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Abstract

Personalised information access systems use historical feedback data, such as
implicit and explicit ratings for textual documents and other items, to better
locate the right or relevant information for individual users.

Three topics in personalised information access are addressed: learning from
relevance feedback and document categorisation by the use of concept-based text
representations, the need for scalable and accurate algorithms for collaborative
filtering, and the integration of textual and collaborative information access.

Two concept-based representations are investigated that both map a sparse
high-dimensional term space to a dense concept space. For learning from rele-
vance feedback, it is found that the representation combined with the proposed
learning algorithm can improve the results of novel queries, when queries are
more elaborate than a few terms. For document categorisation, the representa-
tion is found useful as a complement to a traditional word-based one.

For collaborative filtering, two algorithms are proposed: the first for the case
where there are a large number of users and items, and the second for use in
a mobile device. It is demonstrated that memory-based collaborative filtering
can be more efficiently implemented using inverted files, with equal or better
accuracy, and that there is little reason to use the traditional in-memory vector
approach when the data is sparse. An empirical evaluation of the algorithm
for collaborative filtering on mobile devices show that it can generate accurate
predictions at a high speed using a small amount of resources.

For integration, a system architecture is proposed where various combina-
tions of content-based and collaborative filtering can be implemented. The ar-
chitecture is general in the sense that it provides an abstract representation of
documents and user profiles, and provides a mechanism for incorporating new
retrieval and filtering algorithms at any time.

In conclusion this thesis demonstrates that information access systems can be
personalised using scalable and accurate algorithms and representations for the
increased benefit of the user.
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Chapter 1

Introduction

This thesis is about computer algorithms that help people find, in a vast infor-
mation space, the right or relevant information. More specifically, the algorithms
considered here are such that they take advantage of user preferences and ac-
tions regarding information, so that the algorithms can learn from, and present
better and more relevant information to the user.

Several different aspects of information retrieval algorithms that learn from
experience are investigated. In the first part of this thesis it is proposed how
document retrieval and document categorisation can be improved by learning
methods that represent documents and queries in a conceptual or semantic fea-
ture space. This representation is motivated by the difficulty of measuring con-
ceptual similarities between objects with traditional word based representations,
and the need for a compact representation for the learning algorithms. One of
the proposed algorithms automatically improves on queries based on previous
feedback from the users. Different learning algorithms for the two tasks docu-
ment retrieval and document categorisation are then experimentally evaluated
using real data captured from several sources, and it is demonstrated that the
new algorithms and representations improve on their tasks.

In the second part, new algorithms for collaborative filtering are proposed and
evaluated. Collaborative filtering is a technique that helps us find information
that is not necessarily represented as text: the technique instead relies on users’
ratings and opinions to find the right or relevant information. The proposed
algorithms are motivated by the need for methods that are scalable and have
the ability to learn in an incremental fashion. An extensive evaluation of the
algorithms is provided, again using real data, and it is shown that they produce
good results, in terms of generating predictions at a high speed, with low error
rates.

In the third part, a system architecture is described that enables possible com-
binations of information retrieval and filtering using both textual and collabora-

1



2 Chapter 1. Introduction

tive information.
This introductory chapter next gives a brief history of the growth of infor-

mation. An overview of the techniques that exist for organising and searching
information is given in Section 1.1.2. The research goals put forth in the thesis
are discussed in Section 1.3.

1.1 The Information Age

In a study conducted in 2003 (Lyman et al., 2003), it was estimated that the
amount of new information (stored on paper, film, magnetic, and optical media)
increased by about 30% each year during the years 1999–2002.

The number of new unique book titles produced during 2003 was about
950, 000, the number of newspaper publications 25, 276 (2001), the number of
scholarly periodicals was 37, 609 publications (2001) and the number of archiv-
able, original office documents was estimated to about 1075 ∗ 107 pages.

The estimated amount of digital information on the surface web (web pages
not dynamically generated from databases) in January 2003 was about 170 TB, or
170 ∗ 1012 bytes. At that point, the surface web was about seventeen times larger
than the entire print collections of the U.S. Library of Congress. The estimate of
the deep web at that time was that it contained 91, 850 TB of information.

This research group also looked at communication flows, and the amount of
communicated new information through the four primary communication chan-
nels: radio, television, telephone calls, and the Internet. The amount of elec-
tronic flow of new information through the Internet was estimated to be approx-
imately 532, 897 TB, whereas the same figure for telephone calls was a striking
17, 300, 000 TB.

To manage these huge amounts of information, we need methods that help
us store, organise and search it. In a very general sense, this is the motivation for
all research in information retrieval and filtering, and thus also the motivation
for the techniques developed here.

From a computer science perspective, algorithms for information retrieval
and filtering have been a well established part of the research field for about half
a century, but the general need for techniques for organising and searching for
information is far much older.

1.1.1 A Brief History

Perhaps the most well known historical example of a huge repository of infor-
mation is the Library of Alexandria. The library was created around 300 B.C.,
and contained a great number of papyrus scrolls. The exact number of scrolls is
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not known: some sources claim the library contained at its peak around 700.000

scrolls (Witten & Frank, 2000), whereas other sources give much smaller figures.
The library contained works written by the greatest thinkers of the ancient world:
Socrates, Plato and many others. The major part of the library is believed to have
been destroyed around 30–50 B.C., and the last remaining books to have been
destroyed a few hundred years later.

The mechanised printing press – invented 1041 in China, modified and intro-
duced in the West around 1450 – was a great revolution for storing and accessing
information. The press paved way for many libraries and for the accessibility of
books to the general public.

The first scientific journals appeared in France and England around 1665, and
such journals are since then the main forum for communicating new scientific
knowledge.

Creative thinkers soon realised that since information will continue to grow,
one of the great challenges is to create tools that help people reach information in
an instant. At the end of World War II, Vannevar Bush, the director of the Office
of Scientific Research and Development in the U. S., wrote a highly influential
article (Bush, 1945) on this very subject. He advocated that scientists should now
focus on the immense task of storing and making accessible human produced
information. In his vision, there would be tools to reach any information in an
instant.

Shortly after the war, the first general-purpose programmable digital com-
puter was constructed. In the decades that followed, the technologies advanced
up to the era of the modern computer. The invention of the microprocessor
started the development of low cost general purpose computers, and at about
the same time the first local area network was also invented, which allowed
computers to communicate with each other.

Today, computers come cheap and the computer is an essential tool for both
work and play. The interconnection of computers through the Internet has made
it possible for people to meet and exchange information and thoughts across bor-
ders of time, geography, and, in some aspects, language and culture. The amount
of information is constantly growing, produced rapidly, and often stored in dig-
ital form. Publicly available information on the Internet grows at a tremendous
rate, and web search engines provide us with a way of sifting through this vast
information space.

The devices we now use to view and manage digital information are no longer
confined to stationary computers or laptop portables. Mobile phones, personal
digital assistants and wearable computing devices have larger memory and more
processor power than stationary computers had a decade ago. The computer net-
works are also moving out in the open: cables and wires are complemented with
wireless radio networks capable of transmitting data at an ever increasing rate.
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Portable devices with wireless communication can reach tremendous amount of
information, and in this network of devices and information flows, the need to
find the right or relevant information is ever more accentuated.

Going back to the library of Alexandria: it was recently announced that the
world’s currently largest web search engine, Google1, is working on a project
to digitise and make searchable library material from some of the world’s most
important and complete libraries. The vision of the entire world’s information
within reach is slowly becoming less science fiction and more of a reality.

1.1.2 Information Retrieval and Collaborative Filtering

Information Retrieval (IR) is the science of creating systems that assist users in
finding the information they need (see for example the introductory books Rijs-
bergen (1979); Baeza-Yates and Ribeiro-Neto (1999)).

A typical example of an IR system is a web search engine, such as Google or
MSN Search2. Users can type a query that describes what they are interested in
finding, and the system scans its database to find the pages it believes best match
the query. The results are often presented as a list of pages, ranked according to
how well each page matched the query.

Matching a query to a document is done by matching the textual contents of
the query with the textual contents of the documents: if they are similar then
the document is ranked high for the query. For this reason, methods that match
elements (queries, documents, etc.) on the basis of their content such as the text
will be called content-based methods.

Text searching and content-based methods in general, is an effective way of
finding information. It is easy to type a few keywords, or construct a more elabo-
rate query, and in many cases this is sufficient for finding the desired information.

Still, finding the right information may not always be easy, or even possible,
by textual search. Consider for example that you wish to find food recipes that
are liked by people who like the same food recipes that you like. This is a fun-
damentally different information need: we are looking for recipes (information)
but do not particularly aim to use the content (the ingredients, the author, etc.)
to locate the recipes. Instead, we wish to find recipes based on collaborative
information: our own recipe preferences, and the preferences of others. This
preference matching process can be made regardless of whether the users are
similar or not in other ways: they may live thousands of kilometres apart, be of
different age and have different background, but still prefer the same food.

The technique outlined in the example can be generalised to other domains

1www.google.com
2search.msn.com
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as well: it has been already been applied to movies, books, travel destinations,
music, and on-line products in general. In fact, it should be possible to apply
this to every domain where items are judged differently by different people. This
way of retrieving information is called Collaborative Filtering (Goldberg, Nichols,
Oki, & Terry, 1992; Breese, Heckerman, & Kadie, 1998), or a Recommender sys-
tem (Karlgren, 1990; Resnick & Varian, 1997), since information is retrieved on
the basis of recommendations from others.

For our purposes, the term Recommender system is too broad since it encom-
passes virtually any technique that produces a recommendation. Collaborative
Filtering is a more able term since this clearly defines that predictions are based
on collaborative techniques.

These two different methods for finding information (content-based and col-
laborative) are explored, improved and combined in this thesis. A suitable des-
ignation for both content-based and collaborative retrieval and filtering is Infor-
mation Access.

1.2 Motivation

The primary inspirational source for this work is that people continuously share
and locate new information through the help of others. People are parts of groups
and networks consisting of people that share similar interests, help each other
search for information, etc. There is much to be gained by assisting each other
in finding the right or relevant information, even if we assist each other anony-
mously.

The work presented in this thesis is part of a general effort to improve the
performance of information retrieval and filtering systems by adding a layer of
collaborative information on top of, or perhaps beside, the layer of information
content. The layer of collaborative information contains the user’s actions on
the information, such as the user’s queries, feedback information, implicit and
explicit ratings, paths taken when browsing, bookmarks, etc. By using this col-
laborative layer, it is hypothesised that the general performance of information
retrieval and filtering systems can be improved.

Taking advantage of collaborative information is one of many paths to tread:
it is easy to list others that are of no less significance:

• Natural language techniques, for improved understanding of the queries
and documents (Strzalkowski, 1999).

• Cross-language retrieval, where users can pose a query in one language and
retrieve results (possibly translated) from another language (Savoy, 2003).
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• User interface design, to guide users in formulating queries and browsing
results, and viewing information from other perspectives (Hearst, 1999).

• Fundamentally new models of computation, such as quantum computing,
where we might find a new and perhaps more convenient language for
describing the processes and objects in information retrieval, such as that
outlined by (Rijsbergen, 2004).

1.3 Research Questions and Goals

There is an abundance of techniques for information access. The main focus of
this thesis is to investigate ways in which user feedback, exemplified by relevance
information and user ratings, can be used as means for improving information
access for the user. This will be referred to as personalised information access.
The thesis contains an exploration of a few closely related topics in personalised
information access.

The first topic is how feedback from users can improve results in informa-
tion retrieval in a long-term fashion. In line with this, the impact of combining
concept-based text representations with traditional word-based ones is also ex-
plored. The second topic is how Collaborative Filtering can be performed in an
environment where users and items are plentiful: for this purpose scalable re-
trieval methods from Information Retrieval are used. In line with the issue of
scalability, an incremental collaborative filtering algorithm suited for mobile de-
vices is proposed. The third topic is how to combine efforts in order to find the
right or relevant information. A general architecture for an information access
system that encompasses the above techniques is developed and described. More
specifically, the following questions are investigated:

1. Long-term learning from feedback in information retrieval. It is well
known that expanding a query with relevance feedback information can
enhance the effectiveness of the query. Usually, the user feedback informa-
tion is used only for the current query, and therefore lost when the user
embarks on a new query. The first question is how a system can learn
from this user feedback in a long-term fashion. In pursuit of an answer
to this question, a concept-based representation of documents and queries
using Latent Semantic Indexing (LSI) is used, to capture query–document
similarity in a broader sense than that accomplished by mere word-level
matching.

2. Concept-based representation of text documents. A simple and com-
mon representation of text documents is to put the words in an unordered
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structure, a so-called Bag-of-Words, but this has the disadvantage of not
identifying relationships between terms, such as synonyms, or words that
are related by the context in which they appear. There have been quite a
few attempts to remedy this problem: one such method, Random Indexing,
is investigated, for the purpose of categorising text documents. The ques-
tion here is whether this representation can capture properties of texts that
can be combined with the traditional representation for increased perfor-
mance.

3. Inverted files for Collaborative Filtering. Text-based retrieval and collab-
orative filtering share a number of characteristics, and can also be used as
complementary methods for finding and discovering information. The past
50 years of research in text-based retrieval has produced a number of tech-
niques that might be worthwhile to transfer to the relatively new domain
of collaborative filtering. In particular, text-based retrieval systems have
an efficient representation and storage model for documents and terms us-
ing inverted files. The question is thus whether this model is suitable for
collaborative filtering as well.

4. Incremental Collaborative Filtering. Portable devices such as digital as-
sistants and mobile phones are becoming more integrated in our everyday
activities. In contrast to a stationary computer, which may very well be
constantly connected to other computers or the Internet, a portable de-
vice is not always this well connected. If it would be possible to move
the centralised computational model of collaborative filtering to a partly
decentralised model, it would remedy the problem of not always being
connected. Another related problem is that mobile devices are not as pow-
erful as stationary ones: battery time is generally limited and the amount
of memory smaller. To meet these challenges an incremental algorithm is
proposed, where predictions can be updated directly on the device.

5. Integration. The fundamental purpose of all algorithms and representa-
tions presented and evaluated in this thesis, is to improve on, in some man-
ner, the task of finding the right and relevant information. There are two
broad categories of methods that help us find information: those that are
based on the content or textual appearance of the information, and those
that are based on collaboratively filtering information on the basis of rat-
ings. An architecture and implementation of a system that is suitable for
both methods, as well as combinations, is presented.
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1.4 Contributions

The main research contributions have previously been published in five papers:
four conference papers and one technical report. Still, the material in the the-
sis differ somewhat from the papers in a number of ways: the most notable is
that new and more complete evaluations have been performed for some of the
algorithms.

The material for Chapter 3, on learning from relevance feedback in the Latent
Semantic Indexing model, has been published in (Cöster & Asker, 2000), with
Cöster as the primary author and investigator.

Chapter 4 has previously been published in (Sahlgren & Cöster, 2004), with
Sahlgren as the primary author. Sahlgren is the primary investigator of the Ran-
dom Indexing approach for representing text, while my involvement primarily
concerns the machine learning and evaluation parts.

The material for Chapters 5 and 6, on Collaborative Filtering, are published
in (Cöster & Svensson, 2002) and (Cöster & Svensson, 2005), with Cöster as the
primary author and investigator.

Chapter 7 is published as a technical report in (Cöster, 2002a) and also in
(Cöster, 2002b).

1.5 Outline

In the next chapter necessary background is given for the algorithms and repre-
sentations used and refined throughout the thesis, as well as material on perfor-
mance evaluation. Chapters 3–7 contain the research contributions in the order
discussed in the previous sections.

The thesis concludes with reflections upon the presented work, the conclu-
sions that can be drawn from the experiments, highlights of the properties of the
algorithms and representations, as well as a discussion of future work.



Chapter 2

Foundations

In this chapter, necessary background reading for the rest of the thesis is given.
The material here can perhaps be skipped at a first reading by the informed
or impatient reader; there will be references to relevant parts of this chapter
throughout the thesis. Nonetheless, the material here also serves as motivation
for the algorithms and representations developed and used, as properties of cur-
rent ones are reviewed and commented.

The first section is about Information Retrieval, and provides background for
chapters 3, 4 and 7. Chapters 5, 6 and also Chapter 7 will refer to material in
Section 2.4 about Collaborative Filtering. Throughout the thesis machine learn-
ing techniques are used: the relevant material for machine learning is covered
in Section 2.5. The last section concerns experimental evaluation, and provides
some details about the data sets used in the experiments.

2.1 Information Retrieval

Written text is the primary way that human knowledge is stored, and next to
speech, the primary way it is transmitted. In the context of information re-
trieval systems, the word ’information’ is often replaced by ’document’ (Rijsber-
gen, 1979). This is not surprising, since textual carriers such as documents, are
one of the most important information sources that exist.

The material in this section provides n overview of the some of the dominant
models for text retrieval, how they are implemented and somewhat about their
usage. The focus is on the Vector Space and Latent Semantic Indexing models,
since they form an important background reading for Chapters 3 and 4.

9
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2.1.1 Introduction

A text retrieval system is composed of a database of text documents, and a mech-
anism for querying this database. From a user’s point of view, such a query should
retrieve documents that contain information needed by the user.

A user communicates with the retrieval system by posing a query, expressed
in a query language. A simple query language lets the user specify a query as a
text string: the string is parsed, and the system tries to find documents that fulfil
the information need expressed in the query.

The result of a user query is often displayed as a ranked list of documents,
where the underlying retrieval model determines the ranking. The three domi-
nant models for full-text retrieval are the Vector Space, Latent Semantic Indexing
and Probabilistic models. The models define representations for terms, docu-
ments, queries, and provide a definition of the retrieval function.

The first step for a text retrieval system is to index the text to be searched:
to extract meaningful terms and phrases contained in the documents, and place
these index terms in an (alphabetically ordered) index. A number of pre-processing
steps are usually applied to the text before extracting index terms:

• Lexical analysis to treat digits, hyphens and other special characters.

• Removal of words with low discriminating value for retrieval, so called stop
words.

• Morphological analysis by for example stemming, for reducing variations
of words by normalising them all to a root stem.

After being indexed, the text is ready for retrieval. When the user poses a
query, the text processing steps are applied to the query, and the index is con-
sulted to locate the documents that contain the user’s query terms.

Text retrieval is concerned with retrieving documents in many different for-
mats and varying structure: web pages, news articles, books, legal documents,
email, etc. Furthermore, there are several thousands languages in the world:
still, most text retrieval systems are specialised for some major European and
East-Asian languages, such as English and Chinese.

Regardless of the format of the text, the fundamental components of any IR
system are index terms, documents, queries and weights. A term is an individual
word or a phrase. Terms are extracted from either the body of a text or a sur-
rogate text (such as the abstract), which will be called a document. A weight is
a value reflecting the importance of a term in a document, or a query. A user’s
statement of her information need is called a query. A query is usually repre-
sented by a set of terms, but may also contain operators of various kinds, such as
Boolean and adjacency operators.
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Figure 2.1: Example of a term-document matrix. A non-zero cell [i, j] means that
the term i is contained in document j.

2.1.2 The Vector Space Model

In the Vector Space Model (Salton & McGill, 1983), VSM, documents and queries
are represented as weighted vectors in a term space. Each term in the collection
of documents thus corresponds to a dimension in the vector space. In this space,
a document is represented by a sparse vector that has non-zero values for dimen-
sions that correspond to terms contained in the document. A query is represented
in the same manner: a vector that contains non-zero values for terms contained
in the query. The query vector is matched against each document vector in the
collection, using some vector similarity measure. For each document, the match-
ing process returns a score that reflects the similarity between the query and
the document. The result is a set of documents, ranked in decreasing order of
similarity scores.

This kind of representation is also called ’Bag-of-Words’, since the terms are
taken from the documents and placed in an unordered structure that does not
retain term relations (such as nearby terms).

Figure 2.1 is an example of such a sparse matrix of terms and documents:
a non-zero cell [i, j] in this term-document matrix means that the term i is con-
tained in document j. In the Figure, the term weight is set to the frequency of
the term within the document; the number of times it occur.
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Document Term Weights

In VSM and in other retrieval models as well, terms are weighted according to
two observations: the frequency of the term in the document, and the frequency
of the term in the collection of documents as a whole.

The first observation is to note that if a term occurs often in a document, it is
probably more important to the document than a term that occurs only once. This
observation is not without pitfalls: if the term is very common in the collection of
all documents, it may be useless to distinguish two documents from each other.

An approximation of the distribution of terms in text documents is Zipf’s law
(Zipf, 1949). It captures the observation that a few terms occur very frequently,
a medium number of terms occur with medium frequency and many terms occur
very infrequently. Terms that occur very frequent are seldom useful, and there-
fore often removed from the document collection, whereas terms that occurs
with medium frequency often are the most useful ones.

An effective approach is therefore to combine the local and global frequency
statistics: this family of weighting methods are called tf-idf weighting. The
weight wi,j for term i in document j may for example be defined as

wi,j = tfi,j log
(

N

dfi

)
. (2.1)

In Formula 2.1, the term frequency tfi,j is the number of occurrences of term
i in document j, and the document frequency dfi is the number of documents in
which term i occur. The total number of documents in the collection is N. The
tf-idf weighting scheme is thus a product of the term frequency (tf) and inverse
document frequency (idf).

Indexing and Retrieval

As discussed, indexing a set of documents means to extract terms and phrases
from the text, and place these in a data structure that enables efficient retrieval
of documents on the basis of a query. An observation that is crucial for the
design of this structure is that queries tend to be short in comparison to the total
number of terms in the collection. The access to the index is therefore via the
terms, which are stored in a dictionary for fast lookup.

Each term in the dictionary points to a posting list (also known as an inverted
list), containing a list of document number and term frequency pairs. If phrase
and adjacency queries are supported, the term’s document positions are also
included in the list. As an example of the index and inverted list, Figure 2.2
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Index term df Posting list

public 130 [1, 1] [92, 1] [93, 1] [99, 2] ...

publication 9 [533, 1] [631, 1] [852, 1] ...

publicity 1 [798, 1] 

publicize 1 [996, 1] 

publish 20 [184, 2] [354, 1] [631, 1] ...

published 3 [167, 1] [1781, 1] [1790, 1]

publisher 3 [1634, 1] [2867, 1] [2962, 1] 

publishing 4 [184, 1] [206, 1] [570, 1] [2421, 1] 

puerto 8 [460, 1] [635, 1] [829, 1] [834, 1] ...

Figure 2.2: Subset of the term index and corresponding inverted lists for a news
article collection. Each index term points to the document frequency
and inverted list for that term. The inverted list contains document
number and term frequency pairs

displays a subset of the index and the posting lists for a collection of news articles.

For retrieving documents, the cosine of the angle between the query and doc-
ument vectors is often used as a measure of similarity. From linear algebra we
know that for two vectors x, y ∈ Rn

cos(x, y) =
〈x · y〉
|x||y|

(2.2)

where 〈x · y〉 is the inner product between two vectors

〈x · y〉 =

n∑
i=1

xiyi (2.3)

and |x| =
√
〈x · x〉 is the Euclidean vector length.

The cosine of the angle yields a number between −1 and 1, where a value
close to 1 (−1) means that the vectors point in approximately the same (opposite)
direction.

Since the index is accessed through the index terms, the cosine function must
be expressed in a form suitable for inverted retrieval: there is no direct access to
the document vectors, only to the index of terms and their posting lists.
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The inverted search algorithm (Witten, Moffat, & Bell, 1999) scans the index
for each term in the user’s query. For each term, its posting list is fetched, and
for each document and term frequency pair in the list a score is accumulated in
an in-memory data structure. When all terms have been processed, the accu-
mulated scores are then normalised according to the document lengths, and the
accumulators will now contain the cosine values. The accumulator array is then
sorted so that the top k documents with highest cosine values are presented as
the result of the query.

We will return to the problem of how to express a vector similarity function
for inverted retrieval in Chapter 5. In that case, the similarities are calculated
between user rating vectors.

2.1.3 Latent Semantic Indexing

In VSM, the term space is very sparse and requires a document to contain exact
terms from the query if it is to be retrieved. This problem can be alleviated by
several well-known techniques: by representing words by their stems, by provid-
ing fuzzy query matching, etc.

A more general problem in text retrieval is that terms are commonly treated
as entities with little connection to the language they are written in. In natural
language, some words are ambiguous and have different meanings in different
contexts, while some words that are different have the same meaning, i.e., are
synonymous.

