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Abstract

A system of stochastic di�erential equations for the velocity and density of a classical self-

gravitating matter is investigated by means of the �eld theoretic renormalization group. The

existence of two types of large-scale scaling behavior, associated to physically admissible �xed points
of the renormalization-group equations, is established. Their regions of stability are identi�ed and

the corresponding scaling dimensions are calculated in the one-loop approximation (�rst order of

the " expansion). The velocity and density �elds have independent scaling dimensions. Our analysis
supports the importance of the rotational (nonpotential) components of the velocity �eld in the

formation of those scaling laws. PACS numbers: 05.45.-a; 05.10.Cc; 04.40.-b.
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The present Universe at short and moderate distances

is inhomogeneous, being �lled by numerous structures

of many scales, from galaxies to galaxy clusters and

superclusters. On the contrary, at larger scales or

earlier stages the Universe is generally taken nearly

homogeneous and isotropic. It is believed that gravity

reinforces small asymmetries in the velocity and density

�elds, and the structures observed today are due

to instabilities in an initially uniform self-gravitating

medium. The �rst structures to form are \pancakes,"

thin in one dimension and of large extent in the two

others. Further evolution and interaction of the pancakes

develops patterns with complex (fractal or honeycomb)

geometry in the distribution of matter. Excellent reviews

of classical cosmology are given in Refs. [1{3].

The full relativistic treatment of the large-scale

structure formation, especially of its nonlinear stage, is

an extremely di�icult task. Therefore, the development

of instabilities is usually studied within the framework of

simpli�ed dynamical models of a classical self-gravitating


uid (or system of particles): Vlasov{Poisson model,

adhesion model and its modi�cations with di�erent types

of nonlinearity, pressure and viscous terms and random

forces, Boltzmann equation (or N -body simulations of

dark matter) and so on; see e.g. Refs. [3,4] for reviews

and discussion.

The link between the complex geometrical structures

and the coarse-grained (hydrodynamic) description is

provided by nontrivial scaling behavior exhibited by

correlation functions of the density or velocity �elds,

such as the galaxy{galaxy correlation function �(r); see

e.g. [5]. At large scales it reveals a power-law behavior

�(r) / r�
 , where 
 is determined from catalogs to be

between 1.3 and 2.1 for r of order of the Megaparsec;

see e.g. [6{10] and references therein. The most recent

studies give the values between 1.6 and 1.9, in particular,


 = 1:75� 0:03 according to [9].

The scope of theory is to derive such behavior

on the basis of an appropriate dynamical model, to

investigate the universality of the exponent 
, that

is, its (in)dependence on the model parameters, and

to calculate 
 within a consistent approximation or

systematic perturbation scheme.

Scaling laws are typical of equilibrium phase

transitions, and the most adequate tool to study them

is the renormalization group (RG). It is also applicable

to nonequilibrium dynamical phenomena as disparate as

surface growth, random walks, nonlinear di�usion and

turbulence; see e.g. [11] for a review. For a given model,

the RG allows one to prove the existence of scaling

regime(s), to determine the range of its stability in the

space of model parameters, and to calculate the scaling

dimensions in the form of regular perturbation series ("

expansions).

The RG approach to the problem of self-gravitating

medium was pioneered in [12{14]. In these studies, the
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full set of equations (hydrodynamic equation for the

Newtonian 
uid, continuity equation and the Poisson

equation for the gravitation force, the system known as

the Vlasov{Poisson equations) was reduced to a single

equation for a purely potential velocity �eld. The

resulting equation (similar to the well-known stochastic

Burgers equation but with a time-dependent \mass"

term) was augmented by a Gaussian random force

(noise) that represents the in
uence of 
uctuations and

dissipative processes on the evolution of 
uid, arising

from viscosity, turbulence, explosions, gravitational

waves and so on. The dynamical RG approach of

[15{17] was then adopted to derive the scaling regimes

and exponents. With an appropriate choice of the

parameters, the model reveals scaling behavior with

a nonuniversal exponent 
; its value depends on the

characteristics of the forcing and can be adjusted to the

value 
 � 1:7 [14] in agreement with the observations.

In spite of this obvious success, the analysis of

Refs. [13,14] raises serious questions about its internal

consistency and interpretation of the results. It is

well known that the stochastic Burgers (or Kardar{

Parisi{Zhang) equation has no infrared-attractive �xed

point in the physical range of parameters within the "

expansion. This fact immediately follows from the �rst-

order expressions of Refs. [15{17]. It was con�rmed by

the two-loop calculation [18] and then proved to all orders

of the perturbation theory [19]. The existence of a strong-

coupling �xed point, although supported by numerical

simulations, remains an unproved hypothesis.

