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Abstract

The Delay Tolerant Networking Architecture (DTN) has been proposed for use in
challenged networks that suffer from intermittent connectivity or high delay. The
DTN architecture and the bundle protocol presents a standard method to intercon-
nect heterogeneous challenged networks using asynchronous message switching.
It provides a framework for dynamic routing, contact scheduling, naming, relia-
bility and transmission status reports. Wireless Sensor Networks (WSNs) are often
viewed as challenged networks as nodes operate at low power, often with weak
or intermittent radio communication. WSNs are an important application area for
DTN. In this work I present ContikiDTN, a TCP/IP based prototype implementa-
tion of the DTN architecture and bundle protocol. ContikiDTN aims to evaluate
the suitability of the DTN bundle protocol as a solution for messaging inside a
TCP/IP WSN and as a way of connecting the WSN to the Internet. I discuss the
design and implementation of ContikiDTN using the Contiki operating system. I
highlight the issues in implementing the bundle protocol with TCP and Contiki.
I show that the event-driven Contiki kernel is very suitable for an asynchronous
message forwarding application. I use ContikiDTN to communicate with a full PC
platform implementation of DTN and show that it can be used as a gateway to the
Internet. I present a simulation and experimental results showing the performance
of multi-hop TCP based DTN as compared to only TCP. I show that the core propo-
sitions of the DTN architecture hold in a WSN and that it is feasible to implement
DTN on resource constrained devices using TCP/IP and Contiki.
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CHAPTER 1

Introduction

1.1 Problem statement

The model for communication over the Internet is built for end-to-end inter-process
communication over potentially dissimilar networks. The TCP/IP protocol suite
functions well on the Internet today, but there are an increasing number of inter-
networking environments where the Internet protocols do not perform well. In
these environments the seldom stated assumptions built into the current Internet
architecture need to be reconsidered. As these new challenged networks become
more important a new architecture for communication over dissimilar networks is
required.

An architecture for these challenged networks has been proposed. Delay Toler-
ant Networking (DTN) [Fal03] is designed for intermittently connected networks
where network partitions are frequent and very high delays are associated with
some links. The DTN architecture is accompanied by a messaging protocol called
the bundle protocol. The DTN architecture addresses network issues such as high
latency, frequent disconnection and long queueing time. These issues arise be-
cause nodes in challenged networks are sometimes located in extreme or difficult
to reach locations, or because of the limitations of the nodes themselves. Node
limitations can necessitate low duty cycle operation (eg battery powered nodes) or
cause limited longevity. Extreme or difficult environments can cause low link qual-
ity, especially on wireless links. Extreme long distance links, for example between
planets, can have considerable propagation delays.

Wireless Sensor Networks (WSNs) can in many cases by classified as challenged
networks and is an important application area for the proposed DTN architecture
and the accompanying bundle protocol. WSNs are characterised by sensor nodes
that operate at extremely low power and with very limited resources. The areas
that sensors are deployed in and the nature of the radio communication between
nodes can cause high delay, unreliable links. Sensor nodes often operate with low
duty cycles. Radio use for sending and listening for transmissions is expensive and
radios are often turned off [RSPS02]. Sleeping nodes further complicates commu-
nication.

It is widely suggested ([Fal03], [DVAT04], [HF04]) that DTN can serve to alleviate
the communication difficulties in sensor networks. DTN also provides the addi-
tional advantage that it can be used as a general way to communicate with nodes
in other, possibly very different, networks. DTN is therefore a good way to con-
nect a sensor network to the Internet, possibly through different sensor and other
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networks, all implementing DTN.

The problem of communicating in a poorly connected network is not new and

many solutions have been proposed. Early store and forward systems were em-

ployed on Fidonet and UUCP (Unix to Unix Copy) was used for transferring email

over dial-up links. DTN, although also in essence a store and forward asynchronous
messaging system, provides the important advantage of being a general solution

that can be applied to networks built on very different lower level technologies.

It is not obvious that DTN is suitable for implementation on tiny sensors, or tiny
sensors running a TCP/IP stack. Many network specific protocols are designed
with the limitations of the platform in mind and this is not the case with DTN. A
DTN prototype for a sensor network platform based on TCP/IP would provide
insight into possible implementation difficulties.

The goal of this project is to implement the DTN architecture and the bundle proto-
col in a wireless sensor network in order to use the implementation to gain insight
into the architecture and evaluate it as solution to the communication problems
commonly encountered in such networks.

1.2 Motivation

A DTN implementation on a gateway between a sensor network and the Internet
and on sensor nodes can be used to test the performance and usefulness of DTN
for connecting sensor nodes to the Internet and communication between sensor
nodes.

A working prototype DTN implementation can be employed and tested for normal
sensor network tasks, such as code upload and data download. These tasks can
also be done from anywhere on the Internet if the sensor network is connected
to the Internet. Such an implementation can be used to test the core propositions
behind the DTN design and highlight the issues in realising the bundle protocol
on a very limited system.

The Contiki operating system for memory-constrained devices is gaining popu-
larity for research and “real world” use on sensors and limited devices. Contiki
has been deployed on different sensor nodes and ported to many other platforms
[Dun05]. Contiki provides TCP/IP networking and multi-tasking. It is a useful
platform for implementation of the bundle protocol.

With a Contiki implementation of DTN, different scenarios for communication to
and from a sensor network can be investigated. The interoperation of a PC (or
other more powerful machine) implementation of DTN, based on TCP, and the
Contiki TCP/IP stack can be tested. The performance of DTN as solution to sensor
network communication difficulties can be evaluated. The feasibility of using DTN
as a gateway to the Internet and implementing the full protocol on a sensor can be
tested.

The motivation for this project is to acquire the tools needed to achieve a complete
understanding of DTN related issues in general and in certain types of sensor net-
works. Further, the design of a suitable architecture for a DTN implementation on
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the Contiki operating system would enable the testing, simulation and evaluation
of DTN performance in solving common sensor network problems.

1.3 Evaluation

The success of the project can be assessed on the lessons learnt in the implementa-
tion stages and the insight gained by experiments using the prototype implemen-
tation.

The success of the architecture designed for the bundle protocol implementation
on Contiki is a parameter for evaluation. The implementation must make use of
the features of the Contiki operating system while negotiating its limitations and
considering the platform that the code must eventually be used on. The solutions
to problems of communications between parts of the program, memory manage-
ment and asynchronous message handling must be appropriate and practical in
this environment.

The system must achieve a balance between the full interoperability a complete im-
plementation of the bundle protocol will provide and the compromises necessary
for implementation on a limited system. These design choices must not compro-
mise the other goals for the system.

Another criterion for evaluation is the success of the experiments using the pro-
totype implementation. From previous work in the field, it is expected that DTN
will perform well in a challenged sensor network and that the prototype will be
successful in operating in a intermittently connected network. The experiments
will be deemed successful if the results provide a strong case to prove or disprove
this expectation.

1.4 Structure of the report

This report details the work done for the background research, completion of the
design, development, testing and evaluation of a Contiki implementation of the
DTN architecture and bundle protocol.

In Chapter 2 the basic concepts of DTN are introduced and the architecture and
bundle protocol discussed. Background on the working environment, the Con-
tiki operating system and the Contiki simulator is provided. Some alternatives to
DTN are presented. A survey of related work on DTN in general, and in sensor
networks specifically, is given. Relevant details of other implementations of DTN
are highlighted.

Chapter 3 elaborates on the goals of the project and the research method under-
taken to achieve them. The contribution of this project to the area of research is
described.

In Chapter 4 the design and implementation process for the DTN implementation
is described. The architecture is presented from a layered and function oriented
perspective.The process of sending and receiving bundles in the implementation
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is described. The chapter is concluded with discussion of the various architectural
and programming issues that became important during the development process.

Chapter 5 presents the analysis and evaluation of the work. The extent to which the
goals were achieved is discussed and the implementation is evaluated with con-
sideration of the goals. The experiments done and experimental setup is explained
and the results with possible explanations are presented.

The reports concludes in Chapter 6 with a final discussion of the conclusions made
from the experiments and the development process. The lessons learned about
DTN and a Contiki implementation are presented.




CHAPTER 2

Background

2.1 Delay-tolerant network architecture

The current specification of the Delay-Tolerant Network (DTN) architecture is a
work in progress Internet-draft [CBHT05]. At the time of writing, the drafts are still
in active development - here the versions in [CBH"05] and [SB05] are described.

The DTN architecture is designed to address the problems encountered in chal-
lenged networks, where the internetworking solutions used in the Internet are un-
suitable. The DTN architecture introduces the bundle layer, comprising an asyn-
chronous message oriented overlay network. The bundle layer operates above the
transport layers of different networks. A network entity implementing the bundle
layer is called a DTN node. The DTN architecture description mentions of any-
cast and multicast in DTN, but there are unresolved issues with regard to custody
transfer. Only unicast DTN is discussed here. The separate issues regarding bun-
dle security are also not included in this discussion.

2.1.1 Bundle layer

The bundle layer is the interface to applications for the DTN overlay network. Its
position in the Internet-type protocol stack is shown in Figure 2-1. Its position in
the protocol stack makes it possible to implement the Bundle layer in the applica-
tion space of an operating system.

