
An implementation of capacity reservation
devices in IP networks

Gabriel Paues,
Swedish Institute of Computer Science
Box 1263, S-164 29 KISTA, SWEDEN

August 22, 2002

Bandwidth markets is an approach to achieve quality of service. By di-
viding capacity into shares, capacity may be traded between actors in a net.
These actors are typically clients, that want to reserve capacity, and net
operators offering capacity. To realize a bandwidth market, a number of
components have to be implemented. This thesis describes the implemen-
tation of some of these components, those used by a net operator offering
capacity on a bandwidth market. The features needed by a net operator are
access control, shaping and routing. The components that implement those
features are an access manager, a packet marker, a shaper and a label switch.
To differentiate packets using reserved capacity from unreserved ones, parts
of the IP header were used. The difficulties were to understand which parts
of the IP header (TOS-field or flowlabel) and what version of the IP protocol
(IPv4 or IPv6) to use.

The components were tested in a testbed. This testbed used virtual Linux
machines connected together to form an IP network.

Report: T2002:11
ISRN: SICS-T–2002/11-SE
ISSN : 1100-3154

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/300993423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

First of all I like to thank Lars Rasmusson, for being my guiding hand,
throughout the project. He has helped me to get back on track and seen
things and aspects that I did not. I also want to express my sincere gratitude
to Erik Aurell, for being an inspiring source of knowledge and academic
thinking.

I would like to thank the people at Ericsson Switch lab, particularly An-
nikki Welin, Svante Ekelin and Carl-Gunnar Perntz, as well as Telia Skanova
and Anders Rockström.

I would also like to thank Vinnova for supporting the project AMRAM,
Dnr 2001-06251.

Finally, I would like to thank my family, especially my mother for her
unlimited support, and Miko Paues, my dear uncle and close friend, for
proofreading my report at an early stage.

i

Contents

1 Introduction 1
1.1 Thesis introduction . 1
1.2 Task description . 1
1.3 Outline . 2

2 Quality of Service - Background 3
2.1 Overview . 3
2.2 Service models . 3

2.2.1 Best effort . 3
2.2.2 Integrated Services - IntServ 4
2.2.3 Differentiated Services - DiffServ 5
2.2.4 Discussion of the different service models 6

3 Bandwidth market 8
3.1 Overview . 8
3.2 Participants of the secondary market 9

3.2.1 Market place . 9
3.2.2 Middleman . 9
3.2.3 The clients . 10

4 Implementation 11
4.1 The iptables tool . 12

4.1.1 A small example . 12
4.2 The iproute2 package . 13

4.2.1 Example one: Multiple routing tables 14
4.2.2 Example two: Shaping traffic 14

4.3 The access manager . 16
4.4 The marker . 16
4.5 The shaper . 17
4.6 The label switch . 19
4.7 Putting it together . 20
4.8 Discussion of other approaches 22

4.8.1 Implementation with IPv6 23

ii

5 Testbed and test programs 24
5.1 User Mode Linux - UML . 24
5.2 DBS - Distributed Benchmarking System 25
5.3 trgen - Traffic Generator . 26
5.4 Logging and presenting the data 26

6 Testing and evaluation 28
6.1 Test on capacity . 28

6.1.1 Motivation . 28
6.1.2 Method . 28
6.1.3 Hypothesis . 29
6.1.4 Results . 31
6.1.5 Discussion . 31

6.2 TOS-based routing test . 32
6.2.1 Motivation . 32
6.2.2 Method . 32
6.2.3 Hypothesis . 33
6.2.4 Results . 33
6.2.5 Discussion . 34

7 Conclusions 35
7.1 Overview . 35
7.2 Future work . 35

8 Bibliography 36

iii

List of Figures

1 Rules in iptables. The match column tells what property the
rule will match, and the target what action will be performed
in case of a match. 12

2 The HTB class hierarchy in the shaper. For every reservation
a new child class is created. Rate stands for how much this
class is guaranteed and ceil up to which capacity the class
may borrow capacity from others. The default class has lower
priority, and may get starved by the other classes. 18

3 The setup phase of a reservation. The client (A) wants to
reserve capacity to node D in the network. The figure shows
how the components and the client interacts with each other. . 21

4 The HTB setup in the capacity test. The 1:1, 1:10,1:11 and
1:12 are the labels of the classes in the hierarchy. The rates
denote how much capacity the classes are guaranteed. 29

5 The expected result of the capacity test. At t0 flow 1 starts,
at t1 flow 2 starts to be followed by flow 3 at t2. At t3 flow 1
stops. Notice how the flows borrow capacity from each other. . 30

6 The results of the capacity test. Compare with the expected
results and notice how the shaper works in the expected way. . 31

7 The topology of the testbed. 33
8 The results of the TOS-field routing test. The TOS value is

switched around the time 30 s. 34
9 The IPv6 header with field sizes in bits 53
10 A chain of extension headers. 54
11 Overview of the IPv6 stack in the Linux kernel. 56

iv

List of definitions and acronyms

General definitions

QoS Quality of Service describes what is measured to decide the quality of
a link between two computers, for instance transmission rates, error
rates and drop rates.

Service model Defines a strategy on how to reserve resources and propagate traffic in
a net.

Best effort Describes the traffic for which capacity has not been reserved. De-
scribed in section 2.2.1.

IntServ Integrated Services, a service model described in section 2.2.2, using
path reservation by sending reservation requests through a network.
The client may not use resources in the network, until a successful
reservation request have been made.

DiffServ Differentiated Services, a service model classifying traffic into differ-
ent classes, and giving different levels of service to different classes.
Described in section 2.2.3.

IPv4 Internet Protocol Version 4, the Internet Protocol used today to address
hosts and computers on the Internet. For a thorough description of
IPv4 and its applications, see “TCP/IP Illustrated” by W. Richard
Stevens [6].

IPv6 Internet Protocol Version 6, successor to IPv4. Described in Appendix
D.

Source routing Technique used when the sender decides the whole routing path of a
packet, from the sender to the receiver.

Definitions introduced in this thesis

Reserved packet Packet which is to be sent on a reserved link trough a net, as opposed
to a best effort packet. In this text, a reservation is described by three
terms: source address, destination address and destination port.

v

Reserved traffic Traffic which is sent on a reserved link though a net. This is the
contradiction to best effort traffic.

Client Something that wants to use capacity in a network.

Access node The node through which the client sends all its traffic in the net where
it has reserved capacity.

Reservation id A unique number representing a reservation.

Access manager The component that keeps track of reservation ids and communicates
them to the marker, shaper and the label switches when a client makes
a reservation. Described in chapter 4.

Marker The component that marks the packets coming from a certain client,
with the correct reservation id in order for the shaper and the label
switches to act appropriately on the packet. Described in chapter 4.

Shaper The component that makes sure the client only sends as much traffic
it is entitled to according to its reservation. Described in chapter 4.

Label switch The component that routes packets, with a certain reservation id, the
correct path through the net. Described in chapter 4.

Host system A system where virtual instances of User mode linux run. Described
in chapter 5.

Virtual instance An instance running User mode linux. Described in chapter 5.

vi

1 Introduction

1.1 Thesis introduction

During the past few years, the demand for reservable capacity has arisen.
Some information, on the Internet, demands higher reliability in order to
be usable, as is the case with streaming media. Other information must
not arrive late, or it results in fatal consequences, like remotely performed
surgical operations. Quality of Service (henceforth for QoS) refers to a group
of techniques which aim to solve the problem by giving better service to
certain classes of traffic through a network.

There are a number of proposed techniques on how to reserve capacity.
In this thesis we will look into one approach called bandwidth markets. The
idea is to let net operators measure their capacity, and sell it like shares
on an independent market. On this market, a client buys shares to reserve
capacity. In return the client will receive tokens from the market, which it
uses to get access to the net where it have reserved capacity.

In order to realize a bandwidth market there are mainly two things that
need to be done:

• We need to implement the market itself, with pricing mechanisms,
transaction handling and security functions.

• The net, which uses the bandwidth market to reserve capacity, need
new components to handle things like access control, shaping of traffic
and source routing.

This project focuses on the second part: to implement some of the compo-
nents needed in a net, which uses the bandwidth market to reserve capacity.

1.2 Task description

This Masters thesis consists of the following parts:

• A literature study of the QoS service models that exist today. Find out
their strengths and weaknesses.

• The establishment of a testbed which will be used to verify and test the
algorithms and protocols. The testbed should also serve as a framework
where it is easy to manipulate the behavior of the routers.

1

• Implementation of the access node and the core routers. The access
node should be able to shape and establish flows through the net.

• Testing of the system in action (for correctness) in order to verify that
the solution with bandwidth markets is feasible.

1.3 Outline

First, an overview of Quality of Service and two current proposed techniques
is presented. Then comes a description of the “Bandwidth Markets” model,
in order to give a background to the components implemented in the project.
The “Implementation” chapter describes what has actually been done, and
the “Testbed and test programs” chapter describes how the test environment
was set up and the programs used to generate and measure the traffic. Under
“Testing and evaluation” the reader may study which tests were performed,
and the results of them. The “Conclusions” chapter describes what lessons
have been learned and what to do in the future. The appendices include
listings of how to setup the testbed and to reproduce the tests. There is also
source code of the programs made during the project, as well as an thorough
description on the history and design of IPv6. A description on how to add
a match module to iptables is included as well.

2

2 Quality of Service - Background

2.1 Overview

QoS refers to a group of techniques which aim to give better service to certain
classes of traffic through a network. Today’s data traffic is overwhelmingly
routed according to the best effort model. This gives no means of reserving
or guaranteeing bandwidth. Moreover, packets residing to the same chunk
of data may be transferred by different routes over the Internet. This may
cause the data to arrive out of order, which is bad for streaming media, and
similar network services. In order to solve those problems, an alternate way
of defining traffic is required: flows. The flow is an abstraction referring to a
distinguishable stream of related datagrams that results from the activity of
a single user, and requires the same QoS [3]. By marking packets belonging
to the same flow, the routers will be able to do smarter routing decisions,
and reserve bandwidth to a specific flow.

2.2 Service models

A service model is the term for describing the policy the routers use to decide
how to propagate the traffic through a network. A network may use different
service models simultaneously, mostly best effort in combination with some
other model.

2.2.1 Best effort

This is the simplest service model, widely used all over the Internet. This
model aims to ensure maximal throughput through every single node. Best
effort does not do any flow management. All traffic is handled according
to the first-come-first-served principle, with some exceptions if priorities are
used. This makes the model very simple and powerful since the routers may
forward the traffic rapidly. A best effort router tries to forward every packet
it receives until it receives too many and starts dropping them. This applies
to all kinds of packets, no matter if they contain data from a streaming
media application, which is sensible to packet loss, or a mail server, which
may resend the dropped packet.

3

2.2.2 Integrated Services - IntServ

The IntServ model [3] is a service model proposed by the Internet Engineering
Task Force [10]. This model uses a protocol named RSVP [4], Reservation
Protocol, in order to ensure the capacity required by a flow before admitting
the traffic into the network. This is done by first sending a request through
the network, which reserves bandwidth on all routers through the path, and
when this request successfully returns, one starts sending the data. In RSVP,
the reservation requester sends a reservation request through the route it
wants to reserve. This reservation request propagates until it reaches a node
denying the request or until it reaches the destination node which returns a
positive response to the reservation requester.

This kind of explicit management of bandwidth comes from the assump-
tion that bandwidth must be explicitly managed in order to meet the appli-
cation requirements. If a subnet cannot guarantee delivery of information at
a certain rate, the information should not be allowed to be sent in the first
place. A guarantee must be waterproof in order to be a guarantee.

IntServ key techniques are resource reservation and admission control.
These are realized by four components. Before any traffic is to be sent
through the network, resources have to be reserved, and when that is done,
the admission control will let the traffic enter the net. The first component
is the reservation protocol while the others implement the traffic control ca-
pabilities.

• A reservation protocol. The IntServ model is tightly coupled to RSVP
even if in principle any reservation protocol would do.