The Latent Semantic Indexing (LSI) (Deerwester, Dumais, Furnas, Landauer,
& Harshman, 1990) model attempts to overcome these vocabulary problems by
looking for terms that co-occur throughout the document collection. Terms that
co-occur are collapsed to a single dimension, resulting in a compressed vector
space. Each dimension represents a collection of terms that are associated in
some sense.

It is difficult to explicitly state the properties of the words that are associ-
ated using this method of observing co-occurrences. The model is fundamentally
dependent on the content of the documents, and the parameters of the dimen-
sionality reduction method. Nevertheless, the method does capture words with
similar meaning and usage patterns.

The dimensionality reduction is carried out by the matrix decomposition tech-
nique Singular Value Decomposition (SVD). SVD is applied to term-document
matrix (see Figure 2.1) formed by treating documents as column vectors, terms
as row vectors and placing term frequencies in the matrix cells. This matrix is
very sparse: the number of non-zero cells is typically very small compared to the
total number of cells for general document collections.
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The performance of Latent Semantic Indexing as a text retrieval system is
evaluated in (Dumais, 1995). As a general purpose model for IR, LSI produces
results comparable to keyword matching methods such as VSM. However, LSI has
other qualities such as its dense representation of documents and queries, and
that documents and queries are not matched strictly at the word-level. We take
advantage of these two properties in Chapter 3, where a VSM representation of
documents and queries would be inadequate.

The Singular Value Decomposition

The underlying mathematical operation in LSI is Singular Value Decomposition
(Berry, Dumais, & Brien, 1995). SVD is a way of approximating a rectangular
matrix in the least-squares sense. The result is a much lower-dimensional space
in which all relationships in the original matrix can be approximated using the
dot product or cosine measure. The matrix subject for SVD in LSI is the term-
document matrix (see Figure 2.1) and each dimension in the new space can
be thought of as representing common meaning components of many different
words and documents (Deerwester et al., 1990). Each term, document, and
query is represented as a vector in the low-dimensional space.

SVD decomposes the original matrix into three smaller matrices. The ma-
trix sizes are determined by the rank of the original matrix, i.e., the number of
linearly independent row or column vectors.

Two matrices contain the left and right singular vectors of the original matrix.
The third contains the non-negative eigenvalues of the matrix formed by multi-
plying the original matrix with its transpose. The singular vectors and the eigen-
values form the compressed representation of the original matrix. An approxima-
tion of the original matrix may be obtained by multiplying the smaller matrices,
and this approximation is known to be optimal in the least-square sense.

Given an (m × n) rectangular matrix X of rank1 r, where without loss of
generality m ≥ n, the Singular Value Decomposition (SVD) of X is defined as

X = TSDT (2.4)

The matrices T and D have orthonormal columns, meaning that the vectors are
of unit length and orthogonal to each other. This means that T TT = DTD =

I. Furthermore, the matrix S is a diagonal matrix since it has only values on
the diagonal. The values (φi) of S are the nonnegative square roots of the d

eigenvalues of XXT , such that

φ1 ≥ φ2 . . . ≥ φr > φr+1 = . . . = φd = 0 (2.5)

1The rank of a matrix is the number of linearly independent columns or rows.
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Figure 2.3: Singular Value Decomposition. The original m×n sparse matrix X is
decomposed into the smaller matrices T , S and D. The X matrix can
be further reduced by only keeping the k < r largest values in the S

matrix, resulting in the Truncated Singular Value Decomposition.

The elements of the diagonal matrix S are called singular values (factors)
whereas the vectors of the matrices T and D are called the left and right sin-
gular vectors, respectively. The elements of S can be rearranged in decreasing
order of magnitude, since the SVD is unique up to certain row, column and sign
permutations. Figure 2.3 displays the Singular Value Decomposition.

Truncated Singular Value Decomposition

The sizes of the matrices T , S and D depend on the rank of the original matrix X.
It is, however, possible to approximate the matrix X by a set of smaller matrices
Tk, Sk and Dk. If the singular values in S are ordered by size, the first k may be
kept and the others set to zero, resulting in the truncated matrix Xk, such that

X = TSDT ≈ Xk = TkSkD
T
k (2.6)

Thus, the dimension of the vectors in T and D equals k, the number of factors. It
can be shown that the matrix Xk is the best approximation of X in the least-square
sense (Berry, Dumais, & Letsche, 1995).

LSI uses this approximation of X for its information retrieval model, since
the truncated SVD has a number of advantages over the full SVD. Algorithms
for calculating the truncated SVD of large sparse matrices are substantially faster
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than the algorithms that compute the full SVD (Berry, Dumais, & Brien, 1995).
Furthermore, experiments indicate that retrieval performance is best when only
the 100–300 largest singular values are kept (Dumais, 1994).

Term weighting

In the Vector Space Model, a common way to obtain the term weights in the
original matrix X is by using Formula 2.1. The same weighting scheme may be
used for LSI, although the method used is often Log Entropy (Dumais, 1992):

wi,j = log(tfi,j)×

(∑
j

pi,j log pi,j

logN

)
(2.7)

where pi,j =
tfi,j

gfi
and gfi is the total number of times the term i occurs in the

whole collection.
More mathematical details of SVD can be found in a number of papers, e.g.

(Berry, Dumais, & Brien, 1995; Berry, Dumais, & Letsche, 1995).

Indexing and Retrieval

Latent Semantic Indexing compresses the original vector space to a few hundred
dimensions, a space that is no longer sparse. This has the effect that inverted
files have less of an advantage in this model. Since the resulting space is dense,
it is difficult to improve upon a linear scan of the vectors in order to find the top
document matches for a query vector.

2.1.4 Other Retrieval Models

The vector space models VSM and LSI are perhaps the most popular of IR models,
but not the only ones. The focus of the thesis is on vector space models, but there
are other models that have been very influential for the progress of IR.

The Probabilistic Model (Sparck-Jones, Walker, & Robertson, 2000) is also a
standard model for document retrieval. The basic model is based on two parame-
ters: the probability that a document is relevant to a query, and the probability
that it is not. These a priori probabilities are estimated from the text collection,
using term frequency information. Several variants of a probabilistic model have
been proposed, and the interested reader should consult the above reference for
further reading.

In the Boolean model a query is stated as a set of terms connected with
Boolean operators. The system evaluates the Boolean expression and returns
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the document set which matches the expression. This makes it difficult to rank
the output with respect to the query, since a document can only match the ex-
pression or not. One possibility however is to use quorum-level search (Salton &
McGill, 1983), where the result list is grouped in levels of specificity.

Various techniques to incorporate real-valued weights in the Boolean model
have been proposed. Many of these stem from the discipline of fuzzy logic, some
from techniques used in other IR models. In (Lee, 1994), various properties of
each technique was analysed. The most effective technique was found to be the
p-norm model (Salton, 1984) which is a hybrid of the vector space model and a
generalised formula for Boolean operators.

2.2 Information Filtering

Information retrieval, as we have discussed, is concerned with retrieving infor-
mation to a user, on the basis of a user query. Information filtering can be seen
as the other side of the coin: it is concerned with building a long-term profile of
a user’s information need, and sorting out relevant new incoming information to
the user (Belkin & Croft, 1992).

Information filtering is used in a slightly different situation than that of infor-
mation retrieval: the document set is dynamic in that new documents arrive all
the time, and the query is expressed as a user’s long-term information need. In
short, the filtering process works by inspecting incoming information and check-
ing whether it should be presented to the user or not.

A document filtering system need not be very different from a retrieval sys-
tem, at least not at the technical level. Documents and queries can be represented
as in the Vector Space, Latent Semantic Indexing or Probabilistic models, and the
method for matching queries with documents can be essentially the same. A
user’s interest can be described by a set of content features such as words or
phrases appearing in documents found relevant by the user.

A document filter should learn how to correctly label, for a given user, unseen
information as relevant or not. In machine learning, this corresponds well to the
classical framework of supervised learning. The input to the learning algorithm
is a representation for those documents the user has viewed and an indication
for each document if it was found relevant or not.

If viewed in this form, document filtering can be seen as text categorisation,
discussed in the next section.
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2.3 Text Categorisation

Text categorisation (or classification) is the task of assigning one or more cate-
gories or classes to a text document. Text documents may be web pages, news
articles etc. Categories can be topical, for example business, sports, science, but
can also be an indication of whether the document is relevant or not to a user.

For document representation, we have already encountered the bag-of-words
representation. This is a simple, and often efficient, representation for text cat-
egorisation. Standard text pre-processing by stemming and by removing stop
words has similar positive effects as in document retrieval.

Feature selection is used to remove non-informative terms for the task at hand
and thus further reduce the dimensionality of the problem. Other representations
have also been used: n-grams and higher-level orthogonal features such as latent
semantic dimensions.

An extensive study of different classifier’s performance on a news article cat-
egorisation task is reported in (Yang & Liu, 1999). Five methods were evaluated:
Support Vector Machines, Nearest Neighbour, Linear Least Squares Fit, Neural
Networks and Naive Bayes. The five methods were found to perform comparably
well for tasks where each category contained more than a few training exam-
ples. When the number of examples per category was small, the Support Vector
Machines, Nearest Neighbour and Linear Least Square Fit methods performed
significantly better than the other two.

2.4 Collaborative Filtering

Collaborative filtering (Goldberg et al., 1992; Shardanand & Maes, 1995) (CF)
is a way of automating “word-of-mouth”, the process by which people give and
take advice from each other. In everyday life we get and give advice or follow
trails and this sometimes helps us to find good books, nice restaurants etc. In
order to automate this process, it was suggested that user opinions, for example
ratings, could be used as a basis for information filtering.

To illustrate the idea of collaborative filtering, consider the following: If two
people tend to like the same movies, it is probably the case that one of them
would like a movie that the other has just recently seen and liked. An important
aspect of collaborative filtering is that it can be used in domains where the item’s
content is not easily parsed, or even when items carry no content at all.

The filter can then be used in either of two ways: users can explicitly ask what
the system believes they would think about a certain item, or ask the system to
return a ranked list of items the system thinks they would like.
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Collaborative Filtering allows us to tackle three drawbacks found in tradi-
tional filtering methods:

• Items must be parsable; it is for example difficult to search for the content of
music or movies unless these objects are explicitly tagged with a description
of the content (Shardanand & Maes, 1995).

• It is difficult to achieve serendipity: content-based systems do not typically
allow for discovery of information not sought for.

• Content-based filtering disregards qualitative aspects such as genre (Karl-
gren, 1999).

Combined with regular content-based techniques, collaborative filtering of-
fers a powerful way of finding and filtering information.

The fundamental idea in collaborative filtering is thus to utilise the subjective
user opinions about information, instead of focusing on the content or structure.
The algorithms operate on data composed by user ratings for a set of items. This
data is often sparse; not all users rate all items. Ratings may be explicit, in the
users express an opinion on an item, or implicit in the sense that the rating is
taken from the user’s actions on items.

A collaborative filtering system will not work well unless there is sufficient
amount of data to make predictions from: after all, predictions are based on
finding regularities and similarities in the data. When there is no or little data
available, the system is faced with the cold-start problem (Maltz & Ehrlich, 1995).
If there is little or no rating data available, then the system must be filled with
data from another source before any reasonable predictions can be made.

One approach is to construct artificial users or prediction rules based on back-
ground knowledge of the domain (Sarwar et al., 1998). Background knowledge
can for instance be relationships between items or users based on the item con-
tent. In the movie domain, we could use the movie’s genre, director, actors, etc.
to construct some general rules of how people rate movies. This method typi-
cally creates stereotypes and relationships between users and items found in the
majority of a population.

An early reference to collaborative filtering or recommender systems is the
work of Karlgren (1990). In his work, a rating vector describes a user’s inter-
est for a set of items, such as books, and these rating vectors are matched to
produce a prediction. The term collaborative filtering was coined in the 1992
paper by Goldberg and colleagues (Goldberg et al., 1992), in which the authors
describe a system where a collaborative filter was used to filter out irrelevant
e-mail. Another early system is Ringo, a recommender system for music albums
and artists, where user similarities are calculated by matching user rating vectors
(Shardanand & Maes, 1995).
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Two different strategies for making predictions based on collaborative data
have emerged: item-based and user-based. Item-based strategies use similari-
ties between items to make predictions whereas user-based calculate similarities
between users. Item-based methods are explored in (Sarwar, Karypis, Konstan,
& Reidl, 2001) and have been successfully applied to commercial systems, most
notably Amazon (Linden, Smith, & York, 2003).

Another distinction can be made between memory-based and model-based
algorithms. This division of memory- versus model-based is followed in the next
two sections, where an overview of some of the algorithms described in the liter-
ature is given.

2.4.1 Memory-based Collaborative Filtering

Memory-based CF uses a nearest-neighbour approach, similar to the Nearest
Neighbour algorithm (2.5.2), or the Vector Space Model (2.1.2) for text retrieval.

Herlocker et al. (1999) discuss three central steps in memory-based algo-
rithms: a) weighting neighbours, b) selecting a suitable subset of neighbours
and c) producing predictions from the neighbour set. To alleviate the sparsity
problem, they propose significance weighting to penalise user weights that are
based on a small number of overlapping weights, and to increase the similarity
between users when the overlap is larger.

The neighbourhood may be selected by taking all users as potential neigh-
bours to the active user, or to select a subset using a top-k method, or by thresh-
olding the similarity value. In general, the top-k method is preferred since it
makes it easier to find a neighbourhood covering a high number of items or doc-
uments.

The weighted neighbourhood is then used to predict how the active user
would rate items that the user has not already rated. One method is to cal-
culate the weighted average of the neighbour’s ratings, where the weight is the
similarity value between the active user and the neighbour. Memory-based pre-
dictions have been used in systems such as GroupLens (Konstan et al., 1997) and
Ringo (Shardanand & Maes, 1995).

The formulation of memory-based algorithm collaborative filtering that will
be used is defined in (Breese et al., 1998). The prediction is based on a linear
combination of other users’ ratings for the items, weighted by their similarity
with the active user. The prediction pa,j for user a on item j is

pa,j = v̄a + κj

∑
i

w(a, i)(vi,j − v̄i) (2.8)

where the index i runs over all users that have at least one rating for item j.
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Each user i has a vector vi of ratings, whose rating for item j is denoted vi,j. The
value v̄i is the mean value of the ratings made by user i.

The function w(a, i) should measure the similarity between two users a and
i. The more similar, the more influence on the predictions for user a, and vice
versa. In collaborative filtering, this weight is often taken to be the correlation
coefficient between the two users’ rating vectors, or a variant thereof.

There is also a normalising factor, κj, selected so that the absolute values of
the weights w(a, i) sum to unity. The sum of the absolute values of the weights
is
∑

i ‖w(a, i)‖ so κj is taken to be

κj =
1∑

i ‖w(a, i)‖
(2.9)

The basic similarity function for collaborative filtering is Pearson correlation.
It measures the quality of a least squares fit to a set of data points:

w(a, i) =

∑
j(va,j − v̄a)(vi,j − v̄i)√∑

j(va,j − v̄a)2
∑

j(vi,j − v̄i)2
(2.10)

In collaborative filtering the rating vectors are generally sparse, meaning that
each user only rates a very small subset of all available items. In effect, the actual
number of items in the intersection of two users’ rating vectors can be small, and
this problem led to other formulations of the weight w(a, i).

One extension is to calculate the correlation in the union of the voting vectors,
by replacing missing ratings with a default value. This partially alleviates the
problem of sparsity, since the union of two user’s rating vectors is in practical
cases a much larger set than the intersection.

Another extension is influenced by document weighting in Information Re-
trieval (Salton & McGill, 1983). Each item is given a weight that decrease as
the number of ratings for the item increases. This inverse user frequency is based
on the reasonable assumption that items that are rated by few users are better
indicators of user similarity than items that all or very many users have rated.

As with the VSM model of information retrieval, the available data can be
represented by a sparse matrix: in this case a matrix of users and items (see
Figure 2.4 for an example of a user-item matrix).

Memory-based methods differ in the choice of similarity measure and in the
way they combine the neighbours to form a prediction. The first systems used
measures the Pearson correlation for determining the similarity between user
profiles, as in e.g. (Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994).

The advantage of the memory-based scheme over other methods is that its
structure is dynamic and immediately reflects changes in the user database.
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Figure 2.4: Example of a user-item matrix of ratings. A non-zero value at po-
sition [j, i] denotes the rating for item j by user i. The circle marks
an unrated item: to predict what user va will rate for item o2 is an
instance of collaborative filtering.

Every new rating added to the user database will be included in the neighbour-
hood search. The reason for this is that similarities between users are calculated
in memory when needed. This property is also the potential drawback of the
method. When user profiles are matched against each other every time a predic-
tion is needed, the process can be extremely slow. This would not only take time,
but also require a large amount of memory. In some cases this has been solved
by only keeping parts of the user database in memory and sample users from this
subset, or to precompute the similarity matrix.

2.4.2 Model-based Collaborative Filtering

A Model-based collaborative filtering algorithm builds one or more models from
the user data that are used to make predictions. Several algorithms have been
proposed within this framework. Bayesian networks, for instance, have been
found to be about as effective as the memory-based correlation methods outlined
in the previous section. Such a network has one node for each item, and each
node has as many states as there are rating values. Each node has one or more
parents, which represents the conditional probabilities for the node’s possible
rating values. The learning phase consists of searching for a network structure
where each node’s parents are the best predictors for that item’s ratings. When
filtering information, the user’s profile is exposed to the network, and the user’s
rating for an item is predicted according to the conditional probabilities for the
corresponding node.
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Latent Semantic Indexing has also been successfully applied to collaborative
filtering (Billsus & Pazzani, 1998; Sarwar, Karypis, Konstan, & Riedl, 2000). The
algorithm is the same as in text retrieval, but the matrix cells now contain user
ratings. As in text retrieval, there are both advantages and disadvantages to
using Latent Semantic Indexing. In some cases, it increases prediction accuracy
compared to base line algorithms such as Pearson correlation. However, it has
not yet been compared to state of the art algorithms such as Bayesian networks or
extended memory-based algorithms. One problem, also found in text retrieval, is
that it is difficult to interpret the meaning of the latent semantic dimensions. This
is not necessarily an important issue; the collaborative filter may well be used as
a black box. For some applications though, it may be necessary to explain why
and how the system has come up with a certain prediction.

One of the major benefits of Bayesian networks and similar machine learning
algorithms is that once the model has been built, it can generate predictions at a
high speed and with a small amount of resources. The potential drawback is the
static structure of many models; once the model has been built it is difficult to
update it without rebuilding it. In dynamic domains where users and ratings are
constantly changing the model could soon become inaccurate.

2.4.3 Hybrid Methods

Information retrieval and filtering systems may use several different sources of
data. Collaborative information, such as users’ ratings for items, says something
about the user’s preferences regarding the objects. Content information such as
object descriptors, keywords, phrases, etc. says something about the properties
of those objects. It is obvious that both types of information should be used when
making predictions about objects, if they are both available.

Basu, Hirsh and Cohen (1998) combine content and collaborative attributes
for the task of recommending movies. The collaborative attributes are set-based
features such as ”Users who liked movie X”. Content attributes were extracted
from the Internet Movie Database2 and included the movie’s actors, directors,
genres, reviews, etc. A set of hybrid features was also constructed, such as “Users
who like the genre Drama”, which helped increase the recommendation accuracy.

Mooney and Roy (2000) use a content-based approach for the task of recom-
mending books. Each user rates a set of books, and each book and the corre-
sponding rating forms a training example for a classifier that is built specifically
for each user. A book is recommended to a user if the user’s classifier predicts a
high rating for the book. A book may contain several different content sources
such as the title, author, synopsis, reviews etc. For managing these different

2www.imdb.com
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sources, a multinomial text model (A. McCallum & Nigam, 1998) is used for
learning a Näıve Bayesian classifier. Such a multinomial model can handle vec-
tors of bags of words instead of just bags of words.

In (Melville, Mooney, & Nagarajan, 2002) the content-based book recommen-
dation process is extended to include collaborative attributes. Each user rating
vector is augmented with predictions from the content-based prediction, so that
each user’s rating vector is a mixture of real ratings and predicted ratings. By a
set of experiments it was found that the approach of augmenting the user rating
vector with content-based predictions yielded better results than pure content-
based or collaborative approaches.

A probabilistic framework for combining content and collaborative attributes
is presented in (Popescul, Ungar, Pennock, & Lawrence, 2001). The assumption
is that users choose “topics” of interest, while topics are the generators of docu-
ments and descriptors. However, these topics are unknown, or latent, variables.
To estimate these variables, a latent class model is trained on observations of users
selecting documents containing descriptors. The number of latent variables is set
prior to learning the model.

Baudish (1999) describes a possible integration of content-based and collab-
orative attributes by joining (as opposed to merging) the attributes into a single
table. The attributes are joined by using the two relations (descriptor-matches-
object) and (user-likes-object) so that the rows and columns of the table corre-
spond to users, objects and descriptors. Each cell defines a particular type of
combined function. For example, the cell (user, descriptor) is interpreted as a
function which transforms users into descriptors, i.e., generates keywords from
a profile. Content-based filtering is defined by the cell (descriptor, object) and
collaborative filtering by the cell (user, object) or (object, object). Through the
operations “likes” and “matches” this framework allows for all standard content-
based and collaborative types of queries, but also more elaborate ones such as
“Give me all objects that users that are similar to user X like”.

2.5 Machine Learning

Machine learning is the general study of algorithms that automatically improve
their behaviour on the basis of experience (see (Mitchell, 1997) for a good start-
ing point on the subject). Machine learning algorithms are used for many tasks,
for example predicting the protein structure from a protein sequence, recognis-
ing handwritten optically scanned digits, categorising text documents into sub-
ject categories, driving unmanned vehicles on a public highway, quantifying the
species-specificity in genomic signatures, and many more.

A machine learning algorithm forms a hypothesis (or model) by observing a
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set of examples. An example is a representation of some entity: it could be a
vector space representation of a document, a protein sequence, a bitmap rep-
resentation of an optically scanned digit, etc. In its most general form, machine
learning is concerned with finding the function that generated the examples. The
solution, or hypothesis, is an approximation of this function.

It is important to distinguish between examples that the program has already
seen (in the learning phase), and examples that the program is asked to, for
example, predict a value or class for (in the operational phase). The former are
called training examples, and the latter test examples.

There are three basic types of machine learning programs: supervised, un-
supervised and reinforcement learning. Only supervised learning algorithms are
considered in this text.

2.5.1 Supervised Learning

Supervised learning deals with the problem of predicting the class or value of
an example, on the basis of a set of training examples where the class for each
is known a priori. The class denotes some property of the example, and the
machine learning algorithm should correctly distinguish examples that belong to
one class versus examples of another class. Recall the discussion on text cate-
gorisation in Section 2.3; this can be modelled as a supervised learning problem,
where the examples are text documents and the classes are document categories.

The basic task in supervised learning is binary classification: to predict whether
an example belongs to one class or the other: for example, to predict whether
a text document is relevant or not for a user. Other tasks may involve multiple
classes, e.g. to categorise news articles into a set of predefined topics such as
sports, politics, entertainment etc. A binary classifier can be extended to han-
dle multiple classes by creating several binary classifiers that are trained with
two classes at a time from the training set (or trained to make a binary decision
regarding membership to each of the classes).

Supervised learning also encompasses regression, the prediction of real val-
ues. Regression is a well-studied field in statistics, and many of the statistical
algorithms may of course be directly applied. There are specialised algorithms
for regression, such as regression trees and Support Vector Regression. A shortcut
to regression is to split each output variable into a number of discrete classes. Ef-
fectively, this turns a regression problem to a multi-class classification problem.
Conversely, binary classification problems can easily be turned into regression
problems.
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Supervised Learning - Terminology

A supervised learning algorithm is given a training set of l labelled examples
(x1, y1), . . . , (xl, yl) where xi ∈ Rn, if the examples are expressed as vectors, and
yi are the associated labels (classes or output variables). The labels can be binary
yi ∈ {0, 1}, discrete yi ∈ N, or real-valued yi ∈ R. We will if not stated otherwise
assume that y is not a vector but a single variable y. The label yi is sometimes
written f(xi), as a function of the example.

The task for a supervised learning algorithm is to find a good approximation
to the function f(x) that generated the training examples. The solution, or hy-
pothesis, model, is a new function f̂(x). The function f̂(x) is learned from the
training set of examples that contain the (class) labels. The function is evalu-
ated using another set of examples, the test set, where labels are hidden from the
algorithm.

2.5.2 The Nearest Neighbour Algorithm

The Nearest Neighbour algorithm (KNN) is an instance-based learning method.
The general idea is to simply store (remember) the training examples, and when
classifying a test example, find the “nearest” training example(s). To classify the
new example, the class can for instance be taken to be the majority class of the
“nearest” training examples.