The authors of [14] studied an extended (\massive")

version of the KPZ model, and the only attractive �xed

point revealed in their analysis corresponds to nonzero

value of the \mass." In fact, its value is comparable with

the largest, ultraviolet, momentum scale of the problem,

so that the mass term at the �xed point is by no means

small. Therefore, in the spirit of the Landau theory, the

viscous and nonlinear terms in the equation should be

discarded as infrared-irrelevant. This leads to a simple

Gaussian model whose critical exponents are easily found

exactly. They agree with the answers obtained in [14]

for the full (interacting) model, but the situation on

the whole is not quite satisfactory. It looks rather

strange that the nonlinearity does not play any role in

shaping the large-scale asymptotic form of the correlation

functions, and that the latter are so directly determined

by the choice of the random forcing. The absence of the

appropriate �xed point for the massless (critical) model

suggests that such results can be very sensitive to the

approximationsmade in the derivation of the model. The

most important of them is the assumption of parallelism,

which reduces the system of equations for the density

and velocity �elds to an equation for a single, purely

potential, velocity �eld. More extensive analysis of the

full problem would therefore be desirable.

The original (deterministic) set of Vlasov{Poisson

equations for the velocity u
i
(t;x), density �(t;x) and the

gravitational potential  (t;x) in the comoving frame of

reference reads (see e.g. [3,4]):
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where G is the gravitational constant, the cosmic scale

factor a(t) is a prescribed function of the proper time,

�0 is the mean density and @2 � @
i
@
i
is the Laplace

operator.

We change to the new variables �
i
� u

i
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2
� 4�Ga2�0 and rewrite the system

(1) in the form:
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Here, H � _a=a is the Hubble function and @�2 is

the Green function of the Laplace operator. We have

eliminated the potential  using the last equation in (1),

assumed that _a=a� @
t
u=u, and added viscous terms and

the random force f
i
(t;x). We stress that the velocity �eld

�
i
/ u

i
is not purely potential, so that two independent

viscosity coe�icients �0 and u0�0 have been introduced

in the equation for �
i
. The viscous term v0�0@

2� is

usually not included in the continuity equation, but it

is not forbidden by dimensional reasons or symmetry

and thus is needed to ensure the renormalizability of the

model. Then the RG equations should be solved with the

physical initial condition v0 = 0, but if the IR attractive

�xed point is unique, the large-scale behavior will be

the same as for nonzero v0; cf. the discussion in [20].

Dimensional analysis shows that the pressure term is

infrared-irrelevant (in the sense of Wilson) in comparison

to the gravitational force and thus it was dropped in (2).

The hydrodynamic description of the properly

smoothed (coarse-grained) �elds and, in particular,

inclusion of the viscous terms and random forcing, can

be justi�ed by various arguments [21{23]. For simplicity,

we shall neglect the time dependence of the viscosity

coe�icients, suggested by those studies, treating it as a

kind of second-order e�ect: the viscosity coe�icients are

\small" and their time dependence is \slow." In contrast

to equilibrium systems, there is no universal relation

between the viscosity coe�icients and the correlation

functions of the random force. We shall take it Gaussian,

white in time (this is necessary to ensure the Galilean

symmetry of the stochastic problem (2)), with zero mean

and a given correlator
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Here P
ij

= �
ij
� k

i
k
j
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ij
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j
=k2 are

the transverse and the longitudinal projectors, � >

0 is an arbitrary parameter and D(k) is a function

of the modulus of the wave vector k � jkj. The

simplest possible choice is D(k) = D0=const (spatially

decorrelated forcing). Another possibility, widely used in

models of nonequilibrium critical phenomena, is a power-

law correlation function: D(k) = D0

0
k4�d�2�; see e.g.

[15,17,24{27]. Here d is the (arbitrary) dimensionality

of space and � an arbitrary exponent; the notation is

explained by convenience reasons. In what follows, we

shall refer to these two cases as the local and nonlocal

ones. They are closely related for d � 4 (see below),

but it is instructive to discuss them separately in the

beginning.

The RG analysis of a stochastic problem like (2),

(3) includes four important steps: �eld theoretic

formulation; analysis of its renormalizability; derivation

of the corresponding RG equations; analysis of the �xed

points of these equations. This analysis for our problem

is technically involved (already in the simplest one-loop

approximation) and will be presented elsewhere, along

with the details of the practical calculation. In many

respects, it is close to the �eld theoretic RG analysis

of the stochastic Navier-Stokes equation [24{27] and

especially to the case of a strongly compressible 
uid

studied in [20]. Below we only give the main points and

conclusions.

According to a general theorem (see e.g. [11,26]), the

stochastic problem (2) is equivalent to the �eld theoretic

model of a doubled set of �elds � = f�0; �0; �; �g with

action functional:
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where D
f

is the correlator (3) and the needed

integrations over t;x and summations over the vector

indices are implied.