• A packet scheduler which, with a number of queues, handles the for-
warding of different packet streams. The packet scheduler decides
which packet should be sent after taking the rules of reservations into
account.

• A classifier which maps every incoming packet to a class. It is the
classifier that decides to which queue in the packet scheduler the packet
will be sent.The classifier also finds a unique key that identifies a flow.

• The admission control which implements a decision algorithm which is
to judge whether a packet is to be allowed access to the domain or not.
Access is not to be granted until a reservation for the flow is done.

4

The routers in an IntServ network are stateful. This means that the routers
keep track of how much capacity they have reserved. As long as a router
have more reservable capacity, it will reply positively on reservation requests.
The routers being stateful may be a problem, since there may occur stale
reservations not used.

The RSVP protocol provides mechanisms for specifying resources and to
which packets these resources belong. Reserving a resource can be done in
different manners, so called reservation styles. These styles mirror different
scenarios of reservations. For instance, a reservation may be bound to the
source, to the destination or both.

Reservations are triggered from application level initiated by the receivers.
Reservation message is propagated through the network to the sender. Every
node, where the reservation message passes, instantiates a flow specification.
This specification describes the amount of reserved capacity at the node.

2.2.3 Differentiated Services - DiffServ

The DiffServ model[5], is a less cumbersome approach to implement QoS.
DiffServ classifies packets into different types of traffic. DiffServ tries to en-
sure that real time crucial traffic will be served appropriately, at the expense
of less demanding traffic. DiffServ can be seen as a further developed version
of the IPv4 Type Of Service technique [7] which is based on marking different
packets depending on what type of service the packets require. If a packet
resides in mail traffic it will get a “minimize cost” label, and if it is an FTP
packet a “minimize delay”. With the Ipv4 Type Of Service model, there are
only four labels which limits the ability to do fine grained traffic control.

DiffServ handles aggregated flows of traffic and may describe flows with
service semantics. For instance, there are labels to describe “Streaming me-
dia” explicitly and not only “minimize delay”. By standardizing a large set of
flow types and adding one abstraction layer, which does not directly express
the way the packets should be forwarded, it eliminates the need to redefine
all nodes in the network every time a new type of traffic is introduced.

A DiffServ domain is constituted by boundary and interior nodes. The
boundary nodes can be divided into two groups, egress and ingress nodes.
The traffic enters the domain in an ingress node and exits it through an egress
node. One node may, to flows in different directions, be both an ingress and
an egress node at the same time.

The functionality of DiffServ is implemented by a number of building

5

blocks.

• Classifiers which classify packets in a stream depending on some portion
of the packet header.

• Traffic profiles which are rules using the classifiers to state what profile
a packet belongs to. If a packet belongs to a profile it is called in profile,
and if it is not out profile.

• Traffic conditioners specify what to do with in or out profile packets.
They may contain the following elements: meter, marker, shaper and
dropper.

When a packet arrives to a DiffServ domain it is first classified in the ingress
node and forwarded to a meter conditioner. The output of the meter is
interpreted by the traffic profile. If the packet is in profile it is sent to the
corresponding traffic conditioner, which may send, delay or drop the packet.

2.2.4 Discussion of the different service models

Several arguments against the use of QoS have been stated. One is that
bandwidth in the future will be so cheap, that the most cost effective service
model would be not to reserve it at all [3]. According to the creators of
IntServ, this is not true, at least not in the short or middle term. It is likely
that the more bandwidth there is, the more the clients use traffic generating
applications.

Another argument is that applications may adapt and compensate for
unreliable links with buffers, which makes research in the QoS area more or
less superfluous. This may be true for streaming video or other media, but it
is not true for video conferences and such, which demand non buffered flows
in both directions.

Even if explicit management sometimes is needed, the IntServ technology
is not widely used, since it has proved to scale very badly. RSVP introduces
overhead in the network. IntServ is used, but mostly on single links and
smaller subnets where the overhead doesn’t have such an impact.

DiffServ has a few advantages compared to IntServ. First, the nodes are
stateless. This is not the case with IntServ since every node along the path
of a reservation has to store information about the reservation.

6

Second, DiffServ does not need as much special support in the application
layer. The applications that uses DiffServ must classify the packets appro-
priately. IntServ demands that the application sending the data implements
the Reservation Protocol (RSVP).

Different service models will probably coexist in the future, since not all
traffic require QoS. Best effort and other QoS techniques may be used in the
same net. The effects of having QoS traffic coexist with best effort traffic is
discussed by Klara Nahrstedt and Shigang Shen in [11].

7

3 Bandwidth market

3.1 Overview

Most research on providing QoS to the Internet involves how to set up links
where the reserved traffic may be sent. This can be done explicitly, as with
IntServ. The load balance in a QoS net is supposed to be managed with
admission control and source routed paths through the net. The pricing of
the right to send traffic with a certain amount of QoS through a network is
not considered by any of the mentioned techniques. The techniques give the
network operator something to sell, i.e QoS bandwidth, but not the means
of selling it.

This may be solved with a bandwidth market, which is another approach
to achieve QoS. A net has a certain amount of capacity between its pairs of
border nodes. If we divide this capacity into pieces, and represent every such
piece of capacity as a share in a market, the capacity may be traded.

There are different kinds of markets. One kind of market, is the primary
market. With this market, buyers buy shares from a chosen seller, and are
not allowed to trade the shares they have bought between each other. This
model is proposed by Ferguson et. al. [26] where the seller is a processor
selling CPU capacity to competing jobs. In our example the seller would
typically be the net operator selling shares of capacity to clients. When a
client wants to sell its shares back, it have to sell them to the net operator,
not to other clients. Another proposed technique that belongs to this kind
of market is bandwidth brokers as proposed by Zhi-Li Zhang et. al in [9].
The clients reserving capacity in a net, first contacts a bandwidth broker to
be admitted access.

Another type of bandwidth market is the secondary market. With this
market, all participants may trade with each other. This means that clients
that have bought shares may sell them to other clients. This way, the pricing
dynamics will be more like them in an ordinary stock market. If many users
wants to use traffic with QoS, the prices rise, and if the demands decrease
the prices go with them. A model with secondary markets is proposed by
Rasmusson and Aurell, in their work on bandwidth markets [15]. The parts
implemented in this project all belong to this kind of market.

The market guarantees that capacity is available to the client that have
reserved it, since every share represents existing capacity in the net. If all
shares are sold, there is no capacity available in the net.

8

3.2 Participants of the secondary market

In order to realize this service model, there must be a number of participants,
in certain roles:

• The market place is where all net operators, wanting to sell capacity,
register their resources.

• The middleman is a broker which combines capacity resources into
services.

• The clients which trade capacity with the middleman and with each
other.

3.2.1 Market place

The market place is where bandwidth resources may be bought and sold.
Resources are divided into shares. One share may, for instance, represent a
certain amount of bandwidth between two adjacent nodes in the net. The
market is controlled by a market maker, a third part which always accepts
offers. When congestion occurs in a route, the shares representing capacity
in this route will be more expensive. This will make shares representing
other routes more attractive, since they are cheaper. The load balancing
instrument is driven by supply and demand.

There is one characteristic the market model must have: the price dy-
namics must not be affected by certain trading sequences. That is, it must
be impossible to perform a sequence of trades which influence the prices, if
the traded volume is zero. How this condition is fulfilled may be studied in
[15].

3.2.2 Middleman

The middleman buys resources from the market place, and combines them
into derivative contracts. These contracts are of the form “The right to use a
certain amount of bandwidth between point A and point B” or “The right to
have exactly one of several possible servers, being able to communicate with
me at a certain rate”. With the help of the middleman the client doesn’t
have to state exactly what resources it wants to reserve. As long as the client
gets the wanted capacity, between the wanted nodes at the wanted time, it
will be content.

9

The strength of the model proposed in [15] is that virtually any kind of
contract may be made between the middleman and the client. “Constant rate
from a certain host”, is the simplest, but the model allows the middleman
to sell contracts of the form “This bandwidth between these hosts at this
specific time of the day”. The client buys a contract from a middleman, and
in return it receives a receipt. This receipt is used when the client connects
to the net, where bandwidth has been reserved. The receipt consists of a
number of tokens which all correspond to a certain capacity over a sub link
in the net, together constituting the reserved path.

3.2.3 The clients

The clients buy shares from the middleman, or other clients in the market
place. To use the capacity, reserved with a bandwidth market, the the net
needs to be prepared to handle reservations. Before the client starts sending
traffic through the net, it has to contact an access node. This access node is
built on a number of components. In this project, some of the components
have been implemented, particularly an access manager, a shaper, a marker
and label switches. These are described in the next chapter.

10

4 Implementation

As stated in the task description, the goal with this project was to implement
the traffic propagating parts needed to realize a bandwidth market. The
needed parts are:

• An access manager, which is the component the client connects to in
order to setup a reservation through the net. A reservation consists of
a source (the client), destination, port and a rate and is represented by
a reservation id. The access manager keeps track of unused reservation
ids. It also communicates the reservation ids to the other components
(marker, shaper and label switches) whenever a reservation is made.

• A marker detects if a packet belongs to reservation, by inspecting the
source address, destination address and the port in the packet header.
If the packet belongs to a reservation, the marker writes the reservation
id in the header. This is done in order to let the shaper know at which
rate it should shape the packet, and to let the label switch know were
it should route the packet.

• A shaper shapes the traffic entering the net. It uses the reservation ids
written by the marker to shape reserved flows appropriately.

• A label switch which routes the traffic through the net. In this imple-
mentation, the routing is decided by the reservation id in the packet
header. This is a test model, since it would be better to source route
the packets when they enter the net. This is further described in section
4.6.

This chapter describes how these components were implemented. During
the project a few approaches were tried. A discussion of those that were
abandoned is found in section 4.8.

Before going into details we state what the implemented parts must be
able to do:

1. Read and write the contents of a packet header. We want to be able
to read the source and destination address and to read and write the
reservation id.

2. Route the packet depending on the contents of the reservation id.

11

Match

tcp port == 4711

tos value == 4

dst host==[ip.adr} TOS set value = 4

REJECT

LOG

Target

Rules

Figure 1: Rules in iptables. The match column tells what property the rule
will match, and the target what action will be performed in case of a match.

3. Be able to set up rules to describe what to be read or written and where
to route the packets.

These actions may be performed with tools found in an ordinary Linux
system. What these tools are and how they work will be described in the
preceding sections.

4.1 The iptables tool

In the Linux kernel versions 2.4.1 a new firewalling infrastructure was intro-
duced. It is called iptables [12] and is the fourth generation of filtering and
mangling utilities for Linux.

The principle of iptables is illustrated in figure 1. The package consists
of a framework to define match and target modules. The match modules
are designed to inspect a certain kind or property of a packet. The target
modules perform an action. Some actions may change the contents of the
packet (mangling) and other may just drop the package, or, for instance,
send it to the system logger. These modules constitute rules, forming an
entry in a iptables chain. This chain is hooked into a specific state in the
protocol stack. Whenever a packet reaches this state, the rules in the chain
are matched against the packet. If the match module in a rule detects a
match, the corresponding target module is run to perform the action. By
writing custom match and target modules new tasks may be accomplished,
like reading or writing the contents of the flowlabel.

4.1.1 A small example

An example will now be presented to illustrate what iptables can do: The
user X wants to know how many packets his computer receives with the

12

Minimize-Cost type-of-service property set. To accomplish this X wants to
use iptables with the match module “tos” to match the Minimize-Cost prop-
erty, and the target module “LOG” to send those packages to the system
logger. This is accomplished in the following manner:

> i p t a b l e s −A INPUT − t f i l t e r −m tos −−to s Minimize−Cost \
−j LOG−− log−l e v e l 1 −− log−p r e f i x ”X t e s t i n g ”

The elements of this command line are:

• -A INPUT: Put this rule into the INPUT chain

• -t filter: The INPUT chain is situated in the filter-table. This is the
iptables-table where filtering and logging rules are placed.