Application Application

BUNDLE

Convergence

Transport Transport
Network Network
Link Link
Physical Physical
Internet layers DTN Layers

Figure 2-1: Internet and DTN stacks

DTN nodes can operate as gateways between different networks. In such a case
the bundle layer is the common layer between the two different networks that the
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DTN gateway interconnects. In Figure 2-2 the connection of a DTN sensor node
to the TCP/IP Internet is shown. The location of potential delay and persistant
storage requirements are also shown.

Sensor network Interne

....... .

e oo

™ Internet application

.
o .
. o B
. . .
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. R R r
* Sensor application  — * .
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. . . o Bundle protocol \% .
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Sensor transport Sensor convergence TCP convergence

P

Sensor routing Sensor transport TCP
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Sensor mac Some MAC . Lot
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Gatewa!
Node Y
—
KEY: - Persistent storage Potential delay ——»  Bundle data transfer

Figure 2-2: Using the bundle layer to connect a sensor network to the Internet

DTN nodes cooperate by means of the bundle layer in order to overcome com-
munication disruptions. The bundle layer operates on messages as its basic unit
of data and requires access to a persistant store for keeping messages until it is
possible to forward them. DTN nodes can route messages and provide a message
store-and-forward service with optional reliability across heterogeneous networks.

DTN nodes are named with a flexible scheme, based on Uniform Resource Iden-
tifiers (defined in [BLFMO05]), making interoperability across different lower layer
naming schemes possible. The DTN URI naming scheme can encapsulate the nam-
ing scheme of the underlying network. This is discussed further in Section 2.1.3.

DTN messages are of arbitrary length and are not guaranteed to be delivered in or-
der. Messages are encapsulated in “bundles”. Bundles and the bundle protocol are
described in a work in progress Internet-draft, [SB05]. Bundle encapsulation is dis-
cussed further in Section 2.1.6. The message abstraction has the advantage that the
bundling layer has complete knowledge of the size and performance requirements
of a message transmission. It is assumed that storage is available and sufficiently
persistent so that messages can be kept until the DTN node can forward them.

Bundles can be marked with three relative priority classes for prioritising a queue
at a sender. The classes are similarly named to classes of service in a postal system.

e Bulk - Low priority, bundles of this type will only be sent if there are no
higher priority bundles with the same source and destination.

e Normal - Bundles of this type are sent before Bulk bundles.
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e Expedited - These bundles are sent before the other two classes, but are oth-
erwise the same.

Bundles are also marked with a data lifetime. The bundle priority and the data
lifetime, together with the forwarding policy and routing algorithms affect the
progress of the bundle through the DTN overlay.

2.1.2 Convergence layers

In order to achieve interoperability between heterogeneous networks the bundle
layer needs to make use of different interfaces to lower network layers. For this
reason a convergence layer is introduced below the bundle layer (see Figure 2-1 and
2-2). It is necessary for the convergence layer to provide a standard interface to the
bundle layer, but lower layers might provide different services to the convergence
layer.

Lower layers can differ in their support of reliable delivery, connections, flow con-
trol, congestion control and message boundaries. The bundle protocol assumes
that the lower layers can provide message boundaries and reliable delivery and it
is up to the convergence layer to augment lower layers that do not provide this
functionality. For example, a convergence layer for TCP would require the intro-
duction of message boundaries into TCP streams.

2.1.3 Naming

A DTN node is identified by one or more Endpoint Identifiers (EIDs). EIDs use
the general syntax of URIs. In Figure 2-3 an example EID is shown, using the bp0
URI scheme (see [SB05]) and a DNS name. The EID in Figure 2-3 denotes a DTN
node on the Internet. Different schemes can be defined for each different type of
network that the bundle layer is implemented on top of. The URI naming allows
for late binding, where the Scheme Specific Part (SSP) of the URI is only translated
to a lower layer address or different EID late in the delivery process of a message.
This is in contrast with DNS on the Internet, where such a mapping is completed
before a message leaves its origin. Late binding is useful in a challenged network
because the result of a early binding name lookup might no longer be valid when
it becomes possible to start sending data into the network.

scheme name scheme specific part (SSP)

] |
bpO : //bundler.sics.se : 5000 / host:// ith3

host identifier port no application tag

Figure 2-3: An example EID with the bp0 URI scheme

A single EID can refer to more than one DTN node. Applications address messages
to an EID. Applications can also request that the bundle layer deliver messages
addressed to a certain EID to them. This request is called a registration.

10
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2.1.4 Delivery options, status and signal bundles

The ICMP protocol, commonly used on the Internet, provides informational and
diagnostic messages to Internet nodes. In the same way DTN nodes can request to
receive information from other DTN nodes by using the delivery options. Bundles
can be assigned different delivery options, depending on the relative importance of
the bundle or information about network conditions. Delivery options are different
from service classes, as they do not influence bundle forwarding decisions.

In the current DTN architecture specification, nine delivery options are defined,
three of which are only available when DTN security is enabled. With combina-
tions of the delivery options a DTN node can receive reports about delivery, for-
warding, receipt and deletion of bundles.

Delivery options can also be used for hop-by-hop reliable delivery. A custody
transfer mechanism is used to transfer responsibility for reliable delivery from one
node to another. A Custody Transfer Required delivery option is used to indicate
this and a report bundle about accepted custody can also be requested. This is
explained more fully in Section 2.1.7.

DTN security, defined in [SFWO05], allows for the specification of three more op-
tions if confidentiality, authentication or error detection is required for a bundle.

Bundle Status Reports (BSRs) are the diagnostic responses sent when an action
(such as delivery, forwarding, deletion etc.) is performed on a bundle and the
corresponding delivery option is set. BSRs are not sent to the source EID of a
bundle, but to the report-to EID. This is a field in every bundle that is set to the
DTN node EID that should receive status information for this bundle. The report-
to EID can be the same as the source EID. For example, when a bundle with the
“Report when Deleted” option set is discarded, a BSR will be sent to the report-to
EID for that bundle. Expiration is one possible reason for discarding a bundle.

2.1.5 Contacts, routing and forwarding

A DTN network can be described as a directed, time-varying multigraph. More
than one edge may exist between a pair of nodes. The reason for this abstraction
is that it might be possible for a DTN node to select between two distinct physical
connection when making a routing decision and that link capacities and propaga-
tion times in an intermittent network will vary with time [JFP04]. A simple DTN
graph is shown in Figure 2-4.

The DTN architecture provides a framework for routing and forwarding at the
bundle layer. Routing algorithms for DTNs is an active research area (see [LDS04],
[WJMFO05] and [JFP04]) and are not described as part of the architecture.

In an intermittently connected network the capacities of the edges fluctuate be-
tween zero and a positive capacity as links go up and down. The period of time
that an edge is at positive capacity is called a contact. The contact volume is defined
as the product of the contact time and the contact link capacity. Contact times and
volumes are input for route calculation functions and predicted contacts can help
optimise forwarding.

11
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€n = ((U, U)m C(t)7 d(t))

€1
source /\ destination

u - \
€2

€3

Figure 2-4: DTN graph, with an edge ¢, described in terms of source, destination
and a capacity (c(f)) and delay (d(t)) function.

Contacts are classified on their predictability and expected duration.

e Persistent - Always on contacts.

¢ On-demand - Can be turned on when required and will be persistant as long
as required.

e Intermittent, scheduled - A scheduled contact is an agreement to establish
contact at a particular time and for a particular duration. A satellite passing
over a location at scheduled times is an example.

e Intermittent, opportunistic - This type of contact is not scheduled and must
be made use of whenever it becomes available. A Bluetooth device moving
into the transmission range of another such device is an example.

e Intermittent, predicted - These contacts are not based on a fixed schedule, but
can be predicted with good probability based on earlier contact patterns.

2.1.6 Bundle contents and encapsulation

Application data is encapsulated into bundles that can be arbitrarily long. A bun-
dle header is added to the application data, as shown in Figure 2-5. The bundle
header makes use of optional extension headers, where the type, the length and
the value of each extension header follows the previous header.

A bundle will typically be split into parts as it is processed by lower layer protocols,
as shown in Figure 2-5. Fragmentation can also take place at the bundle layer, if
the bundle application detects that it is necessary or beneficial. Fragmentation can
be beneficial in an intermittently connected network when a bundle that has been
partially forwarded is split into fragments when a break in communication occurs.
Only the fragment that has not been forwarded can then be retransmitted when
communication is reestablished.

DTN fragmentation and reassembly can be done proactively or reactively. When
the volume of a contact is known or can be predicted it can be beneficial to proac-
tively fragment a block of application data before the first transmission and send
each fragment as an independent bundle. In this case it will be up to the final des-
tination to reassemble the block of data. Reactive fragmentation takes place when

12



CHAPTER 2. BACKGROUND

LN PHIHIN NIRRT N HTH] Apptication ayer

User data with application control information

Bundle layer

Bundle with added bundle header

AR i

e.g TCP segment

e.g. IP packet K

‘l|'l| Link layer

e.g Ethernet frame

’v.v‘v.v‘v‘v’v‘v.v‘v.v‘v‘v.v‘v.v‘v,v‘v.v‘v.v‘v.v.v‘v.v‘v.v‘v.v‘v‘v.v‘v.v‘v,v‘v.v‘v.v‘v‘v.v‘v’v‘v.v‘v.v‘v‘v.v‘v‘v‘v.v‘v.v‘v.v‘ :
R SRR 3%%)  Physical layer

Pt SO GOV S IO IS IO I I SISV I OIS I iYL ¥a %

Figure 2-5: Encapsulation of a bundle with TCP/IP Internet lower layers

a message is only partially forwarded because of a communication interruption. A
DTN node that receives a partially forwarded bundle (identified by using header
length fields) will mark it as a bundle fragment and then forward it in the same
way as a regular bundle. The sender of the partial bundle will have to be noti-
tied that fragmentation took place and will forward the rest of the bundle when a
contact is available.

