
Modular Cloning∗

Karl-Filip Faxén
Swedish Institute of Computer Science, Kista

kff@sics.se

April 10, 2008

SICS Technical Report T2008:07, ISSN 1100-3154

ABSTRACT
In this paper we deal with the problem of making context
dependent interprocedural optimizations (where the legality
of optimizing a function depends on properties of the callers
of the function) effective and compatible with (a form of)
separate compilation. We improve effectiveness by cloning,
generating several versions of a single function optimized for
different call sites.

We attack the separate compilation problem, that code can
not be generated until all calls of a function are known, by
splitting the compilation process into two phases. The first
phase analyses the modules one at a time in bottom-up de-
pendency order (main is processed last) and produces code
in an intermediate language where the constructs targeted
by the optimization are annotated to control the application
of the optimization. In cases where the legality of an opti-
mization depends on properties of the callers of the function,
these annotations can take the form of annotation variables
which become extra formal parameters. The second phase
traverses the modules in top-down dependency order, re-
moving all of these extra parameters by specialization.

We illustrate our approach with an integrated programming
analysis and transformation system featuring a context sen-
sitive type based analysis, cloning with sharing of identical
clones and a modular implementation allowing for the com-
pilation of large programs. The system implements cheap
eagerness and redundant eval elimination for a lazy func-
tional language.

Keywords: Modular compilation, cheap eagerness, cloning,
static analysis, type inference, functional programming,
optimization, program transformation

1. INTRODUCTION
∗Based on an earlier unpublished draft.

Many useful compiler optimizations depend on properties of
the calls to the optimized procedure or function. In a lazy
functional language, for instance, such a property may be
that a function is only called with evaluated arguments, in
which case testing for unevaluated arguments becomes re-
dundant and the opportunities for applying the cheap eager-
ness optimization [13] increase. While these transformations
are specific to lazy languages, compilers for any language
may benefit from knowing for instance that certain argu-
ments are constants, another call site dependent property.

Techniques like these give significant speedups, in particu-
lar for lazy functional languages [13], but they are limited
in their effectiveness by the need to be safe with respect to
every call to the optimized function. For functions used at
many call sites, this means that if just one call site invali-
dates an optimization, the performance of every call to the
function will be hurt. For large programs using many library
functions, this problem is severe.

To eliminate this “crosstalk” several versions of each func-
tion can be generated, each one tailored to a subset of the
calls to the function. This transformation is called cloning
[6] and has been used in imperative languages [17, 1] as
well as in object oriented languages1 [3, 10, 20] and it has
also been shown to provide substantial benefits to functional
programs [14].

A second problem with context dependent optimization is
that separate compilation becomes very difficult since the
code generated for a function f depends on properties of the
callers of f, which may reside in modules importing the mod-
ule defining f. At the same time, analysing the importing
modules may need analysis information regarding f, so it is
difficult to decide which module should be compiled first. If
cloning is used, it is not known which clones are needed until
importing modules are compiled. Hence systems which use
context dependent optimization tend to do whole program
optimization [20].

The solution to this dilemma can be guessed from careful
reading of the previous paragraph: For analysis, informa-
tion about the imported modules is needed, while for code
generation it is the importing modules that must be pro-
cessed first. Thus we separate analysis and code generation

1In OO languages, what we call cloning in this paper is often
termed customization or specialization.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/300997977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and do the analysis bottom up and the code generation top
down. The key to modular cloning is an intermediate lan-
guage which can glue these two passes together.

An immediate consequence of this approach is that we do
not handle mutually recursive modules directly. In practice,
mutually recursive modules can be merged by the compiler
front-end.

We see modular cloning as a generic approach to making
context dependent analysis effective (by cloning) and effi-
cient (by making it modular). At the core of this approach
is

• an intermediate language where each unit of cloning
(here function) is parameterized over those parts of
the context that affect its optimization,

• a modular analyser capable of reasoning about the un-
known context and finding how it affects optimization
(we use a type based analyser with let-polymorphism),
producing code in the intermediate language, and

• a specializer that generates exactly those clones that
are needed, one module at a time, translating from the
intermediate language.

We have formulated several optimizations (cheap eagerness,
redundant eval elimination, update avoidance and repre-
sentation selection) in this way; we will use a combination
of cheap eagerness and redundant eval elimination as a case
study in this paper. We also think that modular cloning is
applicable to other types of languages (imperative, object
oriented, . . .).

We believe that the main contribution of the paper is the
invention of the parameterized intermediate language and its
relation to the analyser since it clarifies exactly what part of
the optimizations are context dependent. This is in contrast
to most work on analysis-based optimization where the focus
is very much on the analysis and the transformation part is
playing a secondary role.

Modular cloning rests on modular analysis. In this paper we
use a type system with let-polymorphism, but there is quite
a lot of freedom in the choice of analysis technology. First,
there are other type systems using combinations of subtyp-
ing, more powerful kinds of polymorphism and intersection
types. Soft typing can be used if the source language is not
statically typed or to allow the use of an impredicative type
system. Second, analysers based on constraint solving can
also be used, as can more ad hoc data flow techniqes like
relevant context inference [4].

The example analysis presented is the first type based cheap
eagerness analysis, but for simplicity of presentation, it is
not as precise as our earlier non-type based work [13], the
main difference being that the present analyser considers all
function calls expensive.

The rest of the paper is organized as follows: The rest of this
section gives an informal overview of modular cloning and

module libfun = λf. λn. (eval f) (thunk (eval n)+1)
module appfun = λg. λm. libfun (eval g) 3 + libfun (eval g) m
module main = appfun (λx. eval x) 3

+ appfun (λx. 1) (thunk 1/0)

Figure 1: A simple program

the example application. Section 2 presents the parameter-
ized intermediate language and section 3 gives a specification
of the analysis in terms of an inference system. Both of these
sections essentially deal with the correctness of the analy-
sis. Section 4 gives an implementation of the analysis in the
form of an inference algorithm and section 5 presents the
specialization (cloning) algorithm. In section 6 we discuss
how we can avoid having to recompile the entire program
after a a subset of the source modules have been updated.
Section 7 discusses related work and section 8 concludes.

1.1 The example analysis
Consider the example program given in figure 1. It con-
sists of three modules, each exporting a single binding. The
value main is an integer while the two other modules export
functions; appfun, whose name is meant to suggest that it is
part of the application and libfun which might be a library
function.

The functions are written in a functional language where the
order of evaluation has been made explicit. Delayed (lazy)
evaluation is expressed using the thunk construct; thunk e
constructs a representation for the unevaluated expression
e (typically a small record containing a code pointer and
the values of the free variables of e). The eval operation re-
sumes the delayed computation, yielding an evaluated result
(typically by an indirect function call to the code pointer
with the address of the thunk as argument). If the argu-
ment of the eval is not a thunk, the eval simply returns it.
This language is suitable as an intermediate language in a
compiler for lazy functional languages such as Haskell [19].

Context independent optimization
We assume that a simple strictness analysis has already been
applied. For instance, in appfun the compiler has inserted
an eval around the first argument to libfun in both appli-
cations. It can do this since libfun will certainly evaluate
it anyway. This use of strictness analysis is context inde-
pendent (bottom-up); the caller (appfun) is adapted to the
callee (libfun) and can be implemented by compiling the
libfun module before the appfun module and recording the
strictness of libfun in its interface file. All major Haskell
compilers implement this optimization.

Other context independent techniques include inlining [1],
where the caller is adapted to the callee by replacing the
call with a copy of the code of the callee, and some forms of
interprocedural register allocation, where the caller can keep
values in registers across a call if the callee is known not to
overwrite these registers.

