
Comparing Maintenance Strategies for Overlays1

Supriya Krishnamurthy1,3, Sameh El-Ansary1, Erik Aurell1,2,4 and Seif Haridi1,3

1 Computer Systems Laboratory, SICS Swedish Institute of Computer Science, Sweden

2Department of Computational Biology, KTH-Royal Instituteof Technology, Sweden

3Department of Information and Communication Technology, KTH-Royal Institute of Technology, Sweden

4 ACCESS Linnaeus Center, KTH- Royal Institute of Technology, Sweden

{sameh,supriya,eaurell,seif}@sics.se

SICS Technical Report T2007:01
ISSN 1100-3154

ISRN:SICS-T–2007/01-SE

Abstract. In this paper, we present an analytical tool for understanding the perfor-
mance of structured overlay networks under churn based on the master-equation approach
of physics. We motivate and derive an equation for the average number of hops taken
by lookups during churn, for the Chord network. We analyse this equation in detail to
understand the behaviour with and without churn. We then usethis understanding to
predict how lookups will scale for varying peer population as well as varying the sizes
of the routing tables. We also consider a change in the maintenance algorithm of the
overlay, from periodic stabilisation to a reactive one which corrects fingers only when
a change is detected. We generalise our earlier analysis to understand how the reactive
strategy compares with the periodic one.

Keywords: Peer-To-Peer, Structured Overlays, Distributed Hash Tables, Dynamic Mem-
bership in Large- scale Distributed Systems, Analytical Modeling, Master Equations.

1This work is funded by the 6th FP EVERGROW project.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/300995346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Comparing Maintenance Strategies for Overlays
Supriya Krishnamurthy1,3, Sameh El-Ansary1, Erik Aurell1,2,4 and Seif Haridi1,3

1 Swedish Institute of Computer Science (SICS), Sweden
2 Department of Computational Biology, KTH-Royal Instituteof Technology, Sweden

3 Department of Information and Communication Technology, KTH-Royal Institute of Technology, Sweden
4 ACCESS Linnaeus Center, KTH- Royal Institute of Technology, Sweden

{supriya,sameh,eaurell,seif}@sics.se

Abstract— In this paper, we present an analytical tool for
understanding the performance of structured overlay networks
under churn based on the master-equation approach of physics.
We motivate and derive an equation for the average number of
hops taken by lookups during churn, for the Chord network.
We analyse this equation in detail to understand the behaviour
with and without churn. We then use this understanding to
predict how lookups will scale for varying peer population as
well as varying the sizes of the routing tables. We also consider
a change in the maintenance algorithm of the overlay, from
periodic stabilisation to a reactive one which corrects fingers only
when a change is detected. We generalise our earlier analysis to
understand how the reactive strategy compares with the periodic
one.

I. I NTRODUCTION

A crucial part of assessing the performance of a structured
P2P system (aka DHT) is evaluating how it copes with churn.
Extensive simulation is currently the prevalent tool for gaining
such knowledge. Examples include the work of Liet al. [10],
Rhea et al. [13], and Rowstronet al. [5]. There has also
been some theoretical analyses done, albeit less frequently. For
instance, Liben-Nowellet al. [11] prove a lower bound on the
maintenance rate required for a network to remain connected
in the face of a given churn rate. Aspneset al. [4] give upper
and lower bounds on the number of messages needed to locate
a node/data item in a DHT in the presence of node or link
failures. The value of theoretical studies of this nature isthat
they provide insights neutral to the details of any particular
DHT.

We have chosen to adopt a slightly different approach to
theoretical work on DHTs. We concentrate not on establishing
bounds, but rather on a more precise prediction of the relevant
quantities in such dynamically evolving systems. Our approach
is based mainly on the Master-Equation approach used in the
analysis of physical systems. We have previously introduced
our approach in in [7], [8] where we presented a detailed anal-
ysis of the Chord system [14]. In this paper, we show that the
approach is applicable to other systems as well. We do this by
comparing the periodic stabilization maintenance technique of
Chord with the correction-on-change maintenance technique
of DKS [3].

Due to space limitations, we assume reader familiarity with
Chord and DKS, including such terminology as successors,
finger starts and finger nodesetc.

This work is funded by the 6th FP EVERGROW project.

The rest of the paper is organised as follows. In Section
II, we introduce the Master-Equation approach. In Section III,
we mention some related work. In Section IV we begin by
briefly reviewing some of our previously published results on
predicting the performance of the Chord network as a function
of the failed pointers in the system in the case that the nodes
use a periodic maintenance scheme. We then show some new
results on how this complicated equation can be simplified to
get quick predictions for varying number of peers and varying
number of links per node. We relegate some of the details of
this analysis to Appendix VII. In Section V, we explain how
to use the Master-Equation approach to analyse the reactive
maintenance strategy of interest and present our results onhow
this strategy compares with the periodic case analysed earlier.
We summarise our results in Section VI.

II. T HE MASTER-EQUATION APPROACH FOR

STRUCTURED OVERLAYS

In a complicated system like a P2P network, in which there
are many participants, and in which there are many inter-
leaved processes happening in time, predicting the state of
the network (or of any quantity of interest) can at best be
done by specifying the probability distribution function (PDF)
of the quantity in the steady state (when the system, though
changing continually in time, is stationary on average). For
example, one quantity which affects the performance of the
network and hence of interest to us, is the fraction of failed
links between nodes, in the steady state. The problem is thus
to calculate the PDF (or the average in the steady state) of this
quantity and then to understand quantitatively, how it affects
the performance of the network.

In general this is not an easy task, since the probability
is affected by a number of inter-leaved processes in any
time-varying system. In [7], [8], we demonstrated how we
could analyse a P2P network like Chord [14], using a Master-
Equation based approach. This approach is generally used in
physics to understand a system evolving in time, by means
of equations specifying the time-evolution of the probabilities
of finding the system in a specific state. In the context of a
P2P network, thestate of the system could be specifed by,
how many nodes there are in the network and what the state
(whether correct, incorrect or failed) of each of the pointers
of those nodes is. The equations for the time-evolution of the
system then require as an input, the rates of various processes

affecting the state of the system. These processes should
ideally be independent of each other, so that they entirely
determine the time-evolution of the network. For example,
in a peer-to-peer network, these processes could be the join
and failure rates of the member nodes, the rate at which
each node performs maintenance as well as the rate at which
lookups are done in the network (the latter rate is relevant
only if the lookups affect the state of the network in some
way). Given these rates, the equation for the time-evolution
of the probability of the quantity of interest can be writtenby
keeping track of how these rates affect this quantity (such as
the number of failed pointers in the system) in an infinitesimal
interval of time, when only a limited number of processes
(typically one) can be expected to occur simultaneously.