All DTN nodes need to be able to reassemble fragments, but reactive fragmenta-
tion need not be implemented on every node. Reactive fragmentation complicates
bundle security (see [CBH05] and [SFW05]).

1byte

Version ‘ Processing Flags Class of Service flags ‘ Header length (variable size)
Destination scheme offset Destination SSP offset
Source scheme offset Source SSP offset
Report-to scheme offset Report-to SSP offset
Custodian scheme offset Custodian SSP offset

Creation Timestamp (8 bytes)

Lifespan (4 bytes)

Dictionary length

Dictionary byte array (variable)

Figure 2-6: Bundle header

Every bundle and bundle fragment contains the fields shown in Figure 2-6. The
header includes a dictionary that consists of an array of bytes formed by concate-
nating the null-terminated scheme names and Scheme Specific Parts (SSPs) of all
EIDs referenced in the primary header and other headers. The address fields in the
header are each divided into a scheme offset and a SSP offset. The scheme offset
indicates the offset in the dictionary of the scheme name for that EID and the SSP
offset indicates the offset in the dictionary for the SSP. The use of such a dictionary

13
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enables some header compression. For example, if the source and report-to EID
are the same, the EID string can be included in the dictionary once, but referenced
more than once.

Some other fields require additional clarification:

e Creation Timestamp - The time the application sent the bundle. DTN nodes
are assumed to have the ability to synchronise their clocks (see Section 2.1.8)

e Lifespan - Indicates the expiration time for the bundle, expressed as an offset
relative to the creation time.

e Priority Class - bulk, normal or expedited.

e Report-to EID - The EID where BSRs should will be sent to.

2.1.7 Reliability and custody transfer

Reliable message delivery is a major problem in disconnected networks and DTN
can be used as a basis for a reliable message delivery system. The bundle layer
provides unordered, prioritised and unacknowledged message delivery. Applica-
tions can make use of the bundle delivery and other BSRs (see Section 2.1.4) to
build their own end-to-end reliability mechanisms, but custody transfer can pro-
vide a hop-by-hop solution that amounts to a different form of reliability. Custody
transfer can relieve end nodes of keeping state about the delivery of their bundles.

Custody transfer involves the acknowledged movement of responsibility for reli-
able delivery from one node to another. The use of the custody transfer mechanism
is indicated by using the Custody Transfer Required delivery option. A custody
transfer will normally take place from a DTN node to another DTN node that is
closer to the destination node according to some routing metric. A node that ac-
cepts custody of a bundle is called a custodian. Not all nodes have to be custodians
and some nodes can potentially be custodians only when resources allow them to
accept custody:.

A custody transfer relies on the underlying network’s reliable delivery protocols
for reliability over a single hop. The bundle layer then provides a coarse-grained
timeout and retransmission mechanism for each custody transfer, making use of
custodian-to-custodian acknowledgements. The acknowledgement is sent to the
current custodian EID found in an arriving bundle and the field is updated to the
new custodian’s EID before it is forwarded.

In a challenged network end nodes will not always remain active for the dura-
tion of a transfer. The custody transfer hop-by-hop delegation of responsibility
increases the chances that the bundle will be successfully delivered relative to the
chance that an end-to-end reliability mechanism would have in a challenged net-
work [Fal03].

2.1.8 Time synchronisation

DTN nodes are required to have the ability to synchronise their clocks. This is
needed for four reasons:

14
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e Bundle and fragment identification
¢ Routing with scheduled or predicted contacts
e Calculating bundle expiration times

e Calculating application registration expiration

The time stamp in the primary bundle header is made available to applications,
enabling identification of expired bundles. The concatenation of the time stamp
and the Source EID is a unique identifier for each bundle. When an application
registers to receive bundles for a particular EID, this registration is only valid for
a limited time specified by the registering application. The bundle layer needs
timing to expire application registrations.

2.2 Alternatives to DTN

DTN is not the only way of organising communication in an intermittently con-
nected network. DTN has certain key advantages. Investigating other solutions
aids in understanding these advantages.

The DTN architecture, as described in this chapter, is essentially an asynchronous
store and forward messaging system. The most commonly used such messaging
system today is e-mail. E-mail does have many properties in common with DTN,
but there are important differences. E-mail provides only very primitive routing in
the form of static redirections with MX records in the Domain Name System and
mostly relies on IP routing to deliver messages. DTN makes it possible to imple-
ment sophisticated multipath DTN routing mechanisms. (This is an active research
area, see Section 2.5.2). E-mail also does not make provision for the handling of
opportunistic contacts and will normally assume that a connection is available. E-
mail is designed to only work with TCP as the underlying transport, while DTN
makes provision for any type of lower layer.

An early asynchronous message system that was designed to work in a frequently
disconnected network was the Usenet NNTP protocol. As with e-mail, NNTP rout-
ing is usually not dynamic [Fal04], but NNTP can operate over different underly-
ing transport protocols. NNTP provides only limited feedback about the delivery
of messages, while DTN provides a range of status reports. In theory, NNTP could
operate using DTN as transport and therefore make use of dynamic routing, frag-
mentation and more feedback from the network.

From these two examples it is clear that DTN shares important characteristics with
earlier systems. DTN’s multi path routing, use of predicted, anticipated and op-
portunistic contacts, feedback from the network, fragmentation, flexible naming
and compatibility with any lower layer, all designed specifically for today’s chal-
lenged networks, make it a major improvement over earlier protocols.
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2.3 The Contiki operating system

Contiki is a lightweight, portable, multi-tasking operating system with an event
driven kernel [DGV04]. Contiki also includes the uIP TCP/IP stack. Contiki is
designed to be used on tiny devices that have severe memory and other resource
constraints.

Operating system that are designed to work in memory constrained environments
are often designed to be event-driven in order to better deal with the memory
constraints [DSV05]. The problem with this solution is that it is difficult to de-
sign programs as explicit state machines, as usually required by event driven sys-
tems. The Contiki event-driven kernel makes use of a programming abstraction
called protothreads that helps to simplify implementation in the Contiki environ-
ment [DSV05]. Protothreads are extremely lightweight stackless threads that pro-
vide conditional blocking in the event driven system. The protothread abstraction
greatly simplifies the yIP TCP/IP implementation.

Protothreads also make it possible for the protosocket interface to exist. Protosock-
ets provide an interface to uIP similar to the traditional BSD socket interface. Using
protothreads makes it possible to write network programs that are structured in a
linear way, built around conditional blocking calls to the protosocket interface.

The protosocket library works only with TCP. It provides functions for sending
and receiving data without having to use lower level uIP functions to deal with
retransmissions or acknowledgements. The interface also provides functions for
reading data as a stream from a buffer, irrespective of the data being split into
multiple TCP segments during transmission.

Contiki includes modules for managing blocks of memory, list handling event
timers and access to the system clock.

2.4 The Contiki Network simulator

Uploading code to a actual sensor node and testing a network of these sensors is
a very time consuming way of testing in sensor networks. In order to test sensor
network applications and protocols a simulation is often the best starting point.

The Contiki Network Simulator, Contiki Netsim, is a simulator for sensor nodes
running the Contiki operating system. Contiki’s portability makes it possible to
run Contiki as a user-level process on a PC operating system such as Linux [DFGV04].
In Contiki Netsim each sensor node is simulated as such a user level process that
can communicate with other nodes in the simulation via a simulated wireless net-
work layer. The simulated network layer makes it possible to easily control radio
strength, interference levels and measure data volume and the number of packets
sent. The network layer is also designed to simulate some of the communication
difficulties that may be encountered between wireless sensors.

The simulator runs using the same Contiki code as would be used on certain sen-
sor hardware, making it very easy to move from simulation prototype to real im-
plementation. The simulator also provides a graphical view of the nodes being
simulated and the packet communication between them.
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2.5 Survey of related work

2,51 Challenged networks

Challenged networks are defined as networks that suffer from intermittent con-
nectivity or long delays. A general solution to the problem of challenged network-
ing was first addressed in work on interplanetary or deep-space communications.
This project later led to the specific study of DTN for use in deep-space commu-
nications. In [BHT'03] the particular difficulties of communicating over massive
distances are discussed and compared to the model of communication used on the
Internet. Signal propagation delays, low data rates and non-permanent connectiv-
ity are examples of these difficulties. In this work an overview of why the current
Internet protocols do not behave well under these conditions is given. The way
that TCP handles reliable transport and the assumptions under which routes are
calculated make the Internet protocols unsuitable for interplanetary communica-
tion. The reasons for not using TCP/IP are discussed in more detail in [DFS02].