Context dependent optimization

module libfun = {u1, u2}λf. λn. (eval{u1} f)
(thunk{u2} (eval{u2} n)+1)

module appfun = {u3, u4}λg. λm. libfun{F, F} (eval{u3} g) 3 +
libfun{F, u4} (eval{u3} g) m

module main = appfun{F, F} (λx. eval{F} x) 3
+ appfun{F, T} (λx. 1) (thunk{T} 1/0)

Figure 2: The example translated into the interme-
diate language

The thunk in libfun can not be eliminated by strictness
analysis since we do not know if the first argument to libfun

will always be a strict function. This is clearly a context
dependent (top-down) property.

The most well known example of context dependent opti-
mization is probably interprocedural constant propagation
[17] where a formal parameter can be replaced by a con-
stant if the procedure is always called with that constant
as argument. This can be very important if that parame-
ter controls data access patterns or loop structures, making
paralellization and vectorization more effective.

Another example is pointer analysis [9], where a superset of
the possible targets for each pointer dereference in a program
is computed. This gives e.g. alias information, which can
be used to improve register allocation and code scheduling.

Cheap eagerness
Strictness analysis finds cases where a value can be evaluated
early because it is certain to be needed later, even if this
early evaluation might diverge or raise a run-time error. In
contrast, cheap eagerness [18, 13] evaluates an expression
early because its evaluation is guaranteed not to diverge
or raise a run-time error, even if it is not certain that the
value of the expression is really needed. This is beneficial if
evaluating the expression is cheaper than building the thunk
or if the thunk is likely to have been evaluated anyway (this
is more likely than not). There are also secondary effects
since eval operations can be removed and unboxed data
representations used more often.

Thus the task of a cheap eagerness analyser is to find thunks
whose bodies are cheap and safe. We will consider vari-
able references, constants, some operators (e.g. addition but
not division), thunks and lambda abstractions as cheap (the
latter two since they only allocate something in the heap).
Function calls,2 some operators and evals are unsafe. Note
that if we know that the argument of a certain eval will
never be a thunk, that eval is redundant and can be elim-
inated. If the eval was part of the body of a thunk, this
thunk might now be cheap.

This is the core analysis problem we will use as example of
modular cloning in this paper. Note that cheap eagerness
and redundant eval elimination are mutually dependent and

2A sophisticated cheapness analyser can determine that
some function calls are cheap, but in this paper we will,
for simplicity, consider all calls expensive.

must be performed at the same time. It takes only one
glance at libfun to realize that this is clearly a context
dependent problem: The eval of n, and then also the thunk,
can be eliminated if the value of n (the second argument to
libfun) is not a thunk.

Cloning
The trouble is that libfun will be called with a thunk as
second argument. The second call to appfun in main passes
a thunk and the second call to libfun in appfun passes
that thunk through. This is a pity since the first call in
appfun passes an evaluated constant; adding insult to in-
jury, the transformation interacts badly with separate com-
pilation since code can not be generated for libfun until the
whole program has been analysed.

We will deal with the first problem by cloning, that is, gen-
erating several different versions of the same function. Thus
we will have one version of appfun without any thunks or
evals and one with only the eval of f removed.

In the limit, each call site invokes its own tailor made clone
but in general, different call sites are similar enough that
fewer clones than call sites are needed. For instance, in
constant propagation all call sites that pass non-constant
arguments may invoke the same clone and so can call sites
that pass the same constant. The increase in code size en-
tailed by cloning is in most cases offset by the simplification
of the resulting code and the net increase in object code size
is typically modest. Nevertheless, cloning often increases
the number of misses in the instruction cache [14], a cost
that must be weighed against the benefits imparted by the
more agressive optimization. We have seen reductions in
execution time of 11–29% for some small (≤ 700 lines) lazy
functional programs.

Modular cloning
We address the second problem (that code can not be gener-
ated until the whole program is analysed) by parameterizing
the code with respect to the context dependent optimization
decisions. We do this by annotating the thunks and evals in
the program with either T, meaning that the construct must
stay, F, meaning that the construct can safely be optimized
away, or a variable, meaning that it depends. For each of the
functions we will add the new annotation variables as a kind
of extra formal parameters. This means that we must also
add corresponding extra arguments to every call to libfun

and appfun. The result of this transformation is shown in
figure 2.

For libfun, note that the eval of f can be omitted if f

is not a thunk; since this depends on the caller of libfun,
we annotate the eval with the variable u1. The thunk and
the other eval depend on the evaluatedness of n, the sec-
ond argument, and can be annotated with the same variable
u2. This analysis is context independent; the other modules
need not be consulted. Apart from the transformed code, we
also note an analysis result (not shown in the figure) which
says that

• if the first argument in a call to libfun is evaluated, we
may instantiate the first cloning parameter to F(and

module libfun FF = λf. λn. f (n+1)
libfun FT = λf. λn. f (thunk (eval n)+1)

module appfun FF = λg. λm. libfun FF g 3 + libfun FF g m
appfun FT = λg. λm. libfun FF g 3 + libfun FT g m

module main = appfun FF (λx. x) 3
+ appfun FT (λx. 1) (thunk 1/0)

Figure 3: The example specialized

similarly for the second argument and second cloning
parameter), and

• the first argument is a function that will be applied to
something that might be a thunk if the second argu-
ment is a thunk.

For appfun, we have the evals of g and the two calls to
the cloned libfun to annotate. In the first call, we can
place ground annotations; we know that both arguments
are evaluated. In the second call, the second parameter is
context dependent. Thus the optimization of a construct
might depend on some function several layers up in the call
graph. The analysis result is similar to that for libfun.

Finally, main is analysed. We can see that in both calls,
the first argument is evaluated. The eval in the identity
function is in fact redundant since the second argument in
this call (3) is evaluated and it is this value that (in libfun)
will be passed to the identity function. In order to figure this
out, the analyser has to be able to track the higher order
control flow of the program, something that our type-based
approach handles easily.

Specialization
At this point, it would be possible to generate code for the
program that explicitly manipulates the annotations at run-
time. That would however have the drawback that we re-
place the overhead of (some of) the lazy evaluation with
the overhead of the extra parameterization. Instead, we will
eliminate it by specialization. While the analysis and gen-
eration of the intermediate code proceeded bottom-up, our
specialization will proceed top-down. Looking at figure 2
it is easy to see why: There are no annotation variables in
main. Any modular cloning analysis must ensure this by
arranging for the context of main to be known.

2. THE LANGUAGES
There are in general three languages involved in an optimizer
based on modular cloning:

• The input language is a conventional language with-
out annotations or cloning constructs (in the example
analysis used in this paper, we call it λin). It might
either be a source language or, as in this case, an in-
termediate language produced by the front-end and al-
ready optimized using local and context independent
techniques.

ms ∈ Modules→m1; . . . ; mn

m ∈ Module → module x = e
e ∈ Exp →x | e1 e2 | λx. e | op e1 . . . er

| let x = e in e′

| thunk{a} e | eval{a} e
| {~z} b | x{~a}

b ∈ Build → op | λx. e | thunk{T} e | {~z} b

a ∈ Bool Exp→ z | F | T
a ∈ Bool Val →F | T

x ∈ Var, z ∈ Bool Var

Figure 4: The syntax of λmc

• The intermediate language is the input language plus
annotations and cloning abstractions and applications
(λmc in this paper). There should be a trivial trans-
formation A which maps the input language to the
intermediate language by adding conservative (“don’t
optimize”) annotations.

• The output language is the target language of the spe-
cializer (here called λout). It has only ground (variable
free) annotations and lacks cloning abstractions and
applications.

Since they are so similar, it is convenient to give only one
semantics to these three languages. Thus we only give a
semantics directly to the intermediate language (λmc) and
define the semantics of a λin expression e as the semantics of
its trivial translation into λmc, A(e). The output language
λout is a subset of λmc, so there we use the semantics of λmc

directly.

Figure 4 gives the syntax of λmc, which is a call-by-value
functional intermediate language with explicit thunk and
eval constructs for expressing lazy evaluation. Constants
(nullary operators), lambda abstractions, cloning abstrac-
tions, and thunks are buildable expressions (in a real im-
plementation, these will be implemented by building a new
heap cell).