The �eld theoretic formulation means that the

correlation functions of the stochastic problem (2), (3)

can be represented as functional averages with the weight

expS(�) with action (4). This allows one to use a well-

developed formalism (power counting plus symmetries

of the model) to analyze the relation between the IR

and UV problems and the UV renormalizability of the

model. For the local case, it shows that the upper critical

dimension for the model is d = 4: the nonlinearity in

(2) is IR irrelevant for d > 4 (perturbation theory is

applicable, no scaling and universality are expected).

For d � 4, the terms of the ordinary perturbation

theory su�er from IR singularities and cannot be used

to describe the large-scale behavior of the problem. For

small " � d � 4, the problem of the IR singularities is

closely related to that of the UV divergences (poles in ").

The latter is solved by the standard UV renormalization

procedure: it shows that the model (4) is multiplicatively

renormalizable, that is, all the poles in " in its correlation

functions are removed by the rescaling of the �elds �

and the parameters D0; �0; u0; v0; � (the proof of this

statement is the most nontrivial stage of the analysis).

The arbitrariness in the renormalization procedure leads

to the RG equations: �rst-order di�erential equations

for the correlation functions with coe�icients calculated

within the ordinary perturbation theory. In order to draw

any de�nite conclusions from the RG equations, one has

to calculate their coe�icients at least in the simplest (one-

loop) approximation. We performed the calculation and

found out that, in contrast to the Burgers or KPZ models,

the RG equations of the extended model (4) have the

only IR attractive �xed point in the physical range of

parameters (the ratios of the viscosity coe�icients and

the amplitude factors in pair correlation functions are

positive).

This means, in particular, that in the IR range (the

scales large in comparison to the typical UV length scale,

built of D0 and �0, and times large in comparison to the

corresponding time scale), the correlation functions of

the velocity � and the density (more precisely, of the

�eld � � c2(�� �0)=�0 have a scaling (self-similar) form:



�(t;x)�(t+ �;x + r)

�
' r�2�� F
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�
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where r � jrj and the scaling functions F
v;�

depend

on (critically) dimensionless variables � � r�� , H � r�H ,

c � r�c (for the equal-time correlation functions, the �rst

variable is absent). The dimensions � are universal in

the sense that they are independent of the values of the

parameters u0; v0; � and can be calculated as series in ".

The �rst-order (one-loop) calculation gives:

�
�
= 1� "=2; �

�
= �

c
= 2� "=2;

�
�
= �2 + "=2; �

H
= 2 + "=2; (6)

with corrections of order "2 and higher. From

representations (5) it follows that under the rescaling

r ! r=�; � ! ���� ; H ! H��H ; c! c��c (7)

with arbitrary � > 0, the correlation functions behave as

hvvi ! �2�v hvvi; h��i ! �2�� h��i: (8)

The formulation (7), (8) is in fact more general because

it remains true if the parameters H; c depend on t;x (in
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the original problem they indeed depend on t), while the

more explicit formulae (5) imply that they are treated as

constants.

The RG representations (5) are the result of certain

in�nite resummation of the primitive perturbation

theory, that is, of the expansion in the nonlinearity

in Eqs. (2) around the zero-order (Gaussian)

approximation. In our case, however, the latter is

unstable with respect to any small perturbation, as

is easily seen from the fact that, for c2 > 0, the

retarded zero-order response function grows in time

and, as a result, perturbative diagrams contain infrared

divergences. However, it can be argued that this

instability does not hinder the use of the RG in studying

the self-similar behavior. The parameters H and c

in (4) have integer positive dimensions and, in this

respect, they are analogous to masses (in the language

of the quantum �eld theory) or to the deviation of the

temperature of its critical value, �T � T �T
c
(in models

of critical behavior). From the general theory of UV

renormalization, it is well known that the UV divergent

parts of the diagrams are polynomials in such \IR

relevant parameters." Therefore, they can be calculated

for �T � 0 (or c2 � 0 in our case), where the terms of

the perturbation theory are �nite, and then extrapolated

to the region �T < 0 (or c2 > 0). There, the ordinary

perturbation expansion ceases to make sense due to IR

divergences and one should either change to an improved

perturbation theory (for critical behavior) or to consider

a nonstationary problem (for a self-gravitating system).

It is important here that this rearrangement does not

a�ect the UV divergent parts of the correlation functions

(and hence the counterterms). These arguments show

that the critical exponents (calculated from the UV

counterterms) are the same below and above T
c
, and,

in our case, they support the scaling relations (5) and

(7), (8) with the dimensions (6) for the \unstable" case

c2 > 0.