• -m tos –tos Minimize-Cost: Use the match-module tos and let it match
every packet with the property type-of-service set to “Minimize-Cost”

• -j LOG –log-level 1 –log-prefix ”X testing”: Use the target module LOG
to send the matched packets to the system logger with the logging level
1 and the “X testing” as prefix in the system log.

This example shows some of the possibilities with iptables. These will
later help us to implement the marker.

4.2 The iproute2 package

The package that provides Linux with routing capabilities is iproute2 [17].
iproute2 is, just like the iptables package, divided into two parts, one
consisting of kernel modules to perform the routing and traffic control and
another of user mode tools used to configure the behavior of the kernel mod-
ules. The package offers advanced routing capabilities, and traffic control,
which we later will use to shape network traffic. Another feature is the abil-
ity to define multiple routing tables, and the possibility to let rules decide
which of those routing tables that a certain packet will use. This is used
when implementing the label switches later on.

There are two commands in the iproute2 package we will use, ip, used
for all sorts of management of IP related things like interfaces and rules, and
tc, used for configuring traffic control.

13

4.2.1 Example one: Multiple routing tables

This example will illustrate how to use different routing tables and the routing
rule facilities and is influenced by an example in chapter 11 of the “Linux
Advanced Routing HOWTO” [20]. Assume that user X has two ways to
connect to the Internet, a slow cable modem (with address A.A.A.A and
device eth1) and a fast T1 fiber cable. The user X sells Internet access to his
neighbors for a fee. One of the neighbors, named Y (with address Y.Y.Y.Y),
will only use his access to surf occasionally and therefore wants to pay less.
The default gateway points to the T1 fiber access. X wants to set up a second
route pointing to the cable modem and a rule that matches user Y and sends
Y’s traffic to this route. This may be done by creating another routing table
with the cable modem route as default gateway and a matching rule:

1 > echo 200 Y >> / e tc / ip route2 / r t t a b l e s
2 > ip r u l e add from Y.Y.Y.Y tab l e Y
3 > ip route add de f au l t v ia A.A.A.A dev eth1 tab l e Y

The lines in the example above does the following:

• (line 1) Add a new routing table alias, enabling us to reference the
table by name Y instead of number 200. iproute2 let us have up
to 255 routing tables. By having multiple routing tables we may let
different packets be routed differently.

• (line 2) Setup up a rule that will redirect all traffic coming from Y.Y.Y.Y
to table Y.

• (line 3) Set the cable modem at adress A.A.A.A and device eth1 as the
default gateway in table Y. By doing this, all packets that because of
the rule ends up in table Y, will be routed to A.A.A.A.

4.2.2 Example two: Shaping traffic

The other example will show how to set up traffic control over a network in-
terface. Traffic control, in iproute2, is built upon two fundamentals: queu-
ing disciplines and filters. Queuing disciplines define the order of incoming
packets, and filters are used to detect certain packets.

The user X has problems as huge downloads block his interactive traffic
on his network interface eth0. Interactive traffic, refers to traffic when the
user is sitting waiting for a response (browsing a page or TELNETing a

14

host). For simplicity, we assume that all downloads, are sent with the FTP
protocol on port 21. X has the max capacity of 1 Megabits per second from
his Internet transit, and wants FTP traffic never to exceed 900 kilobits per
second.

The scenario is best solved with a Hierarchical Token Bucket (HTB) filter.
Related examples and descriptions on how to use the HTB filter in other ways
is found in [16]:

1 > tc qd i s c add dev eth0 root handle 1 : htb \
2 d e f au l t 11
3 > tc c l a s s add dev eth0 parent 1 : c l a s s i d 1 : 1 htb \
4 ra t e 1 Mbit c e i l 1 Mbit
5 > tc c l a s s add dev eth0 parent 1 : 1 c l a s s i d 1 : 1 0 htb \
6 ra t e 900 kb i t c e i l 1 Mbit
7 > tc c l a s s add dev eth0 parent 1 : 1 c l a s s i d 1 : 1 0 htb \
8 ra t e 1 Mbit c e i l 1 Mbit
9 > tc f i l t e r add dev eth0 pro to co l ip parent 1 : 0 \

10 pr i o 1 u32 match ip dport 21 0 x f f f f f l ow id 1 : 1 0

The lines in the example above do the following:

• (line 1 and 2) We add the HTB queuing discipline to device eth0. We
define the handle to be 1: and that traffic by default goes to class 1:11.
A handle is a label by which we later may refer to this entry in the
hierarchy. A class is a unit in the hierarchy to categorize traffic. Filters
decide to which class a certain packet belong.

• (line 3 and 4) Here we add the root class to the queuing discipline,
which defines the max capacity of the link. With HTB we have root
classes and children classes. Root classes are attached to the root in the
hierarchy. Child classes we call all the other classes. Root classes may
not borrow capacity from each other, but children classes may borrow
from their siblings. By defining a root class, and adding children classes
to it, these child classes may borrow capacity from each other, which
is what we want to achieve in this example. Rate means the reserved
capacity for this class, and ceil means the total amount of capacity this
class may use. These terms make more sense in the child classes as
they may borrow capacity from each other.

• (line 5 and 6) We define the class, that will be used for FTP traffic. We
set a max of 900 kilobit per second, even if the class may borrow up to

15

1 Megabit per second if there is spare capacity in the default class.

• (line 7 and 8) The third class we define states the conditions for the rest
of the traffic. This traffic may use all available bandwidth, no matter
how much FTP traffic coming in.

• (line 9 and 10) We define the filter that makes the FTP traffic enter the
1:10 class instead of the default. This assigns traffic with the ip port
21 to the highest priority queue in the class 1:10. There is a priority
queue in all classes, since iproute2 automatically attaches a default
queuing discipline. This way iproute2 knows how to handle packets
in the same class. As far as iproute2 is concerned the handle 1: and
1:0 are the same.

4.3 The access manager

The role of the access manager is to verify reservations and configure the
other components so the traffic from the clients is handled appropriately. As
this work can be done by hand, it was not implemented in this project. It is
listed to clarify how the implementation should work.

When a client has got a reservation from the bandwidth market, it re-
ceives tokens as a receipt. To setup the reservation the client connects to
the access manager, and sends its tokens. The access manager verify the
tokens, and looks up an unused reservation id. The access manager contacts
the marker with a message containing source address, destination address,
port and reservation id. Whenever a packet with the matching address pair
and port enters the access node the marker marks the packet with the cor-
responding reservation id. The access manager also connects to the shaper
with a message containing the rate and the reservation id. The shaper sets
up a filter which will check for the reservation id, in all packet headers, and
shape the traffic at the rate. This rate is the same as the access manager
sent to the shaper together with the reservation id.

4.4 The marker

The purpose of the marker is to inspect packet headers and mark them with
reservation ids. The reservation ids will be used by the shaper to give clients,
that have reserved capacity, the correct treatment. The marker inspects

16

the source and destination address and the port, and checks whether this
combination has the right to reserved bandwidth. If so, the marker marks
the package with reservation id it originally received from the access manager.
See 4.7 for a scenario description.

The reservation ids are put into the Type-Of-Service-field (TOS-field) in
the IPv4 header. The field is 8 bits wide, giving us the ability to differentiate
255 reservations, which for our testing purposes will suffice. This is not all
true since there are restrictions on which values the TOS-field may adopt,
but this may be solved by altering the iptables and iproute2 packages. We
will use iptables to mark the packets, where each reservation corresponds
to an iptables rule. Such a rule, is defined by the following statement:

> i p t a b l e s −A PREROUTING − t mangle − s 1 9 2 . 1 6 8 . 1 . 1 \
−d 192 .168 .1 . 2 −p tcp −−dport 80 − j TOS −−set−to s 2

This rule means that if the host 192.168.1.1 sends a package to 192.168.1.2
on port 80 it should be marked with the reservation id 2. If we define a
number of these rules they will form a database associating reservation ids
to traffic flows in the net, that is what we want the marker to do.

4.5 The shaper

The task of the shaper is to force the clients to only use as much capacity as
they have reserved. The shaping is implemented with the hierarchical token
bucket queuing discipline. Just like in the former examples we start with a
root class. The root class has a default child class where all unprioritized
traffic goes. Whenever the access manager contacts the shaper, to set up a
new reservation, another child class is created with a certain rate. It creates
a filter to direct the packets with the reservation id, received from the access
manager, to this particular class. The principle is shown in figure 2.

The behavior is implemented with the following command lines. In this
example we assume that the maximum capacity in the link is 1 Megabits per
second:

1 > tc qd i s c add dev eth0 root handle 1 : htb \
2 d e f au l t 10
3 > tc c l a s s add dev eth0 parent 1 : c l a s s i d 1 : 1 htb \
4 ra t e 1 Mbit c e i l 1 Mbit
5 > tc c l a s s add dev eth0 parent 1 : 1 c l a s s i d 1 : 1 0 htb \
6 ra t e 1 Mbit c e i l 1 Mbit

17

Default Nth
reservationreservation

1st

Rate: 1st cap Rate: Nth cap
Ceil:MAX
Rate: MAX

Ceil: MAX Ceil: MAX

Root

Figure 2: The HTB class hierarchy in the shaper. For every reservation a
new child class is created. Rate stands for how much this class is guaranteed
and ceil up to which capacity the class may borrow capacity from others. The
default class has lower priority, and may get starved by the other classes.

• (line 1 and 2) We add the HTB queuing discipline to device eth0. We
set the handle to be 1: and the default class (were traffic goes by
default) to 1:10.

• (line 3 and 4) We add the root class 1:1 which limits the total available
capacity on the link to 1 Megabits per second.

• (line 5 and 6) We add the default class, to which unprioritized traffic
goes.

Whenever a reservation occurs, the access manager contacts the shaper
with a reservation id and a rate. The shaper sets up a class, with the rate,
and a filter to match the reservation id. In this the reservation id and rate
from the access manager is 4 and 500 kilobits and the next free classid is 13.

1 > tc c l a s s add dev eth0 parent 1 : 1 c l a s s i d 1 : 1 3 htb \
2 ra t e 500 kb i t c e i l 1 Mbit
3 > tc f i l t e r add dev eth0 pro to co l ip parent 1 : 0 p r i o 1 \
4 u32 match ip tos 4 0 x f f f l ow id 1 : 1 3

• (line 1 and 2) We add a child to our root class with classid 1:13, rate
500 kilobits per second. This class may borrow up to 1 Megabits per
second from its siblings, if there is unused capacity in the link.

• (line 3 and 4) Here we add a filter that redirects all packets with reser-
vation id 4 to the created class. By setting prio to 1 in the u32 filter we

18

ensure that the reserved traffic will have priority over the unprioritized
one.

If the access manager wants to delete a reservation we delete the class
and the filter:

1 > tc c l a s s de l dev eth0 parent 1 : 1 c l a s s i d 1 : 1 3
2 > tc f i l t e r de l dev eth0 pro to co l ip parent 1 : 0 p r i o 1 \
3 u32 match ip tos 4 0 x f f f l ow id 1 : 1 3

• (line 1 and 2) We delete the class 1:13.

• (line 3 and 4) We delete the filter sending the packets with reservation
id 4 to the class 1:13.

These commands give us the means of defining reservations which are
distinguished by reservation ids.

4.6 The label switch

A reservation consists of reserved capacity in several links. The shaper han-
dles the capacity and makes sure the clients does not exceed their reserved
capacity. We need a component that makes sure the traffic of the specified
client uses the reserved path. In this case the component consists of several
units, all with the same functionality. These are the label switches.

In this implementation the label switches only route traffic depending on
the reservation id. A more complete solution would be to have a component
called the header writer. The access manager would, on a reservation, send
the header writer a reservation id and the tokens received from the client.
These tokens would constitute the path. By writing next hop instructions in
the packet header, the header writer could send a packet with a reservation
id on a certain path. This is called source routing. In this solution, there is
no header writer, and therefore the routes have to be statically configured in
the label switches.