There is no built-in evaluation of thunks in the language; if
the value of a variable is needed in evaluated form, an ex-
plicit eval must be used unless the variable is known to have
only evaluated values. In those situations where a thunk is
acceptable, an evaluated value is however also acceptable.

A module is a binding prefixed by the keyword module, and
a program is a sequence of modules where later modules may
depend on earlier ones (no mutual recursion). We will write
m; ms for the module m followed by the module sequence
ms as well as ms; m for the sequencs ms followed by the
module m. We will use the name of the bound variable x as
the name of the module module x = e and we will say that it
exports x and imports fv(e) (the free variables of e).

A technical requirement is that dead code elimination has
been performed; in a let-expression let x = e in e′, x must
occur free in e′, and similarly, each module must be used in
a later one except for main.

ρ ` Pgm ⇓ w

ρ, T ` e ⇓ w ρ[x 7→ w] ` ms ⇓ w′

ρ ` module x = e; ms ⇓ w′ module

ρ ` ε ⇓ ρ(main) main

ρ, a ` e ⇓ w

ρ, a ` x ⇓ ρ(x) var

app
ρ, T ` e1 ⇓ (ρ′, λx. e) ρ, T ` e2 ⇓ w ρ′[x 7→ w], T ` e ⇓ w′

ρ, T ` e1 e2 ⇓ w′

ρ, a ` λx. e ⇓ (ρ, λx. e) abs

ρ, a ` e1 ⇓ w1 . . . ρ, a ` er ⇓ wr [[op]] a w1 . . . wr = w
ρ, a ` op e1 . . . er ⇓ w

op

ρ, a ` e′ ⇓ w′ ρ[x 7→ w′], a ` e ⇓ w
ρ, a ` let x = e′ in e ⇓ w

let

ρ(a) = T
ρ, a ` thunk{a} e ⇓ (ρ, thunk{T} e)

thunk-i

ρ(a) = F ρ, F ` e ⇓ w
ρ, a ` thunk{a} e ⇓ w

thunk-ii

eval-i
ρ, T ` e ⇓ (ρ′, thunk{a′} e′) ρ(a) = T ρ′, T ` e′ ⇓ w

ρ, T ` eval{a} e ⇓ w

ρ, F ` e ⇓ w w is a whnf closure
ρ, a ` eval{a} e ⇓ w

eval-ii

ρ, a ` {~z} b ⇓ (ρ, {~z} b) clone

ρ, a ` e ⇓ (ρ′, {~z} b)
ρ, a ` e{~a} ⇓ (ρ′[~z 7→ ρ(~a)], b)

inst

Error rules
ρ, F ` e1 e2 ⇓ error app err

ρ, a ` e ⇓ (ρ′, thunka′
e′) a = F or ρ(a) = F

ρ, a ` eval{a} e ⇓ error
eval err

ρ(x) = error for some x ∈ dom(ρ)
ρ, a ` e ⇓ error

env err

ρ, a ` e ⇓ (ρ′, e′) e′ is not a clone abs matching ~a
ρ, a ` e{~a} ⇓ error

inst err

Figure 5: The semantics of λmc

We give λmc a big step operational semantics in Figure 5.
The semantics allows us to prove judgements of the form
ρ, a ` e ⇓ w where ρ is a value environment mapping pro-
gram variables to values and annotation varibles to boolean
values ({F, T}), a is a boolean value called the evaluation
budget that controls whether the expression is allowed to
perform function calls and operations which might loop or
raise exceptions (a = T) or if only cheap expressions are al-
lowed (a = F), e is an expression and w is a value. A value
w is either a closure (ρ, b), where ρ is a value environment
and b is a buildable expression, or error. We extend envi-
ronments to boolean expressions by ρ(F) = F and ρ(T) = T.
Since λmc is a call-by-value language, a thunk is a value
like any other; we use the term whnf closure to refer to a
non-thunk closure.

2.1 Annotations and cloning
Some constructs in λmc are annotated with information con-
trolling their semantics. This information may be given
in the form of annotation variables z which are bound in
cloning abstractions. In this way, a single cloning abstrac-
tion may represent several versions of an expression, op-
timized for use in different contexts, as discussed in Sec-
tion 1.1. Intermediate code can be generated before enough
of the context is known to determine the legality of every
optimization.

A thunk expression of the form thunk{a} e has a boolean an-
notation a which controls whether the thunk is built (a = T)
or speculatively evaluated (the cheap eagerness transforma-
tion [13]). An expression of the form thunk{F} e can be
translated to e.

An explicit evaluation operation of the form eval{a} e is an-
notated with a boolean a which allows the test for a thunk
closure to be omitted if a = F. This optimization is only
legal if the argument e never evaluates to a thunk. An ex-
pression of the form eval{F} e can be translated to e.

2.2 Annotations in the semantics
The semantics of λmc checks that the program is annotated
correctly; if a violation is detected, the value error becomes
derivable. This is formalized in the last four rules in figure 5.
The first one, [app err], deals with an attempt to evaluate a
function application in a speculative context (the only rule
with a premise of the form ρ, F ` e ⇓ w is [thunk-ii]). The
second rule, [eval err], catches two errors: Finding a thunk at
an eval marked as redundant (ρ(a) = F) or in a speculative
context (a = F). The third rule, [env err], indicates that
if the environment maps some variable to error, then the
result is also error. Finally, the [inst err] rule covers the case
of malformed cloning applications.

The error rules make the semantics of λmc nondeterministic;
sometimes, both error and an ordinary result can be derived.
In these cases the program is still considered incorrect.

The reason for including the error checking rules is to be
able to say that if evaluation of an expression cannot lead
to error, the semantics of the expression is, in an abstract
sense, the same as if no optimization had been applied to
the expression.

σ ∈ Scheme →∀~β, ~α.τ|P
τ ∈ Annotated type→ (η, ν)
ν ∈ Ordinary type →α | τ1 → τ2 | U | ~η ⇒ τ
η ∈ Bool type →β | F | T | β1 ∨ . . . ∨ βn

P ∈ Constraint set →{p1, . . . , pn}
p ∈ Constraint → η1 ≤ η2

α ∈ Raw type var, β ∈ Bool type var

Figure 6: Syntax of types and constraints

3. THE ANALYSIS
In this section we present an example modular cloning anal-
ysis in the form of an annotated type system. This formu-
lation is somewhat abstract in that it does not specify a
translation from λin to λmc. Instead it allows us to check
that a λmc program is well-typed and annotated safely. The
type system can then be seen as a specification of the anal-
ysis and serves as a stepping stone in the correctness proof
for the inference algorithm given in the next section. That
algorithm does give a translation and is correct with respect
to the type system since it either rejects the λin program or
translates it to a well-typed λmc program.

3.1 Type based program analysis
We will here give a very brief introduction to type systems
and type based analysis for the benefit of readers not ac-
quainted with this subject.

One way to understand type based analysis (and type sys-
tems in general) is to start from a language with an untyped
semantics which, like the semantics of λmc, has a universal
set of values (closures plus error in λmc). Types then corre-
spond to subsets of this universe. The correspondence gener-
alizes to typing environments, which are mappings from vari-
ables to types, so that ρ : A if ρ(x) : A(x) for all x ∈ dom(A).
If the type system is semantically sound, it is then possible
to prove that, if a typing judgement A ` e : τ (which is
read as “e has type τ in typing environment A”) is deriv-
able, ρ : A and ρ ` e ⇓ w, then w : τ . If the semantics
models dynamic type errors using a special error value (e.g.
ρ ` 3 x ⇓ error) which is not part of any type, then the
type system is a kind of program analysis that can deter-
mine that some progams do not evaluate to error (this is
sometimes called a safety analysis).

