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Realism’s Understanding of Negative Numbers

Abstract   Our topic is the understanding of the nature of negative numbers – the 
entities to which expressions such as ‘-1’ refer. Following Frege, we view positive 
whole numbers as providing the answer to the question „how many?“ In this 
light, how are we to view negative numbers? Both positive and negative numbers 
can be ordered through the relation of larger or smaller. It is then true of all 
negative numbers that they are entities which are (somehow) smaller than zero. 
For many, this has been understood as an ontological paradox: how can something 
be „less than nothing?“
Some propose to avoid the paradox by treating negative numbers as mere façons 
de parler. In this paper, we propose a more realist account, taking as our starting 
point the thesis that there is at least one familiar type of object, the magnitude 
of which can be expressed with negative numbers, namely, debt. How can the 
sense of an expression be ontologically paradoxical, yet the expression itself still 
plausibly refer to a social object such as a debt? Or, put differently, how is it 
possible to be, at the same time, a realist in financial theory and a nominalist in 
mathematical theory? The paper first shows that the paradox arises when the 
two distinct ways in which negative numbers are connected to real objects are 
run together. The first of the two refers to debt only, whereas the second could 
refer to debt, as well as to physical objects. Finally, we claim that a debt is at 
once a specifically social object and part of reality as described by physics.
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Introduction

Why should a realist consider the problem of reality of negative numbers? 

Surely, the widespread application of negative numbers in physics ought to 

be enough to justify their reality? Indeed, the indispensability argument, 

first formulated by Euler, is used to show that by being applied in a real 

context (physics), negative numbers have reality themselves. Putnam says 

as much in What is Mathematical Truth?: „Mathematical experience teaches 

us that mathematics is true in a certain interpretation; physical experience 

teaches us that the given interpretation is realistic.“ (Putnam 1975:74)

However, the indispensability argument rests on a specific interpretation of 

negative numbers. Our contention is that there is at least one application of 

negative numbers that is not covered by this interpretation. This application 

is the social object of debt. As a familiar quotidian object, debt provides a 

specific application of negative numbers. However, if we are correct, it also 
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rests on an interpretation of negative numbers that potentially runs into 

ontological problems.

Negative numbers

Negative numbers simply do not have as universal an application as natural 

numbers. Understood naively, natural numbers are understood as answers 

to the question „how much“? Their main property is to denote a quantity of 

something. Zero, here, would denote an absence of something. In other 

words, zero would mean the same as nothing. In this view, negative numbers 

would appear paradoxical, as it would be meaningless to speak of a quantity 

smaller than zero.

Set up this way, as answers to the question „how much“, numbers could be 

added infinitely; subtraction, on the other hand, comes with limits, i.e. pro-

hibitions. If numbers denote an amount of something, and negative numbers 

are paradoxical because denoting something that is „less than nothing“, then 

there has to be a prohibition of subtracting a greater number from a smaller.

However, negative numbers afforded mathematicians the opportunity to 

perform a more universal algebraic operation. They allowed mathematicians 

to perform both addition and subtraction to infinity. Negative numbers was 

for a long time seen as syncategorematic: necessary for the language of 

mathematics, but without real meaning.

In order to avoid an ontological paradox of „less than nothing“ and give real-

ity to negative numbers, beginning in the 13th century, mathematicians re-

sorted to the concept of debt. Indeed, the history of mathematics from the 

Renaissance to the end of the 19th century is partially the history of the attempt 

of geometry and physics to arrive at new interpretations of negative magni-

tudes. Around the same time that Euler offers his indispensability argument, 

a new, geometric interpretation also replaces the „unscientific“ example of 

debt as negative magnitude: the oriented line segment. (Euler 1822: 324)

Such interpretation included direction as an additional determination of a 

given magnitude (force, trajectory, etc.). This meant that negative numbers 

were understood as a quantity with an additional determination (e.g. Bol-

zano). As Carl Friedrich Gauss (1831) puts it in a sentence quoted by Frege 

in §162 of Grundgesetze: „Positive and negative numbers can find application 

only where that which is counted has an opposite, so that thinking them in 

union amounts to annihilation.“ (Frege 2013: 159)

What made this interpretation of negative numbers significant was that it 

allowed for a framework in which they could stand alongside positive whole 

numbers and refer to something existing. The domain in which whole num-

bers (positive, negative, zero) could be applicable, had to be composed of 



133

  NEW PERSPECTIVES ON DEBT AND ECONOMY

two mutually opposed parts. This has been the way physics has understood 

negative numbers and applied them to a wide range of phenomena: coor-

dinates, electric charge, force vectors, temperature scales, etc.

This framework requiring two opposing parts has proved incredibly useful 

for the domain of physics.

In constructing this framework, however, science relegated debt to a secondary, 

unexplained application of negative numbers. Thus, in The Road to Reality, 

Roger Penrose asks: „Negative integers certainly have an extremely valuable 

organizational role, such as with bank balances and other financial transac-

tions. But do they have direct relevance to the physical world?“ (Penrose 

2007: 63) The application of negative numbers in financial theory does not 

conform to the established scientific framework. In debt, negative numbers 

are not understood as a positive quantity with an additional determination. 