A general architecture for challenged internets, Delay Tolerant Networking (DTN)
is proposed in [Fal03]. The author argues that interoperability is essential in chal-
lenged networks and, as mentioned in [BHT 03], a “least common denominator”
protocol is needed, making the overlay suitable for operation in any networking
environment. The idea being that the networking stacks under the DTN layer
would be the best available for whatever challenged network the DTN is operating
in. DTN would be the common interface, offering end-to-end data transmission
and optional reliability. In [Fal03] the characteristics of challenged networks are
elaborated on and the suggestion that the Internet protocols can be “fixed” to op-
erate in challenged networks is explored. Performance Enhancing Proxies (PEPs),
protocol boosters and different proxies are possible ways to increase the perfor-
mance of the Internet protocols in difficult environments. It is concluded that the
major weakness of this type of solution is the specificity to a certain environment.
Email has some of the properties required to communicate in challenged networks,
but the lack of dynamic routing and weakly defined delivery semantics is said to
make it unsuitable as solution in challenged networks.

The principle of fate sharing is introduced in [Cla88]. It suggests that conversation
state should only be kept at the end-nodes in a conversation, because the conver-
sation would be useless if one of these nodes fail. This is one of the basic principles
in the Internet architecture. In [Fal03] the design of a new architecture (DTN) is
motivated by the fact that the principle of fate sharing does not hold in challenged
networks. In challenged networks it can be advantageous for nodes to transfer
connection state to other nodes along the path from end to end. Limited power or
connectivity are possible reasons for transferring state.

In [BHT 03] and [Fal03] other problems with Internet protocols in challenged net-
works are also mentioned: In IP routing the forwarding function will normally
drop a packet if a next-hop route is not available. This is a problem for links that
are frequently disconnected. The connection negotiation, retransmission and net-
work congestion handling mechanisms of TCP also make it unsuitable for use on
intermittent links.

In [Fal03] an early version of the DTN architecture is described. At the time of
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writing the latest version is a work in progress Internet-draft [CBH " 05]. The issues
of Convergence Layers, Time Synchronisation, Security and Congestion and Flow
Control are all discussed in the first work.

In [Fal04] the use of DTN as a generalised messaging service is described. Elec-
tronic messaging is increasing in popularity and a wide variety of hardware plat-
forms operating on different networks have to support messaging applications.
The general concept of asynchronous messaging is helpful in tolerating delays in
networks and the DTN architecture with routing and fragmentation can offer re-
liability and generalised naming across different types of networks. DTN has the
additional benefit of handling network disruptions. DTN is compared to existing
messaging systems - E-mail, NNTP, SMS/MMS and Instant Messaging. It is con-
cluded that the most appropriate basic abstraction for a messaging service is asyn-
chronous, eventual message delivery and that DTN can be the basis architecture
for such a service.

2.5.2 DTN routing

The problem of routing in a DTN is addressed in [JFP04]. The DTN routing prob-
lem is defined and the important differences from traditional routing are described.
The DTN network is viewed as a time-varying multigraph where contemporane-
ous end-to-end paths may never exist. Algorithms that require different levels of
information about the entire network are described and evaluated. It is concluded
that focus on predictable communication opportunities in frequently disconnected
networks is important and that there is a need for smart routing algorithms in
network situations where network resources are limited. It was also found that
global knowledge of a challenged network may not be required for good routing
performance.

A different approach to routing in a DTN is presented in [WJMFO05]. Erasure-
coding based replication of message blocks is compared to different replication
strategies. Routing in a DTN using these methods is simulated with trace data
extrapolated from a wildlife monitoring project. The authors find that the erasure-
coding based approach significantly improves the worst case delay, but has no
“very small delay” cases. It is noted that the erasure-coding was evaluated in a
setting where all nodes are equally good relays and that in a more complex net-
work a more sophisticated approach might be needed.

2.5.3 DTN and sensor networks

It is widely suggested ([Fal03], [DVA*04], [HF04]) that sensor networks are an im-
portant application area for DTN. In [DVA104] different methods for connecting
sensor networks to TCP/IP networks are discussed. Three different methods are
suggested - proxy architectures, delay tolerant networking and running TCP/IP on
the sensor nodes. The first involves a sensor-network specific proxy that is used
to translate the sensor network communication protocols to TCP/IP. The disad-
vantage of this is that the proxy is specific to one sensor network and there exists
no general mechanism to route messages between proxies. DTN is viewed as a
generalisation of the proxy architecture and provides the possibility of multiple
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proxies for one sensor network, with routing between them. Multiple proxies also
solves the problem of a single point of failure between the TCP/IP network and the
sensor network. The third option discussed is that of using TCP/IP in the sensor
network. This will be convenient, but presents some difficult problems like header
overhead and energy inefficient TCP retransmission strategies. It is concluded that
a combination of the three methods would likely be the best solution.

The application of the DTN architecture specifically to sensor networks is explored
with some real world application examples in [HF04]. The DTN architecture is pre-
sented as an appropriate framework for the diverse network conditions in sensor
networks. Absence of network infrastructure, network interruption and hetero-
geneity in networks are identified as the main challenges in sensor networks. The
ZebraNet project for wildlife monitoring is cited as an example. In ZebraNet epi-
demic routing and in-network storage is used to distribute data to a mobile base
station. DTN would be suitable for configuring the base station as a data mule,
reducing the need for human presence. In a heterogeneous sensor network de-
ployed by UCLA researchers in Mexico, multi-hop routing and a data mule is em-
ployed. Stationary nodes pass on messages according to buffer availability and
proximity to the roaming data mule. The authors remark that DTN also supports
buffer management and multi-hop delivery of data and that knowledge of the data
mule schedule could make low-power node operation possible. It is concluded
that DTN can contribute to sensor networks by connecting remote such networks
to the Internet, as well as facilitating communication within the sensor network. It
is suggested that an interoperable subset of DTN will be likely be implemented on
sensor nodes, because of limited memory and communications resources.

2.54 DTN Implementations

The DTN Research group is active in developing a reference implementation of
the current DTN Internet-draft [CBH"05]. An important goal of the reference im-
plementation is that it be easily extensible and modular enough to enable experi-
mentation. For example, it is intended to be relatively simple to "plug in” different
routing algorithms for experimentation.

In [DBF'04] the team that created the DTN2 reference implementation describes
their experience in creating and evaluating the implementation. The difficulties
encountered in exporting a consistent interface from the convergence layer up to
the bundle layer from radically different lower layers are described. The authors
remark that an earlier assumption that a TCP convergence layer is easy to imple-
ment turned out to be false. They conclude from this that the implication of inter-
mittent network links span multiple system layers. The program structure of the
implementation is presented and its designed thoroughly motivated. The imple-
mentation is evaluated to test the core value propositions about DTN'’s ability to
operate in intermittently connected networks. DTN performance in compared to a
simple file transfer program and the SMTP email protocol. The authors eventually
describe the reference implementation as successful as validation of the DTN archi-
tecture and conclude that a store-and-forward message overlay network performs
significantly better than existing approaches in challenging networks.

Students at the University of California at Berkeley implemented DTN on the
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TinyOS platform for sensor nodes and describe their work in [PNO3]. They present
a simulation of custody transfer in sensor nodes, based on their TinyOS implemen-
tation. Querying and selection of the next best custody hop is investigated. It is
concluded that it is possible to optimise this selection for one particular objective
(energy or delay) based only on information local to a sensor node. The need for
better selection policies that can optimise for both energy and delay is acknowl-
edged.
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Research method

3.1 Goals: Towards DTN in a TCP/IP sensor network

The purpose of a Wireless Sensor Network is for nodes to collaborate to gather
data from their sensors. These data will not normally be processed on the sensors
themselves, but will be extracted from the network to a more powerful machine.
The sensor network will often be in a different location from the more powerful
processing machine or the people analysing the data and there might also be the
need to upload updates or new code to the sensors. The natural way to form the
connection between the two locations is to use the Internet.

For this solution to work it must be possible to connect the WSN to the Internet.
The authors of [DVA*04] suggest three main ways to make this connection:

e Proxy Architectures
e DTN

e TCP/IP in the sensor network

If it is assumed that the sensor network does not use TCP/IP then there must be
some translation between the sensor network protocols and TCP/IP on the Inter-
net. This can be done with various proxy architectures, normally designed for
a specific network. The DTN architecture described in Chapter 2 can be viewed
as a more general case of a proxy architecture. DTN can operate over any lower
network layer and serves as the bridge between different protocols, as shown in
Figure 2-2. In the third case, when TCP/IP is used in the sensor network, sensor
nodes can communicate directly with Internet hosts.

A combination of some of the three solutions is likely to be the best [DVA*04]. The
Contiki operating system (Section 2.3) and uIP is a working solution to employ-
ing TCP/IP in a WSN. There are some known problems with TCP in challenged
networks [DFS02] and we assume the WSN to be a challenged network. DTN is
a proposed solution for connecting WSNs to the Internet and for mitigating the
problems of challenged networks. The combination of DTN and TCP/IP in a WSN
is the main goal of this work.

The main contribution of this project is the production of a prototype implemen-
tation of DTN for use in a TCP/IP enabled sensor network. There exists earlier,
limited implementations of DTN for sensor nodes, but none implement a TCP con-
vergence layer or focus on connectivity with the Internet.
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The existence of a prototype implementation would serve two general goals:

1. Connect a TCP/IP WSN to the Internet through a DTN gateway

2. Test operation of DTN under the challenging WSN conditions

The first goal is significant because of the general problem described above. It is
desirable to connect a sensor network to the Internet, even more so to do it in a
general way. The existence of a DTN gateway to the Internet means there can be
multiple gateways to the same WSN and they can perform DTN routing among
themselves. If one gateway fails data from the WSN can be routed (with DTN
routing) to another gateway and to any other DTN node on the Internet.