In general, a type system defined using inference rules can
assign the same expression many different types. The reason
for this is, in most systems, that the inference relation is
closed under substitution (a substitution θ is a function from
types to types which replaces type variables in the argument
type with types). If A ` e : τ , then θA ` e : θτ for any
substitution θ. A classic example is the identity function
id = λx.x for which all types of the form τ → τ are derivable.

This might look inconvenient from the point of view of pro-
gram analysis: How many times do we need to analyse id
and how do we represent an infinite number of types? Here
polymorphism comes to the rescue by allowing us to infer
the type ∀α.α → α, where α is a type variable, for id. This
type scheme succintly captures all the types of id: A type τ
can be inferred for id precisely if it can be formed by sub-

stituting some τ ′ for α in α → α. Since any such type is
derivable, and if the type system is semantically sound, the
identity function will be an element of all of these types.
Thus the interpretation of a type scheme is the intersection
of all of the types that can be formed from it.

We infer polymorphic types by first inferring a monomorphic
type with type variables (A ` λx.x : α → α) and then
generalizing over some type variables which do not occur in
A (in this case α). This restriction is important for semantic
soundness; suppose we have ρ : A, A ` e : ∀α.τ and ρ `
e ⇓ w. We now have to prove that w : [τ ′/α]τ for all τ ′. We
know that in order to derive the type ∀α.τ , we must have
derived the type τ so we have A ` e : τ . We can now use the
closure under substitution to derive [τ ′/α]A ` e : [τ ′/α]τ .
The above mentioned restriction now comes into play: since
α does not occur in A, we have [τ ′/α]A = A, so, since we
have ρ : A, ρ ` e ⇓ w and A ` e : [τ ′/α]τ for arbitrary τ ′,
we have showed that w : [τ ′/α]τ for arbitrary τ , as required.

3.2 Syntax of types
In the type system of a programming language, or for safety
analysis, we are interested in whether values are functions,
numbers, data structures and so on. When doing program
analysis, we typically want to know more; in the present
case, we are also interested in whether the objects are eval-
uated (whnf closures) or unevaluated (thunks) since this is
necessary to know in order to determine if an eval is cheap
and safe or not. In other analyses, we might be interested
in whether the value is shared or how it is represented.

We will keep this information in annotations; thus values
are described by annotated types τ of the form (η, ν) where
ν is the ordinary type and η is an annotation indicating
whether the value might be a thunk. A bool type η is either
a variable β, a type constant F or T or a disjunction of
variables β1 ∨ . . . ∨ βk.

Ordinary types ν are the familiar type variables α, base
types U (e.g. Int), function types τ1 → τ2 (note that τ1 and
τ2 are annotated types to indicate the evaluatedness of the
argument and result) but also clone types of the form ~η ⇒
τ . These are the types of cloning abstractions, in analogy
with function types being the types of lambda abstractions.
Figure 6 gives the syntax of types

There is a close correspondence between annotations and
annotation types in that the boolean values are also types.
Thus T and F are both boolean annotations and boolean
types. Annotation types can therefore be used for a very
precise dataflow analysis of annotation values.

So for instance, (F, Int) is the type of evaluated integers and
(T, (T, Int) → (F, Int)) is the type of possibly unevaluated
functions taking possibly inevaluated integers to definitely
evaluated integers.

We will use substitutions, which are functions mapping types
to types, ranged over by θ. Substitutions are entirely deter-
mined by what they map variables to. We write the sub-
stitution mapping α to ν and all other variables to them-
selves as [ν/α] (and similarly for annotation types). Since
disjunctions of the form β1 ∨ . . . ∨ βk only admit variables,

P ∪ {β ≤ η} `̀ β ≤ η elem

P `̀ β ≤ β β-reflex

P `̀ F ≤ η P `̀ η ≤ T false,true

P `̀ β1 ≤ η . . . P `̀ βn ≤ η
P `̀ β1 ∨ . . . ∨ βn ≤ η

∨-left

β′ ∈ {β1, . . . , βn} P `̀ β ≤ β′

P `̀ β ≤ β1 ∨ . . . ∨ βn
∨-right

Figure 7: Constraint entailment

substitutions simply disjunctions when. In paricular, vari-
ables mapped to F are dropped and if some variable in the
disjunction is mapped to T, the whole disjunction is mapped
to T. The t operator simplifies the result in the same way.

The type system uses type constraints p. These are inequal-
ity constraints of the form η1 ≤ η2 dealing with the boolean
order F ≤ η ≤ T. Note that this is not a subtype ordering:
The type F corresponds to the set {F} and T corresponds to
{T} and {F} 6⊆ {T}.

Constraints are related by an entailment relation, given in
figure 7. The intention is that if a constraint set P entails a
constraint p, P `̀ p, then whenever the constraints in P are
satisfied, the constraint p will also be satisfied. Constraints
that are entailed by the empty set, ∅ `̀ p, are called tau-
tological. Examples include F ≤ η, β ≤ β ∨ β′ and many
more.

Polymorphism is expressed using type schemes of the form

∀~β, ~α.τ|P where the type variables in ~β and ~α are univer-
sally quantified and P constrains the possible instantiations

of the ~β and ~α. So a value is an element of the polymor-

phic type ∀~β, ~α.τ|P if it is an element of every θ(τ) such

that ∅ `̀ θP and θ = [~η/~β, ~ν/~α] for some ~η and ~ν. Type
schemes always represent sets of types; constraints provide
more fine-grained control than conventional type schemes.
Constrained type schemes are used in many other systems,
for instance in the theory of qualified types [15]. We will
write the type scheme ∀.τ|∅ simply as τ .

3.3 Type schemes and context dependence
In our type based analysis, type schemes are instrumental
in capturing the dependence on the unknown context. They
play the role that summary functions play in some interpro-
cedural data flow analysers for imperative languages [4].

When discussing examples, the syntax given for types in fig-
ure 6 is rather awkward so we will use a prettier alternative
syntax: We will write (η, τ1 → τ2) as τ1 →η τ2 (and sim-
ilarly for ⇒) and move the annotation to a superscript on
ordinary type variables α and basic types U .

To see how a type scheme captures context dependence, con-
sider the identity function, defined by id =λx. eval x in
λin(the eval ensures that the return value of the function

is not a thunk). Note that the eval is redundant if the
argument to id is statically known to be evaluated. Since
this is a context dependent property, the analyser trans-
forms this binding into id = {u}λx. eval{u} x and derives
the type scheme (∀a, u, v, t, s.〈u〉 ⇒v au →t as|∅) for the
(transformed) binding.3 The 〈u〉 ⇒v part signifies that the
(transformed) id is a cloning function representing a set of
different versions of the identity function, one of which must
be selected by applying it to a boolean annotation value of
type u. The boolean type variable u can be instantiated to
T or F; the inference algorithm will choose F if possible, but
since u also occurs as an annotation on the second argument
of id this is only possible if that argument can be given a
type of the form νF, i.e. the type of an evaluated value.

The analyser will transform each occurrence of id to a well
typed cloning application; thus if u is instantiated to T,
that occurrence of id will be applied to T, the only boolean
expression of type T.

As a further illustration, the types of the λmc version of the
example functions (from figure 2) are shown in figure 8. The
type for libfun tells us that it is a polymorphic cloning func-
tion with two cloning parameters (with annotation types
t and u) that returns a function taking two arguments, a
function and an integer, and returning a value of whatever
type the functional argument returns (aw). Further, the
first cloning parameter has the same type (t) as the evalu-
atedness annotation on the functional argument (f). This
captures the fact that the eval of f in libfun (annotated
with u1) can be eliminated only if the second argument (n) is
already evaluated. The second cloning parameter of libfun
has the same type (u) as the evaluatedness annotation on
the integer argument n. Finally, the second cloning param-
eter must be smaller than the evaluatedness annotation on
the argument part of the function (u ≤ v), prohibiting in-
stantiation of u to T and v to F. This is an example of how
the type-based approach deals with indirect function calls.