With this approach, we were able to quantify very accurately
the probabilities of any connection in the network (either
fingers or successors) having failed. We then demonstrated
how we could use this information to predict the performance
of the network—the number of hopsincludingtime outs which
a lookup takes on average — as a function of the rates (of
join, failure and stabilization) of all the processes happening
in the network, as well as of all the parameters specifying the
network (such as how many pointers a node has on average).
The analysis was done for a specific maintenance strategy,
called periodic maintenance (or eager maintenance).

In this paper, we generalise our approach so as to be able
to compare networks using different maintenance strategies.
In particular, we compare our earlier results for periodic
maintenance with a reactive maintenance strategy proposed
in [6]. Combining this with some of our previous results, we
are also, as a by product, able to compare the performance
of networks specified by different numbers of peers, different
number of pointers per node and/or different maintenance
strategies. As we show below, which system is better depends
both on the value of the parameters as well as the level of
churn. The approach we propose is thus a useful tool for
the quantitative and fair comparison of networks specified by
different parameters and using different algorithms.

III. RELATED WORK

In [2], an analysis, very similar in spirit to the one done
in this paper, is carried out in the context of P-Grid [1].
An equation is written for system performance in the state
of dynamic equilibrium for various maintenance strategies.
However for each maintenance strategy, the analysis has to be
entirely redone. In contrast, a master equation description [12]
provides a foundation for the theoretical analysis of overlays,
which does not have to be entirely rebuilt each time any given
algorithm is changed. As we show in this paper, we can carry
over a lot of our earlier analysis, when the maintenance scheme
is changed from a periodic to a reactive one. In addition, the
master equation description can be made arbitrarily precise to
include non-linear effects as well. And as we show, non linear
effects are important when churn is high.

IV. T HE LOOKUP EQUATION FOR CHORD

We quantify the performance of the network, by the number
of hops required on average from the originator of the query

to the node with the answer. This is just the total number of
nodes contacted per query (or equivalently, the total number
of pointers used per query)including the total number of
failed pointers used en route. This latter quantity (which arises
because of the churn in the network) is the reason that the
hop count per query increases with high dynamism and is
hence an important quantity to understand. In the case of the
periodic maintenance scheme, this quantity is a function of
(1 − β)r wherer is the ratio of the stabilisation rate to the
join (or failure) rate and1 − β is the fraction of times a
node stabilises its finger, when performing maintenance, as
mentioned in Section I. We demonstrate how this quantity
can be calculated in Section V, in the context of the reactive
maintenance policy, which is a simple generalisation of how
it is calculated earlier in [7], [8], for the periodic maintenance
scheme. In this section, we briefly review our earlier results
on how the performance of the network (as exemplified by
the average hopcount per query), can be determined once the
fraction of failed pointers is known.

The key to predicting the performance of the network is to
write a recursive equation for the expected costCt(r, β) (also
denotedCt) for a given node to reach some target,t keys
away from it. (For example,C1 is the cost of looking up the
adjacent key which is1 key away).

The Lookup Equation for the expected cost of reaching a
general distancet is then derived by following closely the
Chord protocol which is a greedy strategy designed to reduce
the distance to the query at every step without overshootingthe
target . A lookup fort thus proceeds by first finding the closest
preceding finger. The node that this finger points to is then
asked to continue the query, if it is alive. If this node is dead,
the originator of the query uses the next closest preceding
finger and the query proceeds in this manner.

For the purposes of the analysis, it is easier to think in terms
of the closest precedingstart. Let us hence defineξ to be the
start of the finger (say thekth) that most closely precedest.
Henceξ = 2k−1 + n and t = ξ + m, i.e. there arem keys
between the sought targett and the start of the most closely
preceding finger. With that, we can write a recursion relation
for Cξ+m as follows:

Cξ+m = Cξ [1 − a(m)]

+ (1 − fk)a(m)

[

1 +

m−1
∑

i=0

bc(i, m)Cm−i

]

+ fka(m)

[

1 +

k−1
∑

i=1

hk(i)

ξ/2i
−1

∑

l=0

bc(l, ξ/2i)(1 + (i − 1) + Cξi−l+m) + O(hk(k))

]

(1)

whereξi ≡
∑

m=1,i ξ/2m andhk(i) is the probability that
a node is forced to use itsk − ith finger owing to the death
of its kth finger.

The probabilitiesa, bc can be derived from the internode
interval distribution [7], [8] which is just the distribution of
distances between adjacent nodes. Given a ring ofK keys

and N nodes (on average), where nodes can join and leave
independently, the probability that two adjacent nodes area
distancex apart on the ring is simplyP (x) = ρx−1(1 − ρ)
whereρ = K−N

K
. Using this distribution, it is easy to estimate

the probability that there is definitely at least one node in an
interval of lengthx. This is: a(x) ≡ 1 − ρx. The probability
that thefirst node encountered from any key is at a distance
i from that key is thenbi ≡ ρi(1 − ρ). Hence the conditional
probability that the first node from a given key is at a distance i
giventhat there is at least one node in the interval isbc(i, x) ≡
b(i)/a(x).

The probabilityhk(i) is easy to compute given the proba-
bility a as well as the probabilitiesfk’s of thekth finger being
dead.

hk(i) =a(ξ/2i)(1 − fk−i)

×Πs=1,i−1(1 − a(ξ/2s) + a(ξ/2s)fk−s), i < k

hk(k) =Πs=1,k−1(1 − a(ξ/2s) + a(ξ/2s)fk−s)

(2)

Eqn.2 accounts for all the reasons that a node may have to
use itsk−ith finger instead of itskth finger. This could happen
because the intervening fingers were either dead or not distinct
(fingersk andk−1 are not distinct if they have the same entry
in the finger table. Though thestarts of the two fingers are
different, if there is no node in the interval between thestarts,
the entry in the finger table will be the same). The probabilities
hk(i) satisfy the constraint

∑k
i=1 hk(i) = 1. hk(k), is the

probability that a node cannot use any earlier entry in its finger
table,in which case it has to fall back on its successor list
instead. We indicate this case by the last term in Eq. 1 which
is O(hk(k)). In practise, the probability for this is extremely
small except for targets very close ton. Hence this does not
significantly affect the value of general lookups and we ignore
it for the moment.