In this way, the nearest neighbour algorithm generalises beyond the training
examples only whenever it is asked to classify a new example (Mitchell, 1997).
Nearest Neighbour is a “lazy” method, since no explicit model is built during
training.

The central question is then how to find the “nearest” training example to a
new example x. A common choice of distance metric is the Euclidean distance

d(x, z) =

[
n∑

j=1

(xj − zj)
2

]1/2

(2.11)

which measures the distance between two vectors x and z. The Euclidean dis-
tance function is very sensitive to features whose values are in different ranges,
why it is always important to normalise the vectors.

For classification, a suitable method is to take the majority vote among the k

nearest neighbours. For regression with a single output variable, the mean value
of f from the k nearest neighbours may be used.
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2.5.3 Artificial Neural Networks

Artificial Neural Networks (ANN) is a family of machine learning algorithms that
operate on a network of neurons, or nodes.

The first neural network algorithm, the Perceptron, was developed in the
1940s, and is due to Rosenblatt (1958). The Perceptron is the simplest form
of network. It consists of a single input layer of nodes, one output node, and
weights connecting each node in the input layer to the output node, see Fig-
ure 2.5.

An example is fed into the network in the input layer, where the input nodes
take the values of the example attributes. The input layer is of the same dimen-
sion as the examples. A Perceptron’s model of the training data is the set of
weights that connect the input layer to the output node; the value of the output
node is a function of the input nodes and the weights. The Perceptron is tradi-
tionally used as a binary classifier: the value of the output node is transforming
to either +1 or −1 depending on whether the output value is above or below
zero.

The Perceptron classification rule can be stated as

f̂(x) = sign(〈w · x〉+ b) (2.12)

=

{
+1, if 〈w · x〉+ b ≥ 0

−1, otherwise

where 〈x · z〉 is the inner product between two vectors

〈x · z〉 =

n∑
j=1

xjzj (2.13)

Geometrically, the Perceptron’s hypothesis f̂(x) is represented by a straight
line (hyperplane in higher dimensions). The examples on one side of the hyper-
plane are classified as +1, the others as −1, see Figure 2.5. The weight vector w
is a normal vector to the plane, and determines a direction perpendicular to the
plane. The bias b determines the distance to the hyperplane from the origin.

To train a Perceptron is to find a weight vector w and a bias b that separate
the examples. The algorithm is simple and can be formulated as follows. First,
set the vector w← 0 and the bias b← 0. Each training example xi is then in turn
classified according to the current w and b. If the classification is incorrect, w
and b are updated to reflect the new example. If the classification is correct, there
is nothing to do for that example. The algorithm terminates when all examples
are correctly classified by the same w and b.
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Figure 2.5: Perceptron (left) and an example of the linear decision surface
(right) learned by a Perceptron. The input layer to the left in the net-
work architecture takes the values from an input vector x; the input
is combined with the input and the weights (by the inner product,
marked by arrows), converted by the step function L, to produce the
output y.

The crucial step is to select the ∆ values which should update w and b so that
eventually all examples are classified correctly. It can be shown that by setting
∆wj = yixi,j and ∆b = yi, the algorithm will converge after a finite number
of iterations, if the examples are linearly separable. That a set of examples are
linearly separable means that there exists a hyperplane that correctly classifies
the examples. After all, if the examples are not linearly separable, then it is
impossible to find a hyperplane (in input space) which correctly classifies the
examples.

The definition of linearly separable examples will be used when discussing
Support Vector Machines, why the formal definition is stated here. A set of ex-
amples S = {xi, yi}

l
i=1 are linearly separable if there exists a w ∈ Rn and a b ∈ R

such that

〈w · xi〉+ b ≥ +1 for yi = +1 (2.14)
〈w · xi〉+ b ≤ −1 for yi = −1 (2.15)

The points z that fulfil 〈w · z〉+ b = 0 lie on the separating hyperplane.
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Gradient Descent

The Perceptron assumes that the examples are linearly separable; what to do
when the examples are not linearly separable but we still wish to use a hyper-
plane for representing the hypothesis ? One choice is to let the hyperplane mis-
classify some examples, but choose this hyperplane while keeping the number of
errors as small as possible.

To define the error, inspect the output from the Perceptron:

oi = 〈w · xi〉+ b (2.16)

The error can e.g. be defined as the sum of the quadratic errors on an entire
training set S

E[w] =
1

2

l∑
i=1

(yi − oi)
2 (2.17)

To find the w that minimises the error function E[w], first note that E[w] is a
function of the weights w. By taking the vector derivate (the gradient) of E, we
can use this vector to find the direction, at a certain point, where the function
decrease the most.

The gradient ∇E[w] is a vector that consists of the first-order partial deriva-
tives of E[w]:

∇E[w] = (
∂E

∂w1

,
∂E

∂w2

, . . . ,
∂E

∂wn

) (2.18)

The direction of the gradient, at a certain point, is the direction where the
function E[w] increases the most. The algorithm for updating a Perceptron net-
work using the gradient is called gradient descent, since the algorithm updates
the weights w in the opposite direction of the gradient, which is the direction
where the function E[w] decreases the most.

There are basically two types of gradient descent: batchwise or incremental.
Batchwise gradient descent uses the error function 2.17, that is, it calculates the
gradient on the error of the entire training set. Incremental gradient descent, on
the other hand, incrementally updates the weights by the error for each training
examples.

The batchwise gradient descent rule is derived by observing that

∆w = −η∇E[w] (2.19)

∆wi = −η
∂E

∂wi
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The parameter η is called the learning rate, and determines how large steps
the update will take on the error surface. For the incremental rule, we have to
update weight i for example p, by wi ← wi + ∆iwi. The error function is

E[w] =

l∑
i=1

Ei (2.20)

and for one example p this is

Ei =
1

2
(oi − yi)

2 (2.21)

Through partial derivation

∆iwi = −η − (oi − yi)xi (2.22)
= η(oi − yi)xi

The value b can be updated by ∆ib = η(oi − yi).

Backpropagation

The Perceptron is very limited, since it can only express linear functions (hy-
perplanes). To enable a neural network to express non-linear hypotheses, one
introduces hidden layers, so that the network consists of several layers of nodes.
Figure 2.6 displays such a network. The input layer to the left in the network
architecture takes the values from an input vector x; the input is combined with
the input and the weights (by the inner product, marked by arrows), converted
by the step function L, to produce the output y.

There are several choices of algorithms to train a multi-layered feed-forward
network. The first method that gained popularity was Back Propagation, which
uses gradient descent for weight updating.

In short, the algorithm is as follows; first, the network weights are initialised
to small, random values. The network output is then calculated for a training ex-
ample. The output is compared to the desired output, and an error is calculated.
The error is propagated backwards in the network, and the weights updated ac-
cordingly.

Since the Backpropagation method calculates the gradient, it will involve cal-
culating the derivative of the function that converts a node’s input. This function
is called activation function, and in the case of the Perceptron there was only
one such function, namely the sign function. Since it is required to calculate the
gradient of the activation function, it must be differentiable.
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Figure 2.6: Feed-forward network (left) and an example of a decision surface
(right) of a network that has learned a non-linear function. The in-
put layer to the left takes the values from an input vector x which is
combined with the weights by a transfer function. The output from
the hidden layer (nodes marked with S for sigmoid) is again com-
bined with the next set of weights and (in classification) converted
by the step function L to the output y.

A common first choice of a suitable differentiable activation function is the
sigmoid or “squashing” function

g(z) =
1

1 + e−z
(2.23)

This function “squeezes” its input value z to a real number in the range (0, 1],
and has a very simple derivative

g ′(z) = g(z)(1 − g(z)) (2.24)

The derivation of the general Backpropagation rule can be found in (Bishop,
1995). The gradient descent method may (theoretically) get stuck in local mini-
mum of the error function. There are, however, ways of overcoming this problem,
such as adding momentum to the weight update. This adds a small part of the
previous update to the current update, and is a common method to use to help
alleviate the problem of local minimum.

Another problem when using the Backpropagation method is to select the
number of hidden layers and the number of nodes in each such layer. A the-
oretical analysis of the expressiveness of a feed-forward network reveals that
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two hidden layers are theoretically sufficient to enable the network to learn any
differentiable function. Since the hidden layers will add to the memory of the
network, it is desirable to have as few hidden nodes as possible, with as low error
as possible.

2.5.4 Support Vector Machines

Support Vector Machines are a family of machine learning algorithms for tasks
such as classification and regression (Vapnik, 1995)(Cristianini & Shawe-Taylor,
2000).

In its simplest form, when examples are linearly separable and belong to one
of two classes, the algorithm finds the hyperplane that correctly classifies the ex-
amples, but also has the maximum distance to the examples. This hyperplane
is called a maximum margin hyperplane, since the margin between the classes
is maximised. As discussed in Section 2.5.3, the Perceptron also finds a sep-
arating hyperplane, but that hyperplane is not necessarily a maximum margin
hyperplane.

Maximising the margin is supported by a theory that gives some evidence that
this implies good generalisation (Vapnik, 1995). In the following, some of the
properties of SVMs are discussed.

Going back to the ANN gradient descent method, it was stated that the basic
learning principle was to (roughly) minimise the empirical error (or risk), in
order to select the network weights. However, even if the network is trained
until the sum of the quadratic error on a test set is 0, this does not mean that
the network will have zero error on an independent test set. The true error (or
Expected Risk) is not only dependent on the Empirical Risk, but also on, e.g., the
number of nodes in the hidden layer. More generally, there are other properties
than the empirical risk that affects how close an algorithm is to the true error.

VC Dimension The VC dimension is one formulation of a property of a learn-
ing algorithm that affects its generalisation ability. Let R be the “true” error or
expected risk. This is the smallest error a specific classifier would do if given the
(true) distribution of the function we want to approximate. The problem is that
the distribution is unknown.

Let Remp be the empirical error, the error that is obtained from a sample of
the distribution. Then, the expected risk R can be bounded by the empirical risk
Remp and a value that is dependent on the number of training examples and the
“capacity” of the classifier. The “capacity” is a measure of the expressiveness of
the classifier’s possible hypotheses.
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Let h be the “capacity” and l the number of training examples, then with
probability at least 1 − η the following result holds (Vapnik, 1995)

R ≤ Remp +

√√√√(h(log(2l
h
) + 1) − log(η

4
)

l

)
(2.25)

The right hand side will decrease as the number of examples l increase, and
decrease as the capacity h decrease. The parameter h is called the VC dimension
of a set of functions (the classifier’s possible hypotheses).

The VC-dimension of a set of binary classification functions F is the maximum
number of examples that can be completely “shattered” by functions from the
function set F.

To understand the VC dimension, assume there are l examples with class
labels {−1,+1}. The examples can be labelled in 2l different ways. A set of
functions F completely shatter the examples if, for each labelling, there exists a
correct classification of the examples using functions from F.

As an example, assume that F is the class of straight lines in R2. The maximum
number of examples that can be completely shattered is three. Three examples
can be labelled in 23 = 8 different ways; it is possible to find three examples that
can be completely shattered but impossible to find four.

According to this VC theory, an algorithm should try to minimise both the
empirical risk and the VC-dimension, and also increase the number of training
examples. The VC-dimension must therefore be controlled (directly or indirectly)
by the algorithm. SVMs implicitly minimise the VC dimension by maximising the
margin.

Linearly Separable Problems

When examples are linearly separable, the Support Vector Machine algorithm
finds the maximum margin hyperplane that separates the examples. The problem
of finding this hyperplane is expressed as a mathematical optimisation problem:

min
1

2
‖w‖2 (2.26)

w.r.t yi(〈w · xi〉+ b) − 1 ≥ 0,∀i

which states that the procedure should find the hyperplane with maximum mar-
gin under the conditions that all examples are correctly classified by the hyper-
plane.

The learning algorithm is expressed as a quadratic programme, a mathemat-
ical optimisation problem of a quadratic function with linear constraints. The
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objective function is to minimise the norm of the hyperplane weight vector, to
find the hyperplane with maximum distance to the examples. The constraints, or
conditions, are that the hyperplane correctly classifies each training example.

Solving the optimisation problem leads to

w =

l∑
i=1

αiyixi (2.27)

which shows that the weight vector w (the separating hyperplane) can be written
as the sum of all the example vectors xi weighted by the introduced αi-values and
the class labels yi. The goal of the optimisation procedure is to find the unknown
variables αi. The SVM classification function is, after finding these variables,
written as

f̂(z) = sign(〈w · z〉+ b) (2.28)

= sign(

l∑
i=1

αiyi〈xi · z〉+ b)

The values αi are either = 0 or > 0. For the examples i where αi = 0 it
is clear that the example will not contribute to the separating hyperplane. For
those examples i where αi > 0 then the example contributes to, or supports the
hyperplane and are thus called Support Vectors.

The learning problem is convex, since the norm of a vector is a convex func-
tion and the constraints are linear and therefore convex. This has the effect that
the optimisation procedure is guaranteed to find the function’s global minimum,
since any local minimum of a convex function is always global.

Thus, the algorithm finds the hyperplane that has maximum margin between
the two classes. The weight vector of this hyperplane can be expressed as a linear
combination of the training examples. In this linear combination, only a subset of
the examples has non-zero coefficients, the Support Vectors. If only the Support
Vectors are kept and the machine re-trained, the same separating hyperplane will
be found.

Linear Separable Problems with Errors

When the examples are not entirely linearly separable, slack variables are in-
troduced in the optimisation constraints to allow for misclassifications. The ob-
jective function is also extended to include the sum of the slack variables, C,
controlling the number of misclassifications. The parameter C gives a trade-off
between the margin and the sum of the errors.
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Figure 2.7: Support Vector Machine (left) and the decision surface (right) of a
maximum margin hyperplane in feature space mapped back to input
space

Non-Linear Decision Functions

Support Vector Machines are also capable of representing non-linear hypothe-
ses, by mapping the examples from input (example) space to another, high-
dimensional, feature space. The algorithm is then trained to find a separating
hyperplane in feature space. The feature space could be, for example, the space
of all possible pair-wise combinations of the input dimensions. A direct mapping
from input space to feature space can be extremely costly or even impossible.

A special class of functions can implicitly map examples to a feature space, by
calculating the inner product of the examples in feature space but only using the
examples from input space. Such functions are called Kernel functions, and can
be used in any learning algorithm involving inner products between examples.

In the Support Vector Machine optimisation phase, examples are only com-
pared by the inner products, so by replacing the inner product in input space
with a Kernel function, the Support Vector Machine finds the maximum margin
hyperplane in the feature space mapped by the Kernel.

Several Kernel functions have been used in Support Vector machines, some of
which coincide with other learning algorithms. The simplest is the linear kernel,
which does not perform any mapping but instead calculates the inner product
of two vectors in input space. An example of a more elaborate kernel is the
hyperbolic tangent (tanh) kernel function. The architecture of such a SVM is
identical to a feed-forward neural network with the Support Vectors as nodes in
the hidden layer, and tanh as the activation function (Vapnik, 1995).
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The following three general-purpose kernels (and the linear kernel) are often
used as a first start when trying to find a good kernel function for use with the
SVM:

Polynomials of degree d K(x, z) = 〈x · z〉d
Radial Basis functions K(x, z) = exp(−γ‖x − z‖2)

ANN with tanh as Activation Function K(x, z) = tanh(γ · 〈x · z〉+ θ)

2.5.5 Other Methods

The ANN, KNN and SVM algorithms all operate on data that is best described
as mathematical vectors, or at least that the similarity between examples of the
data is expressed as a vector similarity measure such as the inner product or
vector distance. However, not all machine learning algorithms rely on the fact
that examples are expressed as vectors. In fact, the SVM algorithm need not be
used explicitly with vectors, if only a suitable kernel function can be devised that
measures the similarity between two examples in the desired feature space.

For reference we discuss Bayesian Learning here, which is motivated by re-
sults from Bayesian statistics.

A Bayesian learning algorithm makes an estimate of which hypothesis is the
most probable, assuming that the hypothesis is dependent on an underlying prob-
ability distribution. This distribution and the available data is used for estimating
which hypothesis is most probable.

The most probable hypothesis is learned from data, where each example ei-
ther increases or decreases the probability that a hypothesis is correct. Bayesian
learning has a principled way of including prior knowledge, in the form of prior
probabilities for each possible hypothesis. Classification is performed by combin-
ing the predictions of the different hypotheses, weighted by their probabilities.

Bayes Theorem

The main theorem in Bayesian learning is Bayes Theorem, which relates the
posterior probability of a hypothesis with the observed probabilities.

Finding the best hypothesis in H, given data D, can be expressed as the prob-
lem of finding the most probable H, given training data D plus prior knowledge
of the probabilities of various hypotheses in H. The following notation will be
used; P(h) is the probability that a hypothesis h ∈ H holds, P(D) is probability
of observing data D (regardless of H), P(D|h) is probability of observing data D,
given that hypothesis h holds, and P(h|D) is what we want to find: the probabil-
ity that a hypothesis h holds, given training data D.
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Bayes theorem relates P(h|D) to P(D|h), P(D) and P(h) by

P(h|D) =
P(D|h)P(h)

P(D)
(2.29)

Note that P(h|D) increases with P(h) and P(D|h). Also, P(h|D) decreases when
P(D) increases, since the more probable the data is regardless of the hypothesis,
the less evidence it gives to support the hypothesis. Again, the probability P(h|D)

is called the posterior probability. The most probable (Maximum A Posteriori)
hypothesis is

hMAP = argmaxh∈HP(h|D) (2.30)

= argmaxh∈H

P(D|h)P(h)

P(D)

= argmaxh∈HP(D|h)P(h)

Now we know how to find the most probable hypothesis, but how can we find
the most probable classification? This is accomplished by combining the classifi-
cations of all hypotheses, weighted according to their posterior probabilities. Let
vj be a particular classification from all classes V , then the probability that vj is
the correct classification is

P(vj|D) =
∑
hi∈H

P(vj|hi)P(hi|D) (2.31)

The best classification is the one with highest probability. In practice, this method
that we have outlined is difficult to use since it requires calculating the posterior
probability of each hypothesis.

Another, more practical, method for estimating the most probable classifica-
tion is Näıve Bayes, which can be used when the data is expressed by a conjunc-
tion of attribute values (a1, a2, . . . , an). Let a class be denoted vj, from the set V

of classes. The most probable classification is

vMAP = argmaxvj∈VP(vj|a1, a2, . . . , an) (2.32)

Using Bayes Theorem the classification can be rewritten as

vMAP = argmaxvj∈V

P(a1, a2, . . . , an|vj)P(vj)

P(a1, a2, . . . , an)
(2.33)

= argmaxvj∈VP(a1, a2, . . . , an|vj)P(vj)

The question is now how to estimate P(a1, a2, . . . , an|vj). By assuming that at-
tributes are independent, then the probability of observing the conjunction of the
attributes is the product of the individual attribute probabilities

vNB = argmaxvj∈VP(vj)
∏

i

P(ai|vj) (2.34)
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2.6 Experimental Evaluation and Data sets

In the fields of information retrieval, collaborative filtering and machine learning,
a new algorithm or representation is often evaluated by an experimental proce-
dure on real or synthetic data, in order to get an understanding of how well the
algorithm performs. The typical evaluation metrics concern the algorithm’s error
(such as the misclassification rate of a classifier), the time taken to train a model
and the time taken to make a prediction or calculate a ranked list of documents.

In general, it is also sometimes important to analytically determine the com-
plexity of a new algorithm (algorithm running time and memory usage), as a
mathematical function of the input.

The algorithms and representations presented in this thesis are primarily eval-
uated using experiments, and, when appropriate, by a more formal analysis.
The experimental procedures, evaluation metrics and data sets that will be used
throughout the thesis are discussed in the next pages.

2.6.1 Information Retrieval

To evaluate the performance of an information retrieval system, we must de-
fine what we mean by performance, and then find the appropriate measure. In
1966, Cleverdon (Cleverdon, Mills, & Keen, 1966) listed six different measurable
factors that determine the performance of an IR system, that still hold today:

1. The coverage; the extent to which the system includes relevant matter.

2. The time lag; the average time between a query and an answer.

3. The form of presentation of the output.

4. The user’s effort involved in obtaining answers to queries.

5. The recall; the proportion of relevant documents actually retrieved.

6. The precision; the proportion of retrieved documents that is relevant.

A retrieval algorithm, which is the central part of an IR system, is most often
evaluated by precision and recall. This evaluation does not necessarily involve
users, but is often performed on a collection of documents where queries and
relevance judgements are known beforehand. The coverage is fixed, since the
collection is fixed, which makes it easy to compare the performance of different
algorithms be comparing the precision and recall values.

Precision and recall are defined using the notion of the relevance of a docu-
ment to a given query. This notion is of central importance to IR. Nevertheless,
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this notion is subjective, and different persons may disagree on which documents
are relevant to a given query. Furthermore, it is not defined whether relevance
should be interpreted as a binary decision, or if there are degrees of relevance.

Much can be said about the simplification of using relevance scores, such as
binary judgements, as the notion of relevance of a document to a query. The
first problem is that relevance is subjective; not all users agree on which items
or documents are relevant to a given query. Moreover, human language does not
make the matter less complicated; it is easy to form an ambiguous query that may
have two different meanings in two different contexts. Another problem is that
relevance does not need to be static; we continuously learn from the information
that we retrieve – what was relevant today may not be relevant tomorrow.

These complications are however not assumed to be strong enough to inval-
idate large scale experimental evaluation of information retrieval systems using
precision and recall. For this reason, it is custom to evaluate the performance, or
effectiveness, of a retrieval algorithm using precision and recall.

Precision and recall have simple definitions, when we define relevance as a
binary decision. Assume that the user poses a query, and that relevance judge-
ments are available for all documents. Let A be the set of relevant documents to
the query, and let B be the set of documents retrieved by the query. The precision
P and recall R are then defined as (Rijsbergen, 1979):

P =
| A ∩ B |

| B |
(2.35)

R =
| A ∩ B |

| A |
(2.36)

For a retrieval system which ranks the search results, precision and recall is
calculated for each document in the ranked result list. For the document with
rank k, the sets A and B are deduced from the k top ranked documents. In this
way it is possible to see how precision changes at different levels of recall, since
for the k + 1st highest ranked document, its recall must be equal to or higher
than the recall for the kth highest ranked document.

When all precision-recall points are calculated for a query, it is common to in-
terpolate precision on some standard levels of recall. The technique we employ
is an interpolated eleven-point precision-recall curve, where precision is inter-
polated at each recall level from 0.0 to 1.0 with step size 0.1. The interpolated
precision at some recall level is the maximum precision at the current and all
higher levels. The results are then presented either in a table or in a graph.
When there are many queries, it is common to present the result as the average
(mean) of the queries. This evaluation is used in large-scale evaluation forums
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such as the Text Retrieval Conference (TREC), and Cross-Language Evaluation
Forum (CLEF).

For the text retrieval experiments in Chapter 3, we use several standard test
collections. A test collection contains a number of documents, a number of
queries and a set of relevance judgements that lists the relevance of documents to
a query. Using this data, we can evaluate the effectiveness of a retrieval algorithm
by plotting, e.g., the interpolated 11pt precision-recall curve.

Since IR has been an active research field for a long time, a number of test
collections have been developed. In the early days, the collections were small
and specific; now, much due to the TREC initiative, the collections are fairly
large and can contain many different topics.

2.6.2 Text Categorisation

Text Categorisation, as discussed in Section 2.3, is the task of assigning one or
more categories to a document, based on the textual contents of the documents.
In the same spirit as when evaluating a retrieval system, a document can be said
to be relevant, or belong, to a category or not. If a document can belong to more
than one category, we calculate the average over the set of categories.

The standard terminology (see, for example, Witten and Frank (2000)), for
the possible outcomes of a binary prediction is as follows: the prediction is one of
true positive (TP), true negative (TN), false positive (FP) or false negative (FN).
Positive means that the document was classified as belonging to the category,
negative that it was not. True means that the classification was correct, false
that it was not. From these four outcomes, we can re-formulate the standard IR
evaluation metrics precision and recall as follows:

P = TP/(TP + FP) (2.37)
R = TP/(TP + FN) (2.38)

Precision P and recall R can be combined in a single measure (Rijsbergen,
1979), called the F measure:

Fβ =
(β2 + 1)PR
(β2)P +R

(2.39)

If we let β = 1, we give equal weight to precision and recall, and obtain the
F1 measure

F1 =
2PR
P +R

(2.40)
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In order to combine the F1 score across categories, there are essentially two
possible approaches; micro- and macro-averaging. Micro-averaging means that
we sum the TP, TN, FP and FN over all categories and then compute the F1

score. In macro-averaging, the F1 score is computed for each category, and then
the average of these scores is taken.

