
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive
Server based application level authorisation for Rotor

E. Rissanen

Abstract: Delegent is an authorisation server developed to provide a single centralised policy
repository for multiple applications with support for decentralised administration by means of
delegation. The author investigates how to integrate Delegent with the Rotor implementation of the
.NET framework and compare the features of Delegent with those of the existing application level
authorisation models of .NET. He concludes that Delegent offers help for application developers
and a decentralised administration model, which are not available in standard .NET, and that the
.NET model is well suited to be extended to use an authorisation server.
1 Introduction

Rotor [1] is a reference implementation of key parts of the
.NET platform under a shared source licence, produced by
Microsoft.

This paper is the result from research done with a grant
from Microsoft Research in Cambridge. In our proposal we
indicated that we have developed an authorisation server
called Delegent [2], and we wish to study how we can
integrate Delegent in the Rotor environment such that
development of authorisation and its management in
applications becomes easier and more secure.

2 .NET

In this Section we present a brief overview of some of the
security features of .NET. We assume that the reader is
familiar with the security model of .NET, and the
presentation is very much biased to bring up only the issues
that are relevant from the perspective of Delegent. Details
can be found in [3] and [Note 1], for instance.

2.1 Code access security

Traditional operating system security is user identity based,
that is, the identity of the user who is running a program will
define what permissions the program has. The .NET model
complements this with a code identity based model, where
the identity of the code itself will define the permissions the
program has. This code identity based model is called code
access security.

Code access security in .NET is based on the concept of
permissions. There are a number of permission classes,
which represent permissions for actions such as reading files
or opening windows.

The security policy for code access security is defined by
identifying code in terms of attributes, such as digital

q IEE, 2003

IEE Proceedings online no. 20030991

doi: 10.1049/ip-sen:20030991

The author is with the Swedish Institute of Computer Science (SICS), Box
1263, 164 29 Kista, Sweden

Paper received 29th June 2003
IEE Proc.-Softw., Vol. 150, No. 5, October 2003
signatures or file location, and then granting sets of available
permissions to the code. The policy is stored in a number of
configuration files. It is important to realise that code access
permissions are granted to code, not to users. We deal with
the trustworthiness of code, not users. It is not about whether
James is allowed to read a file, but it is about whether we
trust that the word processor James is using for reading the
file is not a trojan.

Rotor/ .NET includes a run-time for so-called managed
code, which is checked for type safety and memory
accesses. By defining the permissions for components, and
running them within the virtual machine, a sandbox can be
created. This is how code access security is implemented.

The run-time, together with code in the system libraries,
makes sure that code follows the security policy by
checking that there are permissions for each attempted
operation. Since, in the end, all operations must be
performed by unmanaged code that calls to the operating
system, there are a number of trusted components available.
These components are granted the permission to call to
unmanaged code. The components enforce security policy
by demanding permissions. A permission demand throws an
exception if the permission was not available to the
requester.

A possible attack would be for malicious code to call code
with special permissions, and to ask the code to do things
that the malicious code itself cannot do. This is a so-called
Luring Attack. To prevent it, the run-time performs a stack
walk. When a permission is demanded, the run-time will
check that each stack frame is associated with a component
that has the demanded permission.

2.2 Role based security

The standard .NET distribution contains a role based
security model. It is based on the PrincipalPermission
class. PrincipalPermission looks like a code access per-
mission but behaves differently. It is not for setting policy
based on code identity, but on user identity. By demanding a
PrincipalPermission it is possible to require that a specified

Note 1: .NET Framework Documentation included with the .NET
development kit from Microsoft.
291

https://core.ac.uk/display/300996209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


user is running the code, and/or that the user who is running
the code belongs to a specified role.

An executing thread may be associated with a principal
object, which represents the user on whose behalf the code
is running. The principal object may also contain infor-
mation about which roles the user is a member of. The
principal object is defined by the IPrincipal interface. One
implementation, WindowsPrincipal, which is not
implemented in Rotor, contains the windows log-on identity
of a user and its windows groups as roles. There is a call
available to set the current principal to the windows user
that is running the code (also not implemented in Rotor).
Another implementation, GenericPrincipal, can be used by
applications that do their own authentication and role
management. It contains the user identity and a list of strings
that name the roles of the user.

