code is linear in the size of the source code. Similar expansions are used



in most other systems. Again, the Prolog compiler proper is not aware of this
magcro-expansion. For example, the Prolog clause:

pX, Y, Z) :-
X+25Y+3%Z#>=4 #\/ 4*X+3*xY+2+Z #=< 1.

is expanded to:

pX, Y, Z) :-
scalar_product([-1,1,2,3], [D,X,Y,Z], #=, 0),
4 #=< D iff E,
scalar_product([-1,4,3,2], [F,X,Y,Z], #=, 0),
F #=< 1 iff G,
clpfd:’p\\/q’(E, G, 1).

4 The Global Constraint Interface

We have developed a programming interface by means of which new global con-
straints can be defined in Prolog. Constraints defined in this way can take ar-
bitrary arguments and may use any constraint solving algorithm, provided it
makes sense.

The interface maintains a private state for each invocation of a global con-
straint. The state may e.g. contain the domains of the most recent invocation,
admitting consistency methods such as AC-4 [15]. The interface also provides
means to access the domains of variables and operations on the internal domain
representation.

To make the solver aware of a new global constraint, the user must assert a
Prolog clause

dispatch_global (Constraint,
State0,
State, Actions) :- Body.

which the solver will call whenever a constraint of the new type is posted or
resumed. A dispatch global goal is true if Constraint is the constraint term it-
self, Statel is the current state of the invocation, the conjunction Body succeeds,
unifying State with the updated state and Actions with a list of requests to the
solver. Such requests include notifications that the constraint has been detected
entailed or disentailed, requests to prune variables, and requests to rewrite the
constraint into some simpler constraints. Body is not allowed to change the state
of the solver e.g. by doing recursive constraint propagation, as the scheduling
queues are under the control of the solver and not globally accessible.

A global constraint invocation is posted to the solver by calling
fd_global (Constraint, State, Susp) where Constraint is the constraint, State the
initial state of the invocation, and Susp encodes how the constraints should be
suspended on the variables occurring in it. A full example is shown in Fig. 5.



le_iff(X,Y,B) :-
B in 0..1, % suspend on bounds of X,Y and on value of B
fd_global(le(X,Y,B), [, [minmax(X),minmax(Y),val(B)]).

:- multifile dispatch_global/4.
dispatch_global(le(X,Y,B), [1, [], Actioms) :-
le_solver(B, X, Y, Actions).

le_solver(B, X, Y, Actions) :- var(B), !,
( fd_max(X, Xmax), fd_min(Y, Ymin), Xmax=<Ymin
-> Actions = [exit,B=1] % entailed, B=1
; fd_min(X, Xmin), fd_max(Y, Ymax), Xmin >Ymax
-> Actions = [exit,B=0] % entailed, B=0
; Actions = [] % not entailed, no pruning
).

le_solver(0, X, Y, [exit,call(’x>y’(X,Y))]). ¥% rewrite to X#>Y
le_solver(1l, X, Y, [exit,call(’x=<y’(X,Y))]). % rewrite to X#=<Y

Fig. 5. x < y & b as a global constraint

Reification cannot be expressed in this interface; instead, reification of a
global constraint may be achieved by explicitly passing it a 0/1-variable. Figure 5
illustrates this technique too.

Many of the solver’s built-in constraints are implemented via this program-
ming interface, for example:

— non-linear arithmetic constraints,

— constraints expressing sums and scalar products of a list of domain variables,

— all_different (L), constraining the elements of the list L to take distinct values.
We have implemented a weak version simulating pairwise inequalities as well
as a strong version based on Régin’s algorithm [19].

— element(I, L,Y), constraining the I:th element of L to be equal to Y, uses
a consistency algorithm based on AC-4.

— cumulative(S, D, R, L), modelling a set of tasks with start times S, dura-
tions D, and resource need R, sharing a resource with capacity L [1]. The
implementation is based on several OR methods [7,2].

5 Performance Evaluation

The performance evaluation of our solver is structured as follows. First, we com-
pare our low-level implementation of reification with alternative schemes. Then,
we measure the general performance of our solver on a set of benchmark pro-
grams, and compare it with four similar CLP systems.



5.1 The Reification Mechanism

The mechanism as described in Sec. 3.2 is but one of several possible imple-
mentation options. There are well-known techniques in OR for reifying linear
arithmetic constraints [27]. Sidebottom showed how reification can be encoded
into indexicals using the conditional range operator [21]. Finally, reification can
be expressed by a global constraint.