The F1 measure is not the only possible evaluation metric for text categorisa-
tion; the so-called Break-Even Point (BEP) (Yang & Liu, 1999) has also been used
in several experiments. The BEP is the point where precision equals recall, and
can be calculated if the categorisation algorithm produces a ranked list of predic-
tions. The F1 measure is used for the categorisation experiments in Chapter 4,
since it is a relatively standard method, and also it does not require the classifier
to rank its output.

2.6.3 Collaborative Filtering

There are several different evaluation metrics that have been proposed for col-
laborative filtering, and which one to choose depends on the user task. An exten-
sive study of evaluation methods is presented in (Herlocker, Konstan, Terveen, &
Riedl, 2004), together with guidelines concerning which metrics to use depend-
ing on the user’s task.

For single-prediction tasks, where the user is asking for, or is given a single
prediction, perhaps together with the description of an item, a good choice of
metric is to calculate the deviation of the prediction from the true user rating.
This is the type we will consider in this thesis; metrics that have no parameters,
making the results easy to interpret and understand.

As with any retrieval or filtering system, the success of a collaborative filtering
system depends partly on the accuracy of the predictions, but this is not the only
factor; the factors listed in the previous section should very well be applicable to
collaborative filtering as well.

Mean Absolute Error

When predicting the rating for a single item, it is natural to measure the differ-
ence between the predicted rating and the actual rating. By assuming that the
error is equally small or large regardless of whether the prediction is pessimistic
(the predicted rating is lower than the actual one) or optimistic (predicted higher
than the actual), one may use the absolute difference or error. The absolute dif-
ference is then averaged over all hold out items j for each user, and then averaged
over all users. The Mean Absolute Error, MAE, for a set of L users is
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MAE =
1

L

L∑
a=1

|pa,j − ra,j| (2.41)

where pa,j is the predicted rating for item j for user a, and ra,j is the user’s
observed rating.

Root Mean Squared Error

Another predictive accuracy metric is the Root Mean Squared Error, RMS, which
calculates the squared difference between a prediction and the actual rating.
This function penalises large errors, since the error increases by the square of the
difference instead of, as in MAE, the linear difference between prediction and
rating. RMS is calculated for a set of L users as

RMS =

[
1

L

L∑
a=1

(pa,j − ra,j)
2

]1/2

(2.42)

The CF community does not nearly have as many or as diverse data sets as
the information retrieval or machine learning communities. In the experiments
in Chapters 5 and 6, we have used two different publicly available data sets
with explicit ratings in the movie domain; EachMovie and MovieLens. These
have been extensively used in the literature. For implicit ratings, we know of one
public data set (MSWeb) with implicit ratings of web page groups, based on web
site browsing. Other data sets have also been used in the literature; some which
have unfortunately not yet been publicly released and some that are too small
for the experiments in this thesis.

The reason that there are so few data sets, is perhaps first of all due to it
being an expensive task to build up a service, maintain a community, collect
enough data (Herlocker et al., 2004), and difficult to compete with commercial
interests. The research field is also relatively young; the first influential paper
was published in 1994.

2.6.4 Cross Validation

A very important issue in the evaluation of machine learning, collaborative fil-
tering and information retrieval algorithms is to separate data that is used for
training the algorithm and the data that is used for testing or evaluating the al-
gorithm. If we would use the same data for training and testing, we would get
an overly optimistic estimate of the performance of the algorithm on new data.
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CISI CACM CRAN REUTERS
Number of documents 1460 3204 1398 21,578
Number of queries 112 64 225 N/A
Number of categories N/A N/A N/A 90
Avg. relevant docs/query 41.0 15.3 8.2 N/A

Table 2.1: Data sets for the Text Retrieval and Categorisation experiments

To get a fairly unbiased estimate of the error it is common to evaluate the
algorithm several times on a given data set, using different divisions (splits) of
the data into training and test sets. A method that is widely used and often rec-
ommended is 10-fold cross validation; the data set is first randomly shuffled and
then divided into 10 approximately equal-sized parts. Each part, corresponding
to about 10% of the original data, is selected once as test set, while the remaining
nine parts are used for training. Every example is thus part of a test set exactly
once, and the algorithm is repeated 10 times over approximately 90% of the data
each time.

Another, related, strategy, is leave-one-out cross validation, which is the ex-
treme case of n-fold cross validation. If there are n examples, the algorithm is
trained with n− 1 training examples and one test example, and this procedure is
repeated for all n examples.

For some research data sets, the data is already split into a training set and
a test set, so that algorithms can be compared on this particular division of the
data. One problem with this approach is that researchers may spend much time
creating algorithms that are very well suited for a particular data set and split,
but has little general merit.

2.6.5 Data sets

We now turn to the data sets that will be used in the experiments. For text re-
trieval and text categorisation, we will encounter a total of four data sets, whose
statistics are summarised in Table 2.1. The CISI, CACM and CRAN data sets
were taken from the Glasgow IR group3. CACM contains titles and abstracts
from Communications of the ACM, CISI contains information science documents,
CRAN contains a collection of documents on aerodynamics. The Reuters-21578
data set4 contains a collection of 21578 categorised newswire stories collected in
1987, and is a widely used data set for document categorisation.

3ir.dcs.gla.ac.uk
4www.daviddlewis.com/resources/testcollections/reuters21578/



2.6. Experimental Evaluation and Data sets 45

EachMovie MovieLens
Number of users 61265 6040
Number of items 1623 3706
Number of ratings 2811718 1000209
Rating scale [0 . . . 5] [1 . . . 5]
Global mean rating 3.037 3.582

Table 2.2: Data sets for the Collaborative Filtering experiments. Users with only
one rating are not included.

For collaborative filtering, we selected the two large movie data sets, which
differ somewhat in their characteristics. In Table 2.1, we list the relevant char-
acteristics of these data sets. The MovieLens data set5 is maintained by the
GroupLens research group. The EachMovie data set was earlier maintained by
HP/Compaq but as of October 2004, HP retired the EachMovie dataset and it is
no longer available for download.

5www.grouplens.org





Chapter 3

Learning from Relevance Feedback

In several information retrieval systems there is a possibility for user feedback.
Many machine learning methods have been proposed that learn from the feed-
back information in a long-term fashion. In this chapter, we present an approach
that builds on user feedback across multiple queries in order to improve the re-
trieval quality of novel queries. This allows users of an IR system to retrieve
relevant documents at a reduced effort.

Two algorithms for long-term learning across multiple queries in the scope
of LSI have been implemented in order to test these ideas. The algorithms are
based on the Nearest Neighbour Algorithm and Backpropagation Artificial Neural
Networks introduced in Section 2.5.2 and 2.5.3. Training examples are query
vectors, and by using LSI, these examples are reduced to a fixed and manageable
size.

In order to evaluate the methods, we performed a set of experiments where
we compared the performance of LSI and the proposed methods. The results
demonstrate that the methods can automatically improve on the performance of
LSI by using the feedback information from past queries.

3.1 Problem Background

The performance of LSI and other similar retrieval systems can usually be further
improved by applying a technique known as relevance feedback (Harman, 1992;
Dumais, 1991). This semi-automatic technique requires a user to explicitly eval-
uate the relevance of retrieved documents to supply as feedback to the system.
Relevance feedback may be seen as a short-term learning mechanism, where the
valuable feedback information is lost when the user starts a new query.

Several methods have been proposed to make IR systems learn from relevance
feedback (Chen, 1995; Crestani, 1993; Vogt, Cottrell, Belew, & Bartell, 1997).

47
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One problem in this domain is imposed by the high dimensionality of the feature
space; the feature space grows linearly with the number of terms. The approach
we use here is to reduce the dimensionality of the feature space by the SVD.

The algorithms are based on the hypothesis that queries which are similar in
the LSI representation have similar result sets. From this hypothesis, we develop
two learning algorithms, based on techniques from nearest neighbour searching
and Backpropagation neural networks.

3.1.1 Relevance Feedback

The relevance feedback process may be viewed as an iterative dialogue between
the user and the system, initiated by the user when posing a query. The query
is evaluated and the system responds with a ranked list of documents which, ac-
cording to the system’s ordering, best match the query. If the user is not satisfied,
the user may mark one or several documents as relevant and ask the system to
refine the search. Again, the system produces a ranked list of documents and
this iteration continues until the user stops interacting with the system, either
because the user was content or gave up.

A common way to implement relevance feedback is to construct a query vec-
tor which is closer to the relevant, and further from the non-relevant documents
as specified by the user. This can be seen as trying to construct an optimal
query, i.e., one which separates the relevant documents from the non-relevant
ones. There are several ways of implementing relevance feedback, for example,
(Robertson & Sparck-Jones, 1976; Rocchio, 1971; Salton & Buckley, 1990). We
focus on the technique most suited for our work.

One effective method to implement relevance feedback in LSI is to heuris-
tically approximate the optimal query vector. This is carried out by replacing
the query vector with the centroid of the vectors representing the relevant docu-
ments (Dumais, 1991). This method is defined by formula 3.1. In the formula,
the approximation of the optimal query (hereafter called improved) is denoted q

′

whereas the set R ′ contains the vectors di for the documents determined relevant
by the user.

q
′

=
∑

di∈R ′

di

| R
′
|

(3.1)

3.1.2 LSI for Query Representation

By using LSI for representing the queries and the documents, we hope to be able
to compare queries in a way that makes more sense than if we would have used
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the VSM model. In the LSI model, the queries need not share exact terms, rather
share terms that are related in the sense of the SVD.

Recall that an optimal query is one which separate relevant documents from
non-relevant ones. Raghavan and Sever (1995) investigated how to reuse past
optimal queries in VSM. The purpose of their work was not to create an auto-
matic learning system, but rather to speed up the execution of novel queries,
by reusing past queries. For the purpose of reusing past optimal queries, they
investigate similarity measures between queries, and demonstrate that compar-
ing VSM query vectors may be misleading. Their suggestion was to base the
comparison on the result lists instead.

That query vector similarity measures in VSM may be misleading suggests
that the problem is the sparseness and high dimensionality of the vector space.
Our hypothesis here is that queries which are similar in the LSI representation
have similar result sets.

3.1.3 Previous Work

The idea of using relevance feedback for training IR systems to perform better
is not new and the few articles we describe here is by no means all work in this
area. Instead, we present the articles most relevant to our work.

Optimising system parameters

Our aim is to have the system remember, and ideally generalise from, the rele-
vance feedback judgements. This can be viewed as trying to optimise the system
parameters which govern the search. System parameters may be term weights,
similarity functions, retrieval thresholds etc. Strategies to optimise these parame-
ters may be divided in implicit, exhaustive and heuristic methods (Bartell, Cottrell,
& Belew, 1998).

The implicit methods try to improve the system’s ability to rank documents
but do not have as primary goal to optimise the system parameters. The ex-
haustive methods, on the other hand, search the entire space of possible values
of system parameters and then choose the best setting. This is generally an im-
practical method, since the number of parameters and their possible values are
usually large. Finally, the heuristic methods perform a heuristic search of a sub-
set of the possible parameters and values. These methods are not guaranteed
to find the optimal parameters but are usually efficient and applicable to a large
class of system parameters.

The methods we propose can be classified as implicit. That is, we do not
try to optimise the actual system parameters. Rather, we generalise from a set
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of previously posed queries, if they are similar enough to a new query. This is
discussed in Section 3.2.1 and 3.2.2.

Neural networks

Crestani (1993) developed a neural network relevance feedback mechanism, in
scope of the probabilistic model. A neural network simulator based on the Back-
propagation algorithm was used for three different types of learning. The net-
work was constructed so that the network input and output were binary vectors,
where the input vectors corresponded to query terms and the output vectors cor-
responded to document terms.

The first learning type, Total Learning(TL), aimed at teaching the system ap-
plication domain knowledge, where an example consisted of a query and one
of its relevant documents. For queries with a small number of relevant docu-
ments, the results were good but gradually got worse as the number of relevant
documents increased.

Horizontal Learning (HL) aimed at resolving the problems encountered in
TL. Each example consisted of a query and the centroid of the query’s relevant
documents. This led to better results than those obtained by TL, but was still
lower than that of by using the IR system.

Vertical Learning (VL), similar to TL, used only a portion of the relevant doc-
uments. This improved the results, and performed better than the IR system.

Syo, Lang and Deo (1996) incorporated LSI in a competition-based neural
network. The purpose of the network was to capture associations between terms
and documents, and the associations were then used to retrieve documents on
the basis of a query. The network was originally trained using thesaurus associa-
tions, but in their experiments they also used LSI to capture the associations be-
tween terms and documents. They compared the LSI approach to the thesaurus
approach, and found that the LSI associations improved the overall retrieval ef-
fectiveness of their model.

Gradient descent

A general approach to improve the effectiveness of IR systems was described by
Bartell in his Ph.D. thesis (Bartell, 1994). Bartell developed a criterion, called J,
which measures how well an IR system’s ranking corresponds to the user prefer-
ence. The J formula involves a set of IR system parameters, θ, such as similarity
function parameters, retrieval thresholds, term weighting functions etc. If the
first-order derivative of θ is available then it is possible to differentiate J with
respect to θ. This means that for example gradient descent can be used to find
the set of parameters which maximises J. In (Bartell et al., 1998), this technique
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is used to optimise the cosine similarity measure in VSM. The optimised mea-
sure equalled or outperformed standard VSM measures. This is an example of a
heuristic method to optimise system parameters.

Another experiment with the J criterion is described in (Vogt et al., 1997)
where gradient descent was used to optimise the system’s term weights, i.e.,
the term-document matrix. In order to make the matrix more manageable, LSI
was used to compress the representation. Experiments verified that, in the ad
hoc task, this technique improved performance on the training set, while not
degrading performance on the test set.

Statistical methods

In (Hull, 1994), the LSI model was for the routing tasks. The first task in rout-
ing is to use relevance feedback information from one text collection to a new,
unseen collection of text. The second task is to find the remaining relevant doc-
uments in a collection, given a query and a set of relevant documents. LSI was
used to construct local factors for each query, based on the set of relevant doc-
uments. Discriminant analysis was then used to rank documents according to
their probabilities of relevance.

3.2 Learning Algorithms

We propose two algorithms for long-term learning from relevance feedback in
LSI, which both take as input an LSI query vector and produce a new, optimised
query vector for retrieval. We base our algorithms on regression, as opposed to
classification. That is, we do not assign each input to one of a number of discrete
classes. The input is instead mapped to a new query vector in the LSI space.

LSI improves the initial query by replacing it with the centroid of the vectors
representing the relevant documents. At this point, the system has gathered
much information: the initial query in text format, the initial query vector, the
list of relevant documents, the improved query vector, the text in each of the
relevant documents etc. The learning algorithm makes use of only the initial
query vector q and the improved query vector q

′. Each training example is thus
on the form {q, q

′
}.

The two algorithms that we propose will be called Nearest Neighbour Re-
gressor (NNR) and Backpropagation Regressor (BPR). The first is based on the
KNN algorithm 2.5.2 and the other on a back propagation neural network 2.5.3.
The learning problem is modelled in a similar way in both algorithms, so that
it is feasible to compare the experimental results. We use the term optimise for
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the process of generalizing from previously posed queries to improve the perfor-
mance of a new, unseen query.

3.2.1 Nearest Neighbour Regressor

NNR uses a k-nearest neighbour method which is slightly similar to locally weighted
regression. There are however some differences, the first is that the ‘nearness’
is measured by the cosine of the angle. The second is the way we weigh the
contribution of the nearest vectors.

During the training phase, the examples are simply stored. Each example is a
tuple (q, q

′
) where q is the initial query vector and q

′ the improved query vector.
When the user poses a new query, NNR performs a nearest neighbour search

with the new query vector against all stored initial query vectors. If there is one
or more initial query vectors which are sufficiently ‘near’ the new query, we have
the hit case. Otherwise, we have the miss case and the new query is used as is.
In this second case, no optimisation is performed.

When the hit case occurs, NNR calculates the optimised query in three steps.
The vectors of the k pairs of initial and improved query vectors are first nor-
malised to unit length, as is the new query vector. The centroid of the initial and
the centroid of the improved query vectors are then calculated. To obtain the
optimised query vector the first centroid is subtracted from the new query vector
and the second centroid is added to it.

More formally, let k be the number of neighbours to the new query. Denote
the new query vector v, the initial query vectors qi and the improved query
vectors q

′

i. The optimised query vector v
′ is calculated by:

v
′
=

v

|v|
−

1

k

k∑
i=1

qi

|qi|
+

1

k

k∑
i=1

q
′

i

|q
′
i |

(3.2)

Note that formula 3.2 has a desirable property when k = 1: if the new query
is identical to a previous initial query, it will be replaced by its relevance feedback
query. When the new query is similar to one or more previous initial query vec-
tors, a combination of the previous initial and improved query vectors is added
to it. This combination favours the direction of the improved vectors if the new
query vector is close to the nearest neighbours. The resulting vector points more
in the direction of the improved queries, and the amount of the change in di-
rection is determined by the difference between the new query and its nearest
neighbours.

The vectors are normalised to unit length because it is the angular position
which is of interest. If they are not normalised, some vectors may swamp the
contribution of others. Furthermore, NNR will not try to optimise every query,



3.2. Learning Algorithms 53

the hit case will only occur if there are any vectors in the training set which are
sufficiently similar to the new query. A threshold value is used to determine if two
vectors are sufficiently similar, a way to determine if there is enough information
in the training set to generalise from.

3.2.2 Backpropagation Regressor

The BPR algorithm is based on a combination of the Backpropagation algorithm
and NNR. When training the network, each example is composed by the initial
query vector as the input, and the difference between the improved query vector
and the initial query vector as the target. Using the terminology from the previ-
ous section, the network input vector is q and the network target vector is q

′
−q.

Thus, we train the network to learn the difference between an improved query
and a new query, given the new query.

If there is no information in the network regarding a new query, it is not rea-
sonable to demand generalisation from the network. To alleviate this problem,
we set up a criterion which must be obeyed by a new query if it is to be run
through the network. The criterion is that there should be at least one example
in the training data which is sufficiently similar to the new instance, using cosine
as similarity measure.

When given a new query, an exhaustive nearest neighbour search is per-
formed in the training set. If there is at least one query vector which is similar to
the new query, it is run through the network, otherwise the query vector is used
as is.

After the new query is run through the network, it is optimised in two steps.
First, both the new query and the network output are normalised to unit length.
Secondly, the new query is added to the network output to form the optimised
query.

Using vector notation, let the new query vector be v and the network output
o. The optimised query v

′ is then constructed by

v
′
=

v

|v|
+

o

|o|
(3.3)

The input vectors are normalised in the range (−1.0, 1.0) whereas the target
vectors are normalised in the range (0.1, 0.9). The input vector normalisation is
necessary to improved training time, since the vector values are typically rather
small. The target vector normalisation is necessary since we use a bounded acti-
vation function (the sigmoid function).
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Collection Targets Top cosine

CISI 5 0.77
CACM 16 0.98
CRAN 55 0.97

Table 3.1: Collection analysis

3.3 Experimental Evaluation

In order to investigate the effectiveness of the two methods, we performed a
series of experiments. The learning algorithms were implemented in C++ and
we used an implementation of LSI provided by Telcordia (formerly Bellcore).

3.3.1 Setup

The CACM, CISI and CRAN collections were used in these experiments. Each
collection consists of a set of documents, a set of queries and a list describing
which documents are considered relevant for each query. Table 2.1 provides a
summary of the collection statistics.

After some initial testing, it became clear that the algorithms did not improve
the retrieval for the CACM and CISI collections. In fact, in only very few cases
were the algorithms able to optimise queries from those collections. This was
due to the very small amount of queries with sufficiently high cosine similarity
measure. Table 3.1 displays the results of this analysis. The second column shows
the number of possible targets for optimisation, the third shows the top cosine
similarity measure found. Consequently, we decided not to use the CACM and
CISI collections, since the training sets turned out to be too small. The CRAN
collection however, turned out to be more useful for an experimental evaluation
of our algorithms.

For the CRAN collection, the query set was divided into two randomly selected
subsets of equal size. The first subset was used for training and the second for
testing. This process was repeated seven times.

Since the purpose of the algorithms is to optimise new queries on the basis of
a set of stored queries, only the test data is subject to evaluation. Since we use
a threshold value to determine which queries should be subject for optimisation,
only these particular queries are included in the evaluation. In Table 3.2 we list
the number of optimised queries for each threshold value. The third column in
the table lists the average number of queries subject for optimisation. The last
column lists the percentage of the optimised queries in the test data set.
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Collection Threshold Optimised Percentage

CRAN 0.7 15.4 13.8
CRAN 0.8 8.8 7.9

Table 3.2: Optimisation statistics

At first we used all relevant documents to construct the approximation of the
optimal queries, as described in (Dumais, 1991). However, we noticed that this
did not yield the best performance. The results improved further when we used
the top (1-5) relevant documents from the result set of the approximation of the
optimal query. The improved queries were constructed using this method.

The NNR algorithm was evaluated using two different threshold values: 0.7

and 0.8. After some experiments, we found that values below 0.7 caused the
algorithm to make incorrect judgements with respect to the similarity between
queries while values higher than 0.8 caused very few queries to be optimised.

For each threshold value, we set the maximum number of neighbours first to
1 and then to 3, making a total of four experiments. It should however be noted
that not all queries had 3 neighbours above the threshold.

The BPR algorithm was evaluated using the same threshold values (0.7 and
0.8) as for NNR. We performed some initial tests to find a reasonable set of pa-
rameter values for the network. First of all, we saw that even though we did not
have many examples, we needed more nodes in the hidden layers than in the
input or output layers. This should both be due to the fact that the function we
wish to approximate is fairly complex and that the network output should be an
approximation of real values.

When we used more than one hidden layer the convergence of the network
was very slow due to the fact that the network needed many epochs to recover
from local minimum. We found that one hidden layer of 200 nodes proved fairly
good, both in terms of running speed and results. For the CRAN collection LSI
compressed the term, document and query vectors to 113 dimensions, why we
used 113 nodes in the input and output layers of the network.

We experimented with different values on learning rate and momentum con-
stants, and noticed that values closer to 0.0 than to 1.0 were to prefer. We set
both the learning rate and the momentum to 0.2, which made the network slowly
converge to a small error on the test set.

Another problem we faced during this experiment was that the stop condition
for the neural network was not easy to determine. Therefore, we decided to study
the behaviour of two different networks. The networks were trained for 10000

epochs each, and we listed the network error at each epoch. Figure 3.1 plots
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Figure 3.1: Network error versus number of epochs

the network error versus the number of epochs (on a logarithmic scale). Both
networks follow the same pattern; a high initial error which quickly gets smaller,
and approximately the same error after 1000 epochs. In the figure, the error
after 1000 epochs is approximately 4.0, whereas the error at epoch 10000 is close
to 0.0001. We saw that the difference in average precision between using the
network after 1000 and after 10000 epochs was approximately ±0.02. In light of
this, we decided to evaluate the networks after 1000 epochs.

3.3.2 Results

We present the main results as precision-recall graphs in Figures 3.2 and 3.3. The
graphs were constructed by calculating the eleven-point precision-recall curve
described in Section 2.6.1.

In Figure 3.2 we used a threshold value of 0.7, in Figure 3.3 we used 0.8.
NNR(1) and NNR(3) refer to the Nearest Neighbour Regressor algorithm using
1 and max 3 neighbours, whereas BPR refer to the Backpropagation Regressor
method. The results obtained by using no optimisation at all (LSI) are also in-
cluded. The four curves (LSI, BPR, NNR(1) and NNR(3)) are the results of using
completely automatic methods, and they show the performance of the initial user
query.

For comparison, we have also included the maximal precision that can be
obtained by the relevance feedback mechanism (RF) described in Section 3.1.1.
Recall that this performance is based on perfect information about all 1398 doc-
uments returned by a query. In reality however, a human user will be able to give
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Figure 3.2: Precision/Recall using threshold 0.7

an accurate relevance score of only 5 or 10 of the top ranked documents. Hence,
performance using relevance feedback for an ordinary user, would be more com-
parable with that of NNR or BPR (depending on the number of documents that
the user has the patience to rate). The NNR and BPR methods on the other hand,
improve on the original query automatically, based on their knowledge about the
relevance of (similar) past queries.