Rather they describe a real lack or deficiency. Debt represents a very spe-

cific example of negative numbers that does not fit the concept of negative 

magnitude as it appears in physics.

The application of negative numbers as it appears in debt is not some 

speculative model in mathematical logic. Rather, it is a model emerging 

from a social application of negative numbers. Debt is a real application that 

no one doubts. Yet, as an example of negative magnitudes, the interpretation 

applied in debt still seems somehow less real than the one in physics.

Frege, Dedekind

Both physics and financial theory use the same negative magnitudes. The dif-

ference between the interpretation used in physics, and the one that would have 

to be used for debt is not to be found on the algebraic structure. What, then is 

this difference? The difference is in the way negative numbers are founded 

in order to avoid the paradox of less than nothing. Now, if numbers are 

founded axiomatically, then the entire set of real numbers – positive, negative, 

ration, irrational – is simply given, thus avoiding a paradox. However, such 

founding also tells us nothing about the application of numbers to reality.

On the other hand, if we follow the genetic method of founding negative 

numbers, we encounter two paths. (The genetic method was so called by 

David Hilbert, wishing to distinguish it from his own axiomatic method of 

founding numbers.) Although many mathematicians worked on this problem, 

for the purposes of this paper we will refer to the two genetic methods of 

founding numbers as the Frege method and the Dedekind method, because 

they are the two methods’ most prominent and influential thinkers.

For both Frege and Dedekind what determines the nature of numbers is their 

application. The most basic application of natural numbers is counting. Each 
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begins with this application of numbers and then extends the set of natural 

numbers to reach the set R. Frege begins with children’s, mercantile numbers, 

while Dedekind begins with the scientific application. Frege considers numbers 

as the answer to the question ‘how much’, while what is important for Dede-

kind is their order. For Frege, natural numbers are finite cardinal numbers, 

while for Dedekind, they are finite ordinal numbers. (Dedekind 1969: 2)1

This, we reckon, is the clearest way of showing this specific difference in 

interpretation of negative numbers. Each interpretation will have a corre-

sponding application in reality. One application is particular to physics; the 

other to social practice (financial and banking transactions). If we follow 

the Dedekind method, the appearance of negative numbers presents no 

problem. Dedekind obtained numbers by identifying them with points on a 

real line such as it is given to perception, and then sought logical emancipa-

tion from geometric intuition. If the nature of numbers is to be found in 

recursive progression, then going from 1 to 0 to -1 conforms to their nature. 

This construction of negative numbers as ordered pairs of natural numbers2 

can be found in mathematical literature from van der Vaerden’s Modern 

Algebra, to, for example, Birkhoff and MacLane’s Algebra. In this case, both 

addition and subtraction can be performed without any prohibition.

However, should we follow the Frege method, we run into problems. His 

approach to natural numbers as cardinal (Anzahlen) makes the prohibition 

of subtraction ontological in nature. If numbers are children’s, mercantile 

numbers, and are the answer to the question ‘how much’, then the subtraction 

of greater number from smaller lapses into ontological paradox. Frege himself 

had to split natural numbers from positive whole numbers in order to avoid 

the paradox of ‘less than nothing’. Once split, positive numbers can be re-

garded as inextricably tied to negative numbers. However, this entirely 

transforms the initial set of natural numbers.

It is important to note that the potential paradox, ‘less than nothing’, is not 

simply a matter of naïve understanding. The paradox will present itself 

every time one begins from natural numbers in the way they are understood 

in everyday life, i.e. as the answer to the question ‘how much’. In Nachlaß, 

1 Dedekind’s letter to H. Weber of 24 January 1888 (Dedekind 1969: 488–490). We 

cite this letter in particular because in it Dedekind explicitly points out that he considers 

the ordinal number more original than the cardinal. Considering that we are here in-

terested in Dedekind only to the extent that he represents the position that departs form 

the ordinal number, we are not citing all the places in the more canonical Continuity 

and Irrational Numbers and What Are Numbers and What Should They Be?, although we 

are of course referring to those.

2 The same is true as in the previous footnote. This is an important text for our argument 

because in it Dedekind explicitly constructs the extension of the term number on the 

basis of sequence of natural numbers in the modern way: NxN/~, where ~ is the cor-

responding relation of equivalence between pairs of natural numbers.



135

  NEW PERSPECTIVES ON DEBT AND ECONOMY

Numbers and Arithmetic (1924–1925), Frege links the failure of his project 

to ground arithmetic with this very starting point – the quotidian use of 

numbers. A better starting point, continues Frege, perhaps with Dedekind 

in mind, is geometry.