We measured the performance of these four schemes on the simple example
z,y € 1..10, x < y < b. Having posted this constraint, a failure driven loop
was executed 10000 times, executing each of the relevant cases (b = 1, b = 0,
entailment, disentailment). The four constraint formulations are listed in Figs. 5
and 6. The constant 10000 that occurs in the version using the OR method is an
arbitrarily chosen sufficiently large constant. Our low-level reification mechanism
was the fastest, with conditional ranges being some 17% slower, The OR method
method some 76% slower, and the global constraint formulation some 82% slower.

le1(X,Y,B) :- % low-level method
X #=< Y iff B.

le2(X,Y,B) :- % OR method
B in 0..1,
Xmax #= X + 10000%B,
Xmax #=< Y + 10000,
Y #< Xmax.

le3(X,Y,B) +: % conditional range method
X in ((1..B) ? (inf..max(Y))) \/ ((B..0) ? (min(Y)+1..sup)),
Y in ((1..B) ? (min(X)..sup)) \/ ((B..0) ? (inf..max(X)-1)),
B in ((min(X)..max(Y)) 7 (1..1)) \/ ((min(¥)+1..max(X)) 7 (0..0)).

Fig. 6. Three encodings of z <y < b

5.2 Benchmark Results

The first part of Tab. 3 shows execution times for a set of small, well-known
benchmark programs, with numbers in parentheses indicating relative times
wrt. SICStus. The programs have been chosen to be clean and fairly repre-
sentative of real-world problems, and coded straight-forwardly in a way a pro-
grammer without deep system specific knowledge would. Naive variable ordering
has been used for all problems, as different first-fail implementations tend to
break ties in slightly different ways. Where applicable, built-in constraints such
as all different/1, element/3 and atmost/3 have been used, whereas more
complex global constraints are not used in these programs. For example, in the
Squares 21 (packing 21 squares into a large square) benchmark, the constraint



that no square can overlap with any other square is expressed with cardinal-
ity over four inequations and not with CHIP’s diffn/1 constraint. Thus, the
collected figures represent a notion of the basic performance of a system.

The systems tested besides SICStus are CHIP version 5.0.0, ECL!PS¢ ver-
sion 3.5.2, B-Prolog version 2.1 [29] and clp(FD) version 2.21. All benchmarks
have been run on (or normalized to) a SUN SPARCstation 4 with a 85MHz
microSPARC CPU and the times shown are in milliseconds. The performance
comparison has been limited to the above systems since these are the Prolog
based systems that were available to us, but could easily be extended. Further-
more, SICStus and Oz [22] have almost identical performance on the alpha,
eq10 and eq20 benchmarks [28].

Of the eight programs, the last two, Magic 20 (magic series of length 20)
and Squares 21 (packing 21 squares into a large square) need reification, which
is not supported in clp(FD), B-Prolog and only partly supported in CHIP. The
figure for Magic 20 with clp(FD) is with reification implemented using the OR
method, in CHIP using conditional clauses and in B-Prolog reification has been
done using delay-clauses. Squares 21 could not be run on B-Prolog due to lack
of support for non-linear arithmetic, and on clp(FD) due to memory allocation
problems that we were unable to debug.

Benchmarks
Problem clp(FD)| B-Prolog CHIP| ECL'PS*SICStus
Alpha 3900 (0.23)[14800 (0.89)|42600 (2.55)[100000 (5.99)| 16700
Cars® times 970 (0.20)| 2400 (0.50)| 3700 (0.77)| 4400 (0.92) 4800
Eq1030 times 2000 (0.35)| 3900 (0.70)| 6100 (1.09)| 9100 (1.63) 5600
Eq20°° times 3400 (0.40)[11000 (1.29){11500 (1.35)| 18000 (2.12) 8500
Queens-8 all'® times | 850 (0.20)| 1000 (0.23)| 1800 (0.42)| 7500 (1.74) 4300
Queens-16 one'® ™¢s5500 (0.21){10000 (0.38)|12500 (0.48)| 60000 (2.31)| 26000
Magic 20 630 (1.05)| 3800 (6.33)| 6800 (11.3)| 3300 (5.50) 600
Squares 21 n/a n/a[59000 (1.98)[171000 (5.74)| 29800
Arithmetic Mean (0.38) (1.5) (3.2) (3.2) (1.0)
Harmonic Mean (0.28) (0.56) (1.0) (2.16) (1.0)
Constraint Executions
1M prunings | 806 (0.08)] 5400 (0.55)] 957 (0.09)] 42710 (4.38)] 9760

Table 3. Performance results for selected problems

The second part of Tab. 3 shows the performance on the unsatisfiable con-

straints z,y € 1..500000, = < y, y < z. Posting these constraints will make the
last two constraints trigger each other iteratively until failure, i.e. one million
invocations and prunings. This gives an idea of the raw speed of the solvers on
intervals.



Although the results show some peaks, e.g. for Alpha, Magic 20 and 1M,
we conclude that SICStus shows performance comparable with that of all sys-
tems tested. SICStus performs significantly better than ECL!PS®, while it is
lagging behind clp(FD). It is worth noting that SICStus performs quite well
on the benchmarks that use reification, which shows that low-level support for
reification is valuable.

6 Comparison with Other Work

A full comparison with all existing finite domain constraint solvers is clearly
outside the scope of this paper. In this section, we will focus on particular features
of our solver and how they relate to some other known systems.