The cost for general lookups is

L(r, β) =
ΣK−1

i=1 Ci(r, β)

K

The lookup equation is solved recursively numerically, using
the expressions fora, bc, hk(i) and C1. In Fig. 1, we have
plotted the theoretical prediction of Equation 1 versus what
we get from simulating Chord. Here we have usedN ∼ 1000
andK = 220. To get an idea of what the parameterβ means,
we take an example of some values taken from an actual
implementation of Chord in [9]. Mean session times are about
an hour, finger stabilisation intervals are in the range between
40 seconds and19 minutes and successor stabilisation rates
are in the range between4 seconds and19 minutes. While our
model is slightly different because weeither stabilise fingers
or successors while Liet al ([10]) do both independently,
nevertheless, we can roughly translate their values to imply
a (1 − β)r lying between90 and 3, while r lies between
990 and 6. In our simulations, the lowestr value we were
able to achieve was∼ 25. This is because we did not take
into account some optimisations in the Chord protocol [14]
such as using lookups (which are assumed to take place every
10 minutes in [10]) to correct wrong information. This could
increase the effective1 − β value in [10]. Another obvious

 6

 6.4

 6.8

 7.2

 7.6

 8

 8.4

 8.8

 9.2

 9.6

 10

 10.4

 10.8

 11.2

 0 200 400 600 800 1000 1200 1400 1600

L
o

o
k

u
p

 l
at

en
cy

 (
h

o
p

s+
ti

m
eo

u
ts

)
L

((
1

-β
)r

)

Rate of Stabilisation of Fingers/Rate of failure (1-β)r

L((1-β)r) Simulation
L((1-β)r) Theory

Fig. 1. Theory and Simulation forL(r, β) for N = 1000

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 200 400 600 800 1000 1200 1400 1600
L

((
1

-β
)r

)
fr

o
m

 t
h

e
L

o
o

k
u

p
 E

q
u

at
io

n

(1-β)r

N=1000
N=2000
N=4000
N=8000

N=16000
7.846+7.846*(f+3*f

2
)

7.346+7.346*(f+3*f
2
)

6.846+6.846*(f+3*f
2
)

6.346+6.346*(f+3*f
2
)

5.846+5.846*(f+3*f
2
)

Fig. 2. Lookup cost, theoretical curve, for N =
1000, 2000, 4000, 8000, 160000 peers. The points are obtained from
numerically solving Eq. (1) and the lines are the functionA(1 + f + 3f2).
A is determined by solving Eq. (1) without churn for the appropriate value
of N , as done in the Appendix

optimisation which we have not used isthe fact that not all
of the fingers are distinct and many of the smaller fingers are
actually the same as successors and hence can be corrected
from the information obtained using successor stabilistions.
If we take all these factors into account, then the parameter
values we have looked at should be effectively similar to the
ones studied in actual implementations.

As can be seen the theoretical results match the simulation
results very well. In Fig. 2 we also show the theoretical
predictions for some larger values ofN .

On general grounds, it is easy to argue from the structure
of Equation 1, that the dependence of the average lookup
on churn comes entirely from the presence of the termsfk.
Sincefk ∼ f is independent ofk for large fingers, we can
approximate the average lookup length by the functional form
L(r, β) = A + Bf + Cf2 + · · · . The coefficientsA, B, C etc
can be recursively computed by solving the lookup equation to
the required order inf . They depend only onN the number of
nodes,1−ρ the density of peers andb the base or equivalently
the size of the finger table of each node. The advantage of
writing the lookup length this way is that churn-specific details
such as how new joinees construct a finger table or how
exactly stabilizations are done in the system, can be isolated

in the expression forf . If we were to change our stabilization
strategy, as we will demonstrate below, we could immediately
estimate the lookup length by plugging in the new expression
for f in the above relation.

Another advantage of having a simple expression such as
the above, is that if we can estimateA, B, C · · · accurately,
we can make use of the expression forL to estimate the churn
(or the value ofr) in the system, hence using a local measure
to estimate a global quantity. The logic in doing so is the
inverse of the reasoning we have used so far. So far, we have
used the churn as the input for findingfk and henceL. But
we can also reverse the logic and try and estimate churn, if
we know the value of the average lookup lengthL. If L has
the above simple expression, then givenA and B to O(f),
we havef = L−A

B . From the expression forf (see Section V
for how to evaluatef), we can now get the value ofr. Hence
any peer can make an estimate of the churn that the system is
facing if it knows how long its lookups are taking on average,
and if it has an estimate ofN .

To getA, we need to consider Eqn 1 with no churn (allfk ’s
set to zero). In Appendix VII, we study the lookup equation 1
in some detail to understand the behaviour without churn and
obtain the value ofA for any baseb. This is useful on several
counts. First, the value ofA is needed to predict the lookup
costs as explained above. Secondly, ifb changes (a system
of baseb has a finger table of sizeM = (b − 1)logb(K)),
all else remaining the same, the only major change in the
lookup cost is due to the change inA. So estimatingA
precisely has the benefit that we can predict the lookup cost
for any baseb. Thirdly, the analysis confirms that Equation
1 does indeed reproduce well known results for the lookup
hop count in Chord, such as for example, that the average
lookup cost is0.5 ∗ log(N) without churn [14]. Infact as
demonstrated in Appendix VII, for anyN , the average lookup
cost as predicted by Eq. 1 is indeed0.5 ∗ log(N) plus some
ρ-dependent corrections which though small are accurately
predicted.

A simple estimate forB andC can be made in the following
manner. Let every finger be dead with some finite probability
f . Each lookup encounters on averageA fingers, whereA is
the average lookup lengthwithoutchurn. Each of these fingers
could be alive (in which case it contributes a cost of1), dead
with a probabilityf in which case it contributes a cost of2 if
the next finger chosen is alive (with probability1− f) and so
on. It is trivial to verify that this estimates the look-up cost to
be A(1 + f + f2 + · · ·). Comparing with our expression for
L, this gives an estimate ofB = A, C = A, · · · .