Dedekind’s, „geometric“ founding of numbers is indeed the interpretation of 

negative numbers used in physics. But the use of negative numbers in phys-

ics does not express any actual lack or deficiency. Negative charge, negative 

direction on the coordinate system, negative particles – none of these has 

anything to do with insufficiency. They are equally extant as their positive 

counterparts, but with an additional designation of the negative sign.

A negative bank balance, on the other hand, expresses something different. 

In accounting (as a type of financial formal language), a negative magnitude 

is an expression of actual lack. In this, in order for debt to be an expression 

of real absence, it must rely on a different concept of negative magnitude. 

Debt is the only application of negative numbers where they appear as 

truly negative magnitudes. Only in this case is it possible to realize the sub-

traction of greater number from smaller, understood as amount with no 

further determination, without lapsing into ontological paradox. The ques-

tion of the interpretative framework that allows for such application is 

certainly interesting, but beyond the scope of the present article.

Conclusion

At present, it seems to us that the indispensability argument, used to great 

effect in physics, does not cover the interpretation of negative numbers found 

in their application in debt. However, we fail to see why this interpretation 

of negative numbers could not have its reality recognized precisely by its 

successful application in financial theory. It seems to us inconsistent to claim 

that the interpretation of negative numbers as debt is ontologically para-

doxical, while also holding trust in one’s bank and financial transactions. 

A realist would demand to acknowledge the reality of the successful applica-

tion of negative numbers in financial theory or bank transactions. This would 

require the argument of indispensability to broaden its scope to include 

certain kinds of social objects.

The indispensability argument need not be applied exclusively to mathemat-

ics, nor be particularly bound to a given historical moment. Fibonacci intro-

duced negative numbers into mathematics implicitly applying the indis-

pensability argument. Had it been explicitly applied in the 13th century, the 

indispensability argument, as the only grounding for the reality of negative 

numbers, would undoubtedly have had the reality of debt. Euler supported 

the reality of space and time based on their indispensability to Newton’s 

laws. He also attempted to justify the reality of negative magnitudes and 

rescue them from the seeming paradox of being less than nothing. In so 
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doing, he interpreted negative magnitudes as amount of debt. It could be 

easily shown that since then, the basic meaning of debt has not changed. 

Nor indeed the meaning in which negative numbers refer to debt. If there 

were no other way today to show the reality of negative numbers, debt would 

still be a sound basis for the argument of indispensability of negative numbers. 

Such a position would be entirely compatible with realism.
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Razumevanje negativnih brojeva u realizmu
Apstrakt
Na ša te ma je raz u me va nje pri ro de ne ga tiv nih bro je va – en ti te ta na ko je re fe ri šu 
iz ra zi kao što je ‘-1’. Sle de ći Fre gea, mi raz ma tra mo ce le po zi tiv ne bro je ve kao 
one ko ji da ju od go vor na pi ta nje: „ko li ko“? U sve tlu to ga, ka ko bi tre ba lo da raz ma-
tra mo ne ga tiv ne bro je ve? I po zi tiv ni, i ne ga tiv ni bro je vi mo gu bi ti po ni za ni kroz 
re la ci ju ve ćeg ili ma njeg. U tom je slu ča ju isti ni to za sve ne ga tiv ne bro je ve da su 
en ti te ti ko ji su (ne ka ko) ma nji od nu le. Za mno ge, ovo se sma tra lo za on to lo ški 
pa ra doks: ka ko ne što mo že bi ti „ma nje od ni če ga“?
Da bi se iz be gao pa ra doks, ne ki pred la žu da se ne ga tiv ni bro je vi tre ti ra ju kao pu ki 
façons de par ler. U ovom član ku pred la že mo ob ja šnje nje ko je je vi še re a li stič ko, 
pri če mu kao po čet nu tač ku uzi ma mo te zu da po sto ji naj ma nje je dan po zna ti tip 
objek ta či ja ve li či na mo že da se iz ra zi ne ga tiv nim bro je vi ma, a to je dug. Ka ko 
mo že da smi sao iz ra za bu de on to lo ški pa ra dok sa lan, a da ipak iz raz kao ta kav 
pla u zi bil no re fe ri še na so ci jal ni objekt kao što je dug? Ili, dru ga či je re če no, ka ko 
je mo gu će da se bu de isto vre me no re a li sta u fi nan sij skoj te o ri ji i no mi na li sta u 
ma te ma tič koj te o ri ji? Ovaj čla nak po ka zu je, naj pre, da pa ra doks na sta je ka da se 
dva di stinkt na na či na na ko ji su ne ga tiv ni bro je vi po ve za ni sa stvar nim objek ti ma 
uzi ma ju kao ob je di nje ni. Pr vi od na či na re fe ri še sa mo na dug, dok dru gi mo že da 
re fe ri še ka ko na dug, ta ko i na fi zič ke objek te. Na kra ju, tvr di mo da je dug ujed no 
i spe ci fič no dru štve ni objekt, i deo stvar no sti ko ji opi su je fi zi ka.

Ključ ne re či: Ne ga tiv ni bro je vi, dug, re a li zam, mag ni tu da, objekt