There exists a full implementation of DTN with a TCP convergence layer for use
on PCs. This implementation can be used as a DTN gateway to the Internet. The
existence of a compatible DTN with TCP in a sensor networks will make it imme-
diately possible to effect DTN communication between the sensor network and the
Internet. The sensor network DTN application will implement a interoperable subset
of DTN functions.

The second goal is intended to test if DTN is a good way of organising commu-
nication in the presence of the specific challenges that a sensor network presents.
Mathematical analysis of TCP and DTN to model their behaviour in a sensor net-
work environment could be done to do these tests. An actual implementation of
DTN makes the same tests possible, but is also useful for the first goal and for prac-
tical use. The DTN prototype can be used to measure real delays and resource use
for typical sensor network tasks.

3.2 Method

To achieve the goals stated in the previous section the project is divided into three
distinct phases. The first involved a literature study phase where related work was
studied.

The second phase involved the design and implementation of the bundle protocol
and DTN architecture on the Contiki operating system. The design stages involved
the study of other DTN implementations, mainly [PN03] and [DBF*04]. The de-
sign needed to stay true to the principles of DTN while making compromises be-
cause of a constrained resource environment. The prototype was written in C us-
ing the “Minimal” (Linux) and Netsim (Contiki simulation) ports of the Contiki
operating system. During development the limitations of the eventual destination
platform (sensor boards) had to be kept in mind. Only Contiki and basic C library
functions could be used. Even though functions like malloc can normally be used
when compiling the C code for a sensor board platform, fragmentation of the lim-
ited (sometimes only 2048 bytes) RAM could have severe negative effects. The
Contiki dynamic memory module is used instead.

The third phase was the experimentation stage. During this phase the prototype
was used for setting up experiments to establish whether or not DTN functions as
expected.
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Implementation

4.1 ContikiDTN architecture overview

The design of a suitable architecture for Contiki DTN implementation was a ma-
jor part of this work. A suitable architecture would follow the bundle protocol
and DTN architecture specifications while accommodating the restrictions of the
Contiki operating system environment. I introduce ContikiDTN, a prototype DTN
implementation for the Contiki operating system and sensor nodes. A layered
component view of ContikiDTN is described in this section.

An overview of the ContikiDTN architecture, showing the different DTN compo-
nents is shown in Figure 4-1.
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Request transmission

Bundle daemon

Notify of bundle receipt

Query registrations

Registrations

T Store/Retrieve bundles

Receive bundles

Send data stream

Receive data stream

Protosockets

ulP

Figure 4-1: Architectural overview of ContikiDTN

Bundle store

The layer closest to the physical network is the Contiki uIP component. Above that
is the protosockets interface. As described in Section 2.3, protosockets provide a
programming interface to uIP that is similar to BSD sockets. This greatly simplifies
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the implementation of the virtual layer above, the TCP convergence layer.

The bundle daemon makes up the overlay routing layer. In the daemon bundles
are sent and received and routing and forwarding decisions are made. The Con-
tikiDTN daemon contains a basic routing mechanism for static routing. Each DTN
daemon assumes a unique local EID and is statically configured with routing infor-
mation about other DTN nodes. The daemon further consists of the bundle layer
and the convergence layer.

In the DTN architecture, described in Chapter 2 convergence layers are described
as a general interface between the bundle daemon and the transport layer of the
underlying network. One of the first design decisions in ContikiDTN was to in-
tegrate a single TCP convergence layer into the bundle daemon. In ContikiDTN
convergence layers can not be changed or plugged in. Since protosockets only
work with TCP, this was a logical design choice. The convergence layer is very
much part of the bundle daemon and therefore depicted as a ”virtual layer” in
Figure 4-1.

The protosocket interface provides the convergence layer with a reliable send and
receive TCP byte stream. Between the convergence layer and the bundle layer,
bundles are serialised and deserialised from byte streams to logical bundles to be
stored in the bundle store.

The bundle store provides persistant storage for bundles. This is a vital part of the
store-and-forward architecture. In ContikiDTN the bundle store makes use of the
primary memory available to Contiki and no secondary store is implemented.

Above the bundle daemon are DTN applications. These application make use of
the services that the daemon exports. In ContikiDTN the daemon provides a bun-
dle transmission service and a bundle delivery service. A DTN application does
not have direct access to bundles in memory. Before an application can receive
bundles it must register its intent with the bundle daemon. The daemon checks
the destination of incoming bundles for registered applications. Since the bundle
daemon provides a general exported service it is easy to create different applica-
tion that make use of the the bundle sending and receiving functions. Multiple
applications can be registered with the daemon at the same time.

4.2 Implementation details

The layered architecture described above is the conceptual framework for the Con-
tikiDTN implementation. The details of realising the architecture in the event-
driven Contiki environment are described in this section.

The bundle daemon is primarily concerned with dealing with multiple TCP con-
nections for receiving, sending or forwarding bundles. These bundles are kept
in the bundle store and must be updated and forwarded as TCP/IP and system
events arrive. The interaction between the Contiki event kernel, the bundle dae-
mon and the bundle store is shown in Figure 4-2.

The global list of bundles in the bundle store is periodically processed and ap-
propriate actions are taken based on the current status of the bundle. In reaction
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to different bundle states events are posted to the system to cause the processing
required.

Much of the processing will require the use of Contiki protothreads. Protothreads
and protosockets are “driven” by repeated calls to the function that represents the
specific thread or socket - each time the function is called the thread or socket
has the opportunity to resume execution. During ContikiDTN operation events
arriving at the DTN daemon must be identified and organised by the bundle, con-
nection, timer or application that they are related to. This is done by an event
handler function, as shown in Figure 4-2. The event handler function will make
the function call needed to drive the protothreads and sockets.

DTN Daemon Bundlestore

Bundle Applications | !
Fynction call submit bundle Function call store bundle :

i Transmit Request * :
E L ! Bundles

Bundle delivery event

TCPIIPgven Send bundles [+
' Function calls N

TCP/IP event ' '
_— ' Event handler ' .
! i Memory access
Receivebundles  |[<+————*

Contiki Event Kernel

' !
Processioundles evient Process bundles l :

Process bundles event Bundle delivery event : Open TCP connection

Figure 4-2: Events and communication flow in ContikiDTN. Functions within the
DTN daemon are shown and arrows indicate event posting or function calls.

The most important form of bundle processing relates to sending and receiving
bundles using the TCP convergence layer. When a TCP connection is made in
ContikiDTN a memory structure of connection state is associated with the con-
nection. A protosocket function is then started to handle the processing of this
connection. When a blocking protosocket call is made in the protosocket function
the protosocket’s execution is interrupted and the system returns to a state where
it can receive events. The term blocking call is used to refer to this interruption
of execution and return to an idle state. When a TCP/IP event then arrives it is
again associated with the appropriate connection state and the previously inter-
rupted protosocket function resumes execution at the blocking call. One example
of this is when reading data from a protosocket. A blocking call is made to the
protosocket read function and execution leaves the protosocket function. When
data is received on the socket uIP notifies the application with an event passed
through the kernel. The application event handler recognises the event as being
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associated with a connection receiving bundles and calls the receiving protosocket
again where it resumes execution at the blocking call.

This protothreaded handling of TCP/IP events is ideal for the DTN TCP conver-
gence layer. The function of the convergence layer is to receive bundles from the
bundle layer and take care of their transmission, as described in Section 4.1. The
destination of a bundle transmission might not be available, causing a TCP con-
nection to time out. If normal blocking system call were used this would mean
that the system waits at the blocking call until the connection eventually times out.
This is undersirable behaviour, as other bundles might be arriving and require pro-
cessing. In Contiki this problem is elegantly solved by the immediate return of the
blocking call, causing the system to be able to respond to any events.

To further clarify the working of the convergence layer with Contiki, the processes
of sending, receiving and forwarding a bundle are described with the aid of Figure
4-2.

Sending a bundle

The sending application makes a function call to the DTN daemon, requesting the
transmission of a bundle and providing the necessary parameters that should be
sent in the bundle. The bundle daemon then creates a bundle using the bundle
store and places it in the global list of bundles, marked as requiring dispatch. The
Transmit Request function then posts a Process bundles event. This event is re-
ceived by the daemon event handler, which will call the Process bundles function.
This function will act on the global list of bundles in the bundle store and step
through each bundle to determine if its status requires action to be taken. The sub-
mitted bundle will be marked for sending and process bundles will then open a
TCP connection to destination acquired from a route lookup. Process bundles will
then return as pIP connects the TCP connection. When the connection is estab-
lished a TCP/IP event will come up through the kernel to the Event handler. This
event will be associated with a connection that is associated with a bundle that has
to be sent. The Send bundles protosocket function will be called and will reach
the protosocket send function that will block as described in the previous section.
The sending protosocket will finish when the data has been serialised, sent and
acknowledged. It is important to note that the sending process can take as long a
required by the challenged network, the system is tolerant to delay throughout the
process.

If the connection could not be established the application will initiate an exponen-
tial backoff retry mechanism.