In general ifL = A+B∗g(f), then if we scaleL by plotting
(L−A)/B for varyingN , we should get an estimate ofg(f).
Note thatf depends onρ andM the number of fingers. In
addition if g(f) = a1f + a2f

2 + · · · , the coefficientsa1,a2,
etc can also depend onρ. However for1 − ρ << 1, these
dependences onρ are small and the curves for differentN
collapse onto the same curve on scaling. In Fig. 3 we have
scaled the curves ploted in Fig. 2 in the above manner, using
B = A. The values ofA used are derived from the analysis
of the previous section. As can be seen the curves collapse
onto one curve which is well approximated by the function

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

(L
((

1
-β

)r
)

-A
)

/A

(1-β)r

N=1000
N=2000
N=4000
N=8000

N=16000

Fig. 3. Scaled Lookup cost, forN = 1000, 2000, 4000, 8000, 160000
peers.

g(f) = f + 3 ∗ f2, giving a1 = 1 and a2 = 3. The fits in
Fig 2 are also according to this functional form. It should be
emphasized however that this approximation forg(f) is good
only for 1 − ρ << 1. For higher values of peer density, the
curves for differentN will not collapse onto one curve and
anyρ-dependence of the coefficientsai’s will show up as well.

We can use the above functional form to predict how
lookups would behave if we change the baseb (the size of the
routing table) of the system. In Fig 4 we plot the functional
form A(b)(1+ f(b)+3f(b)2) for b = 2, 4, 16. The coefficient
A(b) is accurately predicted by Eq. 11(in Appendix VII), with
the definition ofξ(i + 1) taken appropriately.f(b) is affected
by the baseb because the number of fingers increases withb.

As can be seen, when churn is low, a largeb is an advantage
and significantly improves the lookup length. However when
churn is high, the flip side of having a larger routing table is
that it needs more maintenance. Hence beyond some value of
churn, the larger the value ofb, the larger the lookup latency.

This is similar to the spirit of the numerical investigations
done in [10]. However when comparing different bases for
Chord, Li et al [10] find that while base2 is the best for
high churn (as we find here), base8 is the best for low churn.
Increasing the base beyond this does not seem to improve the
cost. The discrepancy between this finding and ours is due to
the details of the periodic maintenance scheme which we use.
In our case, we have taken the simplest scenario in which each
node needs to stabiliseM fingers and the order in which this
is done is random. In practice only∼ log N of theM fingers
are distinct, so only∼ log N stabilisations need be done by
each node. In addition, in [10], finger stabilisations are done
only if the finger is pinged and found to be dead.

V. ’C ORRECTION-ON-CHANGE’ M AINTENANCE

STRATEGY

In this section, we analyse a different maintenance strategy
using the master-equation formalism. The strategy we have
analysed so far is periodic stabilisation of successors as well as
fingers. We now consider a strategy where a node periodically
stabilises its successors but does not do so for its fingers.
Instead, for maintaining its fingers, it relies on other nodes for
updates [6]. Whenever a noden detects that its first successor

 4

 6

 8

 10

 12

 14

 16

 100 200 300 400 500 600 700 800 900 1000

L
o

o
k

u
p

 c
o

st
 f

o
r

b
as

e
b

=
2

,4
,1

6

(1-β)r

A(b)=5.846,b=2
A(b)= 4.8832, b=4

A(b)= 3.6855, b=16

Fig. 4. Theoretical prediction for the lookup cost, forN = 1000 peers for
baseb = 2, 4, 16. The rationale for the functional form of the lookup cost is
explained in the text.

n.s1 is wrong (failed or incorrect), it sends out messages to
all the nodes that are pointing to its wrong first successor, so
that they can update their affected finger. The node sending
messages can either do so by broadcasting these messages to
all affected nodes simultaneously, or by scheduling messages
periodically at some rate. We analyse the latter option in this
paper, since it provides a more intuitive and broader framework
for the comparison of the two schemes

For a system withid-sizeK, there are of the order ofM =
log2 K fingers pointing to any node (there can be more than
this if node spacings are smaller than average. However, as we
argue below, for our purpose this is not important). Of course,
not allM of these fingers are distinct. Several of these fingers
belong to noden itself. However to keep the analysis simple
(and in keeping with the spirit of our analysis of the periodic
stabilisation scheme), we assume that every node that detects a
wrong successor needs to send out exactlyM messages (even
if some of these ’messages’ are sent to itself).

To find out where the nodes that point ton.s1 are located,
n needs to do a lookup. For example, to find the node with
the kth finger pointing ton.s1, n can do a lookup for the id
n − 2k−1. On obtaining the first successor (lets call it node
p) of this id, it would immediately know if thekth finger of
p indeed needs to be updated. We think of each lookup as
a ’correction message’. If there is more than one node that
needs itskth successor updated (because for example, the
successors ofp also happen to point ton.s1), n could leave the
responsibility of informing these other nodes top. We could
take into account the probability that a correction action leads
to more thanM messages. But for the moment we ignore
this point (We could argue that once it isp’s responsibilities
to check that its successors know aboutn.s1, it could piggy-
back this information when it does a successor stabilisation,
which does not affect the number of messages sent).

Whenever a node receives a message updating its informa-
tion about a finger, it immediately corrects the appropriate
entry in its routing table.

In the following, we demonstrate how we can analyse such a
strategy. We would like to ultimately compare its performance
to periodic stabilisation in the face of churn. To make such a

NS1
(t + ∆t) Probability of Occurence

= NS1
(t) − 1 c1.1 = (λf NS1

∆t)
= NS1

(t) + 1 c1.2 = (λjN∆t)
= NS1

(t) + 1 c1.3 = (λM NSM
2

∆t)

= NS1
(t) − 1 c1.4 = (αλsNS1

∆t)w1

= NS1
(t) 1 − (c1.1 + c1.2 + c1.3 + c1.4)

TABLE I

GAIN AND LOSS TERMS FORNS1
THE NUMBER OF NODES IN STATES1 .

comparisn meaningful, we need to quantify the concept of
’maintenance-effort’ per node, and compare the two schemes
at a given level of churn and at the same value of the
maintenance effort per node. We elaborate on this a little later
in Section V-B.

Another point to note is how to quantify system perfor-
mance. We have previously done it in terms of lookup hops.
But a more correct way might be to ask for the latency for
consistentlookups (since some of the lookups could be incon-
sistent). However we have checked that, within our analytical
framework, this does not change the results qualiltatively.