The marker puts the reservation ids in the TOS-field. As we have seen
before we may use the ip command to define rules. These rules may be set to
match the TOS-value and send packets with different TOS-values to different
routing tables. This way we implement a label switch which routes packages
with different reservation ids different routes. We do an example where we

19

assume a certain node may route packets two separate ways. In this example
we want packets with reservation id 2 sent through the host 192.168.1.2 and
those with the reservation id 4 targeting host 192.168.1.4. The behavior is
accomplished with the following commands:

1 > echo 201 route1 >> / e tc / ip route2 / r t t a b l e s
2 > echo 202 route2 >> / e tc / ip route2 / r t t a b l e s
3 > ip r u l e add tos 2 tab l e route1
4 > ip r u l e add tos 4 tab l e route2
5 > ip route add de f au l t v ia 1 9 2 . 1 6 8 . 1 . 2 t ab l e route1
6 > ip route add de f au l t v ia 1 9 2 . 1 6 8 . 1 . 4 t ab l e route2

• (line 1 and 2) Connect aliases to the tables 201 and 202 and call them
route1 and route2 respectively.

• (line 3 and 4) Add rules to the rule table which will make all packets
with TOS-values 2 and 4 go to the routing tables route1 and route2
respectively.

• (line 5 and 6) Set the default gateway in the routing tables to their
corresponding hosts.

When we want the label switch to replace the former label with a new
one we use iptables:

1 > i p t a b l e s −A PREROUTING − t mangle −m tos −−value=4\
2 −j TOS −−set−to s 2

This command adds a rule, resembling of the one used with the marker, to
change all packets with the TOS-value 4 to 2.

4.7 Putting it together

It is now shown how the iptables and iproute2 packages are used to imple-
ment the core components needed for the capacity reservation. In this simple
example there are only two routes, but more routes could be handled in the
same way. The figure 3 shows the setup.

Here is a description of the scenario. The numbers in the figure 3 corre-
spond to the numbers listed below:

1. Client A sends a reservation request to the access manager. A asks for
X Kbit over route 2 to the destination D on port P.

20

2

3

4

5

D
D.D.D.D

A.A.A.A

B
B.B.B.B

C.C.C.C

A

C

Client

Net with reservable
resources

Route 1

Route 2

1

A
ccess

L
abel

Shaper

M
arker

Figure 3: The setup phase of a reservation. The client (A) wants to reserve
capacity to node D in the network. The figure shows how the components
and the client interacts with each other.

21

2. The access manager checks in its internal table to find the next unused
reservation id I.

3. The access manager sends the reservation id I to the marker, together
with data received from A. This data is the source address (A.A.A.A),
destination address (D.D.D.D) and the port value (P). The marker sets
up a rule that marks all packages with the corresponding source and
destination address and port with the reservation id I received from the
access manager.

4. The access manager sends a message with the rate X and reservation
id I to the shaper which sets up a shaper class with the rate X and
a filter matching the reservation id I. This way the shaper shapes all
packets with reservation id I, to rate X.

5. The access manager sends the reservation id I to the label switch to-
gether with the route request from A (route 2 over address C.C.C.C).
The label switch set up a new routing table and a rule that binds the
reservation id I to this routing table. The label switch also sets the
default gateway in this routing table to C.C.C.C.

4.8 Discussion of other approaches

It is one problem with the implementation. For the routing through the net to
be effective, it is important that the access node may source route the packets
through the net. This is because it should be easy to reconfigure paths. This
is why the header writer, discussed in section 4.6, plays an important role in
a real implementation. This implementation shows the possibility to route
on a reservation id. In a real world implementation a technique like MPLS
[25] would probably be used for the routing instead.

One important feature of the implementation is that it stores reservation
ids in the packet headers. This is done in order to give the right packets the
right service. One design issue is were to put this reservation id. During the
project two approaches were considered: using IPv4 and the Type-of-service-
field (TOS-field) or using the flowlabel in IPv6.

Using the flowlabel was considered first and the approach was to analyze
the IPv6 stack in the Linux kernel and alter it. Since the intended modifica-
tions were rather small it seemed straightforward. To make this possible the
protocol stack of the Linux kernel had to be understood. This turned out

22

to be hard, as the IPv6 stack in Linux is very advanced software. With no
experience of the internals of the Linux kernel, it would have taken long time
to gain enough knowledge. As long as the whole stack is not understood, the
consequences of a change are very hard to oversee. This is why another way
of doing the implementation, was searched for.

Even if the approach with altering the Linux kernel was abandoned, the
idea of using the flowlabel and IPv6 was not. The idea of using the ipta-
bles and iproute2 packages came from an example in the “Linux Advanced
Routing & Traffic Control HOWTO” [20], where the TOS-field where used
to route packets differently. The features used where the TOS-match module
of iptables and the multiple routing tables of iproute2. Writing a match
module to the flowlabel, did not seem hard to do. The problems began when
trying to use multiple routing tables as this feature was not implemented in
the IPv6 stack at all. Therefore, IPv4 and the TOS-field were used instead.

4.8.1 Implementation with IPv6

The IPv4 solution, using the TOS-field to store reservation ids, works but
has several drawbacks. First, the TOS-field is too small to handle more
reservations than 255. If we would like to realize the bandwidth market, in
the real world, this is far too limited. The second drawback is to use the
TOS-field to something else it is intended to. This is not a problem as long
as the affected packets stay inside our net, but if we connect with others
these modified packets may cause problems elsewhere.

The IPv6 flowlabel field is much better suited for the purpose of marking
packets with reservation ids. It is 20 bytes wide and its use is not as stan-
dardized as that of the TOS-field. Here is a list on what needs to be done to
make the IPv6 solution work:

• Marker. Write an iptables target extension to set the flowlabel in an
IPv6 packet.

• Label switch. Add support for multiple routing tables to the IPv6
stack in the Linux kernel. Also, extend the iproute2 package making
it possible to match the flowlabel with an ip rule.

23

5 Testbed and test programs

To test and verify the implementation a testbed was set up. The testbed
consists of a virtual network, with nodes running Linux and a number of test
programs. To emulate a virtual network a program called User mode linux
[2] (UML) was used. This program makes it possible to run several instances
of Linux on one single computer, or a host system. By running a number of
virtual instances, and connect them together, it is possible to simulate the
behavior of a network. To test the implementation other programs are needed
as well: traffic generators and packet loggers. Two programs were used as
traffic generators: DBS [21] as in “Distributed Benchmarking System” and
a program written especially for the project called trgen. As packet logger
tcpdump [18] was used. The text processing programs sed [23] and awk
[24] were used to parse the files generated by tcpdump. octave [22] was
used to plot the results of the tests. This section describes the virtual testbed
as well as the program used to test the implementation.

5.1 User Mode Linux - UML

UML is a program based on the Linux kernel. The kernel has been rewrit-
ten to make it possible to run it like an application instead of an operating
system. Usually, the Linux kernel communicates directly with the hardware
on the computer Linux is running on. The difference with UML is that it
communicates with the operating system instead of the hardware, making
it possible to run several virtual instances at the same host system. UML
has a number of ways to communicate with the host system or other virtual
instances. The easiest way is to use a program, running on the host system,
called uml switch which emulates the behavior of a switch where virtual in-
stances may connect to each other. The testbed, constructed in this project,
consists of four instances of UML running on one computer as in figure 7. All
virtual instances are connected with one instance of uml switch on every
link. The node A also is connected to the host system, which in the tests
acts as client. Appendix A describes how to set up the testbed used in the
tests.

24

5.2 DBS - Distributed Benchmarking System

DBS is a program to test capacity of links in an IP network. It consists of
a control program, measuring daemons and a report generator. The control
program runs a script file which describes a test scenario and sends work
orders to the measuring daemons. The measuring daemons receive work
orders and generate and measure traffic between each other. When the test
is done the measuring daemons send back the results to the control program
which concludes them into a result file. The report generator uses the result
file to generate plots, to illustrate different characteristics of the measured
links.

We will now take a closer look on the script file used by the control
program, to conduct the tests. One file describes one or more streams. Every
stream consists of a sender, a receiver, and some entries describing the stream
itself. Here is an example:

{
sender {

hostname = 192 . 1 68 . 1 . 1 ;
port = 4711;
pattern {1024 , 1024 , 0 . 01 , 0 . 0}

}
r e c e i v e r {

hostname = 192 . 1 68 . 1 . 2 ;
port = 4711;
pattern {10000 , 4096 , 0 . 0 , 0 . 0}

}
f i l e = data/ r e s u l t s ;
p ro to co l = UDP;
s t a r t t ime = 0 .0 ;
end time = 30 .0 ;
}

First we define the sender. It has a hostname, a port (on which the stream
will be sent) and a traffic pattern. The pattern has four fields which describes
the characteristics of the traffic. The pattern in this example means: send
1024 bytes one hundred times per second. This results in a load of 800 kilobits
per second. For a more thorough description of how to set up patterns, please
look up the manual of DBS [21]. The receiver has the same entries as the
sender, but now the pattern describes the characteristics of the receiving

25

buffers. This pattern means that we should have a receiving buffer with the
size of 10000 bytes and be able to receive messages of the size 4096, with
no time delay between the received messages. The receivers characteristics
are deliberately set to larger values than the senders, to ensure the receiver
always will be able to receive the messages. The entries describing the stream
are the file (where to put the results), protocol (TCP or UDP), start time
and the end time. If we need more streams, we add another structure in the
file.

DBS was only used as traffic generator, since it was hard to control the
way the report generator processed the data before plotting it. To measure
and plot the traffic generated by DBS, tcpdump and octave were used
instead.

5.3 trgen - Traffic Generator

Before DBS was discovered, a program for generating traffic called trgen
was made. It has not the same possibilities to configure the test in detail
as DBS, but it is easier to setup and use. It consists of a server and a
client, communicating with TCP. The server is written in C and is run with
a number of port numbers on the command line. The server spawns as many
threads as given port numbers and starts listening on them. The client
connects to the server on one of the given ports and sends a file, which name
is given on the command line. The code is listed in Appendix C. Here is an
example on how to run the server and the client:

> t r g e n s e r v e r 4711
> t r g e n c l i e n t l o c a l h o s t 4711 t e s t f i l e

By these commands we start the server to listen to port 4711. Then we start
the client to send the file “testfile” on port 4711 to the host localhost. trgen
was used in test 2, because it is easier generate traffic with it. As in the case
with DBS, tcpdump and octave were used for measuring the traffic and
plot the results.

5.4 Logging and presenting the data

tcpdump is a program used to log Internet traffic. The typical output
of tcpdump presents the packet type, source, destination, port and the
packets size and the time it arrived. tcpdump may be used to access more

26

data about a packet than that, but this information was the one used in this
project. The output of tcpdump was processed with awk and sed to make
it plottable with octave.

awk and sed are tools found in almost every UNIX system. These tools
are good for text processing. awk is mostly used to split lines into columns,
and perform actions on these columns. sed is often used for altering the
contents of a file or stream of characters. A common use is to do search and
replace actions, or to remove certain symbols in a file.

octave is a free clone of Matlab, which is the de facto standard of
numerical calculating software. During the tests octave was used to process,
and plot the data from the tests.

27

6 Testing and evaluation

Two tests were conducted, to verify the functionality of the implementation:

• Test on capacity, where the shaping abilities of the system were verified.

• Test on TOS-field based routing. Test that routing based on the TOS-
field, instead of the destination address, works. Verify that the path
can be reconfigured during a session.

6.1 Test on capacity

6.1.1 Motivation

In a net controlled by a bandwidth market, there must be ways to guarantee
that clients using the net, do not exceed their reserved capacity. This is
solved by letting the traffic from the clients be shaped at the access node.
This is why the shaping capabilities of the solution were tested. It is also
important that unused capacity belonging to reserved traffic may be used by
non-reserved traffic.

6.1.2 Method

Two computers were connected, one sender and one receiver. A hierarchical
token bucket filter (HTB) was applied to the sender’s output. The configu-
ration of the HTB was the following: we have three classes of traffic, flow 1,
flow 2, and flow 3, which all flow on the same link. The link has capacity 300
kilobits per second. All classes are at least guaranteed capacity up to 100
kilobits per second. If there is unused capacity in one of the other classes, the
classes may borrow capacity from each other up the the maximum capacity
of the link. The configuration is shown in the figure 4.