Receiving or forwarding bundle

A receiving application will be registered with the DTN daemon. Incoming data
on the listening port will cause a TCP/IP event being passed up to the DTN dae-
mon. The Event handler will respond by creating a connection and calling the re-
ceive bundles protosocket function. The receive bundles function will block while
waiting for the data to arrive. Again delays are acceptable at this stage. When a
TCP/IP event for this connection indicates that data has arrived the Event handler
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will again call the receiving protosocket which will read the data. If the data con-
tains a valid bundle it will be deserialised and stored in the global list of bundles.
The receiving protosocket function will then post a Process bundles event. When
the Event handler receives the Process bundles event the Process bundles function
is called and works through the list of bundles. If a bundle is found with a des-
tination EID that matches a locally registered EID a Bundle delivery event will be
posted to all processes. The registered receiving application will receive this event
and read the bundle from the pointer provided.

If the Process bundles function finds a bundle that can after consultation of the
routing table, be forwarded a TCP connection is opened and the same procedure
as for sending a bundle is followed from that point.

This process may be interrupted and continued at any point since the events can
happend asynchronously and independent of each other.

4.3 Design discussions

In this section some of the difficulties and issues encountered in implementing the
system are discussed.

4.3.1 TCP and retransmissions

As is evident from the Implementation Details, the Contiki event driven kernel
is well suited to handling multiple TCP connections that are all subject to chal-
lenging network connections. The combination of the protosocket programming
interface and the event driven kernel make the Contiki environment ideal for the
asynchronous nature of DTN. This architectural match does, however, not solve all
of the issues that have to be considered when dealing with TCP connections in an
intermittently connected environment.

When a destination is unreachable TCP will continue to try and connect until
a maximum exponential backoff is reached. Only after this maximum has been
reached will the kernel, and then the DTN daemon, be notified that the destination
is unreachable. This presents two problems. The first is that it is likely to be desir-
able to be notified of an unreachable node before the connection times out entirely.
The second is what to do once it has been established that a node is unreachable.
The first problem is alleviated by the fact that the system can continue with other
tasks while the connection is attempted, and pIP will take care of successive at-
tempts. This is not such a simple matter when using Unix sockets, as described in
[DBF*04]. Other than making changes to the uIP TCP parameters, the application
level DTN daemon cannot do much more than wait for TCP to time out. For the
second problem, what to do once a connection has failed, the DTN daemon can
try to be more intelligent when attempting successive new TCP connections. For
this an application level retry timer is used in ContikiDTN. This timer operates
on a larger timescale than the TCP retry. ContikiDTN will exponentially increase
the retry timer every time a TCP connection fails to complete. A possible different
strategy could be to start an application level timer at the start of every connection
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and the explicitly terminate one TCP connection attempt and start another when
this timer expires.

4.3.2 DTN and IP routing

As mentioned in Section 2.1.5, DTN routing is not described as part of the archi-
tecture and is an active area of research. The problem of routing in a challenged
network is far from trivial, especially since the dissemination of routing informa-
tion is also subject to the delays and disconnections in the network.

In the ContikiDTN implementation the goal was to get a basic working prototype
of a DTN network in simulation. To send messages in this network basic routing
was required. It was decided to implement static routing for use in the Contiki
simulation environment (see 2.4). The first problem was to assign each instance
of the DTN daemon (ie. each simulated node) a unique identifier from which to
determine its own EID. A small modification to the Contiki Network Simulator
provided an ID for this use. In the absence of a dynamic routing algorithm and
without prior knowledge of the EID of nodes in the simulated network, static rout-
ing tables could not simply be entered before compilation. A neighbour discovery
mechanism was introduced, but this was only useful for nodes directly next to
each other. Eventually another modification to the assignment of EIDs to simu-
lated nodes made them predictable for a fixed topology and static DTN routing
could be set up at compile time.

IP routing was another issue, the Contiki Netsim provides a basic IP forwarding
service that will forward any packet not recently seen. The list of recently seen
packets was kept in a cache that had to be enlarged in order to cope with the load
of packets in the simulation and the high probability of a node seeing a packet
again in the experimental topologies.

4.3.3 Dynamic memory allocation

DTN is based on message switching. Messages, and therefore bundles, can vary
greatly in size. The headers in die Bundle protocol are all of variable length. These
facts make the memory requirements of a bundle protocol implementation vari-
able.

The primary DTN header, shown in Figure 2-6 contains variable length fields. Self-
Delimiting Numeric Values (SDNVs) is an encoding scheme adapted from the Ab-
stract Syntax Notation and makes it possible to encode and delimit values of vari-
able size. SDNVs are used for the header length and the dictionary length. The
dictionary itself is also a variable length part of the header. The dictionary is in-
tended to make some basic header compression possible (see 2.1.6). The length
of the dictionary and the SDNV fields are only known when a bundle is created
or processed because these fields depend on the EIDs and other properties of the
bundle. EIDs are also strings of variable length.

When locally creating and processing incoming bundles the bundle daemon needs
to allocate memory for the header and the payload in order to store them in the
bundle store, this must be done using the Contiki memory management functions.
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Contiki offers a simple memory allocation system that works with blocks of fixed
size, the size being declared before compilation. Blocks can be dynamically allo-
cated and freed, but the size remains fixed. There can also only be one declaration
of one size of memory block per C module, because of namespace clashes.

The fixed size of Contiki memory blocks and the variable size of the DTN headers
and messages present a serious problem on systems where memory is a scarce re-
source. In designing ContikiDTN fixed blocks of memory had to be allocated for
variable sized elements. This means that some maximum value had to be decided
for each variable length item. The easiest way to do this would be to choose a max-
imum that is more than is likely to ever be needed, but in a memory constrained
system this is not a feasible option. The compromise was to build a slightly less
flexible system that uses fixed size memory blocks of average size. Average here
meaning roughly halfway between the minimum and maximum size a field is
likely to need. For example, for EIDs string length was fixed at 30 bytes, bun-
dle payloads at 1024 bytes and SDNV fields were allocated the number of bytes
the locally stored value would take (the SDNV representation of the locally stored
value might take up fewer bytes - a long int of 4 bytes containing a small value
could produce a SDNV of a single byte).

From the need for this compromise it can be concluded that any DTN implemen-
tations will benefit from the availability of fully dynamic memory allocation that
could lead to more efficient use of the available memory.

4.3.4 Code size

The memory issues mentioned in the previous section have a direct effect on the
size of the compiled code and its memory requirements. Contiki’s memory man-
agement makes it necessary to declare all memory usage at compile time.

A sensor in use at the Swedish Institute of Computer Science is the TI MSP430 /
FU Berlin sensor board. This sensor has 2048 bytes of RAM and 60 kilobytes of
flash ROM. It can measure vibration, temperature, IR-light, sound, tilt and motion
[Dun05].

ContikiDTN has a compiled code size of approximately 14 KB and, a data seg-
ment size of 64 bytes and a bss segment size of about 11 KB. Even though the Con-
tikiDTN prototype is larger than can be used on the MSP430 sensor, better memory
management and tweaking of static memory declaration can dramatically reduce
its size. The number of connections that can be handled, bundles that can be stored
and size of the incoming data buffer are all statically declared and can easily be
changed. If the ContikiDTN daemon need only handle 1 bundle and 2 connections
at a time (changed from 5 and 5 above), the bss segment size falls to 7 KB.

4.3.5 Time synchronisation

As discussed in 2.1.8 DTN nodes need synchronised clocks. One of the goals of
DTN is that it must be able to run over different lower network layers on poten-
tially very different hardware platforms. This goal is important in this project be-
cause the use of DTN for connecting a sensor node to a PC and the Internet is
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investigated.

If bundles are transmitted from a ContikiDTN node to a PC running another DTN
implementation the clocks on these two platforms must agree so that, for example,
bundles can be expired at the correct time. ContikiDTN makes use of the Con-
tiki function clock_time() to set timestamps in created bundles. In the Contiki
simulation and on a Linux platform compatibility was not a problem, since the
clock time was derived from the C library function gettimeofday in all cases. Care
must be taken when communicating with other platforms that might have differ-
ent clocks and this highlights the importance of this part of the DTN architecture.

4.3.6 Compatibility with DTN2

Time synchronisation was not the only compatibility issue when connecting Con-
tikiDTN with other versions of DTN. ContikiDTN was designed to be compatible
with DTN2, the DTN reference implementation [DTN05, DBF04]. DTN2’s TCP
convergence layer makes use of a DTN handshake before bundle transmission.
ContikiDTN also implements this handshake at its TCP convergence layer. The
handshake involves the exchange of contact headers containing information about
the type, unique ID, length and processing parameters that apply to the bundle
to be sent. It also serves to establish a two way connection for the exchange of a
bundle. The DTN messages exchanged are shown in Figure 4-3.

ContikiDTN DTN2
—— Comthexr
Contact header
DTN headers
—— Palod

Figure 4-3: DTN level message exchange using TCP between two DTN2 compati-
ble DTN nodes

It is not clear why the authors of DTN2 decided to add this handshake to the TCP
convergence layer. It made additional work to ContikiDTN necessary in order to
test using DTN2 as a gateway to the Internet. Even though the details of conver-
gence layers are not specified in the architecture or the bundle specification this
modification limits immediate interoperation between different DTN /TCP imple-
mentation.
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51 Implementation analysis

The ContikiDTN implementation was successful as both a proof of the feasibility
of implementing the Bundle protocol on Contiki sensor nodes and as a tool for
evaluating DTN as a sensor network solution. In this section the implementation
is analysed and some experiments and results in simulation presented.