A. Analysis of the Correction-on-change strategy

To generalise the analysis to meet the situation when some
nodes are sending messages while others are not, we say that a
node can be in stateS1 or S2. In stateS1, a node can stabilise
its first successor at rateαλs, fail at rate λf and assist in
joins at rateλj as before. In stateS2, a node can stabilise
its first successor at rateaλs, fail at rateλf , assist in joins
at rateλj and in addition, send correction messages (which is
essentially equivalent to doing one lookup) at rateλM ≡ cλs.
As we show in Section V-B, if we want to compare the two
maintenance strategies in a fair manner then the most general
values that these parameters can take isα = 1 anda + c = 1.

Let NS1
be the number of nodes in stateS1 and NS2

the
number of nodes in stateS2. Clearly NS1

+ NS2
= N , the

total number of nodes in the system.
We can further partitionS2 into S1

2 ,S2
2 , S3

2 , · · · , SM
2 . S1

2 is
the state of the node which has yet to send its first correction
message,S2

2 the state of the node which has sent its first
correction message but is yet to send its second,etc.

Consider the gain and loss terms forNS1
. These are

summarised in table I.
Term c1.1 is the probability that anS1 node is lost because

it failed. Term c1.2 is the probability that a join occurs thus
adding to the number ofS1 nodes in the system (since a new
joinee is always anS1-type node). Termc1.3 is the probability
that anSM

2 node sent its last message at rateλM and converted
into anS1 node. The last termc1.4 is the probability that an
S1-type node did a stabilisation at rateαλs, found a wrong
first successor with probabilityw1 and hence converted into
anS2 node.w1 is the fraction of wrong successor pointers of
an S1-type node.

Defining λs/λf = r and λM/λf = cr the steady state
equation predicted by table I is:

PS1
(1 + αrw1) = 1 + crPSM

2

(3)

wherePS1
= NS1

/N .

TABLE II

GAIN AND LOSS TERMS FORWT : THE TOTAL NUMBER OF WRONG FIRST

SUCCESSOR POINTERS IN THE SYSTEM.

Change inWT Probability of Occurrence
WT (t + ∆t) = WT (t) + 1 c2.1 = (λjN∆t)(1 − w)
WT (t + ∆t) = WT (t) + 1 c2.2 = (λf N∆t)(1 − w)2

WT (t + ∆t) = WT (t) − 1 c2.3 = (λf N∆t)
WT (t + ∆t) = WT (t) − 1 c2.4 = (αλs∆t)NS1

w1 + (aλs∆t)NS2
w′

1

WT (t + ∆t) = WT (t) 1 − (c2.1 + c2.2 + c2.3 + c2.4)

We can write a similar equationNS2
which however does

not give us any new information sinceNS1
+ NS2

= N .
Writing a gain-loss equation for each of theNSi

2

’s in turn,
we obtain,

PS1

2

=
PS1

(αrw1 − arw′
1)

1 + cr + arw′
1

+
arw′

1

1 + cr + arw′
1

(4)

and

PSi
2

= PS1

2

(

cr

1 + cr + arw′
1

)i−1

(5)

, for 2 ≤ i ≤ M.
Here w1 is the fraction ofS1 nodes with wrong pointers

and w′
1 is the fraction ofS2 nodes with wrong pointers. We

have made a simplification here in assuming that the fraction
of wrong pointers ofS2 nodes is the same, irrespective of the
state of theS2 node. In practice (especially ifa = 0), this
will not be the case. However for the parameter ranges we are
interested in (r >> 1), this is not crucial.

Clearly
∑M

1 PSi
2

= PS2
. A quantity of interest in our

analysis is

PSM
2

/PS2
= 1 −

(1 − gM−1
1)

1 − gM1
(6)

whereg1 = cr
(1+cr+arw′

1
) .

To solve forPS1
etc, we need to solve forw1 andw′

1.
However, consider first the equation forWT – the total

number of wrong successor pointers in the system (irrespective
of whether the pointer belongs to anS1 or an S2 type node.
The gain and loss terms forWT are shown in table II.
w = WT /N is the fraction of wrong succesor pointers in
the system.

This gives the following equation

(3 + αr)w1PS1
+ (3 + ar)w′

1PS2
= 2 (7)

The gain and loss termsW ′
1. – the number ofS2 nodes with

wrong successor pointers – are written in much the same way
except for a few small changes. Table III details the changes
that occur inW ′

1 in time ∆t.
The terms here are much the same as derived earlier except

that we now have to keep track of whether the node that is
failing (in terms c3.2 and c3.3) is a S1 or an S2-type node.
In addition termc3.5 is the probability that anSM

2 -type node
has a wrong successor pointer, but sends a message and hence
turns into anS1 node with a wrong pointer.

Table III gives us the following equation forw′
1 in the steady

state

TABLE III

GAIN AND LOSS TERMS FORW ′
1
: THE NUMBER OF WRONG FIRST

SUCCESSOR POINTERS OFS2-TYPE NODES.

Change inW1 Probability of Occurrence
W ′

1
(t + ∆t) = W ′

1
(t) + 1 c3.1 = (λjNS2

∆t)(1 − w′
1
).

W ′
1
(t + ∆t) = W ′

1
(t) + 1 c3.2 = λf NS2

(1 − w′
1
)2PS2

+(1 − w1)(1 − w′
1
)PS1

)∆t

W ′
1
(t + ∆t) = W ′

1
(t) − 1 c3.3 = λf NS2

(w′
1

2PS2
+ w1w′

1
PS1

)∆t
W ′

1
(t + ∆t) = W ′

1
(t) − 1 c3.4 = aλsNS2

w′
1
∆t

W ′
1
(t + ∆t) = W ′

1
(t) − 1 c3.5 = λM NM

S2
w′

1
∆t

W ′
1
(t + ∆t) = W ′

1
(t) 1 − (c3.1 + c3.2 + c3.3 + c3.4 + c3.5)

TABLE IV

THE RELEVANT GAIN AND LOSS TERMS FORFk , THE NUMBER OF NODES

WHOSEkth FINGERS ARE POINTING TO A FAILED NODE FORk > 1.