Thus the role model of PrincipalPermission depends on
which kind of principal objects the application is using. The
Windows user groups form a simple role based access
control model. Whether windows groups can be nested
depends on whether the machine is stand alone or part of a
domain. Groups in domains can be nested, with some
limitations depending on the configuration of the domain.
Since Rotor does not implement WindowsPrincipal, it falls
somewhat outside the scope of this paper, so we are not
going into the details of it.

The role model when using GenericPrincipal depends on
the specific implementation of authentication and thus the
initialisation of the role list. Also, the IsInRole() method of
GenericPrincipal can be overridden, so any role model can
be implemented by subclassing GenericPrincipal (or by
implementing IPrincipal in a custom principal class all
together).

2.3 Administration

How role administration is done depends on what kind of
principal objects the application uses. In the case of
WindowsPrincipals the administration is done with the
regular Windows system administration tools. The tools
provide for some form of delegation and decentralisation of
administration, but none of this is available in Rotor. For
GenericPrincipals the administration depends on the
implementation of the specific authentication module or
subclass of GenericPrincipal. There is no delegation or
decentralisation of administration out of the box.

3 Delegent

Delegent is an authorisation server for application level user
identity based authorisations that is developed at SICS.
Delegent makes heavy use of delegation. The word
‘delegation’ has several meanings in the literature and in
the commercial world. In this paper, there are two uses of
the word. One is the organisational aspect of delegation, that
is, assigning a duty to a subordinate. The Delegent server
does not address this meaning of the word ‘delegation’.
Instead, delegation in the scope of Delegent means the
creation of new rights, which is the consequence of
organisational delegation, since the subordinate will need
the appropriate permissions to perform the delegated
organisational duties.

Delegent uses an XML-based protocol for communi-
cation. This communication can optionally be protected by
SSL and mutual authentication. There are some standar-
dised protocols for authorisation systems, such as SAML
[4], but they do not support all the features of Delegent,
most notably policy updates and policy examination, in the
way we want.
292
3.1 Motivation

The purpose of Delegent is to allow decentralised manage-
ment of authorisations in a controlled and secure manner.
Delegent shifts the focus from ‘who is authorised for an
access?’, to ‘who is authorised to manage rights for an
access?’ [5]. This can be applied recursively, such that
authority hierarchies can be built, and administration over
local matters can be delegated to local administrators.

The separation between administrative rights and access
rights is very clear in Delegent, so it is possible, for instance,
for a high level manager to have the right to decide on who
may have a particular permission without having the
permission himself. It is also possible to specify that he is
not allowed to grant those permissions to himself.

The benefits from the delegation are several. Since
authorisations can be distributed close to decision makers,
the risks associated with a potentially corrupt central
omnipotent administrative staff are reduced. The reduced
distance may also make an organisation more efficient since
the overhead with administration is reduced.

Delegent is implemented in the form of an authorisation
server. An authorisation server provides authorisation
related services such as storage of authorisation data, access
control and management models, management of access
control and auditing services. An authorisation server
consolidates the authorisation related functions of one or
more applications to one place, which saves development
costs and provides a more clear and secure architecture. We
believe authorisation servers will become a standard part of
future IT-platforms.

3.2 Access control model

The access control model of Delegent is based on
permissions in the form of user, object, method and time
constraint tuples. There are no negative permissions in
Delegent, and all access level permissions are in the form of
such tuples. Any of the user, object and method fields may
be a group. Table 1 shows some examples of access level
permissions.

The user, object and method names are defined by
application developers, and have no significance to
Delegent. In this case we would mean that user John is
permitted to withdraw money from the account during the
years 2003 to 2004, and that Anne is permitted to deposit
money on the account during the same period. Everyone in
the group Auditors would be permitted to view all accounts.

Groups may include other groups, thus allowing inheri-
tance of permissions.

In the Delegent model all authorisations are defined in
terms of delegations that are issued by users. The access
permissions (as above) are a special case. There is another
kind of authorisation: administrative authorisations, which
authorise the creation of other authorisations.

Each delegation has an issuer and a time stamp. Delegent
will check that at the given time point the specified user had
the authority to delegate the authorisation. If that is the case,
the authorisation becomes active. In the case of an
administrative authorisation, it will enable delegation of
other authorisations, and in the case of an access level

Table 1

Subject Object Method Time interval

John Account 1234 Withdraw 2003-2004

Anne Account 1234 Deposit 2003-2004

Auditors All accounts View 2003-2004
IEE Proc.-Softw., Vol. 150, No. 5, October 2003



permission, it will become a part of the active access control
matrix.