Each flow is distinguished by a port number. In order to verify that the
different flows borrow from each other we must not send the flows simulta-
neously all the time. Therefore the flows were generated according to the
following schemata: At t0 send flow 1 at a rate exceeding the maximum ca-
pacity. Flow 1 should use all available capacity. At t1 start sending flow 2.
We should now see how the rate of flow 1 decreases because of flow 2. At
t2 flow 3 starts sending, and we should see how the other two flows decrease
their rates. Finally at the time t3 flow 1 stops sending and we should notice

28

100 kbit / sec

1:11

100 kbit / sec

1:10

100 kbit / sec

1:12

300 kbit / sec
1:1

Figure 4: The HTB setup in the capacity test. The 1:1, 1:10,1:11 and 1:12
are the labels of the classes in the hierarchy. The rates denote how much
capacity the classes are guaranteed.

an increase of the rate in the other flows as they use the unused capacity
of flow 1. The total should all the time be 300 kilobits. The flows were
generated by DBS and were sent with UDP. Packets with the size of 1 kilo-
byte were sent one hundred times per second. The size of the packets were
chosen to be less than the maximum-transferable-unit (MTU) between the
two hosts. The size and time of arrival of all incoming packet were measured
with tcpdump at the receiver. The log files from tcpdump were parsed
with awk and plotted with octave. The commands used to set up the HTB,
DBS, tcpdump, awk and octave are all listed in Appendix B.

6.1.3 Hypothesis

The expected behavior is shown in figure 5. This qualitative graph shows
how the rates change during the test.

The expected behavior of the shaper is described with the following state-
ments:

1. The capacity of any class will always be greater or equal to 100 kilobits
per second.

2. Unused capacity, in one class may be used by a flow belonging to an-
other class.

3. The total sent rate of the three flows will never exceed the maximum
capacity of 300 kilobits per second.

29

1
t t

2
t

3

C
um

ul
at

iv
 s

um
 o

f
re

ci
ev

ed
 b

yt
es

t
0

Total

Time

Flow 1

Flow 2

Flow 3

Figure 5: The expected result of the capacity test. At t0 flow 1 starts, at t1
flow 2 starts to be followed by flow 3 at t2. At t3 flow 1 stops. Notice how
the flows borrow capacity from each other.

30

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e

su
m

 o
f r

ec
ei

ve
d

ki
lo

by
te

s
(k

ilo
by

te
s)

Time (s)

Total
Flow 1
Flow 2
Flow 3

Figure 6: The results of the capacity test. Compare with the expected results
and notice how the shaper works in the expected way.

6.1.4 Results

The result of the test is shown in figure 6. If we compare with the expected
results we see that the configuration works in the expected way.

6.1.5 Discussion

At first the test were performed in the UML testbed. This did not work as
the hierarchical token bucket shaped the traffic at too low rates. The reason
of this phenomenon was not investigated further, but may have to do with
the clock skew effects a virtual machine may suffer from. This was suggested
from a conversation with Jamal Hadi at the networking development mailing
list. See Appendix E to view the conversation. Therefore the test were
conducted between two physical computers.

At first, the results, were unexpected as well. It looked like the total rate
exceeded the maximum of 300 kilobits per second with about one fourth.

31

After further investigation the reason of this turned out to be the following:
the test were conducted with UDP traffic, i.e with no delivery control. The
size of the sent packets were 2 kilobyte, but the maximum transferable unit
(MTU) between the two hosts were only 1540 bytes. Therefore, the packets
got truncated, and the rate miscalculated. According to the measurements
the rate was 390 kilobits per second when it was supposed to be 300 kilobits
per second. Our measurements where based on the assumption that the
packets where 2048 bytes, but the shaper shaped the packets on their real
size, which was 1540 bytes. By dividing the real packet size (1540 bytes)
with the assumed size (2048 bytes) and multiply with the measured rate we
should get the real rate of the shaper:

1540
2048

· 390 ≈ 293 kilobits / second

This is approximately the expected rate of the shaper.

6.2 TOS-based routing test

6.2.1 Motivation

This test was performed to test that routing based on the TOS-field instead of
the destination address works and to verify that the path can be reconfigured
during a session. If it is possible to route on the TOS-field, it should be
possible to route on the IPv6 flowlabel as well. That is what we would have
tested if the implementation had used the flowlabel instead of the TOS-field.

6.2.2 Method

This test used the UML environment. The topology is shown in figure 7.
The client (Cl) sends traffic to the target host D. All packets coming from
the client are marked by the host A, by setting the TOS value. The host A
is configured to route packets with the TOS-value set to 2 through host B,
and packets with the TOS-value set to 4 through host C. With tcpdump
the traffic is measured at the hosts A, B and C. A initially marks packets
from the client with TOS-field set to 2. After about 60 seconds A is modified
to mark the packets with the TOS-field set to 4. It this moment we should
notice a route switch. To parse the logs, from tcpdump, we used awk, sed
and grep. The formatted data was plotted with octave. A full description
of the commands and programs used is found in Appendix B.

32

A

B

C

D

Route 1

Route 2

Cl

Figure 7: The topology of the testbed.

The traffic is generated by the trgen program sending TCP packets de-
scribed in section 5.

6.2.3 Hypothesis

It is possible to route traffic with the TOS-field instead of the destination
address.

6.2.4 Results

The results are shown in figure 8. The figure shows how the total number of
received bytes increases constantly. It also shows that when the TOS flag is
switched at a time around 30 seconds, the traffic ceases to go through host B
and starts going through host C instead. It is worth noting the phenomenon
near origo of the graph. Here we see how the traffic rate is very high in the
beginning. The reason of this have not been investigated further but may
have to do with a send buffer in the client that fills up in the beginning of
the test. “Host C” curve shows the load in host C after the switch. It is not

33

0

100000

200000

300000

400000

500000

600000

700000

0 10 20 30 40 50 60 70 80

C
um

ul
at

iv
e

su
m

 o
f r

ec
ei

ve
d

by
te

s
(b

yt
es

)

Time (s)

Total
Host B
Host C

Figure 8: The results of the TOS-field routing test. The TOS value is
switched around the time 30 s.

a new flow that starts sending. That is why the phenomenon does not occur
in the “Host C” curve.

6.2.5 Discussion

The test shows how it is possible to use the TOS flag to route traffic. This
test was primary a test of concept that it is possible to use the TOS-field
to route traffic. If it is possible to route on the TOS-field there should be
possible to do the same with the flowlabel.

34

7 Conclusions

7.1 Overview

The implementation, proposed in this thesis, is one possible solution on how
to build the components needed in a net, in which resources are reserved
with a bandwidth market. The conclusions we may draw are the following:

• The components needed to implement a net, which resources are re-
served with a bandwidth market, are possible to implement with stan-
dard tools. These tools are iptables and iproute2.

• The project went too focused on details when trying to implement a
solution outside a simulation environment. Altering the Linux kernel
demands more resources and knowledge to be feasible.

• Linux offers a lot of possibilities when it comes to traffic control, filter-
ing, mangling and shaping. What these possibilities are is described in
chapter 4.

• In order to do the implementation with IPv6 and the flowlabel the IPv6
protocol stack needs to be extended with support for multiple routing
tables. Extensions to iptables and iproute2 is also needed to be able
to read and set the flowlabel.

7.2 Future work

Proposed work in the future would be to set up a simulator environment,
to test the algorithms needed to the bandwidth market. It would also be
interesting to investigate the possibility of putting the meta data (tokens
and switching info) in the packet payload instead of in the packet header.
This way one would not interfere with IP and the way its header fields are
used today. To make the model work as it is supposed to, implementation of
source routing capabilities is needed. This could be solved with MPLS [25].

35

8 Bibliography

References

[1] S. Deering, R. Hinden Internet Protocol, Version 6 (IPv6) Spec-
ification RFC 2460, Internet Engineering Task Force, Dec. 1994.
http://www.ietf.org/rfc/rfc2460.txt?number=2460

[2] Jeff Dike et. al. User Mode Linux, UML,
http://user-mode-linux.sourceforge.net

[3] R. Braden, ISI and D. Clark, MIT. Integrated Services in the Internet
Architecture: an Overview
http://www.ietf.org/rfc/rfc1633.txt?number=1633

[4] R. Braden, ISI, et. al. Resource ReSerVation Protocol (RSVP)
http://www.ietf.org/rfc/rfc2205.txt?number=2205

[5] S. Blake, Torrent Networking Technologies et al. An Architecture for Dif-
ferentiated Services, http://www.ietf.org/rfc/rfc2475.txt?number=2475

[6] W.Richard Stevens, TCP/IP Illustrated, Volume 1, The protocols,
Addison-Wesley

[7] P. Almquist Type of Service in the Internet Protocol Suite,
http://www.ietf.org/rfc/rfc1349.txt?number=1349

[8] C. Partridge Using the Flow Label Field in IPv6,
http://www.ietf.org/rfc/rfc1809.txt?number=1809

[9] Zhi-Li Zhang, Zhenhai Duan, Lixin Gao and Yiwei Thomas Hou, De-
coupling QoS Control from Core Routers: A Novel Bandwidth Broker
Architecture for Scalable Support of Guaranteed Services, Pages: 71 - 83
Series-Proceeding-Article, 2000 ACM Press.

[10] Internet Engineering Task Force,
http://www.ietf.org

[11] Klara Nahrstedt and Shigang Shen Coexistence of QoS and Best-Effort
in Proceedings of 10th IEEE Tyrrhenian International Workshop on
Digital Communications: Multimedia Communications, Ischia, Italy,
September 1998.

36

[12] Rusty Russell, Netfilter and iptables
http://www.netfilter.org/

[13] Christian Huitama 1998. IPv6 - The new Internet protocol (2nd editon)
Prentice Hall.

[14] Robert M. Hinden,IP next generation overview, Communica-
tions of the ACM, volume 39,number 6, 1996, ACM Press
http://doi.acm.org/10.1145/228503.228517

[15] L. Rasmusson and E. Aurell, 2001. A Price Dynamics in Bandwidth
Markets for Point-to-point Connections, SICS, Swedish Institute of
Computer Science. SICS-T-2001/21-SE

[16] Martin Devera Hierarchical Token Bucket,
http://luxik.cdi.cz/d̃evik/qos/htb/

[17] IPROUTE2 Utility Suite Howto,
http://www.linuxgrill.com/iproute2.doc.html

[18] TCPdump homepage,
http://www.tcpdump.org/

[19] Classless Inter-Domain Routing (CIDR) Overview,
http://public.pacbell.net/dedicated/cidr.html

[20] Linux Advanced Routing & Traffic Control HOWTO,
http://lartc.org/howto/

[21] Distributed Benchmarking System manual,
http://www.kusa.ac.jp/ỹukio-m/dbs/dbs man.html

[22] Octave homepage,
http://www.octave.org/

[23] SED - the Stream Editor,
http://www.math.fu-berlin.de/g̃uckes/sed/

[24] The AWK programming language,
http://cm.bell-labs.com/cm/cs/awkbook/index.html

37

[25] MPLS tutorial,
http://www.nanog.org/mtg-9905/ppt/mpls/

[26] Donald Ferguson, Yechiam Yemini, and Christos Nikolaou, Microeco-
nomic Algorithms for Load Balancing in Distributed Computer Systems,
Proc. of the 8th Int. Conf. on Distributed Computer System, 1988.