3.4 Inference rules
The inference rules for typing λmc modules and expressions
are given in Figure 9. The judgements for expressions are
of the form P, A, η ` e : τ where P is a set of constraints,
A is a typing environment associating variabels x with type
schemes σ and boolean variables z with boolean types η, η
is a boolean type giving the evaluation budget of the ex-
pression (F if the expression must be cheap and T if it is
allowed to be expensive), e is a λmc expression and τ is
the type of the values that e might evaluate to. We extend
typing environments from annotation variables to annota-
tion expressions in the same way as for value environments
(A(F) = F and A(T) = T).

For module sequences, we have judgements of the form P, A `
ms ok which states that ms is well-typed in the typing en-
vironment A if the constraints P are satisfied.

For operator applications the inference system uses operator
axioms of the form ` op τ1 . . . τk : ν, η which are closed

3The boolean type variables v, t and s are only technically
necessary since the system in this paper does not have sub-
types; think of them as F in this context.

libfun : ∀a, t, u, v, w, q, r, s.〈t, u〉 ⇒q (Intv →t aw) →r Intu →s aw|{u ≤ v}
appfun : ∀t, u.〈t, u〉 ⇒v (Intu →t Intw) →q Intu →r Ints|∅

Figure 8: The types of libfun and appfun

under substitution (if we have ` op τ1 . . . τk : ν, η, we also
have ` op θτ1 . . . θτk : θν, θη for any substitution θ).

The rules are syntax directed; generalization is built into
the [module] and [let] rules and instantiation is built into
the [var] rule. Since an expression that always produces
an evaluated value, such as a lambda expression, should be
usable in a context expecting a thunk, the conclusions of
the rules for such expressions (e.g. the [abs] rule) has an
arbitrary boolean type as evaluatedness annotation (η′ does
not occur elsewhere in the [abs] rule).

Most expressions can be evaluated using the restricted eval-
uation budget F if their subexpressions are also cheap. The
exception is applications; in the [app] rule, the conclusion
has evaluation budget T.

The core of the analysis is found in the [thunk] and [eval]
rules. In the [thunk] rule, the body must be typable with
an evaluation budget corresponding to the annotation a on
the thunk. Thus for the thunk to be eliminated (A(a) = F),
its body must be cheap. The constraint premise expresses
the condition that if the annotation is T, then the result of
the expression is unevaluated.

The [eval] rule says that if the argument is unevaluated, the
annotation and the evaluation budget of the expression must
both be T.

4. AN INFERENCE ALGORITHM
In this section we turn the inference rules of Section 3 into
an inference algorithm. This algorithm translates a λin pro-
gram to a λmc program by adding annotations as well as
cloning abstractions and applications. In order to make it
possible to compile the cloning using code duplication, only
right-hand-sides of bindings are ever cloned. Every occur-
rence of a variable bound to a cloned expression is translated
to a cloning application. In this way, cloning abstractions
occur only where the inference algorithm generalizes and
cloning applications occur where type schemes are instanti-
ated (although not all binings are cloned). The generated
program is guaranteed to be typable in the λmc type system.

The main part of the algorithm is the function Inf, defined
together with some auxilliary functions in figure 10, which
takes a typing environment A and an expression e and re-
turns a substitution θ, a constraint set S, a boolean type η,
an annotated type τ and a λmc expression e′.

The functin InfMods processes module sequences from left
to right analysing each module, accumulating the returned
constraints and recording the types derived for the exported
variables. When all modules have been processed, the accu-
mulated constraints are simplified.

P, A ` ms ok

P ′, A, T ` e : τ (~β ∪ ~α) ∩ fv(A) = ∅
P, A[x 7→ ∀~β, ~α.τ|P ′] ` ms ok

P, A ` module x = e; ms ok

module

P, A ` ε ok main

P, A, η ` e : τ

A(x) = ∀~β, ~α.τ|P ′ θ = [~η/~β, ~ν/~α] P `̀ θP ′

P, A, η ` x : θτ
var

P, A, T ` e1 : (F, τ ′ → τ) P, A, T ` e2 : τ ′

P, A, T ` e1 e2 : τ
app

P, A[x 7→ τ ′], T ` e : τ
P, A, η ` λx. e : (η′, τ ′ → τ)

abs

` op τ1 . . . τr : ν, η P, A, η ` e1 : τ1 . . . P, A, η ` er : τr

P, A, η ` op e1 . . . er : (η′, ν)
op

P ′, A, η ` e′ : τ ′ (~β ∪ ~α) ∩ fv(A, η) = ∅
P, A[x 7→ ∀~β, ~α.τ ′|P ′], η ` e : τ

P, A, η ` let x = e′ in e : τ

let

P, A, A(a) ` e : (F, ν) P `̀ A(a) ≤ η′

P, A, η ` thunk{a} e : (η′, ν)
thunk

P, A, η ` e : (η′′, ν) P `̀ {η′′ ≤ A(a), η′′ ≤ η}
P, A, η ` eval{a} e : (η′, ν)

eval

P, A[~z 7→ ~η], F ` b : τ
P, A, η ` {~z} b : (η′, ~η ⇒ τ)

clone

P, A, η ` e : (F, ~η ⇒ τ) A(~a) = ~η
P, A, η ` e{~a} : τ

inst

Figure 9: The inference system

The algorithm differs from the inference system in that infor-
mation about annotation variables is part of the constraints
returned (S) rather than the typing environment A. The
information takes the form of associations z : η. This dif-
ference is a consequence of the absence of cloning abstrac-
tions in the original program; the analyser invents annota-
tion variables for the translated expression as it analyses the
input expression. We write Assoc(S) for the associations in
S and Con(S) for the constraints.

The inference algorithm is related to the type system by syn-
tactic soundness, meaning that the result of the algorithm
is always derivable in the inference system.

4.1 Analysing expressions
Inf is mainly the usual adaptation of algorithm W [8] to sys-
tems with constrained (or qualified) types (see e.g. Jones
[15] for a similar treatment). In particular, it returns a sub-
stitution θ which carries additional information about the
types of the free variables of e found during type checking
of e. This solves the problem that the type of a variable
bound in a lambda abstraction λx.e is not known when that
type must be recorded in the typing environment A for the
recursive call to infer a type for e. We assume a fresh an-
notated type (of the form (β, α) where β and α are fresh
variables) for the bound variable x. When Inf returns after
checking the body e, the returned substitution θ gives the
type of x as θ(β, α).

The substitutions are constructed by a standard unification
algorithm mgu which we also use for unifying sequences of
type expressions.

When analysing a variable occurrence x, the type informa-
tion is consulted to determine if the variable is bound to
a cloning abstraction, in which case the occurrence should
be translated to a cloning application x{~z}. In that case, a
fresh set of annotation variables ~z are used, just as is done for
other annotated constructs (thunk and eval expressions).

The cases for application and abstraction are rather stan-
dard, and follow from the corresponding inference rules. The
case for operators uses operator axioms, freshly renamed.
The case for let expressions relegates the gory details of
generalization and cloning to the InfRHS function. The cases
for thunks and evals annotate the constructs with fresh an-
notation variables. Note that a thunk expression is always
cheap and safe; either the body is cheap and safe or we will
definitely not speculate the thunk.

4.2 Analysing right hand sides
The function InfRHS infers types for right hand sides in bind-
ings. In four lines it infers a type for the expression, simpli-
fies the constraints, decides about cloning and generalizes.

Simplifying the constraints is important since type schemes
are in general instantiated multiple times. Also, it makes
the files with analysis information more compact. The sim-
plifications performed by Simplify and Clone in effect find
the optimizations that are legal regardless of the properties
of the calls of the function.