From the figures, it is clear that the other methods outperform the LSI search
technique. Furthermore, the nearest neighbour method also performs better than
the Backpropagation method.

The difference between using 1 neighbour and max 3 neighbours is very
small. We noticed that 3 neighbours were only used twice (1.8% of all opti-
mised queries) in the test runs with threshold 0.8. 2 neighbours were only used
11 times (10.1%). The test data was therefore not very much clustered, in terms
of the cosine measure.

The figures show only a small difference between using 0.7 and 0.8 as thresh-
old value, in terms of effectiveness. But using 0.7 caused twice as many queries
to be optimised, without considerably degrading the results.

It is interesting to see that the nearest neighbour method performs much bet-
ter than the Backpropagation method. This can be due to a number of reasons,
perhaps the most likely that we were incapable of finding the best network topol-
ogy. There is also an error source involved in the network algorithm; the test data
vectors are normalised according to the minimum and maximum vector values
in the training set.

In terms of effectiveness, the other methods performed better than the origi-
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Figure 3.3: Precision/Recall using threshold 0.8

nal LSI query. However, the number of optimised queries was rather small. The
knowledge used from previous queries is also very specific (or vertical) since
most of the time one neighbour was used for generalisation. The results also
indicate that the less complex solution (nearest neighbour) is capable of better
results than the complex one (neural network).

3.4 Discussion

We have presented results regarding two learning algorithms for improving pre-
viously unseen user queries in LSI.

The proposed methods are based on two different learning schemes from the
area of machine learning. The first method, Nearest Neighbour Regressor, uses a
nearest neighbour search of the training set to find queries similar to the initial
query. If found, the initial query is then optimised by changing its direction to be
more similar to that of the improved queries.

The second method, Backpropagation Regressor, implements a back propaga-
tion neural network and is trained to learn the difference between an improved
query and its initial query. When a new query is found similar to at least one of
the queries in the training set, it is optimised by adding the network output to
itself.

In order to evaluate the methods, we retrieved three standard IR test collec-
tions. We found that there were only a few queries in the first two collections
with high similarity values, according to the similarity measure we chose. We
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evaluated the methods on the third test collection, using a standard measure of
effectiveness.

The experiments revealed an array of results. First, we found that the meth-
ods improved new queries considerably. About 15% of the queries in the test
set were improved. Secondly, we found that the nearest neighbour method out-
performed the Backpropagation neural network. This, we believe, was mainly
because it was difficult to find the optimal parameters for the network. We also
found that using the 1-5 top-ranked documents from the result list of the im-
proved query during training generally increased the effectiveness of both meth-
ods. It thus seems like clustered documents are preferred as training examples
by our algorithms.

We found that the long-term relevance feedback learning mechanism was
well suited for a particular type of queries. In the CRAN collection, where the
algorithm improved the search results, the queries are long, and there are many
relevant documents for each query. In every other collection we tried (besides
the three datasets discussed here), the queries were short and there were few
relevant documents per query.

In general, we can expect that the methods are best suited in applications
where the queries are as elaborate (long) as they are in the CRAN collection.
For shorter queries, such as web queries, the situation is most probably reversed,
since the probability of two randomly selected queries to be similar should be
higher when the queries are short. Our conclusion is therefore that for all prac-
tical purposes we should, in the LSI model, use the KNN method to improve
future queries, on the basis of past queries and their relevance judgements, if the
queries are more elaborate than a few query terms.

The data collections were not particularly suited for this problem; the algo-
rithm is designed to learn from past similar queries, but in the data sets there
were not many similar queries to learn from. The collections are not explicitly
constructed for experiments involving query similarity, they are constructed for
experiments in ad hoc retrieval. We considered the possibility of creating a new
collection that instead had several similar queries, but this required resources we
did not have.

In conclusion, we have shown that relevance feedback in Latent Semantic
Indexing can be improved by using information implicitly represented in feed-
back from previous queries. Most techniques for relevance feedback today use
information that is collected from the user at the time of posing new queries to
an information retrieval system. This is often time-consuming and requires an
unnecessarily big effort from the user. It also means that collected information
is lost at the end of a query session. This method instead uses knowledge about
the user’s preferences as they have appeared in earlier sessions, to improve on
the current search session.
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3.4.1 Future Work

An important issue for future work is to explore the usefulness of the methods in
the scope of much larger text collections. The critical factor would be whether
the SVD can be computed for the collection or not, and if the vector dimensions
then are small enough.

The dimension of a query vector in LSI is equal to the number of singular
values one chooses in the SVD operation. Tests with LSI at the TREC conference
(Dumais, 1995) have demonstrated that even with collections of hundreds of
thousands of documents, only a few hundred singular values are required for
good performance. Thus, it is reasonable to believe that for collections with more
documents there will not be a tremendous increase in the number of dimensions.

Algorithms for computing the truncated SVD are getting faster all the time.
However, the complexity of the current algorithms is fairly high. On the other
hand there is no need to compute the truncated SVD of the entire term-document
matrix. A carefully selected sample of the document set can be used to construct
the LSI space. The rest of the document set can then be folded-in to the space
(Berry, Dumais, & Brien, 1995), in a manner similar to how the query vector is
represented.

Another interesting direction for future work is to investigate how the pro-
posed methods can be modified to work for a group of users with similar frames
of reference and interests. In such a scenario the common feedback from all users
in the group will be available to optimise new queries. This is a scenario where
individual efforts (in terms of giving feedback to the system) will be minimised
while the benefits (in terms of being presented less irrelevant documents) will be
maximised.



Chapter 4

Random Indexing for Text
Categorisation

In this chapter we investigate the use of concept-based representations for text
categorisation. The concept-based text representations are created using Ran-
dom Indexing (Kanerva, Kristofersson, & Holst, 2000; Karlgren & Sahlgren,
2001), for the purpose of investigating whether this representation holds any
valuable properties for text categorisation tasks. We use the Support Vector Ma-
chine classifier, described in Section 2.5.4, for learning the categories.

The results of the experiment show a small difference between the traditional
bag of words representations and the concept based ones, but more specifically
we identify certain categories for which we can use concept-based representa-
tions as a supplement or complementary representation. To further analyse this,
we calculate the optimal performance, using the F1 measure from Section 2.6.2,
obtained by the classifier when we select the overall best combination of repre-
sentation for the different categories. This combination contains both categories
learned with the bag-of-words representation as well as the concept-based ones.

This chapter has previously been published in (Sahlgren & Cöster, 2004),
with Sahlgren as the primary author. Sahlgren is the primary investigator of
the Random Indexing approach to text representation, and the cooperation here
concerns the use of Random Indexing for text categorisation.

4.1 Problem Background

For text categorisation (TC), the papers by Joachims (1998) and Dumais et.
al. (1998) demonstrated that Support Vector Machines applied to a Bag-of-Words
(BoW) representation of documents is a very effective approach.

Other representations have been used for the TC task; n-grams and phrases

61
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(Lewis, 1992; Dumais et al., 1998), the use of synonym clusters and latent di-
mension (Baker & McCallum, 1998; Cai & Hofmann, 2003). However, none of
the more elaborate representations seem to significantly outperform the stan-
dard BoW approach (Sebastiani, 2002). In addition to this, they are typically
more expensive to compute.

What interests us here is the difference between using standard BoW and
more elaborate, concept-based representations. Since text categorisation is nor-
mally cast as a problem concerning the content of the text (Dumais et al., 1998),
one might assume that looking beyond the mere surface word forms should be
beneficial for the text representations. We believe that, even though BoW repre-
sentations are superior in most text categorisation tasks, concept-based schemes
do provide important information, and that they can be used as a supplement
to the BoW representations. Our goal is therefore to investigate whether there
are specific categories in a standard text categorisation collection for which us-
ing concept-based representations is more appropriate, and if combinations of
word-based and concept-based representations can be used to improve the cate-
gorisation performance.

In order to do this, we introduce a new method for producing concept-based
representations for natural language data. The method is efficient, fast and scal-
able, and requires no external resources. We use the method to create concept-
based representations for a standard text categorisation problem, and we use the
representations as input to a Support Vector Machine classifier. The categorisa-
tion results are compared to those reached using standard BoW representations,
and we also demonstrate how the performance of the Support Vector Machine
can be improved by combining the representations.

4.2 Bag-of-Concepts

The standard BoW representations are usually refined before they are used as
input to a classification algorithm. One refinement method is to use feature se-
lection, which means that words are removed from the representations based
on statistical measures, such as document frequency, information gain, χ2, or
mutual information (Yang & Pedersen, 1997). Another refinement method is to
use feature extraction, which means that “artificial” features are created from the
original ones, either by using clustering methods, such as distributional cluster-
ing (Baker & McCallum, 1998), or by using methods such as the SVD.

As discussed earlier, feature extraction methods also handle problems with
synonymy, by grouping together words with similar meaning, or by restructuring
the data (i.e. the number of features) according to a small number of informa-
tive dimensions, so that similar words get similar representations. Since these
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methods do not represent texts merely as collections of the words they contain,
but rather as collections of the concepts they contain – whether these be synonym
sets or latent dimensions – a more fitting label for these representations would
be Bag-of-Concepts (BoC).

4.3 Random Indexing

One serious problem with BoC approaches is that they tend to be computation-
ally expensive. This is true at least for methods that use factor analytic tech-
niques. Other BoC approaches that use resources such as WordNet1 have limited
portability, and are normally not easily adaptable to other domains or to other
languages.

To overcome these problems, we use an alternative approach for producing
BoC representations. The approach is based on Random Indexing (Kanerva et
al., 2000; Karlgren & Sahlgren, 2001), which is a vector space methodology
for producing context vectors for terms based on cooccurrence data. A context
vector is a vector that represents the contexts in which a term occurs. Random
Indexing uses these context vectors to produce a Bag-of-Concept representation,
for example for a document, by summing the context vectors for every term that
occurs in the document.

To construct the context vectors, Random Indexing does the following. Each
context (for example each document, each paragraph, each clause, or each win-
dow of terms) is first assigned a unique and randomly generated representation
in the form of an index vector. The index vector is a high-dimensional, sparse
representation of the context. The dimensionality, k, is typically in the order of
thousands. The vector is sparse: it contains only a small number of non-zero
elements, which are either −1 or +1. Thus, the values of the index vectors are
ternary: they are either −1, 0 or +1.

Each term is then given a high-dimensional vector of the same dimensionality
as the index vectors. Random Indexing proceeds by scanning the text sequen-
tially from the beginning, and whenever a term occurs in a context (for example
in a document) then the index vector for that context is added (by vector addi-
tion) to the term’s high-dimensional vector. These term vectors are called context
vectors since they are effectively the sum of the terms’ contexts.

Random Indexing thus builds a context matrix G of order w× k, where k �
c. Each row Gi is the k-dimensional context vector for term i. The context
vectors are, as described, accumulated by adding together the k-dimensional
index vectors that have been assigned to each context in the data – whether

1wordnet.princeton.edu
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document, paragraph, clause, window, or neighbouring terms.
Note that the same procedure will produce a standard cooccurrence matrix F

of order w× c if we use unary index vectors of the same dimensionality c as the
number of contexts. These unary index vectors would have a single 1 marking
the place of the context in a list of all contexts – the nth element of the index
vector for the nth context would be 1. Mathematically, the unary vectors are
orthogonal, whereas the random index vectors are only nearly orthogonal. How-
ever, since there are more nearly orthogonal than truly orthogonal directions in a
high-dimensional space, choosing random directions gets us sufficiently close to
orthogonality to provide an approximation of the unary vectors (Hecht-Nielsen,
1994).

The distribution of the +1 and −1 values is the key to constructing the index
vectors so that they are nearly mutually orthogonal. The near orthogonality of
random directions in a high-dimensional vector space is the core part of a family
of dimension reduction techniques such as Random Mapping(Kaski, 1998), Ran-
dom Projections(Bingham & Mannila, 2001), and Random Indexing. These are
all motivated by the Johnson-Lindenstrauss Lemma (Johnson & Lindenstrauss,
1984), which states that if we project points into a randomly selected subspace
of sufficiently high dimensionality, the distances between the points are approx-
imately preserved. Thus, if we collect the random index vectors into a random
matrix R of order c × k, whose row Ri is the k-dimensional index vector for
context i, the following relation holds:

Gw×k = Fw×cRc×k

That is, the Random Indexing context matrix G contains the same information
as we get by multiplying the standard cooccurrence matrix F with the random
matrix R, where RRT approximates the identity matrix.

4.3.1 Bag-of-Context vectors

The context vectors produced by Random Indexing can be used to generate BoC
representations. This is done by, for every text, summing the (weighted) context
vectors of the terms that occur in the particular text. Note that summing vectors
result in tf -weighting, since a term’s vector is added to the text’s vector as many
times as the term occurs in the text. The same procedure generates standard
BoW representations if we use unary index vectors of the same dimensionality
as the number of terms in the data instead of context vectors, and weight the
summation of the unary index vectors with the idf-values of the terms.
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4.3.2 Advantages of Random Indexing

One advantage of using Random Indexing is that it is an incremental method,
which means that we do not have to sample all the data before we can start
using the context vectors — Random Indexing can provide intermediary results
even after just a few vector additions. Other vector space models need to analyse
the entire data before the context vectors are operational.

Another advantage is that Random Indexing avoids the “huge matrix step”,
since the dimensionality k of the vectors is much smaller than, and not directly
dependent on, the number of contexts c in the data. Other vector space models,
including those that use dimension reduction techniques such as singular value
decomposition, depend on building the w× c cooccurrence matrix F.

This “huge matrix step” is perhaps the most serious deficiency of other mod-
els, since their complexity becomes dependent on the number of contexts c in the
data, which typically is a very large number. Even methods that are mathemati-
cally equivalent to Random Indexing, such as random projection (Papadimitriou,
Raghavan, Tamaki, & Vempala, 1998) and random mapping (Kaski, 1998), are
not incremental, and require the initial w× c cooccurrence matrix.

Since dimension reduction is built into Random Indexing, we achieve a sig-
nificant gain in processing time and memory consumption, compared to other
models. Furthermore, the approach is scalable, since adding new contexts to the
data set does not increase the dimensionality of the context vectors.

4.4 Experiment Setup

In the following subsections, we describe the setup for the text categorisation
experiments.

4.4.1 Data

We use the Reuters-21578 test collection, which consists of 21,578 news wire
documents that have been manually assigned to different categories. In these
experiments, we use the “ModApte” split, which divides the collection into 9,603
training documents and 3,299 test documents, assigned to 90 topic categories.
After lemmatization, stopword filtering based on document frequency, and fre-
quency thresholding that excluded words with frequency < 3, the training data
contains 8,887 unique terms.
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4.4.2 Representations

The standard BoW representations for this setup of Reuters-21578 are 8,887-
dimensional and very sparse.

To produce BoC representations, a k-dimensional random index vector is as-
signed to each training document. Context vectors for the terms are then pro-
duced by adding the index vectors of a document to the context vector for a given
term every time the term occur in that document.

We initially also used word-based contexts, where index vectors were as-
signed to each unique word, and context vectors were produced by adding the
random index vectors of the surrounding words to the context vector of a given
word every time the word occurred in the training data. However, the word-
based BoC representations consistently produced inferior results compared to the
document-based ones, so we decided not to pursue the experiments with word-
based BoC representations for these experiments. Our initial guess is that the
heavy preprocessing by removing stop words and using frequency thresholding
may have been the reason for the inferior results.

The context vectors are then used to generate BoC representations for the
texts by summing the context vectors of the words in each text, resulting in k-
dimensional dense BoC vectors.

4.4.3 Support Vector Machines

For learning the categories, we use the Support Vector Machine (SVM) algorithm
for binary classification, see Section 2.5.4.

In our experiments, we use three standard kernel functions – the basic linear
kernel, the polynomial kernel, and the radial basis kernel:2

• Linear: K(xi, z) = xi · z

• Polynomial: K(xi, z) = (xi · z)d

• Radial Basis: K(xi, z) = exp(−γ‖xi − z‖2)

For all experiments, we selected d = 3 for the polynomial kernel and γ = 1.0 for
the radial basis kernel. These parameters were selected as default values and are
not optimised.

2We used a SVM implementation called SVMlight available at: svmlight.joachims.org
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tf idf tf×idf
BoW 82.52 80.13 82.77
BoC 500-dim 79.97 80.18 81.25
BoC 1,000-dim 80.31 80.87 81.93
BoC 1,500-dim 80.41 80.81 81.79
BoC 2,000-dim 80.54 80.85 82.04
BoC 2,500-dim 80.64 81.19 82.18
BoC 3,000-dim 80.67 81.15 82.11
BoC 4,000-dim 80.60 81.07 82.24
BoC 5,000-dim 80.78 81.09 82.29
BoC 6,000-dim 80.78 81.08 82.12

Table 4.1: Micro-averaged F1 score for tf, idf and tf×idf using BoW and BoC
representations.

4.5 Experiments and Results

In these experiments, we use a one-against-all learning method, which means
that we train one classifier for each category (and representation). For evalua-
tion, we used the standard F1 measure, as defined by Formula 2.40.

There are a number of parameters that need to be optimised in this kind of
experiment, including the weighting scheme, the kernel function, and the dimen-
sionality of the BoC vectors. For ease of exposition, we report the results of each
parameter set separately. Since we do not experiment with feature selection
in this investigation, our results will be somewhat lower than other published
results that use SVM with optimised feature selection. Our main focus is to com-
pare results produced with BoW and BoC representations, and not to produce a
top score for the Reuters-21578 collection.

4.5.1 Weighting Scheme

Using appropriate word weighting functions is known to improve the perfor-
mance of text categorisation (Yang & Pedersen, 1997). In order to investigate
the impact of using different word weighting schemes for concept-based repre-
sentations, we compare the performance of the SVM using the following three
weighting schemes: tf, idf, and tf×idf.

The results are summarised in Table 4.5.1. The BoW run uses the linear
kernel, while the BoC runs use the polynomial kernel. The numbers in boldface
are the best BoC runs for tf, idf, and tf×idf, respectively.
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As expected, the best results for both BoW and BoC representations were
produced using tf×idf. For the BoW vectors, tf consistently produced better
results than idf, and it was even better than tf×idf using the polynomial and
radial basis kernels. For the BoC vectors, the only consistent difference between
tf and idf is found using the polynomial kernel, where idf outperforms tf.3 It is
also interesting to note that for idf weighting, all BoC runs outperform BoW.

4.5.2 Parameterising RI

In theory, the quality of the context vectors produced with the Random Index-
ing process should increase with their dimensionality. Kaski (1998) shows that
the higher the dimensionality of the vectors, the closer the matrix RRT will ap-
proximate the identity matrix, and Bingham and Mannila (2001) observe that
the mean squared difference between RRT and the identity matrix is about 1

k
,

where k is the dimensionality of the vectors. In order to evaluate the effects of
dimensionality in this application, we compare the performance of the SVM with
BoC representations using 9 different dimensionalities of the vectors. The index
vectors consist of 4 to 60 non-zero elements (≈ 1% non-zeros), depending on
their dimensionality. The results for all three kernels using tf×idf -weighting are
displayed in Figure 4.1.

Figure 4.1 demonstrates that the quality of the concept-based representa-
tions increase with their dimensionality as expected, but that the increase levels
out when the dimensionality becomes sufficiently large; there is hardly any dif-
ference in performance when the dimensionality of the vectors exceeds 2,500.
There is even a slight tendency that the performance decreases when the di-
mensionality exceeds 5,000 dimensions; the best result is produced using 5,000-
dimensional vectors with 50 non-zero elements in the index vectors.

There is a decrease in performance when the dimensionality of the vectors
drops below 2,000. Still, the difference in F1 score between using 500 and 5,000
dimensions with the polynomial kernel and tf×idf is only 1.04, which indicates
that Random Indexing is very robust in comparison to, e.g., singular value de-
composition, where choosing appropriate dimensionality is critical.

4.5.3 Parameterising SVM

Regarding the different kernel functions, Figure 4.1 clearly shows that the poly-
nomial kernel produces consistently better results for the BoC vectors than the
other kernels, and that the linear kernel consistently produces better results than

3For the linear and radial basis kernels, the tendency was that tf in most cases was better than
idf.
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Figure 4.1: Micro-averaged F1 score for three kernels using 9 dimensionalities
of the BoC vectors.

the radial basis kernel. This could be a demonstration of the difficulties of pa-
rameter selection, especially for the γ parameter in the radial basis kernel. To
further improve the results, we can find better values of γ for the radial basis
kernel and of d for the polynomial kernel by explicit parameter search.

4.6 Comparing BoW and BoC

If we compare the best BoW run (using the linear kernel and tf × idf -weighting)
and the best BoC run (using 5,000-dimensional vectors with the polynomial ker-
nel and tf × idf -weighting), we can see that the BoW representations barely
outperform BoC: 82.77% versus 82.29%. However, if we only look at the results
for the ten largest categories in the Reuters-21578 collection, the situation is re-
versed and the BoC representations outperform BoW. TheF1 measure for the best
BoC vectors for the ten largest categories is 88.74% compared to 88.09% for the
best BoW vectors. This suggests that BoC representations are more appropriate
for large-size categories.

The best BoC representations outperform the best BoW representations in
16 categories, and are equal in 6. Of the 16 categories where the best BoC
outperform the best BoW, 9 are better only in recall, 5 are better in both recall
and precision, while only 2 are better only in precision.
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It is always the same set of 22 categories where the BoC representations
score better than, or equal to, BoW.4 These include the two largest categories
in Reuters-21578, “earn” and “acq”, consisting of 2,877 and 1,650 documents,
respectively. For these two categories, BoC representations outperform BoW with
95.57% versus 95.36%, and 91.07% versus 90.16%, respectively. The smallest
of the “BoC categories” is “fuel”, which consists of 13 documents, and for which
BoC outperforms BoW representations with 33.33% versus 30.77%. The largest
performance difference for the “BoC categories” is for category “bop”, where BoC
reaches 66.67%, while BoW only reaches 54.17%. We also note that it is the same
set of categories that is problematic for both types of representations; where BoW
score 0.0%, so does BoC.

4.7 Combining Representations

The above comparison suggests that we can improve the performance of the
SVM by combining the two types of representation. The best F1 score can be
achieved by selecting the quadruple (TP, FP, TN, FN) for each individual category
from either BoW or BoC so that it maximises the overall score. There are 290

such combinations, but by expressing the F1 function in its equivalent form F1 =

(2 ∗ TP)/(2 ∗ TP + FP + FN), we can determine that for our two top runs there
are only 17 categories such that we need to perform an exhaustive search to find
the best combination. For instance, if for one category both runs have the same
TP but one of the runs have higher FP and FN, the other run is selected for that
category and we do not include that category in the exhaustive search.

Combining the best BoW and BoC runs increases the results from 82.77%
(the best BoW run) to 83.91%. For the top ten categories, this increases the
score from 88.74% (the best BoC run) to 88.99%. Even though the difference is
admittedly small, the increase in performance when combining representations
is not negligible, and is consistent with the findings of previous research (Cai &
Hofmann, 2003).

4.8 Discussion

We have introduced a new method for producing concept-based (BoC) text rep-
resentations, and we have compared the performance of an SVM classifier on the
Reuters-21578 collection using both traditional word-based (BoW), and concept-
based representations. The results show that BoC representations outperform

4The “BoC categories” are: veg-oil, heat, gold, soybean, housing, jobs, nat-gas, cocoa, wheat,
rapeseed, livestock, ship, fuel, trade, sugar, cpi, bop, lei, acq, crude, earn, money-fx.
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BoW when only counting the ten largest categories, and that a combination of
BoW and BoC representations improve the performance of the SVM over all cat-
egories.

We conclude that concept-based representations constitute a viable supple-
ment to word-based ones, and that there are categories in the Reuters-21578
collection that benefit from using concept-based representations.

4.8.1 Future Work

The idea of extracting higher-level concepts from text is intellectually appealing,
although to date the basic word-based representations often have better accu-
racy, are easier to implement and can be represented more efficiently. Research
in concept-based representations has much to prove before it can replace this
current paradigm. Random Indexing is one exciting new form of text represen-
tation that we believe should be developed further. The first issue that needs
more research is perhaps a deeper investigation (mathematical or linguistic) of
the extracted concepts in order to better understand how to tune the parameters
of the method.





Chapter 5

Inverted Files for Collaborative
Filtering

In this chapter we explore the possibility of using an inverted file structure for
collaborative filtering. The hypothesis is that this structure allows for faster cal-
culation of predictions and also that pruning strategies from information retrieval
can be used to further speed up the filtering process and perhaps even improve
the quality of the predictions.