The way which delegations authorise other delegations
creates chains of delegations, which may end in an access
level permission. All valid access level permissions must be
traced by such a chain to a source of authority, SoA, of that
permission. The SoA of an authorisation is defined by
means of a special delegation. Since in a delegation it is
possible to constrain further delegation, for instance to limit
delegation within a specified group of users, the SoA and
intermediate delegators can get a centralised control over
how an authorisation may propagate.

For details of the delegation model, we refer to [5–7].

3.3 Implementation

Delegent is implemented in the form of a networked server.
The server will accept an access query in the form of a tuple
of an atomic user, object and method, and will search its
database of valid permissions. If a matching permission is
found, a positive response is given. If there is no such
permission, the response is negative.

3.4 Administration

Administration of permissions in Delegent is done by means
of the delegation model of Delegent. Changes to the policy
are done by either issuing a new Delegation or by revoking
an existing one. The delegation model permits the
decentralisation of administration of both access level
permissions and administrative permissions.

4 Comparison

In this Section we present a comparison of the security in
.NET with Delegent and explain how they complement each
other.

The access control model of Delegent is comparable to
the PrincipalPermission model in .NET. Both are used to
define application/business level security policy on the basis
of user identity and attributes. In contrast, the code access
security model of .NET serves a different purpose, so it is
not comparable to Delegent. However, it complements
Delegent, as we will see below.

The PrincipalPermission framework gives no support for
maintaining lists of which roles are required for which
actions, so if an application uses the PrincipalPermission
framework for its security policy, the application must
either keep track of the security policy itself or it must be
complemented with some kind of policy module. In either
case it represents additional work for application devel-
opers. With Delegent, it is enough for the application
developers to know the name of the action in the form of
object and method names, since this is enough for Delegent
to make an access control decision based on the contents of
the policy repository. Also, the policy repository, which is
stored within Delegent, can be shared between several
applications if they operate on the same objects. We could,
for instance, have one application for editing confidential
documents and another viewing them. Both could use the
same policy database, and request permissions on the same
objects. In other words, in contrast to PrincipalPermission,
Delegent offers a shared application independent policy
repository out of the box.

There may be performance issues with Delegent based
authorisation, since Delegent is a networked server.
However, the purpose of Delegent is to provide authoris-
ation on the ‘business level’, where demand may not be as
high as at, for instance, file system level. Also there are
IEE Proc.-Softw., Vol. 150, No. 5, October 2003
many potential ways to increase performance in the future,
for instance in the form of caching or partial reasoning on
the application side.

Delegent offers a clear distinction between administrative
rights and access rights. Again, whether PrincipalPermis-
sion offers this depends on the particular implementation of
role administration.

5 An authorisation server based architecture

In this Section we present an overall architecture for how to
decouple policy from applications and place it in a central
policy repository. We wish to consolidate application level
authorisation related functionality to Delegent, which will
act as an authorisation service.

We assume that there is some kind of data or service that
needs authorisation services. We call this the target. The
authorisation services may be access control or auditing, for
instance. The target is used by an application of some kind.
We also need authentication of the users of the application,
which is provided by a specific component. Finally there is
Delegent, which provides the authorisation services.

5.1 Components

Below is a list of the components and their descriptions (see
Fig. 1):

. application: acts on behalf of a user to perform some
function on the target. In the case of a legacy application
that cannot be modified, we may be able to use a proxy
between the user and the application. In those cases, the
proxy is analogous to the application in the discussion
below
. Delegent server: provides the authorisation service and
policy decision point. In this case we study only access
control decisions, but other possible services include
auditing and examination and management of security
policy
. target: provides some kind of service or data that the
application/user needs access to
. enforcement function: code that acts as the access point
for use of the target. The purpose of the enforcement
function is to enforce the security policy for accessing the
target. The enforcement function will use Delegent for
access control decisions
. component that does authentication: the application
provides the credentials of the user to the authenticator,
which will set the principal of the thread to the authenticated
user. (In other cases the authenticator may obtain the user
credentials directly from the user, and be located in between
the user and the application.)

5.2 Authentication

There are a number of authentication requirements between
components.