38

Appendix A - Setting up the virtual network

This section describes how to setup up the virtual testbed using UML re-
ferred to in chapter 5. All the commands listed are run in the BASH shell.
Download the needed files:

> wget http ://www. ke rne l . org /pub/ l inux \
/ ke rne l /v2 .4/ l inux −2 .4 . 18 . ta r . bz2
> wget http :// t e l i a . d l . s ou r c e f o r g e . net \
/ s ou r c e f o r g e /user−mode−l i nux /uml−patch −2.4.18−47. bz2
> wget http :// t e l i a . d l . s ou r c e f o r g e . net \
/ s ou r c e f o r g e /user−mode−l i nux \
/ um l u t i l i t i e s 2 0 0 2 0 7 2 9 . ta r . bz2
> wget http :// t e l i a . d l . s ou r c e f o r g e . net \
/ s ou r c e f o r g e /user−mode−l i nux \
/ r o o t f s . rh−7.2− f u l l . p r i s t i n e . 20020312 . bz2
> wget http :// lux i k . cd i . cz /˜ devik /qos\
/htb/v3/htb3 .6−020525. tgz
> wget http ://www. s i c s . se /˜ g ab r i e l / kerne l−c on f i g
> wget http ://www. s i c s . se /˜ g ab r i e l / t rgen . ta r . gz
> wget http ://www. s i c s . se /˜ g ab r i e l / env sk e l . t a r . gz
> wget http ://www. kusa . ac . jp /˜ yukio−m/dbs\
/ so f tware1 . 2 . 0 beta1 /dbs −1.2 .0 beta1 . ta r . gz
> wget http ://www. kusa . ac . jp /˜ yukio−m/dbs\
/ so f tware1 . 2 . 0 beta1 /dbs −1.2 .0 beta1−s r c . ta r . gz

Put these files in the same directory, called $WORKINGDIR. Unpack the
linux kernel file and the root filesystem. Patch the kernel with the HTB and
UML patches. Then compile UML:

> export $WORKINGDIR=‘pwd ‘
> ta r j x f l inux −2 .4 . 18 . ta r . bz2
> bunzip2 r o o t f s . rh−7.2− f u l l . p r i s t i n e . 20020312 . bz2
> ta r zx f htb3 .6−020525. tgz
> ln − s l i nux l inux −2.4
> patch −p0 htb3 . 6 2 . 4 . 1 7 . d i f f
> cd $WORKINGDIR/ l inux
> cat . . / uml−patch −2.4.18−47. bz2 | bunzip2 − | patch −p1
> cp . . / kerne l−c on f i g . c on f i g
> make l inux ARCH=um && make modules ARCH=um

39

Make a directory where to mount the root root filesystem. This may be done
in the “linux” directory:

> mkdir tmp
Next t h ing must be done as roo t
> mount . . / r o o t f s . rh−7.2− f u l l .\
p r i s t i n e .20020312 tmp −o loop
> make modu l e s i n s t a l l ARCH=um \
INSTALL MOD PATH=‘pwd‘/ tmp

Copy the patched “tc” command to the root filesystem:

> cp . . / tc tmp/ sb in / tc

Unpack and compile the DBS package:

> cd $WORKINGDIR
> ta r zx f dbs −1.2 .0 beta1 . ta r . gz
> ta r zx f dbs −1.2 .0 beta1−s r c . ta r . gz
> cd $WORKINGDIR/dbs/ s r c
> make
> cp dbsd $WORKINGDIR/ l inux /tmp/ sb in

Unpack the trgen-package and unmount the root filesystem:

> cd $WORKINGDIR
> ta r zx f t rgen . ta r . gz
> cp trgen / t r g en s e r v e r l i nux /tmp/ sb in
> umount l i nux /tmp

Compile and install the UML utilities:

> ta r j x f um l u t i l i t i e s 2 0 0 2 0 7 2 9 . ta r . bz2
> cd t o o l s
> make && make i n s t a l l

Unpack the environment skeleton and start the environment:

> cd $WORKINGDIR
> ta r zx f env sk e l . t a r . gz
> ./ s t a r t env

A lot of windows will be opened. Look for the ones named “Host 1”, “Host
2”, “Host 3” and “Host 4”. When they have loaded log in to each of one
of them as “root” with password “root” Make a directory in all the UML-
instances called /tmp/host and make a file called “mounthost” with the
following contents:

40

#!/ bin / bash
mount none /mnt/ host − t h o s t f s

and make the file runnable. Also do a symlink in all the instances like this:

> ln − s /mnt/ host /$WORKINGDIR/host1 / setup

Where “host1” is the name of the host you are currently in. Then you only
have to type:

> ./ setup

in all the instances to setup the networking so it works like in figure 7.

41

Appendix B - Commands to set up the test

cases in the testing chapter

Test 1 - Test on capacity

The setup of the HTB is shown in the figure 4. There we see four classes
named 1:1, 1:10, 1:11 and 1:12. We see that 1:1 is parent to the others.
Child classes may always borrow from each other, but they may not exceed
the max capacity of their parent, or the max capacity of themselves. In this
case, this means that all three child classes may borrow up to 200 kilobits,
using a total of 300 kilobits, as long a no other class is using its capacity.

The setup consists of two hosts: a sender and a receiver. The hierarchical
token bucket was applied on the output (eth0) of the sending host by the
following commands. They were run in the BASH shell. For information of
what these commands do, please refer to the section 4 where similar examples
are shown and discussed.

>tc qd i s c add dev eth0 root handle 1 : htb d e f au l t 12
>tc c l a s s add dev eth0 parent 1 : c l a s s i d 1 : 1 htb \\
r a t e 300 kb i t c e i l 300 kb i t
>tc c l a s s add dev eth0 parent 1 : 1 c l a s s i d 1 : 1 0 htb \\
r a t e 100 kb i t c e i l 300 kb i t
>tc c l a s s add dev eth0 parent 1 : 1 c l a s s i d 1 : 1 1 htb \\
r a t e 100 kb i t c e i l 300 kb i t
>tc c l a s s add dev eth0 parent 1 : 1 c l a s s i d 1 : 1 2 htb \\
r a t e 100 kb i t c e i l 300 kb i t

We also need to set up filters to redirect the two flows to the correct class
in the hierarchy:

>U32=” tc f i l t e r add dev eth0 pro to co l ip parent 1 : 0 \\
pr i o 1 u32”
>$U32 match ip dport 4711 0 x f f f f f l ow id 1 : 1 0
>$U32 match ip dport 4712 0 x f f f f f l ow id 1 : 1 1
>$U32 match ip dport 4713 0 x f f f f f l ow id 1 : 1 2

This makes the traffic to the ports 4711, 4712 and 4713 go to the different
classes in the HTB respectively. In order to generate the traffic we want to
measure we use DBS, using file test1.cmd. See Appendix F: It makes DBS
send UDP packets with the size of 1024 bytes 100 times a second.

42

The traffic were measured by running tcpdump at the input (eth0) of
the receiver:

> tcpdump − i eth0 −w l o g f i l e

To sort out the different flows we run tcpdump again on the generated
logfile, together with awk:

#Tra f f i c on the por t 4711
> /usr / sb in /tcpdump − t t − r l o g f i l e ” dst port 4711” | \ \
awk { ’ print $1 ”\ t ” $6 ’} > 4711 . frm
#Tra f f i c on the por t 4712
> /usr / sb in /tcpdump − t t − r l o g f i l e ” dst port 4712” | \ \
awk { ’ print $1 ”\ t ” $6 ’} > 4712 . frm
#Tra f f i c on the por t 4712
> /usr / sb in /tcpdump − t t − r l o g f i l e ” dst port 4713” | \ \
awk { ’ print $1 ”\ t ” $6 ’} > 4713 . frm
#Total t r a f f i c on the por t s 4711 , 4712 and 4713
> /usr / sb in /tcpdump − t t − r t e s t 3 . dbs . 1 0 2 4 .dump \\
” dst port 4 7 1 1 | | dst port 4 7 1 2 | | dst port 4713” | \ \
awk { ’ print $1 ”\ t ” $6 ’} > t o t a l . frm

These operations render four files which are suited to plot in octave.

Sta r t oc tave
> octave
> a=load (4711 . frm) ;
> b=load (4712 . frm) ;
> c=load (4713 . frm) ;
> d=load (t o t a l . frm) ;
> os=a (1 , 1)
> x l ab e l (”Time (s) ”)
> y l ab e l (”Cumulative sum of r e c e i v ed bytes (bytes) ”)
> p lo t (a (: ,1) − os , cumsum(a (: , 2)) , \ \

b(: ,1) − os , cumsum(b (: , 2)) , \ \
c (: ,1) − os , cumsum(c (: , 2)) , \ \
d(: ,1) − os , cumsum(d (: , 2))) ;

These operations render the diagram shown in figure 6.

Test 2 - Test on capacity

First we set up iptables to mark all packets from the client (Cl) with IP
address 192.168.5.5, by setting the TOS value to 2 at host A:

43

#Host A
> i p t a b l e s − t mangle −A PREROUTING − s \
192 .168 .5 .5 − j TOS −−set−to s 2

Then we set up host A to route traffic differently, depending on the TOS
value. For a description on what these commands do please refer to section
4 where there are similar examples.

> echo 201 r t 1 >> / e tc / ip route2 / r t t a b l e s
> echo 202 r t 2 >> / e tc / ip route2 / r t t a b l e s
> ip r u l e add tos 2 tab l e r t 1
> ip r u l e add tos 4 tab l e r t 2
> ip route add de f au l t v ia 1 9 2 . 1 6 8 . 1 . 2 dev eth1 tab l e r t 1
> ip route add de f au l t v ia 1 9 2 . 1 6 8 . 3 . 3 dev eth2 tab l e r t 2

First we create two routing tables called rt 1 and rt 2. Then we add a rule
that sends all packets with TOS value 2 to rt 1 and those with TOS value
4 to rt 4. Then we set the default gateway to host B (with IP address
192.168.1.2) in rt 1 and host C (with IP address 192.168.3.3) in rt 2. Then
we set up tcpdump on host A, B and C to record the traffic through the
hosts:

Host A
> tcpdump − i eth0 −w hostA .dump
Host B
> tcpdump − i eth0 −w hostB .dump
Host C
> tcpdump − i eth0 −w hostC .dump

Then we start the trgen, traffic generator discussed in section 5.

Host D (the s e r v e r p l u s the por t to l i s t e n to)
> t r g e n s e r v e r 4711
Cl i en t (Cl)
the c l i e n t program , the r e c e i v i n g hos t
the por t and the f i l e to send
> t r g e n c l i e n t 1 9 2 . 1 6 8 . 2 . 4 4 7 1 1 t e s t

The file “test” is an empty file with the size of 5 MB generated in the following
way with dd:

> dd i f=/dev/ zero o f =./ t e s t bs=1024 count=5000

During the time the client sends the file, the following command is issued
at host A in order to switch the route.:

44

> i p t a b l e s −F − t mangle ; i p t a b l e s − t mangle \\
−A PREROUTING − j TOS −−set−to s 4

This command first flushes the old rule in the mangle table, and then telling
iptables to set the TOS value to 4 instead of 2. The files generated with
tcpdump were parsed:

> tcpdump − t t − r hostA .dump \\
” dst port 4711 && dst host 1 9 2 . 1 6 8 . 2 . 4 ” | \ \
awk { ’ print $1 $6 ’ } | sed ’ s / [() :] / / g ’ | \ \
grep −v ack > hostA . frm
> tcpdump − t t − r hostB .dump \\
” dst port 4711 && dst host 1 9 2 . 1 6 8 . 2 . 4 ” | \ \
awk { ’ print $1 $6 ’ } | sed ’ s / [() :] / / g ’ | \ \
grep −v ack > hostB . frm
> tcpdump − t t − r hostC .dump \\
” dst port 4711 && dst host 1 9 2 . 1 6 8 . 2 . 4 ” | \ \
awk { ’ print $1 $6 ’ } | sed ’ s / [() :] / / g ’ | \ \
grep −v ack > hostC . frm

Then we plot the formatted data with octave:

Sta r t oc tave
> octave
> a=load (‘ ‘ HostA . frm ’ ’) ;
> b=load (‘ ‘ HostB . frm ’ ’) ;
> c=load (‘ ‘ HostC . frm ’ ’) ;
> os=a (1 , 1)
> x l ab e l (”Time (s) ”)
> y l ab e l (”Cumulative sum of r e c e i v ed bytes (bytes) ”)
> p lo t (a (: ,1) − os , cumsum(a (: , 3)) , \ \
b(: ,1) − os , cumsum(b (: , 3)) , \ \
c (: ,1) − os , cumsum(c (: , 3))) ;

These commands render the graph in figure 8.