There are two reasons for this. Firstly, matching user profiles in a collabo-
rative filtering system can be very expensive. Secondly, if it is possible to use a
structure that allows us to access all user preferences stored directly from disk it
is possible to maintain a much larger set of users and items.

In order to evaluate this, a series of experiments were performed on several
large datasets. The evaluation compare inverted file search with in-memory vec-
tor search, both in terms of prediction accuracy and neighbourhood formation
time.

We have already reviewed Collaborative Filtering in Section 2.4. In Sec-
tion 5.1 we express four correlation algorithms in a form suitable for inverted
retrieval. The file organisation for implementing the inverted files is briefly de-
scribed in Section 5.2. Sections 5.3 and 5.4 describe the experimental setup and
the main results. The main parts of this chapter have previously been published
in (Cöster & Svensson, 2002), although we have performed new experiments
with new datasets and new parameters; the largest difference is that we now
have performed a 10-fold cross validation for evaluating the algorithms.

73
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5.1 Inverted search

The reason for using inverted files in information retrieval is the observation that
a user query usually contains a small percentage of the total number of terms in
the document collection. Recall from Section 2.1 how the index terms are used
as entry points into the documents. In collaborative filtering, a user’s ratings
(or profile) can be seen as a document, which in itself can be used as a query.
However, there are some differences between a document and a profile. If the
user, as in a movie recommender system, explicitly expresses the ratings, the
user’s profile will certainly grow over time and perhaps contain several hundreds
or even thousands of ratings. In the case of implicit voting, the profile may grow
even faster when, for example, each web page visit or news article read render a
rating that is stored in the profile.

Since the user profiles are expected to grow over time, it may seem unlikely
that inverted files are suited for collaborative filtering. We argue quite the op-
posite, for two main reasons: the first being that inverted file search is well
researched and handles scalability very well. The second is that the inverted file
structure makes it easy to employ heuristic stop conditions, so that it is not nec-
essary to investigate all inverted lists in a neighbourhood search and thus further
speed up execution.

When the user data is in inverted form, we have a data structure that enables
us to quickly look up the users and their ratings for a particular item. Analo-
gous to information retrieval, the items can be thought of as terms, the users as
documents and the ratings as the frequency of a term in a particular document.

The basic algorithm for inverted file search scans one inverted list at a time
(Witten et al., 1999). During this scan, accumulators are stored in main memory
for holding partial sums of scores or weights. In our case, the partial sums will be
the partial correlations or similarities between the active user and all other users.
When all inverted lists are processed, the accumulators contain the complete
sums. Usually there are one or more arrays of static weights, such as normalising
factors, which are combined with the accumulators to produce the final score for
a user. The final score is calculated for all non-zero accumulators, and users with
top scores are returned.

One of the most commonly used algorithms for calculating neighbours in
memory-based predictions is Pearson correlation. Various extensions have been
made to the basic correlation (Breese et al., 1998). We will demonstrate, in
sections 5.1.1 through 5.1.4, how these algorithms may be expressed in a form
suitable for inverted retrieval.
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5.1.1 Pearson Correlation

The Pearson correlation (see also Formula 2.10) between two users a and i is
defined as

w(a, i) =

∑
j(va,j − v̄a)(vi,j − v̄i)√∑

j(va,j − v̄a)2
∑

j(vi,j − v̄i)2
(5.1)

where va is the profile for user a, va,j is that user’s rating for item j and v̄a is
the mean value of the ratings for user a. The index j runs over the intersecting
items in the two profiles. We will use a set-like notation for listing the indexes;
in this case j ∈ {va ∩ vi}. Furthermore, let |va ∩ vi| be the number of ratings in the
intersection between users a and i.

To apply inverted search to correlation, it is necessary to keep three different
accumulators in memory: one for the sum in the numerator, and two for the
sums in the denominator. Call these variables SAI, SAA and SII respectively.
In addition, the mean values for each user must be easily accessible, and these
are stored in the static array MEANS. Let N denote the number of users in the
database. Algorithm 1 will then compute the top K neighbours to user a. The
sorting at step 15 can be performed by the use of min-heaps (Witten et al., 1999).

5.1.2 Inverse User Frequency

An extension to the basic Pearson correlation algorithm is inverse user frequency
(Breese et al., 1998), which assigns lower weights to items that have a larger
number of ratings. The assumption is that items that are viewed by a large
number of users are not as useful in capturing the similarity between two users
as items that have been viewed by fewer users. Inverse user frequency is similar
to the inverse document frequency weighting (Salton & McGill, 1983) used in
text retrieval.

The inverse user frequency for item j can be defined as fj = log(N/nj) where
nj is the number of users that have rated for item j. This weight is calculated for
each item in the data set.

For the algorithm, we use the same notation as in (Breese et al., 1998). The
inverted search algorithm requires six accumulators for the different sums

∑
j fj,∑

j fjva,jvi,j,
∑

j fjva,j,
∑

j fjvi,j,
∑

j fjv
2
a,j and

∑
j fjv

2
i,j. Furthermore, the inverse

frequencies should be kept in a static array IUF, which at index j holds the value
log(N/nj). The inner loop of the search algorithm is then similar to that of
Algorithm 1.
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Algorithm 1 Inverted correlation neighbourhood search
Input is the user profile va, max number of neighbours K and array of means
MEANS. Output is array of nearest neighbours.

1: Allocate accumulators SAI, SAA and SII of size N

2: Allocate array TOP of size K for nearest neighbours
3: for all j ∈ va do
4: locate inverted list L for item j

5: for each user u and rating v in L do
6: SAI[u] = SAI[u] + (va,j − v̄a) ∗ (v − MEANS[u])

7: SAA[u] = SAA[u] + (va,j − v̄a)2

8: SII[u] = SII[u] + (v − MEANS[u])2

9: end for
10: end for
11: for all u ∈ SAI, such that SAI[u] 6= 0 do
12: corr = SAI[u]/

√
(SAA[u] ∗ SII[u])

13: if corr > TOP[K − 1] then
14: add (u, corr) to TOP

15: restore TOP to sorted order
16: end if
17: end for
18: return TOP

5.1.3 Default Voting

Default voting is computed between two users a and i in the union of their
ratings. If both users have not rated item j, a default rating d is used for the
missing rating. The default rating is selected globally for the whole data set, as
a neutral or slightly negative rating. Another parameter k estimates the number
of items two users have not seen or rated but would agree on.

Let n be the number of items that both user a and i have rated. Default voting
is then

w(a, i) =
A1 − B1√

U1V1

(5.2)

where

A1 = (n + k)(
∑

j

va,jvi,j + kd2)

B1 = (
∑

j

va,j + kd)(
∑

j

vi,j + kd)
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U1 = (n + k)(
∑

j

v2
a,j + kd2) − (

∑
j

va,j + kd)2

V1 = (n + k)(
∑

j

v2
i,j + kd2) − (

∑
j

vi,j + kd)2

Recall that the inverted search finds the intersection of the ratings of the active
user and all other users. This leads to a slight complication when inverting de-
fault voting, since it is calculated in the union of the user’s ratings, i.e. now
j ∈ {va ∪ vi}. To remedy this, we need to express the sum over union of items in
terms of the sum of the intersecting items. The sum in A1 can be written as∑

j

va,jvi,j =
∑
m

va,mvi,m + (5.3)

+d(
∑

s

va,s −
∑
m

va,m) +

+d(
∑

t

vi,t −
∑
m

vi,m)

where j ∈ {va ∪ vi}, s ∈ {va}, t ∈ {vi} and m ∈ {va ∩ vi}.
The idea is then to accumulate the sum over m during the search and have

the sum over t in a static array. The sum over s (for the active user a) may be
stored in the static array or calculated during the search.

The four remaining sums for formula 5.2 (
∑

j va,j,
∑

j vi,j,
∑

j v
2
a,j and

∑
j v

2
i,j)

can be calculated using a similar argument. Consider for example the sum∑
j va,j, which is equal to

∑
s va,s + d(|vi| − |va ∩ vi|). This may be calculated

if we know
∑

s va,s and |vi|, and calculate |va ∩ vi| during the search. This sum
and the three remaining ones are symmetrical.

Altogether, three static arrays are needed to look up the values of
∑

t vi,t,∑
t v2

i,t and |vi|. Four accumulators are needed, three for the partial sums over m

(
∑

m va,mvi,m,
∑

m va,m,
∑

m vi,m) and one for the number of intersecting items
|va ∩ vi|. Again, the sums over s may be stored in the static arrays or calculated
during the search. We chose the latter for our experiments.

5.1.4 Default Voting and Inverse User Frequency

The idea of weighting items according to their inverse user frequency can also
be applied to default voting. If we use the index variables j, s, t and m as
in the previous section, then default voting with inverse user frequency can be
expressed as

w(a, i) =
A2 − B2√

U2V2

(5.4)
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where

A2 = (n + k)(
∑

j

fjva,jvi,j + kd2)

B2 = (
∑

j

fjva,j + kd)(
∑

j

fjvi,j + kd)

U2 =
∑

j

fj((n + k)(
∑

j

fjv
2
a,j + kd2)

−(
∑

j

fjva,j + kd)2)

V2 =
∑

j

fj((n + k)(
∑

j

fjv
2
i,j + kd2)

−(
∑

j

fjvi,j + kd)2)

The sum in A2 can be rewritten as∑
j

fjva,jvi,j =
∑
m

fmva,mvi,m + (5.5)

+d(
∑

s

fsva,s −
∑
m

fmva,m) +

+d(
∑

t

ftvi,t −
∑
m

fmvi,m)

The remaining sums to complete formula 5.4 are symmetrical to∑
j

fjva,j =
∑

s

fsva,s + d(
∑

t

ft −
∑
m

fm) (5.6)

Again, we require the sums over t to be kept in static arrays and accumulate
the sums over m. The required arrays should contain at index i the values of∑

t ft,
∑

t ftvi,t,
∑

t ftv
2
i,t and |vi|. Five accumulators are needed, where four

are for the sums over m (
∑

m fm,
∑

m fmva,mvi,m,
∑

m fmva,m,
∑

m fmvi,m). The
number of intersecting items |va ∩ vi| is also required, to calculate n = |va ∪ vi|.

5.1.5 Early Termination Heuristics

As discussed earlier, user profiles can grow quite large, especially in the case of
implicit ratings. If there are ways that would allow us to only use parts of a user
profile for prediction, it would further speed up execution time.
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Several heuristic stop conditions for text retrieval have been devised (Witten
et al., 1999). Some of these take advantage of the properties of the similarity
function. For example, if the document weights are normalised to unit length,
then it is possible to bound the accumulator weights of the cosine function (Buck-
ley & Lewit, 1985). Other heuristics place stop conditions on the number of tra-
versed inverted lists or, as in our case, stop conditions on the number of users
that are retrieved during the scanning of the inverted lists.

Two strategies for this are well known: Quit and Continue. In both methods,
the query is sorted by decreasing weight and lists are then processed in this order
until the stop condition is met. When the stop condition is reached, only those
accumulators that are non-zero are considered. In the Quit strategy, no more
lists are processed after this point and the accumulators are used as is. The other
strategy is to continue processing lists but only to update those accumulators that
are already non-zero. Thus, Continue will always calculate the total weight for
users that have reached into non-zero accumulators, whereas Quit may not.

We have implemented both Quit and Continue for the four algorithms de-
scribed in the previous sections. The items were weighted according to inverse
user frequency.

5.2 File Organisation

The Prefix B+-tree (Folk, Zoellick, & Riccardi, 1998; Bayer & Unterauer, 1977)
was used for storing the index, since it is widely used and a particularly good
data structure for storing and maintaining an index on external memory. The
tree is divided into two separate files: one to store the index as minimal key
separators (the index file) and one file to store the sorted key/value pairs (the
value file). The key consists of an item id with the value containing either an
inverted list or a pointer to a posting file that contains large inverted lists (lists
larger than 256 bytes in size). The posting file was divided into 512 byte blocks
and for each inverted list a pointer list was kept for tracking which blocks that
list occupied.

5.2.1 Compression

For indexing, each data set was first converted to an internal vector format and
then indexed. On the reference machine described in Section 5.3.3, the indexing
process took less than a minute for each dataset; about 21 seconds to index 90%
of the EachMovie data and 7 seconds for the MovieLens data.

To construct the index and the inverted lists, we used sort-based inversion
(Witten et al., 1999). The lists of run-lengths of user ids together with the rating
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were then compressed for each item, and stored in the posting file.
Four different compression algorithms were tried: Golomb, Elias delta, Elias

gamma and variable byte coding. All these four methods are well described in
the information retrieval literature (Williams & Zobel, 1999; Witten et al., 1999),
so they will not be re-stated here. For the Golomb, Elias delta and Elias gamma
codings the rating was stored as a binary number of three bits. For variable byte
coding, one byte was used.

We compressed the inverted lists for the first 60000 users in the EachMovie
data that had rated at least two items, a total of 2805901 ratings. The average
number of bytes per pointer (user id, rating pair) was close to one on Golomb,
Delta and Gamma coding (1.04, 1.10 and 1.11). Using variable byte coding the
data was compressed to 2.05 bytes per pointer. The block file utilisation was
93.7%, 93.5%, 93.2% and 96.2% respectively.

When running the experiments described in Section 5.3, we selected the sim-
plest compression method, variable byte coding, since we wanted to see whether
it was possible to use less complicated compression algorithms and still gain in
performance by using inverted search.

5.2.2 Updating the Inverted Files

A collaborative filtering system will not serve its purpose if it is difficult to update
it with new ratings and users. In a memory-based model this is one of the greatest
advantages over model-based approaches. How will the inverted file structure
handle updates? The problem that needs to be solved is how to update the
inverted lists.

There are two ways of handling updates, either incrementally or in batch. If
the index needs to be updated whenever new ratings arrive, the inverted lists
should be represented without the need of decompression in order to insert or
delete ratings. This approach has the drawback that the list postings will take
up a larger amount of space. For batch updating changes would first be stored
in a secondary index and then, at some point in time, merged with the primary
index.

The static arrays of weights must also be updated, and in most cases the
weight depends only on local properties of the profile. It is more problematic
to update the static arrays in default voting with inverse user frequency, since
those values depend on global properties. If a frequency is changed for an item,
all weights must be updated to reflect this change. The simplest solution is to
search the inverted list for that item, and for each user in the list subtract the old
value from its weight and add the new value.

However, since the indexing process is so fast, one should consider to instead
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completely re-index the data when there have been many updates.

5.3 Experiments

To evaluate the algorithms, we conducted a set of experiments. We measure the
elapsed time to perform neighbourhood search and predictive accuracy.

We compare the inverted algorithms against in-memory vector searching. The
user profiles are implemented as linked list, i.e. sparse vectors. This is not the
fastest in-memory structure for performing intersection among user profiles: a
hash table structure can be even faster. This will be discussed in relation to the
results.

Each object in the profile contains the item id and the rating, and each user
profile is sorted on ascending item id. The different correlation algorithms were
implemented as list intersection (sections 5.1.1 and 5.1.2) or list union (sections
5.1.3 and 5.1.4). The mean value was pre-computed for each profile.

5.3.1 Data Sets and Experimental Setting

The datasets used in these experiments are EachMovie and MovieLens, which are
described in more detail in Section 2.6.5.

For these datasets, the experimental setting was as follows:

• Users that had rated less than 2 items were removed.

• The algorithms were evaluated using the AllBut1 protocol, meaning that
for each user, a single rating was held out that should be predicted on the
basis of all the other ratings in the profile

• A 10-fold cross validation was performed, as described in Section 2.6.4.

• For each experiment, we ran 4 different implementations on the same data:
inverted search, inverted search using Quit, inverted search using Continue
and in-memory vector search. Together with the four different algorithms,
this makes 16 algorithms evaluated in each experiment.

• We limited the neighbourhood size to no more than 50, which has been
found to be of reasonable size for movie data(Herlocker et al., 1999).

• For Quit and Continue we set the threshold at 10000 users for the Each-
Movie data, and 500 for the MovieLens data.
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• For EachMovie, the ratings are integers in the range [0 . . . 5]; for MovieLens
[1 . . . 5].

Any experimental evaluation will face the problem of not covering all para-
meter settings, we could for instance have varied the threshold parameters to
Quit and Continue, and the size of the neighbourhood. In these particular exper-
iments we focus on the relative differences in performance and speed between
the various algorithms, not to find the best parameter setting so as to find the
lowest error.

5.3.2 Metrics

The metrics we use are time taken to compute a neighbourhood, and the pre-
dictive accuracy. For neighbourhood computations, we measure mean neigh-
bourhood formation time: how long on average the algorithm takes to form a
neighbourhood.

For predictive accuracy, we use mean absolute error (MAE) and root mean
squared error (RMS) for measuring single predictions. MAE calculates the ab-
solute difference between the prediction and the actual rating, averaged over all
predictions. The two metrics are defined by formulas 2.41 and 2.42.

5.3.3 Machine Specifications

The experiments in this chapter were performed on a computer with a 3.0 GHz
Intel Pentium 4 processor, 1 GB RAM and a 7200 RPM Seagate Barracuda hard
drive and running Windows XP SP2. The software was implemented in Java and
run with JDK 1.4.2.

5.4 Results

In this section we describe the main results of applying inverted file search to col-
laborative filtering. We measure neighbourhood formation time in Section 5.4.1
and predictive accuracy in Section 5.4.2.

In the tables, the rows labelled Inv and Vec give the results for the algorithm
run on inverted search and in-memory vector search. In terms of accuracy, these
two should produce the same result; any small difference is due to rounding
errors in various steps of the algorithm. The Quit and Cont rows are the results of
applying the early termination heuristics. The correlation algorithms are labelled
CORR (Pearson Correlation), CIUF (Correlation with Inverse User Frequency),
DEF (Default voting) and DIUF (Default voting with IUF).
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5.4.1 Neighbourhood Formation Time

The mean time to compute neighbourhoods is displayed in Tables 5.1 and 5.2.
The Quit method is the fastest, since only a few inverted lists are examined. Con-
tinue is slower than normal inverted search, because of the use of an additional
data structure to hold the partial similarities. We implemented the accumulators
for Quit and Continue as static arrays.

The time to compute a neighbourhood for the inverted search algorithms
is measured by the time taken to complete all steps in the process, including
sorting the neighbourhood values to locate the 50 top neighbours. In the current
implementation, this is done by allocating a single object for each non-zero value,
sorting this array and returning the top 50 neighbours. This can be made more
efficient by the use of arrays and min-heaps, but the added extra time is only
5–20 ms. for the EachMovie data, and about 1 ms for MovieLens, and thus not
of great importance for the argument here. For the in-memory vector search, the
time is simply taken to be the time spent calculating the similarities and adding
these values to an array.

The improvement in mean neighbourhood formation time by using inverted
search is very encouraging. In general, inverted search is many times faster than
in-memory vector search, even when using such a simple compression algorithm
as variable byte coding. Furthermore, most data in the inverted structure resides
on disk (except for the caveat of the operating system cache mechanisms). By
explicitly caching parts of the index and the inverted lists, it is of course possible
to further improve the neighbourhood formation time.

As noted earlier, the linked list implementation of the sparse vectors is not
the optimal data structure if we are to perform an intersection between two vec-
tors. Instead, one may use a hash table representation and then by direct access
fetch the (possibly) intersecting features in the larger of the two profiles by iter-
ating over all features in the smaller of the two. When running this experiment
with the EachMovie data, the mean time to calculate neighbourhoods for CORR
and CIUF (which are the algorithms that operate in the intersection), the timing
results were much improved: 167.01 and 183.81 ms. compared to 600.83 and
615.92 respectively. For union calculations, hash tables are not an equally good
alternative since calculating the union requires to iterate over all elements in
both vectors. Furhermore, hash tables require more internal memory than lists.

Despite this huge speedup due to a more clever use of the in-memory data
structures, this approach is still slower than using the inverted file. The reason
for this is that there are elements that the hash table algorithm will inspect that
are empty, and thus not part of the intersection, while the inverted file algorithm
only retrieves the necessary elements.
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CORR CIUF DEF DIUF
Vec 600.83 615.92 718.61 818.47
Inv 81.44 102.69 83.89 87.11
Quit 62.62 63.37 69.22 64.23
Cont 116.83 135.02 121.13 120.24

Table 5.1: Mean Neighbourhood formation time in ms. for EachMovie data set.
Note that the time for CORR and CIUF for Vec can be further improved
by the use of hash tables.

CORR CIUF DEF DIUF
Vec 154.01 159.50 190.71 220.77
Inv 25.57 29.35 25.22 25.63
Quit 14.10 14.54 15.54 14.03
Cont 31.58 34.29 31.02 31.03

Table 5.2: Mean Neighbourhood formation time in ms. for MovieLens data set.
Note that the time for CORR and CIUF for Vec can be further improved
by the use of hash tables.

5.4.2 Predictive Accuracy

The mean absolute error and root mean squared error for the AllBut1 protocol is
listed in Tables 5.3 and 5.4.

The first interesting result is that Continue is the top performer for all data
sets; since the user profiles are sorted in descending weight order, this means that
the shorter inverted lists (items that have fewer ratings) have high discriminating
power, and that items with a large number of ratings may corrupt the ranking.

The second result is that the Quit method performs very well even in cases
where very little information is used for making the prediction. We noted that in
many cases only one inverted list was used by Quit. After all, if the size of the first
list is greater than the threshold of 1000 or 10000, no more lists will be traversed.

CORR CIUF DEF DIUF
Vec 1.043 1.053 0.969 1.021
Inv 1.047 1.049 0.969 1.021
Quit 1.056 1.077 0.989 1.018
Cont 1.008 1.043 0.957 1.018

CORR CIUF DEF DIUF
Vec 1.335 1.361 1.234 1.317
Inv 1.339 1.358 1.234 1.317
Quit 1.353 1.392 1.264 1.315
Cont 1.301 1.354 1.224 1.314

Table 5.3: Mean Absolute Error (left) and Root Mean Squared Error (right) for
the EachMovie data set. Lower scores are better.
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CORR CIUF DEF DIUF
Vec 0.752 0.798 0.720 0.771
Inv 0.752 0.798 0.720 0.771
Quit 0.783 0.785 0.739 0.762
Cont 0.724 0.777 0.721 0.760

CORR CIUF DEF DIUF
Vec 0.956 1.014 0.925 0.970
Inv 0.954 1.014 0.926 0.970
Quit 0.987 1.004 0.941 0.962
Cont 0.937 0.996 0.931 0.960

Table 5.4: Mean Absolute Error (left) and Root Mean Squared Error (right) for
the MovieLens data set. Lower scores are better.

Quit does not compute the true correlation (the accumulator sums may not be
complete), so essentially the incomplete accumulator sums are combined with
the complete pre-calculated values in the static arrays. This behaviour did not
seem to harm the algorithm in a large way.

In terms of mean absolute error, we see a difference between the algorithms
but also between the data sets. Continue is the top performer, and performs
equally well or better than normal inverted search. Quit performs well compared
to not using termination heuristics at all. This means that if we are interested in
single predictions, we could do well by only taking into account a few items from
the profile.

Default voting was found the most effective correlation method, both in terms
of mean absolute error and root mean squared error. This is interesting, since the
top performer in a previous study (Breese et al., 1998) on the EachMovie dataset
was default voting with inverse user frequency. One very simple explanation for
this could be that our training set was much larger than the one used in the
previous study.

Another, more interesting issue, is why the inverse user frequency did not
seem to help in our experiments. In previous studies, the inverse user frequency
was used when all users were used as neighbours, while here we select a subset
of 50 neighbours. The purpose of the inverse user frequency information is to
dampen the effect of items with many ratings, and thus raise the effect of items
with few ratings. If all users are taken as a neighbourhood, this effect is posi-
tive according to previous results. However, when used in combination with a
thresholded subset of the neighbourhood, it seems likely that we should receive
as top neighbours users that have rated many items that few others have rated,
and from the results this is not the best neighbourhood.

5.5 Discussion

Collaborative Filtering has been successfully used in domains where the infor-
mation content is not easily parsable, and where traditional information filtering
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and retrieval techniques are difficult to apply. It is useful as a complement to
traditional content based filtering techniques.

There are however a number of problems with memory-based collaborative
filtering that needs to be resolved before it is truly useful. One important problem
is that of scalability, i.e. how to manage a large number of users and items. In this
chapter, we cast the collaborative filtering problem into an information retrieval
problem. Our hypothesis was that by the use of inverted files, we could speed up
execution time and perhaps even improve the predictive performance with early
termination heuristics.