The simplifications implemented by Simplify consist in com-

InfMods(S, imods, A, (module x = e; smods))
= InfMods(θS ∪ S′, (imods; module x = e′), θA[x 7→ σ], smods)
where (θ, S′, η, σ, e′) = InfRHS(A, e)

InfMods(S, imods, A, ε) = if Sc = ∅ then ([~z 7→ ~a], imods) else fail
where Sc ∪ {~z : ~a} = Simplify(∅, S)

Inf(A, x) = case τ of
(η, ~η ⇒ τ ′) → (id, θ(S ∪ {~z : ~η}), F, θ(τ ′), x{~z})
τ ′ → (id, θ(S), F, θ(τ ′), x)

where (∀~β, ~α.τ|S) = A(x)

θ = [~β′/~β, ~α′/~α]
~β′, ~α′ fresh

Inf(A, e1 e2) = (θ ◦ θ2 ◦ θ1, θ(θ2S1 ∪ S2), T, θτ, e′1 e′2)
where (θ1, S1, η1, τ1, e′1) = Inf(A, e1)

(θ2, S2, η2, τ2, e′2) = Inf(θ1A, e2)
θ = mgu(τ1, (F, τ2 → τ))
τ fresh

Inf(A, λx. e) = (θ, S, F, (β, θτ → τ ′), λx. e′)
where (θ, S, η, τ ′, e′) = Inf(A[x 7→ τ], e)

τ, β fresh
Inf(A, op e1 . . . ek) = (θ′, S, η′, (β, ν), op e′1 . . . e′k)

where (θ1, S1, η1, τ ′1, e′1) = Inf(A, e1)
. . .
(θk, Sk, ηk, τ ′k, e′k) = Inf((θk−1 ◦ . . . ◦ θ1)A, e2)
` op τ1 . . . τk : ν, η fresh
θ = mgu([τ1, . . . , τk], [(θk ◦ . . . ◦ θ2)τ ′1, . . . , τ ′k])
S = (θ ◦ θk ◦ . . . ◦ θ2)S1 ∪ . . . ∪ θSk

η′ = (θ ◦ θk ◦ . . . ◦ θ2)η1 t . . . t θηk t θη
θ′ = θ ◦ θk ◦ . . . ◦ θ1

β fresh
Inf(A, let x = e1 in e2) = (θ2 ◦ θ1, S, θ2η1 t η2, τ, let x = e′1 in e′2)

where (θ1, S1, η1, σ, e′1) = InfRHS(A, e1)
(θ2, S2, η2, τ, e′2) = Inf((θ1A)[x 7→ σ], e2)
S = θ2S1 ∪ S2

Inf(A, thunk e) = (θ, S ∪ {z : β, η ≤ β, η′ ≤ F}, F, (β, ν), thunk{z} e′)
where (θ, S, η, (η′, ν), e′) = Inf(A, e)

β, z fresh
Inf(A, eval e) = (θ, S ∪ {z : β, η′ ≤ β}, η t η′, (β′, ν), eval{z} e′)

where (θ, S, η, (η′, ν), e′) = Inf(A, e)
z, β, β′ fresh

InfRHS(A, e) = (θ, Sa, η′, (∀~β, ~α.τ ′|Con(S′)), e′′)
where (θ, S, η, τ, e′) = Inf(A, e)

S′ = Simplify(fv(θA, η, τ), S)
(Sa, η′, τ ′, e′′) = Clone(Assoc(S′), η, τ, e′)
~β, ~α = fv(Con(S′), τ ′) \ fv(θA, η′, Sa)

Simplify(W, S) = θS

where θ(β) =


t{η | η ∈ W ∪ {T} ∧ η ≤+

S β}, if β 6∈ W
β, otherwise

Clone(Sa, η, τ, e)
= if clone then (∅, (β′, F, 〈η1, . . . , ηn〉 ⇒ τ), {z1, . . . , zn}Θ(e))

else ({z1 : η1, . . . , zn : ηn}, η′, τ, Θ(e))
where {η1, . . . , ηn} = {η | ∃z.z : η ∈ Sa} \ {F, T}

Θ(z) =


a, if z : a ∈ Sa

zi, if z : ηi ∈ Sa

z1, . . . , zn fresh

Auxilliary definitions:

η1 ≤+
S η2 iff η1 ≤ η2 ∈ S or ∃η.η1 ≤ η ∈ S ∧ η ≤+

S η2

Assoc(S) = {z : η | z : η ∈ S}
Con(S) = {η ≤ η′ | η ≤ η′ ∈ S}

NonTriv(S) = Assoc(S) ∪ {p | p ∈ Con(S) ∧ ∅ 6`̀ p}

Figure 10: The inference algorithm

puting a substitution, applying it to the constraints and
removing tautological constraints from the result. It is here
that the boolean type variable disjunctions are used; if the
constraints are {β1 ≤ β, β2 ≤ β} with W = {β1, β2}, the
substitution will map β to β1 ∨ β2.

The function Clone performs cloning and cloning-related sim-
plifications. It is called with a set Sa of associations, a cost
η and type τ and an expression e (already translated) where
η is the cost and τ is the type of e. It returns a new set
of associations S′

a, a new cost τ ′ and type τ ′ and a new
expression e′. The input associations Sa have been passed
through simplification, so some of the variables may now
be associated with annotation values (z : a), meaning that
the corresponding optimization conditions are now known.
These variables are unnecessary and they can be replaced in
e′ by the associated values. This is the mechanism by which
the analyser finds those transformations which do not de-
pend on the context.

In addition, different annotation variables may be associated
with the same annotation type (z1 : η, z2 : η), if the associ-
ated optimization conditions are still unknown but identical.
In that case, these annotation variables (z1 and z2) will al-
ways have the same values and can be replaced by a single
variable. This simplification can be said to find the “degrees
of freedom” of the cloned binding, those dimensions along
which the different version may differ. The substitution Θ,
which maps annotation variables to annotations, contains
the information obtained from these two simplifications.

It is in this step that the analyser finds that the thunk and
the eval of n in the function libfun (see figures 1 and 2)
should be annotated with the same annotation variable and
that the F, F-version of libfun should be used in the first
application in appfun.

It is crucially important for the performance of the analyser
to apply these two simplifications since all annotation vari-
ables which the algorithm invents for an expression would
otherwise turn up in the cloning abstractions, leading to
exponential code growth not only in the worst but in the
common case, since the number of annotations in a cloning
abstraction would be proportional to the number of thunks
and evals in the cloned function plus the number of vari-
ables occurring in cloning applications.

Next, Clone decides whether this expression is suitable for
cloning. As a necessary condition, the expression must be a
normal form, that is an abstraction or a constant. Typically,
we are interested in cloning functions, but if functions are
embedded in data structures (in richer languages than λin),
it might be a good idea to clone data structures too, in
order to be able to clone the functions inside. Cloning may
also depend on whether the expression is part of a top level
definition or if it is nested. In the latter case it might be
more expensive to clone since a nested function may have
free non global variables so that each clone is represented by
its own dynamically allocated closure.

We leave the condition unspecified in the definition of Clone
but note that a reasonable strategy for λin is to clone only
top level functions (bindings with lambda abstractions as

TrMods(ρ, tmods, V, (imods; module x = e))
= TrMods(ρ, (module bnd; tmods), V ∪ fv(bnd), imods)
where bnd = TrBind(ρ, V, x = e)

TrMods(ρ, tmods, V, ε) = tmods

Tr(ρ, x) = x
Tr(ρ, x{~a}) = x ρ(~a)
Tr(ρ, e1 e2) = Tr(ρ, e1) Tr(ρ, e2)
Tr(ρ, λx. e) = λx. Tr(ρ, e)
Tr(ρ, op e1 . . . ek) = op Tr(ρ, e1) . . . Tr(ρ, ek)
Tr(ρ, let x = e1 in e2) = let TrBind(ρ, fv(e′2), x = e1)in e′2)

where e′2 = Tr(ρ, e2)
Tr(ρ, thunk{a} e) = if ρ(a) = T then thunk Tr(ρ, e) else Tr(ρ, e)
Tr(ρ, eval{a} e) = if ρ(a) = T then eval Tr(ρ, e) else Tr(ρ, e)

TrBind(ρ, V, x = {~z} b) =

0@(x ~a1) =Tr(ρ[~z 7→ ~a1], b)
. . .
(x ~an) =Tr(ρ[~z 7→ ~an], b)

1A
where {~a1, . . . ,~an} = {~a | x ~a ∈ V }

TrBind(ρ, V, x = e) = x =Tr(ρ, e)

Figure 11: The specializer

right hand sides).