Indexicals Indexicals were first conceived in the context of cc(FD) [24,25].
The vision was to provide a rational, glass box reconstruction of the FD part of
CHIP[10], replacing a host of ad-hoc concepts by a small set of powerful concepts
and combinators such as blocking implication and the cardinality operator. In-
dexicals were a key component of the design, but seem to have been abandoned
later. Unfortunately, no implementation of cc(FD) is available for comparison.
Other systems [9,21,6] have been solely based on indexicals. Notably, clp(FD) [9]
demonstrated the feasibility of the indexical approach, achieving excellent per-
formance by compiling to C. Our design is the first to be based on a mixture
of indexicals and global constraints, compiling indexicals to byte code for a
threaded-code stack machine. The comparison with clp(FD) indicates that in-
dexicals require a tight integration, compiled to C or native code, to achieve
truly competitive performance.

The indexical scheme can be readily extended, with for example conditional
ranges [21,6], with “foreach” constructs as in our design, or with arbitrary func-
tions written in C [9]. A generalization of indexicals to m-constraints encoding
path-consistency methods was proposed in [8].

Reification CLP(BNR) [16] was the first system to allow propositional combi-
nations of arithmetic constraints by means of reification. This is now allowed by
many systems including ours [21,12,22,17]. Other systems provide blocking im-
plication [10,25] or cardinality [25]. Only research prototypes have no reification
support.

We have provided a full implementation of an idea [24] to use indexicals to
specify the four aspects of a reified constraint, viz. solving the constraint or its
negation, and detecting entailment or disentailment of the constraint.

Global constraints It is well known that local constraint propagation, even
with reification, can be too weak. A constraint involving many variables, e.g. the
constraint that the elements of a list all be distinct, may be modeled by O(N?)
disequations. If the same constraint is expressed as a single, global constraint,
we get much better (O(N)) space complexity, much smaller scheduler overhead,
and the opportunity to employ a specialized, complete filtering algorithm [19]
instead of merely mimicking the pairwise disequations. The need for specialized



algorithms is most obvious on hard combinatorial problems [1,3,18], while the
space complexity aspects can dominate on large instances of otherwise easy
problems.

Consequently, solvers based solely on indexicals can hardly be competitive on
these classes of problems. On the other hand, indexicals admit rapid prototyping
of user-defined constraints: defining a global constraint usually requires much
more programming effort. Also, in our implementation, an indexical formulation
often outperforms a global one if the constraint involves few variables. The break-
even point has not been determined.

Most solvers are based solely on what we have called global constraints, as
e.g. [12,22,17,10,14]. Ours is based on a mixed approach, combining the best of
both worlds.

Programming interfaces Any system that is not completely closed needs a
programming interface for defining new constraints. In indexical-based systems,
the indexical language provides such an interface. clp(FD) [9] allows the use of
arbitrary C functions in indexicals. ECL{PS® [12] uses attributed variables as a
generic constraint interface. By accessing these attributed variables and calling
internal coroutining primitives, user-defined constraints can be programmed.
Oz [22], Hlog Solver [14] and CHIP [10] provide programming interfaces in terms
of C++ classes. CHIP also provides declarations that allow the user to use
arbitrary Prolog code as constraints; we provide the same ability via a simple
APL

Negative numbers In many finite domain constraint solvers, the constraints
are over natural numbers [22,9,25,6,10]. The extension to the full integer domain
strictly extends the expressive power of the language so that it can reason e.g.
about differences, but complicates the non-linear arithmetic constraints some-
what. We share this extensions with some other systems [12,16,21,17].

Host language integration The design of clp(FD) [9] extends the underly-
ing Prolog engine with several new abstract machine instructions supporting
constraints, and compiles all source code to C.

AKL(FD) [6] integrated the indexical approach into a concurrent constraint
language with deep guards and a generic constraint interface on the level of C.
Constraint system specific methods for e.g. garbage collection must be provided
in this interface.

As in ECLPS®, we used attributed variables as a generic constraint interface,
and minimally extended the Prolog engine by the FD predicate mechanism,
handling all compilation issues by source-to-source translation.

7 Conclusions

We describe the design and implementation of the SICStus Prolog finite domain
constraint solver. The solver has an open design, supports reification, and allows
constraints to be added by the user by two complementary mechanism: (a) as
indexicals that perform incremental constraint solving and entailment checking



within a Waltz-like algorithm, and (b) as global constraints via a Prolog pro-
gramming interface, admitting specialized consistency methods. We describe a
loosely coupled integration of finite domain constraints into the Prolog abstract
machine; thus the techniques can be generalized to other constraint systems. We
extend the indexical language, thus enabling the encoding of arbitrary binary
relations as indexicals. We compare the performance and functionality of the
design with other work.

We have shown that a fully-fledged open-ended finite domain system with
negative integers, non-linear arithmetic, reification, mixed execution strategies,
loosely coupled to a Prolog abstract machine, is possible with competitive per-
formance.
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