The implementation was successful in its goal to enable testing of DTN in a sensor
network simulation. The implementation can asynchronously send and receive
messages with TCP connections and store messages while a application level retry
timer affects retransmissions - this represents the core functions of the DTN archi-
tecture. The ContikiDTN architecture design, discussed in Chapter 4, was found
to be successful.

The event driven Contiki kernel provided a “ready made” solution to some poten-
tially serious implementation difficulties. It is considered easier [vBCB03, DSV05]
to reason about and design systems using threads and blocking system calls, as op-
posed to designing programs as explicit state machines for event-driven systems.
The asynchronous nature of the DTN network and the possible intermittency in
it make this an important consideration. Event-driven systems provide a natural
way of dealing with concurrent tasks of unpredictable duration, such as trans-
mitting a bundle using TCP in a intermittently connected network. The Contiki
environment was found to be ideal for the TCP DTN convergence layer because
of a combination of the advantages of an event-driven environment and the Pro-
tothread abstraction described in [DSV05]. Protothreads and Protosockets made it
easier to write the program, while the event driven kernel simplified concurrent
connection handling and retransmissions. This is a significant result considering
the difficulties encountered by the authors of [DBF"04] in implementing a TCP
convergence layer using Unix sockets.

The implementation was also successfully tested to be compatible with a contem-
porary version of the DTN reference implementation, DTN2 [DTN05, DBF*04].
The compatibility was verified for simple bundle transmission with and without
link disconnections. This compatibility makes it possible to easily connect Con-
tikiDTN sensor nodes to any DTN node on the Internet (see also Figure 2-2).

The compromises needed in realising the Bundle protocol in the Contiki environ-
ment are described in more detail in Chapter 4. The absence of fragmentation and
full support for custody transfer did not make ContikiDTN less suited to the test-
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ing goals, but removed the possibility of investigating questions surrounding these
two relatively uninvestigated parameters. The implementation of an application
level acknowledgement using Bundle Status Reports made experimentation with
reliability possible.

The Contiki NetSim simulation environment was used to test bundle transmission
with multiple nodes. It was necessary to tweak some of the memory parameters for
experiments. Since a lot of statically allocated blocks of memory are used, increas-
ing the capacity of the system also increased the memory footprint of ContikiDTN.
This was acceptable for experimentation, but in a real sensor network the current
system will only be able to handle small loads of bundles. For experimental pur-
poses there could be up to 100 bundles in the system at a time, while 5 would be
more realistic for ContikiDTN running on an actual sensor.

The ContikiDTN prototype is a solid starting point to using DTN as a general so-
lution for message passing in a sensor network. The experimental goals in creating
the prototype were achieved and insight into the architectural requirements for a
Contiki and TCP DTN implementation was gained.

5.2 Experimental evaluation

5.2.1 Experimental setup

The goal of the experiments was to test the core value proposition of the DTN
architecture - to verify that in the presence of disconnection and node failure, DTN
will improve message delivery in a sensor network environment.

It is first necessary to define what is considered as improved message delivery. A
commonly used measure is throughput. In these experiments a constant bundle
payload size was used. Since throughput equals message size divided by time
and the message size is constant, the transmission time is considered an adequate
measure of throughput. A decrease in delivery time is considered an improvement.

In wireless sensor networks communication expends the largest amount of energy
[ASSCO02]. For this reason throughput is sometimes considered to be a lower prior-
ity than power consumption. A second measure used in these experiments is two
rough measures of power consumption - the number of packets sent in the system
and the number of bytes transmitted in the system. It is assumed that more pack-
ets and more bytes sent means higher power consumption by the nodes and that a
lower number for this metric is an improvement in message delivery.

All experiments were designed for comparison of two different configurations for
reliable delivery of a single bundle across multiple hops in a sensor network. The
bundle loads (hundreds) used in the simulation are not realistic for normal use
of a sensor network and therefore make the numbers produced for the various
metrics not meaningful on their own, but meaningful when compared to the other
experimental configuration.

The two configurations are depicted in Figure 5-1. Both use a linear topology. The
first, called End to End, simulates the use of TCP and DTN to transmit a message
across multiple IP hops to an endpoint. The intermediate nodes do not pass the
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End to End

””” ﬁ@

Figure 5-1: Experimental setup with End to End and Hop by Hop configurations

message up to the application layer and do not store it, the message is merely
forwarded at the IP level. The end nodes run DTN daemons. This is the typical
situation for a conversation on the Internet. This is also similar to the case if only
TCP were used in the presence of multi-hop IP routing in a Contiki sensor network.
In the End to End scenario the sending node keeps state about the TCP connection
until the transmission is complete and all data has been acknowledged from the
destination node.

In the second configuration, called Hop by Hop, DTN daemons are run on all
nodes. The message is passed up to the DTN application at every hop and DTN
messages are exchanged on a hop by hop basis. The TCP convergence layer is
used at every hop, but messages are stored in the DTN message store before being
forwarded on the next TCP connection. The original sender does not need to keep
TCP state for the bundle after transmitting it to the next hop.

The difference between the two configurations focuses the experiment on the hy-
pothesis that DTN will perform better and more cheaply in the presence of node
failure by making use of hop by hop, rather than end to end TCP.

In all experiments it is assumed that multi-hop IP routing is available to all nodes
in the system and that DTN routing and mapping to IP addresses is also available.
For the experiments static routing tables were used.

Three categories of experiments are performed. The first is the control and com-
pares End to End with Hop by Hop when there is no node failure. The second
category of experiments introduces periodic node failure of one node in the linear
chain of nodes. The performance of DTN is again measured and compared in the
End to End and Hop by Hop configurations. Scheduled failure is introduced in
a third set of experiments. In these experiments sending nodes are aware of the
sleep schedule of the node they are sending to.

The experimental setup is shown in the Contiki simulation environment in Figure
5-2
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x C ontiin simuiation display — [

Figure 5-2: The Contiki simulation environment, showing the experimental setup

5.2.2 Experimental results
No node failure

The control experiment compared the transmission time, number of packets and
bytes sent for the acknowledged delivery of 100 bundles. The results showed no
significant difference in the number of packets sent or bytes transmitted, but as
seen in Figure 5-3, the End to End setup had a faster transmission time. End to
End took, on average, 42% of the time needed by Hop by Hop to deliver and ac-
knowledge a bundle. This can be explained by the fact that each intermediate DTN
node has to do the processing involved with storing and forwarding a bundle and
also initiate and wait for a new TCP connection, while the intermediate nodes in
End to End can only forward packets without passing them up to the application.

Hop by Hop

End To End

.. Average transmission time

Figure 5-3: Relative transmission time without node failure

Periodic node failure

In order to compare End to End with Hop by Hop performance in a challenged
network, periodic failure of the fourth node in the chain (the fourth node from the
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left in Figure 5-1 and 5-2) was introduced. This meant that the fourth node in the
chain would periodically shut down - for example, when the failure period is 4 the
node would be active for 4 seconds and the dead for 4 seconds and repeat the cycle
for the duration of the experiment. Bundles are sent at random intervals to make
exposure to the failing node random. The hypothesis was that hop by hop DTN
with store and forward messaging would be more efficient for reliable delivery of
bundles across the network. The expectation was that retransmissions would take
place from the end of the network in End to End while retransmissions could take
place at the point of failure in Hop by Hop, resulting in improved overall efficiency.

Different periods of failure were used and each tested with 100 bundles of an equal
size of 50 bytes. The same parameters as in the control experiment (average trans-
mission time, packets sent and bytes sent) were measured. Since there is a process-
ing delay in each node, the period of the failure can make a significant difference
in system performance - if the failure period is very small and the failing node is
only alive for a very short while at a time there might never be enough time to
complete a bundle transmission. This was seen at a failure period of 1 system sec-
ond - no bundles were acknowledged in the End to End configuration, while very
few bundles were acknowledged in the Hop by Hop configuration.

The experiment was repeated for periodic failures of 2, 4, 8 and 16 seconds. The
different failure periods introduced different levels of exposure to TCP timeouts
and DTN retransmissions. The transmission times for acknowledged bundles are
compared in Figure 5-4. It is clear that with a failure period of 2 seconds Hop by
Hop achieves a significantly better throughput, while at the other failure periods
End to End achieves a better throughput. A possible explanation here is related to
the result in the control experiment - the storing and forwarding of Hop by Hop
slows down the movement of the bundles compared to end to end, when there is
no failure. When the failure period is longer this effect is more pronounced: When
bundles do get through they get through quickly with End to End, but when fail-
ure is encountered in End to End it takes a longer for the bundle to eventually get
through than in Hop by Hop. In order to further explore this possibility the stan-
dard deviation in the sample of bundle transmission times was calculated. With a
node failure period of 2, the standard deviation for End to End was more than 6
times the standard deviation in the Hop by Hop data. For a period of 4 the End
to End standard deviation was double that of Hop by Hop and by period 8 it was
only slightly under double. At period 16 the ratio of standard deviation in End to
End to standard deviation in Hop by Hop was about 1:1.2. This supports the the-
ory that End to End will take much longer to recover from a disconnected link and
therefore show greater variance in transmission time when failure is frequent. Hop
by hop, on the other hand, maintains a much more even distribution of transmis-
sion times through node failure. This fits with the DTN notion that retransmission
“closer” to the destination improves performance in a challenged network.