5. SPECIALIZATION
When the program has been translated to λmc, we can use
specialization to remove all of the cloning constructs and
make all annotations ground (variable free). The result of
this translation is a program in λout that can be translated to
assembly (or some other target language) by a conventional
code generator.

The analysis and translation algorithm discussed in section 4
generates cloning abstractions only as right hand sides of let
expressions (let x = {~z} b in e) where every occurrence of x
in e is in a cloning application x{~a}. The specializer first
traverses e, translating it to e′, replacing every cloning appli-
cation x{~a} with a reference to a new variable formed from
the cloning variable x and the value ~a of the argument (at
this point, the values of all of the annotation variables are
known). We write x ~a for the new variable. This mechanism
is called mangling and is used in many contexts, for instance
in the implementation of C++ where overloaded identifiers
have (target language) names which encode type informa-
tion. We use it to ensure that a unique variable name is
generated for each distinct argument value that x is applied
to.

Having translated the body e, the specializer also collects
all arguments {~a1, . . . ,~an} that x is applied to, that is, all ~a
such that the translation of e has x ~a as a free variable. For
each ~ai a copy bi of the body b of the cloning abstraction is
made with the annotation variables ~z bound to ~ai. Finally,
the original binding is replaced by n new bindings of the
form (x ~ai) = bi. The tranlsation is performed by the func-
tion Tr, defined in figure 11, which takes an environment
ρ, mapping annotation variables to annotation values, and
an expression e and returns a translated expression e′. The
auxilliary function TrBind takes an environment ρ, a set V of
free variables of the body and a binding x = e and returns a
new binding (which might bind several variables if the right
hand side of the binding is a cloning abstraction).

The function TrMods specializes module sequences from right
to left, starting with the main module. TrMods has an ac-
cumulating parameter V which collects the free variables
of the target (λout) modules generated so far. This set is
used to determine which specialized versions to make of the
top-level binding in each module.

The syntax of the target language of specialization differs
from that of λmc by allowing for mangled variables and let

expressions binding several variables as well as by the ab-
sence of cloning abstractions and applications as well as an-
notation variables (all annotations are annotation values).

Note that this specializer does not do full monomorphiza-
tion. For instance, at most two versions of the identity func-
tion will be produced, with and without the eval. Both
of these versions will be polymorphic in the ordinary type
of the argument. For representation selection, where some
types may get specialized representations, the boxed ver-
sions will still be polymorphic. A consequence of this fact is
that all versions of a cloned binding will get different code.

6. SELECTIVE RECOMPILATION
Systems supporting separate compilation typically also do
not need to recompile all modules when one source file has
been edited. This is a very useful feature during program
development, even if one might imagine compiling the pro-
gram without context dependent optimizations most of the
time, only wielding the really big hammer occasionally. Our
system however does support recompiling a subset of the
modules after an editing change even when applying full
context dependent optimization.

Specifically, our algorithm for selective recompilation imple-
ments the following strategy for the first pass:

• If a λin module has changed, it must be reanalysed.

• If reanalysis leads to attribute information (the sub-
stitution, constraint set and type scheme returned by
InfRHS) that differs from that given by the previous
run of the analyser, then all λin modules importing
the reanalysed module must be reanalysed.

For the second pass we have:

• If a λin module has been reanalysed in the first pass,
the regenerated λmc module must be respecialized.

• If a regenerated λout module needs a clone of an im-
ported entity that is not provided by the exporting
λout module, the exporting λmc module must be re-
specialized. In that case, the union of the previously
provided clones and the newly requested clones are
generated.

Note that the respecialization (second pass) strategy keeps
generating all clones it has ever generated for a particular
module. This is deliberate, with the intention that, during
development, the program will reach a steady state with re-
spect to which clones are needed, limiting the recompilations
triggered by missing versions.

InfMods(IL,At , θ,Tgt , (x; xs))
= if x ∈ dom(IL)

then InfMods(IL,At , GetSub(At , x) ◦ θ,Tgt , vs)
else InfMods(IL′′, Attr′, θ′ ◦ θ,Tgt ′, vs)

where (module x = e) = Src(x)
(θ′, S, η, σ, e′) = InfRHS(θGetEnv(At , fv(e)), e)
At ′ = At [x 7→ (σ, S, θ′)]
IL′ = if At = At ′ then IL else IL \ {x′ | x ∈ fv(Src(x′))}
IL′′ = IL′[x 7→ module x = e′]
Tgt ′ = Tgt \ {x}

InfMods(IL,At , θ,Tgt , ε) = if Sc = ∅ then ([~z 7→ ~a], IL,At ,Tgt)
else fail

where Sc ∪ {~z : ~a} = Simplify(∅, θ(GetAssoc(At)))

GetEnv(At , X) = [x 7→ σ | x ∈ X ∧ (σ, S, θ) = At(x)]
GetAssoc(At) = ∪{S | x ∈ dom(At) ∧ (σ, S, θ) = At(x)}
GetSub(At , x) = θ

where (σ, S, θ) = At(x)

TrMods(ρ, IL,Vs,Tgt , (xs; x))
= if x ∈ dom(Tgt) then TrMods(ρ, IL,Vs,Tgt , xs)

else TrMods(ρ, IL,Vs′,Tgt ′, xs)
where (module x = e) = IL(x)

bnd = TrBind(ρ,Vs, x = e)
V = fv(bnd)
Tgt ′ = Tgt [x 7→ module bnd] \ {x′ | ∃~a.x′ ~a ∈ V \Vs}
Vs′ = Vs ∪ V

TrMods(ρ, IL,Vs,Tgt , ε) = Tgt

Figure 12: Selective recompilation

There are two possible refinements that can be applied.
First, if the attribute information changes only to be more
general (better in analysis terms), then importing modules
need not be recompiled. Of course, avoiding recompilation
forgoes the possible benefits of the improved analysis result.
Second, rather than collecting all clones generated from the
same λmc module in one λout module, each clone might get
its own module. In this way, respecialization is speeded up
since only the newly requested versions need to be gener-
ated.

We will now turn to the details of the algorithm for selec-
tive recompilation given in figure 12. In order to keep the
formalism closer to a real programming system, we will rep-
resent a modular program as a mapping from module names
to modules.

The functions InfMods and TrMods use a set of accumulating
parameters corresponding to the file system. These are IL
(the λmc modules), At (containing the substitutions, con-
straints and type schemes returned by InfRHS), Vs (the free
variables of the modules) and Tgt (the λout modules). The
last parameter of both functions is a sequence of variables
(which function as module names) that determine the pro-
cessing order of the modules. The rightmost element of the
sequence is always main. In addition, Src is treated as a
global variable containing the λin modules.

A possible performance problem for InfMods is the accu-
mulated sunstitution θ, built from compositions of the sub-
stitutions θ′ returned from InfRHS. These θ′ need however
only record values for type variables that are free in the
global typing environments (in At). The only such variables

are those that record the types of free annotation variables,
that is, annotation variables occurring in modules not se-
lected for cloning. Since the bulk of a program is made up
of functions, we believe that the number of free annotation
variables will be relatively limited.

This is in fact not a mere technicality; the free annotation
variables reflect the fact that the optimization of the part of
the program that can not be cloned can not be performed
until the entire program has been processed. So in fact,
cloning alleviates the problem of separate compilation in ad-
dition to improving the effectiveness of the transformations.