45

Appendix C - The trgen source code

The source code to the trgen server is written in C:

#include < s t d i o . h>
#include < s t d l i b . h>
#include <error . h>
#include < sys / types . h>
#include < sys / socke t . h>
#include <ne t i n e t / in . h>
#include <pthread . h>
#include <time . h>
#define MAXTHREADS 10
#define BACKLOG 10
#define REPORT INTERVAL 100

int hand l e s e s s i on (int new fd ,
short port ,
int l a s t conn){

char buf [1 0 0 0 0] ;
int f i l e s i z e , i , r e t v a l ;

s p r i n t f (buf , ” l o g %d.%d” , port , l a s t conn) ;

r e t v a l = recv (new fd , buf , s t r l e n (buf) , 0) ;
i f (r e t v a l <= 0){

goto e x i t ;
} else {

p r i n t f (”%d : Got: % s \n” , port , buf) ;
f f l u s h (stdout) ;
f i l e s i z e = a t o i (buf) ;

for (i = 1 ; i <= f i l e s i z e ; i++){
r e t v a l = recv (new fd , buf , 1 , 0) ;
i f (r e t v a l <= 0){

goto e x i t ;
}
i f (i % (1024 ∗ REPORT INTERVAL) == 0){

p r i n t f (”%d: %d k i l o by t e s r e c e i v ed \n” ,
port , i / 1 0 2 4) ;
f f l u s h (stdout) ;

46

}
}

}

e x i t :
i f (r e t v a l < 0)

f p r i n t f (s tde r r , ” ! ! !ERROR! ! ! \ n”) ;
else i f (r e t v a l == 0)

f p r i n t f (s tde r r , ”Closed connect ion \n”) ;
c l o s e (new fd) ;
return 0 ;

}

void ∗ s t a r t l i s t e n (void ∗ a r g r e f){
int i , new fd , s i n s i z e ;
int r e tva l , sockfd , l a s t conn = 0 ;
unsigned short port ;
struct sockaddr in my addr , t h e i r add r ;

port = ∗ ((unsigned long ∗) a r g r e f) ;
p r i n t f (” L i s t en ing on port : %d\n” , port) ;

sock fd = socket (AF INET , SOCK STREAM, 0) ;
i f (! sock fd)

p th r ead ex i t (0) ;

my addr . s i n f am i l y = AF INET ;
my addr . s i n p o r t = htons (port) ;
my addr . s i n addr . s addr = INADDR ANY;
memset(&(my addr . s i n z e r o) , ’ \0 ’ , 8) ;

bind (sockfd ,
(struct sockaddr ∗)&my addr ,
s izeof (struct sockaddr)) ;

i f (l i s t e n (sockfd , BACKLOG) == −1)
p th r ead ex i t (0) ;

s i n s i z e = s izeof (struct sockaddr in) ;
new fd = 0 ;

47

while ((new fd = accept (sockfd ,
(struct sockaddr ∗)& the i r addr ,
&s i n s i z e))){

hand l e s e s s i on (new fd , port , l a s t conn++);
p r i n t f (” Se s s i on f i nn i s h ed !\n”) ;

}

p r i n t f (”%d : No I d i e !\n” , port) ;

return ;
}

int main (int argc , char ∗ argv []) {
int i ;
int a r s i z e = MAXTHREADS < (argc − 1) ?
MAXTHREADS : (argc − 1) ;
unsigned short por t s [a r s i z e] ;
p thread t threads [a r s i z e] ;

for (i = 0 ; i < a r s i z e ; i++){
por t s [i] = (unsigned short) a t o i (argv [i + 1]) ;

}

for (i = 0 ; i < a r s i z e ; i++){
pthr ead c r ea t e (&threads [i] ,
0 , s t a r t l i s t e n ,
&(por t s [i])) ;

}

for (i = 0 ; i < a r s i z e ; i++){
pth r ead j o i n (threads [i] , 0) ;

}

return 0 ;
}

The client trgen client was written in Ruby:

#!/ usr / b in / ruby
r e qu i r e ’ socket ’

48

c l a s s MeasureClient
de f i n i t i a l i z e (aHost , aServerPort , aFilename)

@host = aHost
@port = aServerPort
@fi lename = aFilename

end

de f s endF i l e
puts ” Tr i e s to open #{@host } . . . ”
begin
socke t = TCPSocket . open (@host , @port)

f i l e = F i l e . open (@filename , ” r ”)
socke t . puts (F i l e . s i z e (@fi lename) . t o s)
puts ”Sending f i l e ” +
@filename + ” on port #{@port } . . . ”
while t rue

socke t . putc (f i l e . readchar)
end

r e s cue EOFError
f i l e . c l o s e un l e s s f i l e . n i l ?
socke t . c l o s e un l e s s socke t . n i l ?

end
end
end

host = (ARGV[0] | | ’ l o c a l ho s t ’)
s e r v e rpo r t = (ARGV[1] | | 4 7 1 1) . t o i
f i l ename = (ARGV[2] | | 1) . t o s

c l i e n t = MeasureClient . new(host , s e rve rpor t , f i l ename)
c l i e n t . s endF i l e

49

Appendix D - IPv6 Background

In the beginning of the project, IPv6 [1] and the flowlabel [8] were investi-
gated. This section was written during this period. Even if IPv6 was not
used in the final implementation, the section may still be of interest to the
reader.

Historical review

The protocol used for packet switched traffic on the Internet today, dates back
to 1978. It is called IPv4 and is the backbone of the Internet. By making
computers throughout the whole world addressable, it has made techniques
like the Web, Email and file sharing possible.

Ten years ago, people around the world stated that the IP addresses would
run out. The choice of 32 bits addresses may have been good in 1978, but
the address space was proving to be too short. The system with class A, B
and C addresses, where address spaces of 24 bits where distributed to single
companies (as happened when a company booked a class A series), did not
turn out to be as flexible as needed. Even if 32 bits make 4.2 billions of hosts
addressable, it was not enough when a great deal of addresses were already
bound to certain universities and companies.

This problem was addressed with Classless Inter Domain Routing [19].
This scheme abandons the fixed class prefixes with prefixes with dynamical
length. This gives us a number of levels of network sizes instead if three fixed
which makes the network addressing more flexible. This way less addresses
get tied up and unused.

Even if the limited address space was a solvable problem it was not the
only one. Twenty years of Internet usage had taught the people of the Inter-
net Society what was necessary in an Internet Protocol, and what was not.
The IPv4 header had fields in it which were scarcely used, as well as an op-
tion field with variable length, which made the header harder to parse. Since
any optional treatment of a packet makes the routing process slower, the
router designers tended to streamline their routers for non optional packets.
The code dealing with the few packets with options was not trimmed at all
which imposed a performance penalty. The network programmers noticed
this penalty, which led them not to use the option field, which in turn made
the router designers even lesser motivated to trim the option handling code.
Twenty years later hardly any one used the options offered by IPv4. If any

50

options were to be supported, in the new protocol, these options were not to
be punished or, in turn, punish standard traffic.

One feature of IPv4, that in time turned out to be less than great was
the automatic fragmentation of packets. Whenever a IPv4 packet, with size
S, reached a link with a maximum transmittable unit (MTU) smaller than
S, the router fragmented the packet automatically. This might seem like a
good idea but that is not the case. A successful send of a packet requires all
fragments to be delivered. If one gets dropped, the whole packet has to be
resent, which leads to poor link performance and utilization.

Another issue was the header checksum, present in the IPv4 header. The
checksum was to guarantee that the IP header was correct. Since most
protocols using IP (i.e TCP and UDP) have their own checksum field, the
risk of delivering an undetected, erroneous packet is minimal. If something
goes wrong the packet may get delivered to the wrong host. This host will
drop the packets since it does not know what to do with it. The higher level
protocols will detect the missing packet and deal with it just like any dropped
packet.

Features like security and authentication were getting focus in the Inter-
net debate. It would be easier if these features were implemented in the IP
level instead of in higher levels. If the new Internet Protocol (which early got
the acronym IPng as in “Internet Protocol Next Generation”) also supported
new techniques like QoS and flow management, development and usage of
Internet applications would be even easier.

All these wishes and thoughts together formed a draft for a Request For
Comments (RFC) by Christian Huitama[13] in 1992. Two years of disorder
followed as the proposals of how the new protocol ought to be designed were
many. One thing that the people of the Internet Community thought in
common was that if a transition to the new protocol were to be feasible, the
two protocols must be able to coexist. The most disputes were about what
address system (size and grouping) and routing strategy to be used. In 1994
the IPng directorate published their recommendation, which suggested using
a proposal called SIPP (Simple IP Plus) as the basis of the new Internet
protocol. IPng became an evolvement of SIPP, and the Internet Community
later renamed IPng to IPv6 which is the name used today.

51

The design of the IPv6

To conclude what has been stated earlier, IPv6 was designed with the fol-
lowing aspects and thoughts in mind:

• Preserve the simplicity that made IPv4 successful.

• Devise the mechanisms for dealing with optional behavior so they not
get in the way of the non optional ones.

• Assign a constant size to the IP header in order to make parsing and
packet handling easier.

• Get rid of superfluous features, like link wise fragmentation and header
checksums.

• Incorporate features that would gain usability by being implemented
on IP level, such as security and encryption.

In order to fulfill these requirements, the header had to be redesigned. The
only field left at the same position as in IPv4 is the version field composed
by the first four bits. The rest are moved elsewhere, removed or renamed.

Even if the variable length property of the options field was unwanted,
the ability to describe optional treatment was not. The functionality is there
but solved in a more elegant manner, with extension headers. This means
that wanted options, and information, is appended to the packet as extra
headers between the original IP header and the data payload. Every header
has a field called “Next header” describing if and what type of extension
header that follows the current one. This makes parsing optional headers
only needed at those routers where it is appropriate.

The header format

The header format of the IPv6 header is shown in figure 9. First there is
the version field. From the beginning IPv4 and IPv6 was supposed to be run
on the same wires using the same encapsulation. The intention was that the
communicating program would read the first 4 bits and decide what version
of IP it was running. The evolution of IPv6 networks has shown us that this
is not the case. Packets from IPv4 and IPv6 are very often de multiplexed
at the media level, which means that the protocol distinction is made in the
Ethernet header (or whatever hardware protocol used) instead.

52

Class 8Version 4 Flowlabel 20
Payload Length 16 Next Header 8 Hop Limit 8

Source Address 128

Destination Address 128

Figure 9: The IPv6 header with field sizes in bits

The second field is the class field. In the first version of the IPv6 RFC,
the class field was called priority, and there were only 4 bits representing
16 levels of priority. The original idea was that this priority would give
the real time mechanism enough granularity to express different types of
traffic. As the research and experience on real time traffic gained ground,
the designers abandoned the priority concept and enlarged the field to 8 bits
(taking four bits from the Flowlabel field) calling it class. The flowlabel field
gives the network programmer means to distinguish different flows through
the network. The routers may use the flowlabel to set up cached routing
entries or other optimizations. There are specifications[8] describing how the
flowlabel is supposed to be interpreted.

In IPv4 there was a field called total length, which stated the size of
the packet, IP header and payload added together. In IPv6 this field has
changed name to payload length, because the header length of IPv6 is con-
stant, therefore making it pointless to include it into the length. The next
header field will be described more thoroughly in the next section, but in
short it describes the type of the next appended extension header if any.

The hop limit has changed name and meaning from the time-to-live (TTL)
in IPv4. Hop limit simply describes the maximum number of hops the packet
is allowed to do, in order to prevent short circuit routes make stale packets get
stuck in loops. The time-to-live concept did not explicitly decide how many
hops the packet could do but the time the packet had to live before it was
dropped. This time was calculated by taking theoretical analysis of transport
protocols into account. The value never got anything but an approximation
which is why the designers of IPv6 choose to give the field a more exact name
and value.