In order to test this hypothesis, four well-known algorithms for collaborative
filtering were selected and expressed in a form suitable for inverted retrieval.
The experiments gave interesting and encouraging results:

• The inverted file search algorithms were generally many times faster than
in-memory search, even when having an equal amount of pre-calculated
values.

• The Continue termination heuristic was the top performing algorithm in
terms of predictive accuracy, and about as fast as normal inverted search.

• The Quit termination heuristic was very fast compared to the other methods
tested, and yielded good predictions as well.

5.5.1 Future Work

The method of inverted retrieval should be possibly to apply to any sufficiently
simple vector similarity function. An important theoretical question is how to
define sufficiently simple in this case, that is, what properties a similarity function
must have in order to be invertible.



Chapter 6

Incremental Collaborative Filtering

In this chapter we describe how collaborative filtering can be used for mobile
devices. When the user is connected to a central repository, the algorithm se-
lects a subset of profiles to store on the device. When the user is not connected
to the repository, the predictions can be incrementally updated to reflect new
or updated ratings. Experiments on one of the movie data sets show that the
method can dramatically reduce the data needed while still performing nearly as
well as a centralised approach. The material in this chapter has been published
in (Cöster & Svensson, 2005).

6.1 Problem Background

Information filtering and retrieval systems generally operate on central data
repositories, such as document indexes and databases of user ratings (Loeb &
Terry, 1992). Client applications connect to databases where predictions for rel-
evant items are computed by algorithms that have all data available. Whenever a
user submits feedback, it can almost instantly be stored in the central repository
and be quickly available to other users.

We consider a different type of application that needs to operate without be-
ing constantly connected to a server. Our system, MobiTip (Rudström, Svensson,
Cöster, & Höök, 2004), is a mobile recommender system that allows people to
create, rate and share information using short-range Bluetooth1 communication
while occasionally synchronising with a central server. In such a scenario it is
vital that the filtering algorithms on the mobile device can account for new infor-
mation without first having to connect to a central repository. This opens up for

1Bluetooth enable devices to connect and exchange data within a range of roughly 10 meters
(Specification of the Bluetooth System, 2003).

87



88 Chapter 6. Incremental Collaborative Filtering

a set of interesting issues regarding how to support information filtering when
the connection to other devices and servers is limited.

The problem we focus on is to develop an incremental decentralised collab-
orative filtering algorithm. To date there are only a few attempts that we know
of that support collaborative filtering on mobile devices, for example (Miller, Al-
bert, Lam, Konstan, & Riedl, 2003; Tveit, 2001). Standard collaborative filtering
algorithms require that many user profiles are directly available when making
predictions (Herlocker et al., 1999). Such algorithms use the profiles in the near-
est neighbourhood to make predictions or create a model of user preferences
from the profiles.

We argue that it is not feasible to keep a database of all users and their profiles
on every device, since calculating predictions from a large profile database would
make the device unresponsive and soon drain it of battery power. Furthermore,
storing the database of all users and their profiles on the device can be highly
memory intensive for some domains.

Still, a collaborative filtering algorithm should react to, and change its pre-
dictions based on a user’s new or updated ratings or from encounters with other
devices. It is therefore not enough to produce a single list of predictions or a sta-
tic model when the user is connected to the central server that does not update
the predictions based on new data.

The general idea for the technical solution is to first store a user’s profile
on the device, together with a ranked list of predictions from a central server,
computed the last time the user docked. Whenever new data becomes available,
for example when encountering another user running the service, it should be
possible to recompute these predictions based on the new data.

The incremental algorithm for mobile devices is presented in Section 6.2,
along with three ways of selecting a subset of the profile database on the device.
In Section 6.3 we describe the experiments and our main results.

6.2 Collaborative Filtering for Mobile Devices

The collaborative filtering algorithm that we use is that presented in Section 2.4.1,
which is based on a linear combination of other user’s ratings for the items,
weighted by their similarity with the active user. We state again the algorithm
here for ease of exposition. The prediction pa,j for user a on item j is

pa,j = v̄a + κj

∑
i

w(a, i)(vi,j − v̄i) (6.1)

The function w(a, i) should measure the similarity between two users a and
i. There is a normalising factor, κj, selected so that the absolute values of
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the weights w(a, i) sum to unity. The absolute values of the weights sum to∑
i |w(a, i)| so κj is taken to be κj = 1∑

i |w(a,i)|
.

The similarity function we use is the basic Pearson Correlation, detailed in
Formula 2.10.

6.2.1 Mobile Device Characteristics

The computational power and storage capacity of a mobile device, such as a mo-
bile phone, is limited in many ways when compared to a stationary computer.
The amount of internal memory is smaller, the processor operates at a much
lower speed and the battery time is relatively short. Furthermore, some devices
do not have floating-point arithmetic built into the hardware, which demon-
strates the need for algorithms that makes few such computations.

Many mobile devices may be connected to a server (using e.g. WAP or GPRS)
but the user often has to pay extra for this data transmission. On the other
hand, most new devices have the possibility of connecting to other devices in
their physical vicinity, using Bluetooth, Wireless LAN, or infrared communication,
without additional charge.

These characteristics influence the design of information filtering algorithms
for mobile devices. The algorithm we propose take into account some of these
considerations in that it is incrementally updated with relatively small amounts
of data by connecting to nearby devices over Bluetooth without the need for
constant connection to a central server.

6.2.2 Incremental Algorithm

Our information filtering algorithm produces a ranked list of predictions that can
be updated and changed with new or changed user profiles. In brief, it works as
follows.

1. When a user is connected to the central repository a subset of user profiles
is first selected that will be used for any further calculations. This subset is
copied to the users’ mobile device.

2. Based on the subset, a ranked list of the predictions for all items is calcu-
lated on the server, using formula 6.1. This list is stored on the user’s de-
vice. When the user is no longer connected to the server (floating mode),
the service can still recommend items based on the ranked list.

3. When a user gives new ratings, or updates previous ones, the predictions
must be recomputed. If there is currently no connection to the server, the
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stored predictions should be recomputed based on the previously copied
subset of user profiles.

4. When two users meet, their services may exchange user profiles (which
could be changed from the last server synchronisation). For each user, the
ranked list of predictions should now be recomputed. The past influence of
the other user should be removed from all predictions and the new influ-
ence should be added to the predictions.

The filtering algorithm 6.1 expresses the prediction as a linear function of the
user similarities, so we can subtract and add user similarities as needed.

Consider the basic prediction algorithm 6.1 in a more general form where we
set ba = v̄a and g(vi,j, v̄i) = (vi,j − v̄i). The reason for expressing it in this more
general form is e.g. that the mean rating value is not necessarily an optimal bias
value (Tian & Cheung, 2003). The algorithm can then be reformulated as

pa,j = ba + κj

∑
i

w(a, i)g(vi,j, v̄i) (6.2)

When user a docks, the user’s profile va is stored on the server. The server
then recalculates the predictions pa,j for all items. Depending on the storage
capacity on the user’s device a subset of all user profiles known at the time of
docking will be used. The ranked list of predictions pa,j is stored on user a’s
device, together with the normalising values κj. The subset of the other user’s
profiles is also stored.

When the user leaves the docked mode, there is a ranked list of all items
directly available on the device. Now the user is in floating mode, and may
connect to other devices by Bluetooth until the device is docked again.

In summary, the data that has to be stored on the device is: a) the user’s
profile va and the bias ba, b) the list of predictions pa,j for every item, c) the
κj values for each item, and d) a set of profiles. If the algorithm uses global
information such as inverse user frequency, this must be stored as well.

6.2.3 Profile Subset Selection

We will focus on selecting this subset to improve a user’s own predictions, al-
though there can be other (altruistic) reasons for choosing a particular profile
subset to store on the device, for instance to pass along newly fetched profiles to
users that seldom docks.

The first obvious method for selecting a subset of profiles is to take the top
ranked profiles according to the weight function w(a, i). This is the baseline
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subset selection method:
s1(a, i) = w(a, i) (6.3)

One way of viewing the problem of selecting a good subset of profiles is to
select profiles that have high probability of changing a prediction when the active
user updates the profile. A user may update a previous rating or store a new
rating. In the first case, the change of prediction is completely dependent on the
algorithm w(a, i). For the second case users can be chosen based on the number
of ratings in their profile that user a has not yet rated. If we assume that each
item has equal probability to be rated by a, then the user with most ratings not
rated by a has the highest probability of such a match. So, if a user i has rated
many items that user a have not rated, then we can expect the probability that
user a rates one of those is high.

Each user i can thus be ranked according to the number of ratings in the
intersection of a and i, and the number of ratings for items that user i has rated
but a has not.

Let |vi| be the number of ratings in the profile vi, and let |vi∩va| be the number
of ratings in the intersection of i and a. If N is the total number of items, then
the fraction of remaining items that user i has made but are not in a, is

|vi| − |vi ∩ va|

N − |va|
(6.4)

The higher this fraction, the higher the probability that when user a rates a
randomly chosen item it will be included in user i’s set of ratings. Although user
i has many ratings, there may be few of those that are also rated by user a, why
we also include the intersecting items.

This can be formulated as

s2(a, i) =
|vi| − |vi ∩ va|

N − |va|
×
(

|vi ∩ va|

|va|

)
(6.5)

Since the device’s storage capacity may be limited, small profiles might be pre-
ferred over large ones. The third selection method is therefore a combination
of s1 and s2. We use s2 to promote small profiles, i.e. 1 − s2(a, i), and multiply
that value with the similarity value s1, to select small but similar profiles. This
method can be written as

s3(a, i) = s1(a, i)(1 − s2(a, i)) (6.6)

6.2.4 Updating the User’s Profile

When users update their profile, the predictions should also be updated. Assume
that there are T profiles stored on the device, and that user a has an updated
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profile. The goal is to calculate the new prediction p ′
a,j for each item j.

From 6.2 we get the value of the sum on the right hand side by

pa,j − ba

κj

=
∑

i

w(a, i)g(vi,j, v̄i) (6.7)

Let the index t run over all users that are stored. After user a has updated the
profile to a ′, the new sum on the right hand side of 6.2 should now be

S =
pa,j − ba

κj

−
∑

t

w(a, t)g(vt,j, v̄t) +
∑

t

w(a ′, t)g(vt,j, v̄t) (6.8)

Note that we need to be able to calculate both w(a, t) and w(a ′, t) for the
active user.

The κj value must also be updated, so we subtract the old weights and add
the new weights in the same manner

κ ′
j =

1

1/kj −
∑

t |w(a, t)| +
∑

t |w(a ′, t)|
(6.9)

The updated prediction can now be written as

p ′
a,j = b ′

a + κ ′
jS (6.10)

where b ′
a is the user’s updated bias value.

6.2.5 Updating Profiles in the Subset

When user a connects to another user, the predictions pa,j should be updated to
reflect the new profile that is transmitted to a. There are three cases when the
predictions need to be updated when receiving a profile from a user i:

1. If i is known to a but has updated ratings. In this scenario the same argu-
ment as when user a had updated ratings holds.

2. If i is not known to a. In this scenario the predictions need to be updated
based on a new user t. The new sum on the right hand side of 6.2 should
now be

S =
pa,j − ba

κj

+ w(a, t)g(vt,j, v̄t) (6.11)

The κj value is similarly updated by

κ ′
j =

1

1/kj + |w(a, t)|
(6.12)

and formula 6.10 is again used for the updated prediction value.
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3. If i has ratings for items that user a does not have predictions for. The
prediction for the new item can be calculated with formula 6.2.

The incremental algorithm only operates on a subset of the user profiles
stored on the server. One reason for doing so is that it simplifies handling of
new or updated profiles, since it is safe to assume that a user who is not known
to the user (Item 2 above) has not previously affected the recommendations.
There are, however, situations for which we would like to use all available data
whenever possible. Thus, instead of first selecting a subset of user profiles, the
algorithm would use all user profiles to calculate the server-based predictions.

If the algorithm uses all user profiles on the server, the update mechanism in
item (2) above must be slightly changed. When user a receives a profile that is
not stored on the device but was used when calculating user a’s predictions on
the server, the past influence of that user’s profile must first be removed from
the predictions on the device. The solution is to time stamp all events in a user’s
profile. The algorithm can then synchronise the new profile against the last dock
and remove all ratings up to that time and then recalculate the predictions as
explained above.

6.3 Experiments

In order to evaluate the incremental algorithm, and the three methods for select-
ing the subset of users to store on the device, we performed a set of experiments
with data gathered from a real collaborative filtering application. In these exper-
iments, we evaluate the incremental algorithm described in Section 6.2.4, and
compare it with its stationary counterpart.

6.3.1 Data set

The data set we have used is the MovieLens (ML) data (see Section 2.6.5), which
contains in total 6040 users and approximately one million ratings. The ratings
are explicit integer values from 1 to 5, for a set of 3706 movies, and each user
has made at least 20 ratings.

We selected this data set since it was the set most similar in spirit to the data
that we expect to find in our target application MobiTip. The target application
may contain ratings for leisure items such as movies, books and restaurants, and
it also uses explicit ratings.

For the actual experiment, we randomly selected 1000 of the 6040 users, to
have a more manageable data set to work with. From this set, we performed 10
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evaluation runs where for each run we split the 1000 users into 900 train and
100 test users.

6.3.2 Evaluation Method

As explained in Section 6.2, the device contains a subset of the profiles and a list
of predictions, taken from the server the last time the user docked. Whenever the
user gives a new rating, the predictions are updated according to formula 6.10.

To simulate this docking/floating behaviour, we first randomly shuffle each
profile in the test set, and split it into 10 equally sized partitions, or dock points,
meaning that each test user must have at least 10 ratings. Each user is then
docked at point number Db ∈ [1, 2, . . . , 9], and given a set of predictions and a
profile subset from the server (i.e. the training set) based on the ratings made up
to this begin dock point.

To evaluate the incremental behaviour of the algorithm, we evaluate one rat-
ing at a time, up to the remaining end dock points De ∈ [Db + 1, . . . , 10]. Each
following rating from Db to De is predicted and evaluated, and then incremen-
tally added to the profile using formula 6.10. The error that we will report is
thus an incremental, or cumulative, value that is calculated from the first dock
point Db. Therefore, we call this metric the cumulative mean absolute error

As an example, assume that a user has made 100 ratings. The profile is split
into 10 partitions of 10 ratings each. For begin dock point Db = 1, the user is
given a profile subset based on the first 10 ratings. The remaining 90 ratings
are then evaluated one at a time. Each rating is predicted, evaluated and then
incrementally added to the profile, and a cumulative error is calculated at end
dock points De ∈ [2, . . . , 10]. For begin dock point Db = 2, the user subset is
calculated on basis of the first 20 ratings, and the cumulative error is calculated
for the 80 remaining ratings at end dock points De ∈ [3, 4, . . . , 10].

Using this type of evaluation, we can track how the error evolves if the user
docks when only 10% ratings are given, and then does not dock until most of the
ratings are given.

We compare the incremental algorithm to its stationary counterpart, where
we select a new neighbourhood from the training set for each prediction. All al-
gorithms select 100 user profiles either as a subset (for the incremental method)
or for neighbourhood formation (for the server method) to make predictions
from. Note that the incremental method will select these 100 users only at the
begin dock points, while the server methods forms this neighbourhood for every
prediction.
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Figure 6.1: Cumulative Mean Absolute Error for Server-based algorithm (top
left), Incremental algorithm using s1 (top right, subset selected
by the similarity function w(a.i)), s2 (bottom left, subset selected
by promoting large profiles) and s3(bottom right, subset selected
by promoting small profiles weighted by the similarity function
w(a, i)).
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Db=1 Db=2 Db=3 Db=4 Db=5 Db=6 Db=7 Db=8 Db=9
s1 21510 17775 14879 12999 11672 10850 10200 9778 9457
s2 57956 59614 60093 60361 60533 60645 60729 60794 60854
s3 10177 7452 6649 6193 6082 5980 5988 5996 6041

Table 6.1: Average number of ratings in the subset of 100 profiles selected by
methods s1,s2 and s3 on the MovieLens data set. Columns indicate
the begin dock point Db.

6.3.3 Evaluation Metrics

Each individual rating is evaluated using the AllBut1 protocol, where all ratings
that are currently in the profile are used for making a prediction for a single
holdout item. After an item has been evaluated, it is added to the profile.

For this data set, we use the mean absolute error (MAE) as the measure of
effectiveness, see Section 2.6.3. As just discussed we measure, for each user,
the error for each prediction made from dock point Db to De. We call this the
cumulative error, and this is averaged over all test users for each dock endpoint.

For each algorithm we report 9 different curves that begin on different dock
points, but all end at dock point 10. On the x-axis is the end dock point, which
means that the begin dock point for a curve is the dock point prior to the curve’s
leftmost point. The error or is displayed on the y-axis. For mean absolute error,
lower scores are better.

We also display, for the incremental algorithm, a table that shows the average
total number of ratings in the subset of 100 user profiles that is selected from the
server at the different begin dock points.

6.3.4 Results

The results are displayed in Figure 6.1 with four graphs that show the result of
applying four different algorithms on the ML data. The server-based algorithm
is displayed in the upper left corner, and the incremental algorithm using the
different subset selection methods are displayed in the remaining three graphs.

The first observation is that the server-based method is more stable in the
sense that the cumulative error does not change much when given more ratings
in a profile. The incremental methods have a larger error near the begin dock
point, but as more and more ratings are added to the profile the error decrease
more rapidly.

For example, the longest curve (for dock points Db = 1 and De ∈ [2, . . . , 10])
has an initial error near 0.84 for s3, but the cumulative error on the last dock
point De = 10 is approximately 0.78 while for the server-based method the initial
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error is near 0.81 and the cumulative error is 0.80. For the low begin dock points,
the incremental algorithm has a lower cumulative error than the server-based
algorithm.

Another notable result is that the server-based method and the subset selec-
tion method s2 have the lowest error scores, for the high begin dock points. The
smallest error is slightly above 0.72 for profiles with Db = 9,De = 10.

In Table 6.1 we display the average number of ratings in the subset. Selection
method s3 performs especially well if we take into account the small average
number of ratings that is included in the subset of the 100 profiles. This method
approximately halves the size of the subset compared to s1 while still keeping the
error low. The selection method s2 selects very large profiles, as expected, and
has the lowest error (together with the server based method) for the high begin
dock points.

These results indicate that we need only store at most 20KB of data (assuming
2 bytes per rating) for an expected cumulative MAE that is comparable to that
achieved by a server-based method where all profiles are stored. This should
be compared to the average amount of ratings in the training set on the server
that amount to about 150K ratings, or even all data that may contain millions of
ratings.

6.4 Discussion

We have described and evaluated a collaborative filtering algorithm that can be
used for devices that have limited storage capacity, limited power, and which
is not always connected to a central server. We have shown that it is possible
to use a powerful server to produce predictions and then later have the client
incrementally update those when new data is available, without being connected
to the server.

An interesting pattern emerges, if we look at how the collaborative filtering
algorithm behaves over time. For the ML data it is clear that the more that
is known about a user the better the predictions are, even though we fix the
neighbourhood of users that are used for matching. One explanation for this
could be that the user’s mean rating becomes more and more accurate.

6.4.1 Future Work

So far we have evaluated the incremental algorithm with respect to how a user’s
own profile changes. The next step is to evaluate what happens when a user
encounters other users and updates to the profile subset occur. This is related to
profile subset selection method, for which more research is needed.
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For the subset selection problem, we formulated a problem that might be of a
general interest in collaborative filtering: what is the probability that a user will
rate a particular item? That is, the question is not to predict the actual rating, but
rather to predict whether the user will rate the item at all. If it would be possible
to make such predictions with high accuracy, we could select profiles on the basis
of whether the profiles contain ratings for items that the user is expected to rate.

The collaborative filtering algorithm used here is based on a sum of recom-
mendations from other users, weighted by their similarity with the active user.
This algorithm is a linear function, and it is this linearity that enabled us to for-
mulate the incremental update algorithm. Another issue for future work might
be to investigate which classes of linear prediction algorithms that can be incre-
mentally updated in a way similar to that presented here.



Chapter 7

Predictor

In this chapter we describe a system, Predictor, which can be used for both
content-based and collaborative information access. The functionality in Pre-
dictor is fairly general, and not tied to a specific application domain; it may be
used for categorising documents, recommending movies and more.

Information Filtering was briefly discussed in Section 2.2; it was defined as
the process of sorting out relevant documents or items on the basis of a long-term
query or profile. In the preceding chapters, we have discussed several algorithms
and representations that can be classified as parts of an information filtering
system:

• In Chapter 3, we discussed a method for improving retrieval queries on the
basis of past relevance feedback information, while representing documents
and queries as dense vectors in a reduced space.

• In Chapter 4, we discussed a method for representing documents as dense
concept vectors for a text categorisation task.

• In Chapter 5, we discussed inverted file search algorithms for nearest neigh-
bour search among sparse user rating vectors in collaborative filtering.

• In Chapter 6, we discussed an incremental learning method for collabora-
tive filtering, particularly applicable to a scenario when a mobile collabora-
tive filtering client is not always connected to a central server.

These representations and algorithms have one major component in common;
they are based on a vector representation of user ratings and document contents.
In the case of dense vectors, such as those used in Chapters 3 and 4, the retrieval
and classification algorithm is readily performed by in-memory vector search op-
erations. In the case of sparse vectors, such as the collaborative filtering rating

99
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vectors in Chapters 5 and 6, it was noted that inverted files could be used for
fast and accurate retrieval on the server side, and an incremental method for the
client side.

Regardless of whether the content-based or collaborative information is rep-
resented by sparse or dense vectors, the purpose of Predictor is to enable ratings,
documents and prediction algorithms to be represented and used in one system.

The rest of this chapter is organised as follows. In the next section, we dis-
cuss what kind of functionality an information filtering system is expected to
have. We review related work in Section 7.2. In Section 7.3 we discuss how
a general vector-based representation can support both content-based and col-
laborative filtering, and an overview of Predictor’s system architecture and the
implementation is presented in Section 7.4.

The material in this chapter was first published as a technical report in (Cöster,
2002a). The system, Predictor, can at the time of writing be downloaded from

http://www.sics.se/humle/socialcomputing/download/.

7.1 Information Filtering

The basic properties of an information filtering system can be summarised by the
following;

• Information is filtered from a stream of information. To filter means to find,
or remove, information from this stream.

• The filtering process is based on a description of user’s information need.

• The information subject for filtering is unstructured or semi-structured data,
such as text documents.

For a more detailed overview of information filtering systems than that given
here, the reader should consult (Belkin & Croft, 1992) and (Oard, 1997).

Depending on the application domain, the size and rate of the information
stream, which can be both user ratings and documents, can vary. A news filter-
ing service may need to filter huge amounts of news articles to a large number
of users, whereas an e-mail filtering software need only categorise one user’s
incoming e-mail.

In our scenario, we do not explicitly model the information stream; it is as-
sumed that the information arrives at a rate that the system can handle. As
such, updating mechanisms are not the main focus, instead the focus is on gen-
eral properties of information filtering applications that enables us to combine
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content-based and collaborative filtering in the same system architecture and be
free to combine algorithms as we desire.

When constructing an information filtering system, some essential design de-
cisions must be considered:

• How to capture a user’s information need.

• How to represent a user’s information need.

• How to represent the information.

• How to filter information based on the user’s information need.

Capturing a user’s information need is not a trivial task, and a lot of research
has been devoted to this issue. In general, the system tries to capture this in a
cycle of interactions between the system and the user (Oard, 1997). The inter-
action can be explicit, as in the form of, e.g., dialogues, or implicit, by observing
the user’s actions. A technique that captures a user’s information need will be
called a feedback function, since its purpose is to capture the feedback from the
user.

The result of the feedback function is stored in a profile. A profile is the
system’s internal representation of a user’s information need, and is the basis for
filtering information.

The information, whether a news article, e-mail, etc. has to have an internal
representation. For the purposes of this chapter, the internal representation of
the information will be called a document.

The filtering function is the matchmaking part of an information filtering sys-
tem. Based on a user’s profile and a document, the filtering function should
produce a value that reflects the system’s belief in the document being relevant
to the user.

In the following, we discuss these design decisions in the context of content-
based and collaborative filtering.