The first time a program is compiled, only the Src mapping
will be defined. This will make InfMods process all modules
(since IL not defined). TrMods will also process all modules
since Tgt is not defined. After an editing change, the cor-
responding IL module will be removed and the program re-
compiled. When InfMods generates an IL module it removes
the Tgt module and, if the type information has changed,
the IL entries for importing modules. Similarly, TrMods
recompiles those IL modules which have no corresponding
Tgt modules, removing imported Tgt modules that do not
export all versions that the current module uses.

7. RELATED WORK
There is a parallel in our system to the techniques [22] used
for overloading in Haskell, specifically by the implementa-
tion technique of adding extra dictionary arguments. In
fact, one could think of our eval and thunk constructs as
overloaded on the annotation parts of the types. Our clone
types ~η ⇒ τ would then correspond to contexts in Haskell
types. That analogy can be taken further by relating our
specializations to Jones’ work on removing dictionary pass-
ing by partial evaluation [16]. An interesting observation is
that specialization does not in practice cause code explosion;
sometimes, the programs even shrink! Other frameworks
for specializing programs with respect to static properties
(analysis results) are given by Consel and Khoo [5] for a
functional language, and by Puebla and Hermenegildo [21]
for logic languages. In both cases, abstract interpretation is
assumed as the analysis framework.

Most work on partial evaluation, including Jones’ above,
assumes that the whole program is available at once. Dus-
sart et.al. [12] presents a technique for partial evaluation of
modular programs where each function is first transformed
to a generating extension which takes the same arguments
as the original function plus arguments describing binding
times, essentially directing the generating extension as to
what part of its arguments it should specialize with respect
to. These binding time parameters are in a sense analogous
to our annotation parameters, and it is an interesting paral-
lel that they are also computed using a type based analysis.
An important difference is that the generating extenstions
are not the functions from the transformed program; they
are functions that will evaluate to (intermediate represen-
tations of) these functions. The specialization itself is not
done modularly; it is done by linking the modules containing
the generating functions and running the linked program.

Cloning has been studied previously, both for imperative [6,
1, 17] and object oriented [3, 20, 10] languages.

The compiler literature contains some answers to the ques-
tion of how to best combine (context dependent) interpro-
cedural optimizations with (some form of) separate compi-
lation. Several systems [17, 1, 7] use some form of program
database containing analysis results and intermediate repre-
sentation of code. The compiler repeatedly reads and writes
this database during the production of an executable. All
of these systems use cloning to improve the effectiveness of
optimizations. The first two are production compilers (the
CONVEX Application Compiler and the HP Cross Module
Optimizer).

Dean et.al [10] are also able to avoid recompiling the en-
tire program after an editing change by keeping track of de-
pendencies between subprograms. However, in their case a
simplifying factor is that the transformation they make (re-
placing method look-up with direct calls) can be performed
one method (procedure) at a time since it does not depend
on other procedures to be updated as well. In contrast, our
system can handle the case where a set of thunks and evals,
spread over the program, need to be eliminated or not as a
unit (the same situation arises in representation selection,
for instance).

The Church project, where type based flow analysis [2] is
combined with a type based transformation system incorpo-
rating cloning [11], is close in spirit to this system, with the
difference that they do whole-program compilation rather
than our modular approach.

8. CONCLUSIONS
We have presented an integrated program analysis and trans-
formation system which combines context sensitive program
analysis with cloning and modular compilation. We have not
yet implemented this system, so we have no experimental re-
sults. However, the system can easily be extended to imple-
ment the same logic as we have previously implemented in
our whole program compiler. As for the particular analysis
presented here, a very similar analysis has shown reductions
in execution time ranging from about 5–50% for a set of
small lazy functional programs.

9. REFERENCES
[1] Andrew Ayers, Stuart de Jong, John Peyton, and

Richard Schooler. Scalable cross-module optimization.
In SIGPLAN 98, Montreal, 1998.

[2] Anindya Banerjee. A modular, polyvariant and
type-based closure analysis. ACM SIGPLAN Notices,
32(8):1–??, August 1997.

[3] Craig Chambers and David Ungar. Customization:
optimizing compiler technology for SELF, a
dynamically-typed object-oriented programming
language. ACM SIGPLAN Notices, 24(7):146–160,
July 1989.

[4] Ramkrishna Chatterjee, Barbara G. Ryder, and
William A. Landi. Relevant context inference. In
Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 133–146. ACM Press, 1999.

[5] Charles Consel and Siau Cheng Khoo. Parameterized
partial evaluation. Transactions on Programming
Languages and Systems, 15(3):463–493, July 1993.

[6] K. D. Cooper, M. W. Hall, and K. Kennedy. A
methodology for procedure cloning. Computer
Languages, 19(2):105–117, February 1993.

[7] Keith D. Cooper, Ken Kennedy, and Linda Torczon.
The impact of interprocedural analysis and
optimizations in the R(n) programming environment.
ACM Transactions on Programming Languages and
Systems, 8(4):419–523, October 1986.

[8] L. Damas and R. Milner. Principal type schemes for
functional programs. In Proc. 9th ACM Symposium on
Principles of Programming Languages, pages 207–212,
1982.

[9] Manuvir Das, Ben Liblit, Manuel Fändrich, and Jakob
Rehof. Estimating the impact of scalable pointer
analysis on optimization. In Proc. of the 8th
International Symposium on Static Analysis, 2001.
LNCS 2126.

[10] Jeffrey Dean, Craig Chambers, and David Grove.
Selective specialization for object-oriented languages.
In Proceedings of the ACM SIGPLAN 1995 conference
on Programming language design and implementation,
pages 93–102. ACM Press, 1995.

[11] Allyn Dimock, Robert Muller, Franklyn Turbak, and
J. B. Wells. Strongly typed flow-directed
representation transformations. ACM SIGPLAN
Notices, 32(8), August 1997.

[12] Dirk Dussart, Rogardt Heldal, and John Hughes.
Module-sensitive program specialisation. ACM
SIGPLAN Notices, 32(5):206–214, May 1997.

[13] Karl-Filip Faxén. Cheap eagerness: Speculative
evaluation in a lazy functional language. In Philip
Wadler, editor, Proceedings of the 2000 International
Conference on Functional Programming, September
2000.

[14] Karl-Filip Faxén. The costs and benefits of cloning in
a lazy functional language. In Stephen Gilmore,
editor, Trends in Functional Programming, volume 2,
pages 1–12. Intellect, 2001. Proc. of Scottish
Functional Programming Workshop, 2000.

[15] Mark P. Jones. A theory of qualified types. In
European symposium on programming, ESOP ’92,
Rennes, France, February 1992. Springer Verlag LNCS
582.

[16] Mark P. Jones. Partial evaluation for dictionary-free
overloading. Technical Report YALEU/DCS/RR-959,
Dept. of Computer Science, Yale University, April
1993.

[17] Robert Metzger and Sean Stroud. Interprocedural
constant propagation: An empirical study. ACM
Letters on Programming Languages and Systems,
2(1–4):213–232, March–December 1993.

[18] Alan Mycroft. The theory and practice of transforming
call-by-need into call-by-value. In Proceedings of the
4th International Symposium on Programming, pages
269–281. Springer Verlag, April 1980. LNCS 83.

[19] Simon Peyton Jones, John Hughes, et al. Report on
the programming language Haskell 98. Available from
www.haskell.org, February 1999.

[20] J. Plevyak and A. A. Chien. Type directed cloning for
object oriented programs. In Workshop for Languages
and Compilers for Parallel Computing, pages 566–580,
1995.

[21] Gérman Puebla and Manuel Hermenegildo. Abstract
specialization and its applications. In Proc. of the
2003 ACM SIGPLAN workshop on Partial evaluation
and semantics-based program manipulation, June 2003.

[22] Philip Wadler and Stephen Blott. How to make ad-hoc
polymorphism less ad-hoc. In Conference Record of the
Sixteenth Annual ACM Symposium on Principles of
Programming Languages, pages 60–76, Austin, Texas,
January 1989.