As mentioned above, throughput and transmission time is not always important
in a sensor network. The amount of packets and data sent is a rough indication
of power use and therefore an important measure of efficiency. These metrics are
compared under different node failure cycles between End to End and Hop by
Hop in Figures 5-5 and 5-6.

A first observation is that for failure period 2, where there was a lower average
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‘l Hop by hop O End to end ‘

Average transmission time

Failure period
Figure 5-4: Relative transmission time with different node failure periods

transmission time, the packets sent and bytes transmitted is significantly higher
for End to End. Even though there is a higher throughput, the transmission is
less efficient. The same result is visible for all the other failure periods, the DTN
hop by hop consistently uses a smaller number of bytes and packets to deliver and
acknowledge the same number of bundles.

The number of packets and bytes remains more or less constant when the fail-
ure period increases in Hop by Hop, while the End to End numbers drop as the
failure period increases. This could be another indication that Hop by Hop will
provide more reliable, constant performance in a disconnected network, with no
major fluctuations in bandwidth use when the failure pattern changes.

‘l Hop by hop O End to end ‘

Total packets sent

Failure period

Figure 5-5: Relative total number of packets sent with different node failure peri-
ods

Scheduled node sleep times

In the previous experiment periodic node failure was simulated. In some WSNs it
may be more likely that nodes will switch off their communication devices periodi-
cally to conserve power, rather than fail. It is reasonable to assume that other nodes
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‘l Hop by hop O End to end ‘

Total bytes sent

Failure period
Figure 5-6: Relative total bytes sent with different node failure periods

in the network will be aware of this sleep schedule by using a clock synchronised
with the sleeping node’s clock. In this experiment the fourth node in the chain will
periodically go to sleep, as in the previous experiment, but the neighbouring nodes
will not attempt a bundle transmission during the sleep periods. The sleep period
is 16 seconds and all other parameters are the same as in the previous experiments.

The hypothesis is that it will be more efficient to store the bundle at the neighbour
of a sleeping node and continue transmission from there as soon as the sleep cycle
ends. This will happen when using Hop by Hop DTN. In End to End the sending
node will start a transmission regardless of the sleep schedule, but a node with
a sleeping neighbour will not forward a packet to the sleeping neighbour. This
type of scenario is considered to be likely in a WSN and it is expected that the the
advantages of DTN will be more pronounced under these conditions.

Average time

Hop by Hop Hop by Hop Endto end End to end
no with no with
scheduling scheduling scheduling scheduling

Figure 5-7: Throughput (average time) compared for the two different configura-
tions, with and without scheduled sleep times

In Figure 5-7 the average transmission time for a bundle is compared in the dif-
ferent scenarios. In the previous experiments it was found that the Hop by Hop
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throughput is lower, but more efficient in terms of packets and bytes sent. Here
there is a clear reduction in the average transmission time for Hop by Hop - Hop
by Hop with scheduling competes with the End to End configuration in terms of
throughput.

Packets sent Bytes sent

Hop by Hopby Endtoend Endtoend Hop by Hopby Endtoend Endtoend
Hop no Hop with no with Hop no Hop with no with
scheduling scheduling scheduling scheduling scheduling scheduling scheduling scheduling

Figure 5-8: Packets and bytes sent

In Figure 5-8 the packets and bytes sent are compared for the different configura-
tions. As in the node failure experiment, Hop by Hop DTN is in all cases more
efficient overall in delivering the bundles. From Figure 5-8 it is also clear that there
is a further slight reduction in the number of packets and bytes sent when nodes
are made aware of the sleep schedule. This is in line with the expectation that more
intelligent neighbour nodes (who know each other’s sleep schedules) will increase
the benefit of DTN. Hop by Hop with scheduling is therefore significantly more
efficient than End to End without scheduling and offers comparable throughput.
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Conclusions and Future work

6.1 Conclusions

The implementation process, described in Chapter 4 and the experiments with
Contiki DTN (Chapter 5) made led to several conclusions about DTN, Contiki and
ContikiDTN.

The general design and debugging of an event-driven asynchronous system was
found to be a challenging task. ContikiDTN went through several redesigns and
the eventual success was due to a clear design of the flow of events and the crucial
decision to handle all bundles in a single global list that is processed when certain
events arrive.

The event-driven Contiki kernel was shown to be well suited to the asynchronous
TCP messaging required in DTN. Contiki is an excellent environment for this type
of architecture. It is not trivial to create a TCP convergence layer for DTN, but the
Contiki protosocket interface made the design of the convergence layer much eas-
ier. Protosockets and protothreads were found to be a very valuable development
tool. Protosockets are better suited for a TCP convergence layer than traditional,
blocking BSD/Unix sockets.

The code size and memory use of ContikiDTN proved that it is feasible to use the
DTN architecture on tiny sensors. This proof of concept is important as an argu-
ment for the advantages of a general (as opposed to network specific) messaging
solution such as DTN. Communication problems in a WSN and to the Internet
can be solved on a case by case basis with solutions designed for a specific en-
vironment, but DTN can be implemented on any network. DTN in a WSN will
make the WSN compatible with potentially any network on the Internet through
the DTN overlay.

ContikiDTN was successfully used to exchange bundles with the DTN2 imple-
mentation of DTN, both using TCP convergence layers. This served as proof that
already existing DTN implementations (DTN2 and ContikiDTN) can be used to
connect a sensor network to the Internet as described earlier.

Valuable lessons were learned from the Contiki implementation process. Fully
dynamic memory allocation would be an extremely useful addition to the Contiki
operating system, but the overall memory needed for a basic DTN implementation
is not excessive, even with dynamic memory blocks of fixed size. The implementa-
tion confirmed the fact that DTN routing is a complex problem. The static routing
used in ContikiDTN experimentation would need to be substantially expanded
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to provide a framework for dynamic DTN routing. The Contiki event timers and
clock was crucial in almost all aspects of the implementation. The bundle proto-
col relies heavily on timing and the clock and Contiki’s easily portable interface to
these function proved invaluable.

The Contiki network simulator was critical for the experiments and testing during
development. The difficulty in debugging ContikiDTN with a process for each
simulated node showed the general difficulty of debugging network code, but also
highlighted some weaknesses in the Netsim. A debugging interface and an easier
way to assign and retrieve information about nodes would be helpful. At the time
of writing, a new Contiki simulator is in development.

The experimental results validated the core propositions of the DTN architecture.
DTN outperforms TCP in an intermittently connected sensor network and the
DTN architecture’s use of hop by hop TCP produces better bundle delivery results
than end to end TCP. The cost of retransmission is consistently lower using DTN.
Using DTN will result in an overall power saving in a sensor network where com-
munication uses a lot of power. In the presence of scheduled sleep cycles, using
DTN causes a further reduction in the use of the transmission device, and therefore
even lower power use compared to end to end TCP. Making sending nodes aware
of the receiver’s sleep cycle also improves throughput for DTN.

TCP has an important influence on DTN and the TCP convergence layer cannot
easily be separated from the application. Experiments showed that TCP timeouts
and their importance to decisions at the application level make delay tolerance a
cross layer issue.

The bundle protocol is still an Internet-draft and being updated regularly. The
major areas of change relate to routing and fragmentation and the simplification
of naming. The bundle protocol implemented in ContikiDTN is mature enough to
enable the main advantages of using the a delay tolerant overlay.

Even though fragmentation was not implemented in ContikiDTN it was clear that
it is an important part of a DTN messaging system. ContikiDTN will retransmit a
whole bundle if the transmission is interrupted in the middle and this can be made
more efficient if fragmentation is done. Only the untransmitted part of the bundle
can then be sent with retransmission.

6.2 Future work

There are many opportunities to build on and expand the results presented in this
work. The obvious next step is to implement the full bundle protocol on Contiki.
ContikiDTN currently does not support full custody transfer or fragmentation and
reassembly.

The experiments done in simulation can be extended. The same experiments can
be done with more elaborate node failure, different sized bundles, different topolo-
gies and different TCP behaviour. The DTN daemon’s handling of TCP timeouts
can be adjusted and experimented with. ContikiDTN can be used for these exper-
iments with little modification, but time constraints prevented them being done in
this work. The possible effect of other simulation parameters like the bundle pro-
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cessing time and the rate of bundle transmission can be investigated. ContikiDTN
can also be tested in a new Contiki simulation that is currently under development
at the Swedish Institute for Computer Science.

ContikiDTN currently does not make use of secondary storage for storing bundles
on nodes while they await processing or forwarding. Adding the use of a sec-
ondary store like EEPROM for long term bundle storage could make the network
tolerant to extreme delays.

ContikiDTN has not yet been tested in a real sensor network. Uploading the code
to several nodes and repeating the experiments under real world conditions would
be useful as further validation of the conclusions drawn from simulation results
and as tool for normal use of the sensor network.

A lot of research can be done on DTN routing. ContikiDTN used static routing in
the network simulator and when testing with DTN2. Adding a dynamic routing
protocol to ContikiDTN and investigating DTN routing in a sensor network would
be very interesting. Applying existing DTN routing techniques in a sensor network
is a logical next step.

As the bundle protocol specification matures it would be interesting to test the
solutions proposed for fragmentation in a sensor network environment.

Security issues can also be experimented with in a sensor network. The additional
computational and memory requirements of implementing the bundle security
protocol might not be feasible, or even required, in a sensor network environment.
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