. The enforcer must authenticate itself to the application, so
that the application can know it is dealing with the proper
target. This also means that the application must trust the
enforcer to pass on the request to the correct target.

user application enforcer target

authenticator delegent

Fig. 1 Components
293



. The target must authenticate itself to the enforcer, so that
the enforcer is not fooled by a bogus target.
. Delegent must authenticate itself to the enforcer, so that
the enforcer is not fooled by an attacker’s fake Delegent.
. We must make sure that all requests to the target pass the
enforcer. To do this we may need to authenticate the
enforcer to the target. An alternative to this is to use a
custom code access permission which the target demands
and is granted to only the legitimate enforcer. Yet another
alternative is to use operating system level access control
and physical security to prevent any use of the target outside
the enforcer.
. The authenticator must authenticate itself to the appli-
cation, so an attacker cannot lure the application to reveal
the user’s credentials.

In addition it may be desirable to restrict access to the
enforcer/target with custom code access permissions to only
trusted applications. This is to prevent trojans from
performing access without the consent of the user.

6 Implementation

In this Section we present a sample implementation of the
architecture described above. Not everything described
above was implemented. In particular, authentication
between components was not done and the communication
channel to Delegent was left unencrypted.

6.1 DelegentPermission

Connecting Delegent to Rotor was simpler than expected.
We wanted Delegent to follow the .NET ‘look and feel’,
which required the creation of a new class called
DelegentPermission that implements IPermission. We did
not need to modify the run-time itself, which we to some
degree had expected before we commenced work.

DelegentPermission is similar to PrincipalPermission.
PrincipalPermission is not a code access security permission,
so it does not perform a stack walk. A stack walk would be
meaningless anyway, since the principal is associated with
the thread, not the stack frames. For the same reason,
DelegentPermission does not perform a stack walk.

A DelegentPermission contains a list of object/method
pairs. Demanding a DelegentPermission will query Dele-
gent over the network to see whether the principal
associated with the current thread is allowed to all
objects/methods in the list. If not, a SecurityException is
raised.

Since the principal object of the current thread is used as
the authentication token of the user it is important that the
machine is configured such that the principal object cannot
be set by untrusted code. There is a specific code access
security permission for that in the form of the ControlPrin-
cipal flag in SecurityPermission.

6.2 The application

As an example we have chosen a simple banking
application. We have a number of Account objects that
represent bank accounts. In this case they will act both as
enforcers and targets. An account object will demand two
permissions when an operation is attempted on it. First it
will demand an AccountPermission, which is a custom code
access permission. The purpose of this is to make sure only
trusted applications can use the Account objects. It will also
demand a Delegent permission. The purpose of this is to
know that the user is authorised for the operation.

For the sample implementation we have a very simple
authenticator component with a hardcoded user name and
294
password. The application, AccountExample.exe, will ask
for a user name and password on the console, and supply
those to the Authenticator. If the credentials are correct, the
authenticator sets the principal of the thread. Then
AccountExample.exe will instantiate a number of Account
objects, which it will operate on by the command of the
user. The user enters commands on a simple command line,
and the application will invoke the corresponding method
on the specified Account object. The account object will use
DelegentPermission to enforce access control.

This sample application is ‘written from scratch’, so there
was no problem in using Delegent. However, an existing
legacy application may not be a simple case. The reason for
this is that many existing applications have application
specific access control mechanisms built in. To use
Delegent instead, the enforcing mechanism, which intrinsi-
cally must be tightly coupled with the target, must be
modified to use Delegent for access control decision. An
alternative is to use a proxy between the user and the
application. In any case, a modular design, which permits
easy modification of the way access control decisions are
made, is a good strategy for new applications.

Here is the code for the Account class:

using System;
using Delegent;
using AccountPermission;
using System.Security;
[assembly:AllowPartiallyTrustedCallers]
namespace Account
{
public class Account
{
private double balance;
private string number;
private DelegentConnection
connection;

public Account(string number,
double balance)

{
// tomat is the host where we run

// Delegent
connection=new DelegentConnection
(“tomat”, 4712);

this.number=number;
this.balance=balance;

}
public double Balance
{
get
{
return balance;

}
}
public string Number
{
get
{
return number;

}
}
public void withdraw (double amount)
{
AccountPermission.
AccountPermission accperm=
new AccountPermission.AccountPer-

mission
IEE Proc.-Softw., Vol. 150, No. 5, October 2003



(number, AccountPermission.
AccessType.Withdraw);

accperm.Demand ();
DelegentPermission request = new

DelegentPermission
(connection, “account_” + number,

“withdraw”);
request.Demand ();
balance2=amount;

}
public void deposit (double amount)
{
AccountPermission.AccountPermis-

sion accperm=
new AccountPermission.

AccountPermission
(number, AccountPermission.