Fk(t + ∆t) Probability of Occurence
= Fk(t) + 1 c4.1 = (λjN∆t)

Pk
i=1

pjoin (i, k)fi

= Fk(t) − 1 c4.2 = fk
P

k fk
(λM NS2

(1 − w′
1
)A(w1, w′

1
)∆t)

= Fk(t) + 1 c4.3 = (1 − fk)2[1 − p1(k)](λf N∆t)
= Fk(t) + 2 c4.4 = (1 − fk)2(p1(k) − p2(k))(λf N∆t)
= Fk(t) + 3 c4.5 = (1 − fk)2(p2(k) − p3(k))(λf N∆t)
= Fk(t) 1 − (c4.1 + c4.2 + c4.3 + c4.4 + c4.5)

2 = w′

1

(

3 + ar + cr
PSM

2

PS2

)

+ (w1 − w′

1)PS1
(8)

We can write a similar equation forw1 which however
does not contain any new information sincew1 andw′

1 satisfy
equation 7.

So in effect we have three equations, Eqn. 3, Eq. 7 and
8 for three unknownsPS1

, w1 and w′
1. In practice this set

of equations is very hard to solve exactly because of the
appearance of terms such asgM1 in Eq. 6.

In the following we will solve the set of equation toO(1/r)
by expanding Eq. 6 to first order inw′

1. In this case,

PSM
2

/PS2
=

1

M
−

(

M− 1

2M

)

1 + arw′
1

cr
(9)

We can now solve the set of three coupled equations to
get a quartic equation forw′

1 as a function ofa, α,M and
r. Only one of the roots of the quartic equation is a true
solution satisfying all the conditions above. The details of the
calculations though straight forward are tedious and not shown
here.

To calculate the cost of lookups, we still need to calculate
the probability that a finger is dead. The loss and gain terms
for this calculation are almost exactly the same as carried out
earlier, in [7], [8] (except for termc3.2) and are shown in table
IV.

The term c4.2 is the probability that a message is sent
(λMNS2

) times the probability that akth pointer gets this
message (with probabilityfk/

∑

fk since only nodes with
wrong pointers get the messages), times the probability that
the message is not outdated (1−w′

1), times the probability that
the predecessor of the node which has to receive the message
has a correct successor pointer. This last quantity is denoted
by A(w1, w

′
1) = 1− (w1PS1

+ w′
1PS2

), since the predecessor
could have been anS1 or anS2 type node.

 5

 10

 15

 20

 25

 30

 200 400 600 800 1000 1200 1400 1600 1800 2000

Lo
ok

up
 C

os
t

r

periodic stabilisation
reactive stabilisation (a=0,c=1)

Fig. 5. Comparison of the Lookup cost for the two maintenancestrategies,
for N = 1000.

An estimate for
∑

fk is simply∼ MNS2
/N . Substituting

this in termc4.2, this term becomes= λMN∆t(fk/M)(1 −
w′

1)A(w1, w
′
1)

Solving for fk in the steady state, and substituting forw′
1,

we get fk as a function of the parameters. As mentioned
earlier a quick and precise estimate of the lookup length is
then obtained by takingL = A(1 + f + 3f2).

B. Comparison of Correction-on-change and Periodic Stabil-
isation

In order to compare how the two strategies perform under
churn, we need to make sure that we are comparing lookup
latencies for the same number of total maintenance messages
sent.

Let us assume that the maximum rate for sending messages
per node isC. In the case of periodic stabilisation, this implies
that the rate of doing successor stabilisationsλs1

and finger
stabilisationsλs2

must in total not exceeedC. This implies
that λs1

/C + λs2
/C ≤ 1. If we assume that all nodes always

send messages up to their maximum capacity, then clearly
λs1

/C + λs2
/C = 1. Suppose we definer ≡ C/λj andr1 ≡

λs1
/λj , r2 ≡ λs2

/λj . Then for a given value ofr, r1+r2 = r.
Hence if finger stabilisations are done at rate(1 − β)r, the
successor stabilisations need to be done at rateβr, where the
parameterβ can be varied from0 to 1.

In the case of correction-on-change, we need to impose the
same maximum rateC no matter which state the nodes are
in. In this case, letλS1

be the rate of successor stabilisation
in stateS1, λS2

the rate of successor stabilisation in stateS2

andλS3
be the rate of sending messages in stateS2. Clearly

λS1
= C and λS2

+ λS3
= C. Defining r as before, we get

λs1
/λj = r andλs2

/λj +λs3
/λj = r. Hence comparing with

our parametersα = 1 anda + c = 1.
In Fig. 5, we have plotted the functionL = A(1+f +3f2)

with the value of the lookup length without churnA = 5.846
for N = 1000 nodes, fora = 0 (andc = 1) and forβ = 0.4.
f is calculated separately for the two maintenance techniques.

As can be seen, correction-on-change is better than periodic
stabilisation when churn is low but not when churn is high. On

 10

 100 1000

L
o

o
k

u
p

 c
o

st

r

a=0,c=1
a=0.1,c=0.9
a=0.2,c=0.8
a=0.3,c=0.7
a=0.4,c=0.6
a=0.5,c=0.5
a=0.6,c=0.4

Fig. 6. Comparison of the Lookup cost for different values ofthe parameter
a, as explained in the text. The axes are shown in logarithmic scale.

comparing lookup lengths for several differenta, it becomes
evident (see Fig. 6) thata ∼ 0.2 is the optimum value for the
correction-on-change strategy.

So interestingly, for nodes in stateS2, it is not the best
strategy to increasec as much as possible. It is a better strategy
to spend some of the bandwidth on maintaining a correct
successor.

To understand these results better, let us again translate the
parameters,a, c andalpha into numbers used in implementa-
tions. As we saw, the implementation of Chord in [10] has a
value ofr ranging from∼ 10 to 1000. Take a representativer
value of100. This implies that for an average session time of
1 hour, a stablisation process (either successor or finger) takes
place on average every36 seconds. Hence in Fig. 5, we have
compared two systems, one in which successor stabilisations
happen every40seconds on average and finger stablisations
happen every60 seconds on average. In the other system,S1-
type nodes stabilise successors every36 seconds, andS2-type
nodes send messages every36 seconds till they have sent∼ M
messages. Fig 6 shows that infact, if a system is using the
reactive maintenance policy, lookup costs are lowest when (for
anr value of100), theS2-type nodes send messages every45
seconds on average, and do a successor stabilisation every180
seconds on average. These results are not at all obvious and
arise purely from the analysis.