For the nonlocal case, that is, D(k) / k4�d�2�

in (3), analysis shows that the model (4) appears

multiplicatively renormalizable if d > 4, and the

corresponding RG equations also have an IR attractive

�xed point in the physical range of the parameters. This

establishes the scaling relations (5), (7), (8) with the new

set of dimensions:

�
�
= 1� 2�=3 (exact); �

�
= �

c
= 2� 2�=3;

�
�
= �2 + 2�=3; �

H
= 2 + 2�=3 (exact): (9)

The dimensions �
�;H

are found exactly (there are no

corrections of order �2 and higher) due to the Galilean

invariance of the problem. In principle, the other

dimensions are less universal than their analogues for the

local case: besides the exponent �, they can depend on

d and � from (3). Our calculation has shown, however,

that this dependence can occur only in the order O(�2).

For d � 4, the model (4) with the nonlocal

noise correlator ceases to be renormalizable: a new

counterterm (�0)2 is generated. A similar problem is

well known in the RG approach to the stochastic Navier{

Stokes equation for purely incompressible 
uid, where

it occurs at d = 2; see e.g. Sec. 3.10 of Ref. [26]. In

order to apply the RG to this case, one has to extend the

model by adding such term to the action from the very

beginning, that is, one has to study the model with the

mixed correlator

D(k) = D0 +D0

0
k4�d�2� (10)

(similar to that discussed in [13,14,17]). The extended

model appears renormalizable, and its �xed points can be

studied within the double expansion in two parameters,

� and " = 4� d.

The calculation in the �rst-order of such expansion

shows that the extended model has two nontrivial �xed

points. The �rst of them is IR attractive for " > 0,

� < 3"=4 and corresponds to the \local" regime with

the dimensions (6), while the second is IR attractive for

� > 0, � > 3"=4 and corresponds to the dimensions (9).

For � < 0, " < 0 the only IR attractive point is trivial; it

corresponds to a free (non-interacting) �eld theory. The

regions of stability of the �xed points of the extended

model in the "{� plane are shown in Fig. 1.

The main conclusions of our analysis are as follows.

We have investigated a system of stochastic di�erential

equations for the velocity and density of a self-gravitating

matter, established two types of large-scale scaling

behavior (local and nonlocal ones), identi�ed their

regions of stability and calculated the scaling dimensions

in the one-loop approximation (i.e., to �rst order of the

corresponding " expansions).

From the qualitative point of view, our analysis shows

that nonequilibrium stochastic systems of the type (2)

can have IR attractive �xed points in the physical range

of parameters, and the corresponding scaling regimes

can be treated systematically, within appropriate "

expansions. What is more, such models can have several

�xed points with di�erent sets of dimensions, and the

system undergoes the crossover in its large-scale behavior

when its parameters (exponents in the forcing) change.

It is worth noting that in model (2), the density and

velocity �elds have independent scaling dimensions, a

feature which is lost if the full set of equations is reduced

to a single equation for only one independent �eld.

Our results also suggest that rotational (non-potential)

components of the velocity �eld do not decouple in those

regimes and should be taken into account in the analysis

of the large-scale behavior.

Admittedly, the one-loop answers for the exponents are

markedly larger than the latest experimental estimates

for the exponent 
 (identi�ed with 2�
�
). In particular,

for the local regime and d = 3 one obtains 
 � 3. For
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the nonlocal regime and arbitrary spatial dimension, 


varies from 4 to 2 when the exponent � varies within

its natural range 0 < � < 3=2 (for � > 3=2, the

dimensions �
�;�

become negative). This can be a

hint that the simpli�ed model (2) does not include all

physical interactions relevant for the large-scale behavior

(it is worth mentioning here that the model (1) concerns

directly dark matter, while the galaxy-galaxy correlation

functions concern visible matter).

One can also expect that the simplest one-loop

approximations (6), (9) overestimate the value of the

scaling dimensions, and the second-order and higher

corrections will improve the agreement, as indeed

happens in the RG theory of fully developed turbulence;

see [27]. Finally, it is possible that the scaling functions

F in representations (5) are very singular in their

arguments, which can lead to imaginary shift of the

genuine exponent or to deviation from a plain power-law

behavior, in agreement with some recent data [28].

In order to investigate these issues, one should

go beyond the simplest one-loop approximations and

augment the plain RG equations by more advanced

tools (renormalization of composite operators, operator-

product expansion and so on), in analogy with the RG

theory of fully developed turbulence; see e.g. [26]. This

work is left for the future.
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FIG. 1. Phase diagram of the model (4), (10), in the "{� plane: the local regime is realized for " > 0, � < 3"=4, the nonlocal

one for � > 0, � > 3"=4 and the trivial one for �, " < 0.
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