7.1.1 Content-based Filtering

Content-based filtering systems filter information on the basis of the character-
istics of the information. Thus, it must be possible to describe the information
by its content. In general, it could be any unstructured or semi-structured data
that can be described by its content. It will be assumed that a document carries
textual content, for the sake of discussion, if not stated otherwise.
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Document Representation Typically documents are represented by the pres-
ence of some more or less characteristic feature in them: terms, phrases, etc.
This can be realised by documents represented by a set of binary attributes as in
the Boolean or Binary Independence models (see Section 2.1.4) or use statisti-
cal properties of features in the text as the basis for representation, such as the
tf-idf representation in VSM (see Section 2.1.2). As discussed throughout this
thesis, there are a number of attempts to overcome known drawbacks of this still
quite simple document model: instead of pure occurrence statistics a vector of
higher level derivatives of the occurrence statistics can be used, such as in LSI
(Section 2.1.3) or Random Indexing (Section 4.3).

User Profile Representation Depending on the feedback function, the profile
can be constructed and represented in various ways. Two techniques are outlined
below:

• A set of weighted keywords or concepts that represent the characteristics
of the documents that the user is interested in.

• As a list of documents, where for each document there is an indication of
whether the document is relevant or not for the user.

In the first case, the feedback function may return a set of (weighted) key-
words and phrases specified by the user in an interaction.

In the second case, the feedback function returns relevance scores for a set
of documents. These relevance judgements can be used to build a model of the
user’s interest by using, e.g., supervised machine learning techniques.

Filtering Function If the profile consists of a set of weighted keywords, the
profile can be seen as a query. Several techniques from information retrieval can
be used to calculate a similarity score between a query and a document. If the
score is above a certain threshold, the document is predicted to be relevant for
the user.

If the profile consists of a list of positive and negative examples of relevant
documents, a machine learning algorithm can be trained to learn the character-
istics of relevant documents. The model is then used to predict relevance scores
for documents.

Examples of these two methods are depicted in Figure 7.1 (A) and Figure 7.1 (B).
In both figures, the dimensions of the space are the different keywords k1, . . . , kl

known to the system.
Figure 7.1 (A) gives an example of matching a profile pa and a document

dq, when represented as weighted keyword vectors. If the cosine of the angle
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Figure 7.1: Examples of four different algorithms for content-based and collab-
orative filtering supported by Predictor.

between the profile and the document is above a certain threshold T , the doc-
ument is considered relevant for the user. The shaded area is the region where
the cosine of the angle between a new document and the profile is above the
threshold.

Figure 7.1 (B) exemplifies an approach for classifying a new document dq

according to a model that has been built by learning from positive and negative
examples of relevant documents. The algorithm constructs a model from a train-
ing set of documents (d1, d2, d5, d7, d9 in this example). In the figure, the model
is a linear separation of the keyword space, and a new document dq is classified
according to which side of the separating line its vector falls. The shaded area is
the region that represents that a document would be classified as relevant for a
user.
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7.1.2 Collaborative Filtering

A collaborative filtering algorithm, as discussed throughout the thesis, predicts
the relevance of a document for a user on the basis of user opinions, or ratings.
The characteristics of the documents are not taken into account. Thus, there is
no need to explicitly represent documents.

User Profile Representation In the case of explicit user feedback, the profile
can be represented by a set of document ratings, where a rating is an ordinal
number or a real value. In the case of implicit feedback, the profile could contain
a value for each action the user has performed on the document. The value could
be binary, indicating whether the user has viewed the document or not.

Filtering Function There are two main approaches to collaborative filtering, as
discussed in Section 2.4; the memory-based and the model-based approaches.
Examples of these two methods are given in 7.1 (C) and 7.1 (D).

In Figure 7.1 (C), each user profile pi is represented by a vector in a space
where each dimension corresponds to a document (these dimensions are named
v for vote). The figure exemplifies the process of locating the nearest neighbours
to the profile pa using Euclidean distance. The relevance or rating of a new
document is predicted by a combination of the ratings of the nearest neighbours,
weighted by their distances from the profile.

A model-based approach is exemplified in Figure 7.1 (D). The figure depicts
a decision tree that has been trained to predict a user’s rating for document c. If
a user’s ratings for documents a and b are both below 2, then the decision tree
would predict that the user would give document c a rating less than 3. The
decision tree in this example is assumed to be a part of a larger model capable of
predicting values for any document.

7.2 Related Work

Several systems for information filtering are described in the research literature.
In many cases, the systems are specialised for certain filtering task, such as fil-
tering news articles or recommending movies. The representation of documents,
profiles, feedback functions and filtering algorithms are hard-wired into the sys-
tems, making it difficult to use them for other tasks or changing the internal
algorithms used.

Since we describe the development of a general system for both content-based
and collaborative filtering, it is interesting to review how some specialised sys-
tems work. There are, to the author’s best knowledge, no publicly available sys-
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tems which take a general approach to content-based and collaborative filtering
in the sense described here.

SIFT SIFT (Stanford Information Filtering Tool) filters USENET news and mail-
ing list articles for registered users (Yan & Garcia-Molina, 1999). Users subscribe
by specifying one profile for each area of interest, in the form of a Vector Space or
Boolean query. Each incoming article is presented as a query to an inverted pro-
file index to find top matching profiles. If a user’s profile matches the document,
the user is notified via e-mail.

SIFTER SIFTER (Smart Information Filtering Technology for Electronic Resources)
is another system for text document filtering (Mostafa, Mukhopadhyay, Palakal,
& Lam, 1997). SIFTER takes on an unsupervised learning approach for creating
a cluster representation of documents, where each cluster represents a class of
interest. Each incoming document is classified according to the class of the most
similar cluster.

The user profile is a vector, where the value of an element in the vector repre-
sents the system’s belief that the user is interested in documents of that class. The
profile is updated using a reinforcement learning approach, from user relevance
feedback. The system also includes a module for capturing changing user needs.

GroupLens Within the GroupLens (Resnick et al., 1994) research project, sev-
eral aspects and applications of collaborative filtering have been studied, such
as news filtering and movie recommendations. Both memory-based and model-
based techniques have been developed within the project. Several extensions,
such as filtering information to groups of users, have also been developed. The
filtering software is not publicly available.

Tapestry Tapestry (Goldberg et al., 1992) is a system for filtering e-mail that
supports both content-based and collaborative filtering, although in a slightly
different form than that presented in Section 7.1.

A user specifies a profile in the form of a Boolean search query, which can
be tuned on a repository of past e-mail. The query language supports structured
keyword searching in the different e-mail fields such as sender, date, subject,
etc. The system also enables users to annotate e-mail, where an annotation may
contain ratings. Users can specify profile queries that search both e-mails and
annotations, thus making it possible to filter e-mail both in terms of content-
based and collaborative features.
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SELECT SELECT (Procter & al., 1999) is a EU-funded project that investigates
how to create an information filtering system for web pages and Usenet News. In
the project, a system has been implemented that enables users to submit and view
ratings for web pages, and also receive predicted ratings for new web pages. The
system’s architecture is modular in the sense that information filtering algorithms
can be plugged in.

Machine Learning Packages There are a number of publicly available software
packages that may be used for content-based classification. These packages have
not been developed for information filtering purposes, but may well be used by
implementers of such systems. Two examples out of a wide range are: (1) LIB-
BOW – a package for text classification using Näıve Bayes and extensions (A. K.
McCallum, 1996), and (2) WEKA – a general library of machine learning algo-
rithms (Witten & Frank, 2000).

7.3 Representation

In Section 7.1, four algorithms for content-based and collaborative filtering were
exemplified. These four are representative for a wide range of filtering algo-
rithms. For instance, the algorithm that calculates the cosine of the angle be-
tween a document and a profile could have been used another similarity mea-
sure such as the Euclidean distance. The Support Vector Machine classifier could
equally well have been a Näıve Bayes classifier. Similar arguments hold for the
collaborative filtering methods. The memory-based approach could have mea-
sured the similarity by Pearson Correlation. The model-based approach could
have been a linear classifier instead of a decision tree.

This observation is the starting point for creating an architecture that supports
a variety of content-based and collaborative filtering methods. The issues that
need to be discussed when developing a common representation for content-
based and collaborative filtering are:

• Document representation.

• Profile representation.

• Feedback function.

• Filtering function.

In the next subsections, each of these four issues is discussed. Along with the
discussion, the design decisions made in Predictor are presented and motivated.
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7.3.1 Document Representation

In the discussion on document representation in Section 7.1.1, some examples
were given. The difference between the first three representations (the Boolean,
Vector Space and Latent Semantic Indexing models) lies in the interpretation
of the various dimensions of the documents when represented as vectors. In
the Vector Space case, each dimension of the document vector is treated as a
term, and the value of the vector at that dimension reflects the frequency with
which the term occurs throughout the document. In the case of Latent Semantic
Indexing, the dimensions are treated as higher-level synthetic concepts, and the
value of the vector at a certain dimension specifies how much the document is
related to that concept.

There are other ways of representing documents, and any filtering system
must choose which ones to support. The approach taken in Predictor is to repre-
sent a document as a vector of features, where a feature is a tuple of an ordinal
number and a value. The ordinal number is a mapping to some object, deter-
mined by the application. The value is an integer or real value that reflects the
user’s interest or relevance judgements for some object. The interpretation of the
actual meaning of these values lies outside the system.

It is easy to see that the document representations discussed above are sup-
ported by this design: the VSM, LSI and Random Indexing models all use a
vector-based representation, the difference between the models (on a level of
representation) lie in the interpretation of the vector dimensions.

7.3.2 User Profile Representation

The user profile should be able to record the user’s interest or information need
for documents. As discussed in Section 7.1.2, one choice of representation is as
a list of relevance judgements for a set of documents. Another choice is as a set
of weighted keywords. A more sophisticated model, such as a Support Vector
Machine classifier, could also represent the user’s information need.

As for documents, the approach taken in Predictor is to represent a user’s
profile as a vector of features. Furthermore, Predictor also provides a mechanism
for connecting a more sophisticated model to a user, in the form of a machine
learning program.

7.3.3 Feedback Function

The algorithm for updating a profile according to the user’s actions is assumed
to lie outside Predictor. Instead, a number of functions for updating profile vec-
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tors, such as setting the value for a feature with a certain ordinal number, are
provided.

7.3.4 Filtering Function

The discussion at the beginning of this section exemplified four algorithm types
that are representative for a number of filtering algorithms.

The approach taken in Predictor is to supply a framework for information
filtering, where these four algorithm types are supported. The algorithms operate
on the general vector representation of documents and profiles.

To start the discussion on how to support these four types in a single sys-
tem it is first convenient to distinguish between content-based and collaborative
methods.

The content-based methods predict a single value (e.g., relevant or not rel-
evant) on the basis of a description of a document. In Predictor, this type of
prediction is called a vector prediction, since the description of the document is a
vector.

The collaborative methods predict the user’s rating for one or more docu-
ments, based on a description of the user’s profile. Since the user’s profile con-
tains explicit or implicit ratings for documents, it means that the method should
predict values for unrated features in that vector. For this reason, such a predic-
tion is called a feature prediction.

Regardless of whether the algorithm implements a vector or feature predic-
tion, the model can be built in one of two ways:

• Lazy – the model is built when making the prediction.

• Eager – the model is built off-line and stored for future predictions.

For example, the memory-based collaborative filtering algorithm discussed in
Section 7.1.2 makes a lazy feature prediction, whereas the Support Vector Ma-
chine classifier from Section 7.1.1 implements an eager vector prediction. Predic-
tor supports all four combinations of these algorithms.

7.3.5 Discussion

The restrictions imposed by this design are that documents and profiles must be
represented by feature vectors, and that the filtering algorithms must be of the
four types.

There are several other issues that have not been discussed, such as the size
and rate of the information stream and how this will be managed by the system.
This will be discussed in Section 7.5.
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In the next section, some details regarding the architecture and implementa-
tion of Predictor are given.

7.4 System Architecture

Predictor is primarily accessed via an application programmer’s interface (API),
written in Java.

The API is a class that contains all necessary methods for accessing the system.
There are methods for creating and deleting users, updating profiles, requesting
predictions, etc. The API is initialised with a set of properties, such as where to
put internal database and log files.

There are two different types of users: regular users and administrators. Each
regular user must register by name and password in order to get access to the
system. The administrator has special privileges, which will be described later.

The system manages four basic objects:

• User objects.

• Profile objects.

• Document objects.

• Predictor objects.

An overview of the system architecture is given in Figure 7.2 and Figure 7.3.

7.4.1 User Objects

User objects contain name, password, profile and a data string where threshold
values and other information may be stored.

The API provides several functions for user management. Users can be cre-
ated, deleted, updated and inspected. There are also methods for listing users in
various ways. For example, it is possible to list all users that have more than a
certain number of features in their profile vector.

7.4.2 Profile Objects

As stated earlier, the user profile is implemented as a vector of features, where
a feature is a tuple of an ordinal number and a value. There are various im-
plementations of the vector class, so that vectors may store bytes, integers or
floating-point numbers. Furthermore, there are different implementations for the
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Figure 7.2: Overview of client-server communication

underlying data structure, so that e.g., both sparse and dense vector implemen-
tations are provided. When a user is created, the desired vector implementation
is chosen.

The API provides a number of methods for updating and inspecting Profile
objects.

7.4.3 Document Objects

Document objects contain a name and a document vector. The document vector
is implemented using the same feature vector classes that are available for the
profile vectors.

The API contains methods for viewing, creating and deleting Document ob-
jects. The methods that change or update Document objects are only accessible
to the administrator.

7.4.4 Predictor Objects

Information filtering is performed by invoking a method in a Predictor object.
Any registered user may ask a Predictor object to predict a value for one or



7.4. System Architecture 111

updateUser

getUserInfo

predictFeatures

...

Users

name = user1
pass = ***
profile = p1
...

Predictors

km

kn

+d1

+d2

+d7

- d9

- d5

dq

...

Documents

d1 = ((3,0.55),...,(7470,0.91))

d2 = ((1,0.89),...,(8765,0.51))

dk = ((1,0.51),...,(7470,0.80))
...

Profiles

p1 = ((1,2),(3,4),...,(119,3))

p2 = ((3,3),(5,3),...,(189,2))

pn = ((4,5),(5,2),...,(176,4))
...

Cache Cache Cache

Log

...

name = user2
pass = ***
profile = p2 ...

Figure 7.3: Overview of server architecture

more documents. However, users are not allowed to update, remove or alter
the internal model of a Predictor object. Instead, it is the responsibility of the
administrator to manage these objects.

The API contains methods for adding, deleting and inspecting Predictor ob-
jects. Since machine learning is an inherently iterative process, it is convenient
to train such a program off-line and, when satisfied with its performance, add it
to the system.

There are, as stated earlier, four types of Predictor objects that can be rep-
resented in the system. Currently, two objects are: one content-based and one
collaborative.

• CollaborativeFilter implements lazy feature prediction using several memory-
based collaborative filtering algorithms such as Pearson correlation, inverse
user frequency and other extensions as described in Section 2.4.1.

• SVMClassifier implements eager vector prediction using a Support Vector
Machine classifier. The classifier can be used to train models on the basis of
a set of positive and negative examples of relevant documents. These mod-
els can then be used for making predictions. The classifier is implemented
using the third-party library LIBSVM (Chang & Lin, 2001).
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7.4.5 Storage Model

User objects are stored in a database structure composed of a disk-based B+Tree
index and a variable length record file. The index contains user names, and the
complete objects are stored in the record file. Document and Predictor objects
are stored in a similar fashion, in separate indexes.

The storage model is implemented using a library for disc-based data struc-
tures developed at SICS1.

All objects (User, Document and Predictor objects) are cached. The admin-
istrator sets which objects to cache, and the size of the cache. Currently, the
least-recently-used algorithm is used for caching.

Depending on the application domain, different caching schemes should be
used. For instance, when used as a pure memory-based collaborative filtering
system, it is important to cache the User objects. When used solely as a content-
based filtering system, it is more important to cache Document or Predictor ob-
jects.

7.4.6 Error Management and Logging

It is important that the implementation of an information filtering system is ro-
bust, and that there are ways to recover from a potential hardware or software
failure.

The current implementation does not deal with the issue of robustness in an
optimal manner, but provides extensive error and exception handling as well as
detailed logging capabilities. Since the architecture provides for adding and re-
moving executable code in the form of Predictor objects, there must be a mech-
anism for managing exceptions thrown by these objects in order to secure the
integrity of the system.

For example, every method call to the API is written directly to a log file, with
enough detail to reproduce the call. Furthermore, every exception is caught and
written to a separate log file.

7.4.7 Client-Server Architecture

The API is the core part of Predictor, but to be more useful the system can also be
used in a client-server environment. The architecture is based on servlet commu-
nication via Hypertext Transfer Protocol (http). An overview of the client-server
architecture is given in Figure 7.2. There is one servlet for each method group
in the API, i.e., create user, delete user, predict values, etc. The methods in the

1Swedish Institute of Computer Science AB, Kista, Sweden. Contact:martins@sics.se
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API that are only accessible by the administrator are not accessible through the
servlets.

The communication between client and server is as follows. The client sends a
POST/GET request to a servlet, and receives a reply in XML format. Each servlet
has the same name and corresponding parameters as the method group in the
API. Each servlet response is in a specific XML format, so for each servlet there is
also a DTD specification.

A Java client has also been implemented, which takes care of all communi-
cation to and from the servlets. In the client, the XML response is parsed and
converted to Java objects.

The server may be any servlet server that supports Java Servlet API version
2.32. The system has been tested on the Apache Tomcat server version 1.43 and
Resin 2.14.

7.5 Discussion

In this chapter, we have described the architecture and implementation of a sys-
tem for information filtering. The system is modular in the sense that information
filtering algorithms can be added and removed at any time. Documents and pro-
files are represented by feature vectors whose contents are determined outside
the system. As such, the system is capable of supporting a variety of possible
representations, and a wide class of filtering algorithms. Currently, there are two
specific algorithms implemented: memory-based collaborative filtering and doc-
ument categorisation using Support Vector Machines. The system is accessible
through an API, or through a set of servlets.

Early versions of the system have already been used in a number of research
projects at SICS. So far, it has been used in three different systems: Kalas, RIND
and GeoNotes. Kalas (Svensson, Höök, Laaksolahti, & Waern, 2001) is a social
navigation system for finding food recipes, which uses collaborative filtering for
recommending recipes to users. The RIND configurator (Cöster, Gustavsson, Ols-
son, & Rudström, 2002) uses a combination of collaborative and content-based
filtering to guide users in the process of configuring a personal computer. Lastly,
GeoNotes (Persson, Espinoza, Fagerberg, Sandin, & Cöster, 2003) is a mobile
system for populating the ”real world” with virtual post-it notes. In GeoNotes,
users can filter or view only those notes that are selected from a collaborative
filter.

2java.sun.com/products/servlet/download.html
3jakarta.apache.org/tomcat/index.html
4www.caucho.com/download/
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7.5.1 Future Work

The issue of how to deal with a large number of documents and ratings at a high
input speed have not been discussed here. As for release 0.9 of Predictor, this is
not yet added. Including the inverted file search algorithms is scheduled for the
next major release, by including a ranking prediction class that should produce a
ranked list of documents or users, for a given vector.

Predictor has no knowledge of the meaning of the features it manages, which
can be a problem when there are different kinds of representations stored in the
same instance of the API. The current use of the API is to instantiate one API for
each representation. A better solution is to perhaps formalise the interface to the
feature vectors, so that implementors can add information about the representa-
tion when storing the vectors, and later use this information when selecting, e.g.,
which filtering algorithm to use for a particular user and feature vector.



Chapter 8

Summary and Final Remarks

This thesis started out by pointing out a few areas in the intersection of infor-
mation retrieval and collaborative filtering that were of particular importance;
long-term learning from relevance feedback, concept-based representations, fast
and accurate similarity calculations for collaborative filtering, incremental collab-
orative filtering for mobile client applications, and integration of the differerent
representations and algorithms in a common system architecture.

It is now time to summarise key results from each chapter in turn, and discuss
general conclusions that can be drawn from this work.

Learning from Relevance Feedback If was found that the long-term relevance
feedback learning mechanism was well suited for a particular type of queries.
In the CRAN collection, where the algorithm improved the search results, the
queries are long, and there are many relevant documents for each query. In
every other collection that was tried, the queries were short and there were fewer
relevant documents per query.

Another finding was that the best way to construct the relevance feedback
query was not to take the centroid of all relevant documents; the results im-
proved if instead the query was constructed by the centroid of a smaller set of
documents. A new strategy for calculating the relevance feedback query was
therefore devised; the centroid of all relevant documents was calculated, and the
new query was formed by taking the top n documents closest to this centroid.

Two different learning algorithms were used; KNN and ANN. The KNN method,
which has no free parameters, produced the best results. This particular regres-
sion problem was not well suited for the neural network: it has many output
variables, many free parameters, and few training examples. One important
property of the methods is that they are thresholded, to make sure that the sim-
ilarity between queries are sufficiently high before trying to use relevance feed-
back information from a past query.
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Random Indexing Bag-of-Words and Bag-of-Concepts were both used for rep-
resenting text documents in a text categorisation task. Random Indexing was
used for representing the Bag-of-Concepts, which is an iterative method for re-
fining an originally sparse random representation of a term or a document.

The best performance in terms of the F1 measure was achieved when combin-
ing the two representations, which was found by searching for the best combina-
tion of the two. The question of how to combine two or more representations in
a given situation is still open.

Bag-of-Concept representations using Random Indexing can help the text cat-
egorisation task, if combined properly with Bag-of-Words.

Inverted Files We used inverted files for Collaborative Filtering, for the pur-
poses of managing a large amount of users and items in the memory-based frame-
work. First, it was found that several similarity measures could be expressed in
a form suited for inverted retrieval. The inverted file search algorithms required
less memory resources, was more efficient in terms of speed, and gave results
comparable to or better than the in-memory algorithm.

We have also implicitly outlined a general method of inverting a similarity
function by the use of precomputed static arrays and rearranging partial sums.
For future research, one interesting question is what properties a vector similarity
or distance function must have, in order to be inverted.

It can be concluded that inverted files are well suited for Collaborative Fil-
tering problems, and that there is little reason to use the traditional in-memory
vector approach for memory-based CF when the data is sparse.

Incremental Collaborative Filtering The incremental algorithm for Collabo-
rative Filtering was primarily designed for client devices where resources are
scarce and the time to make computations is limited due to low processor speed
and drain of battery power.

The method incrementally updates the predictions based on new data, by
the use of the past predictions and the subset of the neighbouring users. From
the experiments, we conclude that there was little difference between making
predictions from the server and using the incremental method. In the initial
phase, when there were very few ratings, the server-based method performed
better.

Integration We described the architecture and implementation of a system for
information filtering, modular in the sense that prediction algorithms can be
added and removed at any time. Documents and profiles are represented by
feature vectors whose contents are determined outside the system. As such, the
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system is capable of supporting a variety of possible representations, and a wide
class of filtering algorithms.

8.1 Future Work

In this thesis, some algorithms and representations for personalised information
access have been discussed, and all of these can be improved and further devel-
oped as outlined in the previous chapters.

Personalised information access systems tries to learn from user behaviour,
in order to present more relevant information than what would be possible if
the system had no knowledge of the user’s interests or preferences. There is an
inherent problem with this approach: people continuously learn and experience
more things every day, without being connected to the system that tries to learn
from their behaviour. There will perhaps always be a mismatch between what
the system believes is relevant to the user and what the user has experienced
after the last session with the system.

An important pointer for future work could therefore be to make more trans-
parent the system’s model of the user, and make it possible to edit the model.
This is not a new thought, but it should perhaps be worthwhile to revisit.

Another aspect that would perhaps be beneficial to the user is an explanation
or a description of why a particular item has been recommended or presented at
the top of a search result list. If the user is better informed of the reasons for a
particular recommendation or search result, the user can better judge the quality
of the presented information.

8.2 Final Remarks

How information is represented is important. This is highlighted by the fact that
it takes a lot of effort to improve learning algorithms beyond a certain point.

Relevance feedback information as represented by a set of optimised queries
in a LSI space can be beneficial for the purpose of improving novel queries.
Combining traditional word-based representations with concept-based ones us-
ing Random Indexing for categorisation can be beneficial; the difference was
however small and more research is needed to be conclusive on this matter.

It has also been demonstrated that it is possible to implement large scale
use of collaborative filtering techniques. It was furthermore observed that this
methodology should be possible to apply to any inner-product based calculation
operating on sparse vectors.
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From the work on incremental collaborative filtering for mobile devices, we
anticipate that prediction formulas based on a linear combination of similarities
can be used in a distributed environment by the use of incremental updates.

In summary this thesis has demonstrated that it is feasible to combine differ-
ent representations and to implement those using scalable algorithms for person-
alised information access.
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