VI. SUMMARY

In summary, we have demonstrated the usefulness of the
master-equation approach for understanding churn in overlay
networks. Our analysis can take into account most details of
the algorithms used by these networks, to provide predictions
for how the performance depends on the parameters. There are
several directions in which we can extend the present analysis.
One of the more important ones is to model congestion on the
links. This could affect the performance of the two compared
maintenance strategies differently. The periodic case maynot
be as affected as much as the reactive case, which could suffer
from congestion collapse.

AcknowledgmentsWe would like to thank Ali Ghodsi for
several very useful discussions.

REFERENCES

[1] Karl Aberer, P-Grid: A self-organizing access structure for p2p infor-
mation systems, InProceedings of the Sixth International Conference on
Cooperative Information Systems (CoopIS 2001) (Trento, Italy), 2001.

[2] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth,Efficient, self-
contained handling of identity in peer-to-peer systems, IEEE Transac-
tions on Knowledge and Data Engineering16 (2004), no. 7, 858–869.

[3] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi,
DKS(N; k; f): A Family of Low Communication, Scalable and Fault-
Tolerant Infrastructures for P2P Applications, The 3rd International
Workshop On Global and Peer-To-Peer Computing on Large Scale
Distributed Systems (CCGRID 2003) (Tokyo, Japan), May 2003.

[4] James Aspnes, Zoë Diamadi, and Gauri Shah,Fault-tolerant routing in
peer-to-peer systems, Proceedings of the twenty-first annual symposium
on Principles of distributed computing, ACM Press, 2002, pp. 223–232.

[5] Miguel Castro, Manuel Costa, and Antony Rowstron,Performance and
dependability of structured peer-to-peer overlays, Proceedings of the
2004 International Conference on Dependable Systems and Networks
(DSN’04), IEEE Computer Society, 2004.

[6] Ali Ghodsi, Luc Onana Alima, and Seif Haridi,Low- bandwdith
topology maintenance for robustness in structured overlaynetworks,
38th International HICSS Conference, Springer-Verlag, 2005.

[7] Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi,
A statistical theory of chord under churn, The 4th International Work-
shop on Peer-to-Peer Systems (IPTPS’05) (Ithaca, New York), February
2005.

[8] , An analytical study of a strutured overlay in the presence of
dynamic membership, IEEE Joint Transactions on Networking (2007).

[9] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and
Frans Kaashoek,Comparing the performance of distributed hash tables
under churn, The 3rd International Workshop on Peer-to-Peer Systems
(IPTPS’02) (San Diego, CA), Feb 2004.

[10] Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, and
Thomer M. Gil, A performance vs. cost framework for evaluating dht
design tradeoffs under churn, Proceedings of the 24th Infocom (Miami,
FL), March 2005.

[11] David Liben-Nowell, Hari Balakrishnan, and David Karger, Analysis
of the evolution of peer-to-peer systems, ACM Conf. on Principles of
Distributed Computing (PODC) (Monterey, CA), July 2002.

[12] N.G. van Kampen,Stochastic Processes in Physics and Chemistry,
North-Holland Publishing Company, 1981, ISBN-0-444-86200-5.

[13] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz,
Handling churn in a DHT, Proceedings of the 2004 USENIX Annual
Technical Conference(USENIX ’04) (Boston, Massachusetts, USA),
June 2004.

[14] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan,Chord: A scalable peer-
to-peer lookup service for internet applications, IEEE Transactions on
Networking 11 (2003).

VII. A PPENDIX

Equation 1 with the churn-dependent terms set to zero
becomes:

Cξ+m = Cξ [1 − a(m)] + a(m) +

m−1
∑

i=0

b(i)Cm−i (10)

After some rewriting of this, it is easily seen that the cost
for any key i + 1 can be written as the following recursion
relation:

Ci+1 = ρCi + (1 − ρ) + (1 − ρ)Ci+1−ξ(i+1) (11)

Here we have used the definition ofa and b from the
internode-interval distribution and the notationξ(i + 1) refers
to the start of the finger most closely precedingi + 1. For
instance, fori + 1 = 4, ξ(i + 1) = 2 and for i + 1 = 11,
ξ(i + 1) = 8 etc.

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ok

up
 c

os
t (

in
 h

op
s)

1- ρ=N/K

L (without churn) - Simulation
L (wihtout churn) - Theory

0.5 * log2(N)

Fig. 7. Theory and Simulation for the lookup cost without churn for a
key space of sizeK = 214 for varying N . Plotted as reference is the curve
0.5 log2(N). Note that on the y axis we have actually plottedL − 1 for
convenience.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200000 400000 600000 800000 1e+006

Lo
ok

up
 c

os
t (

in
 h

op
s)

Distance i (in keys)

Ci
L = <Ci>

Fig. 8. The average costCi (the number hops for looking up an itemi keys
away) in a network ofN = 1000 nodes andK = 220 keys without churn
obtained from the recurrence relation (11). The average lookup lengthL is
also plotted as a reference.

We are interested in solving the recursion relation and
computingL = 1

K

∑K−1
i=1 Ci. To do this, we decompose this

sum into the following partial sums:

s0 = C1 = 1

s1 = C2

s2 = C3 + C4

s3 = C5 + C6 + C7 + C8

. . .

sM = C2M−1+1 + . . . + CK−1

(12)

Substituting the expressions for theC ’s in the above, we find:

s0 = 1

s1 =
ρ

1 − ρ
[C1 − C2] + 1 + s0

s2 =
ρ

1 − ρ
[C2 − C4] + 2 + [s0 + s1]

. . .

si =
ρ

1 − ρ
[C2i−1 − C2i] + 2i−1 +

j−1
∑

j=0

sj

(13)

By substituting serially the expressions forsj (where0 ≤ j ≤
i − 1), the expression forsi (for i ≥ 2) becomes:

si =
ρ

1 − ρ
[2i−2C1 − C2i −

i−2
∑

j=1

si−2−jC2j]

+ 2i + (i − 1)2i−2

(14)

Hence
M
∑

i=0

si = −ρ + [2M+1 − 1] + M2M−1 − [2M − 1]

+
ρ

1 − ρ

[

(2M−1 − 1)C1 −

M−1
∑

i=2

C2i − CK−1

− (2M−2 − 1)C2 − (2M−3 − 1)C4 − . . .