AccessType.Deposit);
accperm.Demand ();
DelegentPermission request = new

DelegentPermission
(connection, “account_” + number,

“deposit”);
request.Demand ();
balance+=amount;

}
}

}

The components are located in separate assemblies so we
can assign separate security policies to them. The security
policies of the various components become:

. Authenticator: This is granted permission for Assertion,
Execution and ControlPrincipal. It needs these permissions
to set the principal when called from partially trusted
components.
. DelegentPermission: This is granted permission for
Assertion, Execution and unrestricted SocketPermission
and DnsPermission. These permissions are needed so
DelegentPermission can make the call to Delegent over
the network.
. Account: This is granted permission to execute. In this
example it does not need any other permissions, since the
balance is simply stored in a member of the object.
. AccountExample.exe: This is granted permission to
execute and an AccountPermission. The AccountPermis-
sion represents that we trust this executable to handle
accounts properly on behalf of the user.

The Account objects will perform an operation only if the
operation was invoked by an authorised user from a trusted
application. The application does not need to perform any
authorisation calculations itself, and contains only user
interface related code.

The security policy represents what kind of trust we put
on the various components:

. Authenticator is trusted to verify user credentials and to
set the principal of a thread accordingly.
. Account is trusted to allow only authenticated, authorised
users to work on accounts and with only trusted
applications.
IEE Proc.-Softw., Vol. 150, No. 5, October 2003
. AccountExample.exe is trusted to be honest to the user
when she uses it for accessing an account.

6.3 Administration

The above example illustrates only the use of access level
permissions. We chose to do so, since the administration of
the permissions does not directly relate to the integration of
Delegent with the .NET security model. Administration
would be done in an administration tool or with adminis-
trative functions in the banking application. The adminis-
tration tools would use the special policy update and
examination commands of the Delegent protocol.

7 Conclusion

.NET security has two complementary sides to it. One is the
Code Access Security model, which is about trusting code.
The other is user identity based security, which is about
which users are permitted access. Delegent is an authoris-
ation server for user identity based access control, so the
access control model of Delegent is comparable to the
PrincipalPermission model of .NET.

Delegent offers a decentralised administration model and
a shared policy repository out of the box, which is not the
case for PrincipalPermission. PrincipalPermission has a
simple role based access control model in it, but how the
roles are administered depends on what kind of principals
are used and how the administration is implemented for the
particular case. For WindowsPrincipals there are standard
tools to decentralise administration. For custom principals,
everything has to be custom made.

Code access security complements Delegent. It provides
a means to establish a trusted path from the user to the target
and to Delegent.

We believe that there is much to gain by using an
authorisation server for application/business level authori-
sations, and our work shows that the .NET architecture is
well suited for this. It is easy to extend the .NET security to
use a server, and the existing security of .NET complements
the approach. Benefits from an authorisation server include
a centralised repository, decentralised and consolidated
management and simpler application development.

8 Acknowledgments

The author wishes to thank Babak Sadighi for his advice and
help in reviewing the paper.

9 References

1 http://msdn.microsoft.com/net/sscli/, accessed June 2003
2 http://delegent.com, accessed June 2003
3 ‘.NET framework security’ (Addison Wesley, Boston, 2002)
4 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

security, accessed August 2003
5 Firozabadi, B.S., Sergot, M., and Bandmann, O.: ‘Using authority

certificates to create management structures’. Proc. 9th Int. Workshop,
on Security Protocols, Cambridge, UK, April 2001, pp. 134-145

6 Firozabadi, B.S., and Sergot, M.: ‘Revocation schemes for delegated
authorities’. Proc. 3rd IEEE Int. Workshop on Policies for Distributed
Systems and Networks, Monterey, CA, 5–7 June 2002, pp. 210–213

7 Bandmann, O., Dam, M., and Firozabadi, B.S.: ‘Constrained Del-
egations’. Proc. IEEE Symposium on Security and Privacy, Berkeley,
CA, 12–15 May 2002, pp. 131–190
295

http://msdn.microsoft.com/net/sscli/
http://delegent.com
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

	Server based application level authorisation for Rotor
	Introduction
	 .NET
	Code access security
	Role based security
	Administration

	Delegent
	Motivation
	Access control model
	Implementation
	Administration

	Comparison
	An authorisation server based architecture
	Components
	Authentication

	Implementation
	DelegentPermission
	The application
	Administration

	Conclusion
	Acknowledgments
	Bibliography
	References