53

Next header = TCP
IPv6 header

IPv6 header

TCP Header + Data

Next header = Routing

Routing Header

Next header = TCP

TCP Header +
Data

Figure 10: A chain of extension headers.

The extension headers

The original idea with IPv6 was not only to make it a worthy successor to
IPv4, but to keep it simple as well. In order to meet the demands of future
techniques the designers had to think twice to match this simplicity with
enhanced functionality. Experience told them that if functionality in any
way punished standard traffic, it would soon be marginalized and eventually
not used at all. This is why the extension headers were invented. Between
the IP header and the payload, an arbitrary number of extension headers
may be inserted. Every extension header has a type and adds a certain type
of special case information to the packet. For instance, there are routing
headers and fragmentation headers. In every extension header (as well as
the original IP header) there is a field called “next header” which tells the
router how to interpret the next header, in a linked list fashion as shown in
figure 10. The major advantage of having extension headers arranged this
way is that options of no interest may easily be skipped by starting reading
the payload after the last header which next header field says “TCP” (or
whatever protocol carrying the payload). By turning the options field into
a variable number of extension headers, IPv6 provides a more structured
framework for dealing with optional data.

The current IPv6 specification defines six extension headers:

• The Hop-by-hop options header is used to pass additional information
to all routers in the path, mostly for debugging or management. Only
routers wanting the information inspects the Hop-by-hop header, and
the information may be anything.

• The routing header gives a framework for source routing a packet. The
routing header carries a list of intermediate addresses through which

54

the packet will travel.

• The fragment header adds fragmentation functionality to the protocol.
This fragmentation is not, as in IPv4, link wise but of source to des-
tination type which means that the intermediate nodes do not know
they are sending fragmented packets. Every fragment header carries an
id, which makes reassembling of the packet at the destination possible.

• The authentication header makes, as the name implies, authentication
at IP level feasible.

• The encrypted security payload is used to encrypt the payload, in order
to offer safe connections between two hosts.

• The destination options header is a general header for passing options to
the destination node. It is of the same type as the Hop-by-hop header,
but with the difference that intermediate routers will not inspect it.

The IPv6 stack in Linux

During the work with analyzing the IPv6 stack, the figure 11 was made. In
this figure we see the name of the functions, the hooks used by iptables and
were packets enter and leave the IPv6 stack. The labels starting with ip6 are
the name of the functions. The positions where there are two lines labeled
with capital letters show where the iptables hooks are situated. At a hook
an iptables chain may be attached. Examples of hooks are PRE ROUTING
or FORWARD. The squares show the entrances and exits of the IPv6 stack.
At the top, there is INPUT, which is where all packets coming from the
net, this host is connected to, enter the stack. The two SOCKETHANDLER
squares show where packets, enter and exit user space. That is, where packets
that are destined for this host exit the stack or packets sent from this host
enter it. The squares TRASH show where the packet gets dropped if the
host decides to discard it. The OUTPUT square denotes where packets exit
the stack to enter the net.

55

TRASH

TRASH

INPUT

OUTPUT

SOCKETHANDLER
(userspace)

SOCKETHANDLER
(userspace)

Packet handler

ip6_rcv

ip6_rcv_finish

ip6_route_input

ip6_input

LOCAL_IN

PRE_ROUTING

ip6_input_finish

ip6_forward

FORWARD

ip6_forward_finish

ip6_fw_reject/discard

LOCAL_OUT

ip6_maybe_reroute

route_me_harder

ip6_route_output

ip6_fw_reject/discard ip6_output

POST_ROUTING

ip6_output_finish

ip6_xmit

XXXX: a hook where iptables chains may be attached

ip6_xxx: a function call

Figure 11: Overview of the IPv6 stack in the Linux kernel.

56

Appendix E - Dialog on the TBF timing prob-

lems and UML

This is the mail that was sent to the networking development mailing list
(netdev@oss.sgi.com):

Hel lo !

I use the TBF f i l t e r with good r e s u l t s
on my computer . When I set a ra t e
with the f i l t e r the t r a f f i c get shaped
acco rd ing ly .

I have set up a couple o f UML in s t an c e s
(user−mode−l i nux) as a network
to t e s t d i f f e r e n t QoS s t r a t e g i e s .
My problem i s that the TBF c a l c u l a t e s
the wrong r a t e s . An UML ins tance may
get in t e r rup t ed j u s t l i k e any other
program . Does the t iming code in
TBF presume that the ke rne l wont be
inte r rupted , and t h e r e f o r e gene ra t e s
the wrong r a t e s ?

Regards ,

Gabr ie l Paues

This is the answer that Jamal Hadi (hadi@cyberus.ca) sent:

UML w i l l never work we l l . The i s s u e i s
r e l a t e d to the t imer e f f e c t s
in UML. I b e l i e v e i t s more o f a c l o ck
skew and inaccuracy than TBF making
assumptions .

cheers ,
jamal

57

Appendix F - The test1.cmd file

This file was used in the capacity test as input to DBS to generate the traffic.
For a description of the file format please refer to section 5 and [21].

{
#Define the sender .
sender {
hostname = borrow ; # The sending hos t
port = 4711 ; # The sending por t
mem align = 2048 ;
The send pat tern , which says t ha t we w i l l send
messages 1024 by t e s wide every 0 . 0 1 second .
pattern {1024 , 1024 , 0 . 0 1 , 0 .0}
}
r e c e i v e r {
hostname = pets ;
port = 4711;
mem align = 2048 ;
The r e c e i v i n g bu f f e r , s e t to very l a r g e
to ensure t ha t a l l messages w i l l be r e c e i v ed
pattern {10000 , 4096 , 0 . 0 , 0 .0}
}
f i l e = data/ te s t1 udp 4711 ;
p ro to co l = UDP;
#Sta r t sending at the time 0 . 0 s
s t a r t t ime = 0 .0 ;
#Stop sending at the time 30 . 0 s
end time = 30 .0 ;
}
{
sender {
hostname = borrow ;
port = 4712;
mem align = 2048 ;
pattern {1024 , 1024 , 0 . 0 1 , 0 .0}
}
r e c e i v e r {
hostname = pets ;
port = 4712;
mem align = 2048 ;

58

pattern {10000 , 4096 , 0 . 0 , 0 .0}
}
f i l e = data/ te s t1 udp 4712 ;
p ro to co l = UDP;
s t a r t t ime = 10 .0 ;
end time = 35 .0 ;
}
{
sender {
hostname = borrow ;
port = 4713;
mem align = 2048 ;
pattern {1024 , 1024 , 0 . 01 , 0 . 0}
{
hostname = pets ;
port = 4713;
mem align = 2048 ;
pattern {10000 , 4096 , 0 . 0 , 0 . 0}
}
f i l e = data/ te s t1 udp 4713 ;
p ro to co l = UDP;
s t a r t t ime = 20 .0 ;
end time = 35 .0 ;
}

59

Appendix E - Description on how to write the

flowlabel match module for iptables

These are the steps that have to be done to write a new iptables module.
This example describes how to write a flowlabel match module, and other
modules are made in a similar way. The things that needs to be done are:

• Write a kernel module that defines how the module will match on the
flowlabel in the IPv6 header.

• Write a user-mode iptables library that defines how the command line
should be interpreted in order to setup the module with the iptables
user-mode tool.

To write the kernel-module an existing iptables module was used as
starting point: ip6t mark. All commands are run from the root of the Linux
kernel source code tree using the BASH shell:

> cp net / ipv6 / n e t f i l t e r / ip6t mark . c \
net / ipv6 / n e t f i l t e r / i p 6 t f l ow l a b e l . c
> cp inc lude / l i nux / n e t f i l t e r i p v 6 / ip6t mark . h \
i n c lude / l i nux / n e t f i l t e r i p v 6 / i p 6 t f l ow l a b e l . h

Then we have to alter the Makefile and the Config.in in net/ipv6/netfilter.
Under the line

obj−$ (CONFIG IP6 NF MATCH MARK) += ip6t mark . o

in net/ipv6/netfilter/Makefile add the line:

obj−$ (CONFIG IP6 NF MATCH FLOWLABEL) += i p 6 t f l ow l a b e l . o

In net/ipv6/netfilter/Config.in search for the line:

d e p t r i s t a t e ’ n e t f i l t e r MARK match \
support ’ CONFIG IP6 NF MATCH MARK $CONFIG IP6 NF IPTABLES

and add the line

d e p t r i s t a t e ’ n e t f i l t e r FLOWLABEL \
match support ’ CONFIG IP6 NF MATCH FLOWLABEL \
$CONFIG IP6 NF IPTABLES

underneath. Now we have to alter the files net/ipv6/netfilter/ip6t flowlabel.c
and include/linux/netfilter ipv6/ip6t flowlabel.h to suit our needs. First go

60

to include/linux/netfilter ipv6/ip6t flowlabel.h and do a search and replace
from “mark” to “flowlabel” in it. Then you go to the file ip6t flowlabel.c in
net/ipv6/netfilter/ and do a search and replace there as well. Here we need
to fill in the code that actually matches the flowlabel in the IPv6 header.
The function “match” should be changed from this:

stat ic int
match (const struct s k bu f f ∗ skb ,

const struct ne t dev i c e ∗ in ,
const struct ne t dev i c e ∗ out ,
const void ∗ matchinfo ,
int o f f s e t ,
const void ∗ hdr ,
u i n t 1 6 t datalen ,
int ∗ hotdrop)

{
const struct i p6 t mark in f o
∗ i n f o = matchinfo ;

return ((skb−>nfmark & in fo−>mask)
== in fo−>mark) ˆ in fo−>i n v e r t ;

}

to this:

stat ic int
match (const struct s k bu f f ∗ skb ,

const struct ne t dev i c e ∗ in ,
const struct ne t dev i c e ∗ out ,
const void ∗ matchinfo ,
int o f f s e t ,
const void ∗ hdr ,
u i n t 1 6 t datalen ,
int ∗ hotdrop)

{
const struct i p 6 t f l o w l a b e l i n f o
∗ i n f o = matchinfo ;
u32 ∗ f l ow l b l ;
u32 tmp , tmp2 ;
f l ow l b l = (u32 ∗) (skb−>nh . ipv6h) ;
tmp = ntohl (∗ f l ow l b l) ;
tmp2 = tmp & 0x000FFFFF ;

61

return ((tmp2 & in fo−>mask)
== in fo−>f l ow l a b e l)
ˆ in fo−>i n v e r t ;

}

This is what needs to be done to make the kernel module. Now we have
to make a user-mode library to help iptables parse the command line when
we setup our module. This is done by getting the source code to iptables.
All the following commands are run in the root of the iptables source code
tree using the BASH shell. First we copy the mark modules library file to
use as template:

> cp ex t en s i on s / l i b ip6 t mark . c \
ex t en s i on s / l i b i p 6 t f l o w l a b e l . c

and do a search and replace from “mark” to “flowlabel” in extensions/li-
bip6t flowlabel.c. The only thing left to do is to edit the extensions/Makefile
and change the line:

PF6 EXT SLIB:= tcp udp icmpv6 standard MARK mark

to

PF6 EXT SLIB:= tcp udp icmpv6 standard MARK mark f l ow l a b e l

Then you run:

> make KERNEL DIR=<wher e you r ke rne l i s >

to compile the match module. Then you have to copy the library extension-
s/libip6t flowlabel.so where the iptables module libraries are. On Red Hat
this is in the directory /lib/iptables. You also have to copy the iptables and
ip6tables to the correct places in your path:

> cp i p t a b l e s ‘ which ip t ab l e s ‘
> cp i p 6 t ab l e s ‘ which ip6 tab l e s ‘

Now you should be able to add a iptables rule with the flowlabel like this:

> i p 6 t ab l e s − t mangle −A PREROUTING \
−m f l ow l a b e l −−value 2 − j LOG

to log all incoming packets with the flowlabel set to 2. All the files are found
in the environment directory under in the iptbles-1.2.5 directory as well as
the linux-2.4.18-47 directory.

62