]

(15)

Therefore
M
∑

i=0

si = −ρ + 2M + M2M−1

+
ρ

1 − ρ

[

(2M−1 − 1)C1 −

M−1
∑

i=2

C2i − CK−1

−

M−2
∑

j=2

(2M−j − 1)C2j−1

]

(16)

The equation for the average lookup length without churn is
thus,

L =

∑

s

K

= −
ρ

K
+ 1 +

1

2
M

+
ρ

1 − ρ

[

2M−1 − 1

K
C1 −

1

K

M−1
∑

i=2

C2i −
1

K
CK−1

−

M−2
∑

j=2

2M−j − 1

K
C2j−1

]

(17)

If we can take the limitK → ∞, we can throw away some
of the terms.

lim
K→∞

L = 1 +
1

2
M

+
ρ

1 − ρ

[

C1

2
−

1

K

M−1
∑

i=1

C2i +
C2

K
−

1

K
CK−1

−
M−2
∑

j=2

2M−j

K
C2j−1 +

M−2
∑

j=2

C2j−1

K

]

≈1 +
1

2
M +

ρ

1 − ρ

[

C1

2
−

C2

4
−

C4

8
. . . −

C2M−3

2M−2

]

(18)

SinceC1 = 1, we can write

L = 1 +
1

2
M−

ρ

2(1 − ρ)

[

C2 − 1

2
+

C4 − 1

4
+ . . .

+
C2M−3 − 1

2M−3

] (19)

From the recursion relation for theCi’s, it is easy to see that

(Ci − 1) = (1 − ρ)g
(1)
i (ρ) + (1 − ρ)2g

(2)
i (ρ) + . . . (20)

where thegi’s are functions only ofρ.
Hence if (1 − ρ) is small (N

K
→ 0), we need only compute

theCi’s to first order in (1− ρ) to get the leading order effect
and second order in (1 − ρ) to get the correction etc.

Hence in general the, the expression forL is:

L = 1 +
1

2
M−

ρ

2

[

e1(ρ) + (1 − ρ)e2(ρ) + (1 − ρ)2e3(ρ) . . .

]

(21)

Wheree1(ρ) =
∑M−3

i=1 g
(1)
2i (ρ) etc.

We evaluate this expression numerically by solving recur-
sion relation (11) and compare it with simulations done at zero
churn. As can be seen the prediction of the equation is very
accurate (Figure 7).

Let us now computee1(ρ) to see what the leading order
effect is. We now need to solve recursion relation (11) only
to order1 − ρ, which gives:

C2 − 1 = (1 − ρ)

C4 − 1 = (1 − ρ)
[

1 + ρ + ρ2
]

C8 − 1 = (1 − ρ)
[

1 + ρ + ρ2 + · · · + ρ6
]

. . .

Ci − 1 = (1 − ρ)
[

1 + ρ + ρ2 + · · · + ρi−2
]

(22)

Therefore,

L = 1 +
1

2
M +

ρ

2

[

1

2
+

1 + ρ + ρ2

4
+ . . .

]

(23)

Consider the expression inside the brackets. We are computing
this in the approximationN

K
= ǫ → 0, i.e.ρ = 1− ǫ, therefore

ρx = (1 − ǫ)x ≈ e−ǫx. If x > 1
ǫ , thenρx → 0, therefore if

x > K

N , thenρx → 0. Hence, the terms inside the brackets
become:

T
∑

j=1

2j − 1

2j
+ (2T − 1)

M−3
∑

j=T+1

1

2
j (24)

WhereT ≡ ln2 K− ln2 N and we have putρx ≈ 1 for x < K

N

andρ → 0 for x > K

N . This is clearly an overestimation and
so we expect the result to over estimate the exact expression
21.

Expression 24 becomes:

T −

[

1 − (
1

2
)M−3

]

+

[

1 − (
1

2
)M−3−T

]

≈ T

Therefore:

L = 1 +
1

2
ln2 K −

1

2
[ln2 K− ln2 N]

≈ 1 +
1

2
ln2 N

(25)

Which is the known result for the average lookup length of
Chord.

Another important parameter in the performance of DHTs
in general is the base. By increasing the base, the number of
fingers per node increases which leads to a shorter lookup path

length. The effect of varying the base has been studied in [3],
[10]. So far, we have considered in this analysis base-2 Chord.
We can likewise carry out this analysis for any base.

In general, we have base-b with (b − 1)logb(K) fingers per
node. Consider as an exampleb = 4. Here we can define the
the partial sums again in the following manner:

∆0 = s0 = C1 = 1

∆1 = s1 + s2 + s3

∆2 = s4 + s5 + s6

. . .

(26)

where

s1 = C2 = ρC1 + (1 − ρ) + (1 − ρ)C1

s2 = C3 = ρC2 + (1 − ρ) + (1 − ρ)C1

s3 = C4 = ρC3 + (1 − ρ) + (1 − ρ)C1

s4 = C5 + C6 + C7 + C8

s5 = C9 + C10 + C11 + C12

s6 = C13 + C14 + C15 + C16

. . .

(27)

Therefore

∆0 = C1

∆1 = ρ [∆1 + C1 − C4] + 3(1 − ρ) + 3(1 − ρ) [∆0]

∆2 = ρ [∆2 + C4 − C16] + 12(1 − ρ) + 3(1 − ρ) [∆0 + ∆1]

. . .
(28)

In general for a baseb, defineB ≡ b− 1 andbM = K. Then
we have:

∆j =
ρ

1 − ρ
[Cbj−1 − Cbj]

+B(B + 1)j−1 + B [∆0 + ∆1 + · · · + ∆j−1]
(29)

Following much the same procedure as before, we find

L =
1

K

M
∑

j=0

∆j

≈1 +
B

B + 1
M−

B

B + 1

ρ

1 − ρ

[

Cb − 1

B + 1
+

Cb2 − 1

(B + 1)2
+ . . .

]

(30)

for K → ∞ as the analogue of (19). Again we can simplify
and slightly overestimate the sum by assuming thatρx ≈ 0
for x > K

N andρx ≈ 1 for x < K

N . Then we get:

L ≈ 1 +
b − 1

b

ln2 N

ln2 b
(31)

This is the analogue of Eq. 25 for any baseb.

