MANAGEMENT OF PEDIATRIC DEEP NECK INFECTIONS-A CROSS SECTIONAL RETROSPECTIVE ANALYSIS.

DEPARTMENT OF OTOLARYNGOLOGY-HEAD AND NECK SURGERY | HOSPITAL DE BRAGA

Ana Sousa Menezes, Sara Pereira, Miguel Breda, Diana Silva, Joana Guimarães, Luís Dias

INTRODUCTION

DEEP NECK INFECTIONS (DNI's)

•Responsible for significant morbidity in children and healthcare expenditures.

•Few studies exist specifically addressing the clinical and epidemiologic characterization and management of DNI's in the pediatric population.

•Descriptive study of the management of DNI in our institution

•Demographic characteristics, clinical presentation, diagnostic and therapeutic approaches of DNI in pediatric patients.

Approval by the Ethical Committee of Hospital de Braga Retrospective Review Medical records of patients, aged up to 18 years Admitted for DNI at our department january 2011- august 2016

DNI were divided into peritonsillar, parapharyngeal and retropharyngeal abscesses/ cellulitis

Patients with other subtypes of DNI were excluded.

METHODS

Table 1. Data collected for each patient admitted for DNI, from 2011-2015		
Age at the admission (years)	Comorbidities	
Gender	Pre- hospital antibiotherapy treatment	
Hospital Length of stay (HLS) (days)	Performance of a Computed Tomography (CT) scan at the	
HLS superior to 5 days (HLS>5d), (days)	admission	
Seasonal Distribution (Winter, Spring, Summer, Autumn)	Dimension of the abscess in CT scan (mm) (greater axis)	
Month at the admission	Performance of incision and drainage	
Year at the admission	Performance of drainage in the operative room	
Type of DNI (peritonsillar, parapharyngeal, retropharyngeal	Laboratorial measurements at admission (Leucocyte /	
abscess/cellulitis)	Neutrophil counts, C reactive protein)	
Side of DNI (Left, Right, Bilateral)	Microbiology analysis of DNI	
Etiology of the Abscess/cellulitis	Antibiotherapy during hospital stay	
Symptoms at presentation	Transference to the hospital of local residency	
Time since the beginning of symptoms until admission (days)	Occurrence of complications during hospital stay	
Tonsillar Hypertrophy (Friedman Grading Scale) at the admission	Need for surgical reintervention	
History of previous DNI	Need for antibiotherapy adjustment during hospital stay	
Site and side of previous DNI	Need for performance of a CT scan during hospital stay, after	
History of Recurrent Tonsillitis	admission	

METHODS

STATISTICAL ANALYSIS

- •IBM SPSS Statistics program, 22nd version
- •Descriptive statistics: mean ± standard deviation (SD)
- •Correlation (Pearson or Spearman correlation tests)
- Associations for categorical variables (Chi-square or Fisher's exact tests)
- •Comparison between groups (t-tests or ANOVA and Mann-Whitney or Kruskal Wallis)
- Post-hoc tests
- •For significant findings, the effect size is also reported.
- •Regression analysis to identify significant predictors of:
 - ✓Occurrence of complications after admission
 - \checkmark Hospital length of stay
- •Significance is settled for p<0.05

Hospital

Table 2. Demographic feature	s of pediatric patients	admitted for DNI, fro	m 2011-2015 (n=98)	
Age (years)	12,07 (±4,75)			
Gender				
Female	53 (54,1%)			
Male	45 (45,9%)			
HLS (days), (n=85) ^a	4,41 (±1,65)			
HLS>5d (days), (n=85) ^a	8 (9,6%)			
Seasonal Distribution				
Winter	23 (23,5%)			
Spring	2 <u>8 (28.5%)</u>			
Summer	3 <u>0 (30,6%)</u>			
Autumn	17 (17,3%)			
Month, at the admission	January- 5 (5,1%)	May-11 (11,2%)	September- 8 (8,2%)	
	February - 5 (5,1%)	June- 11 (11,2%)	October- 3 (3,1%)	
	March- 9 (9,2%)	July-17 (17,3%)	November- 7 (7,1%)	
	April- 7 (7,1%)	August- 6 (6,1%)	December- 9 (9,2%)	
Year of Hospital Admission				
2011	7 (7,1%)			
2012	11 (11,2%)	and a first of the	a success to the design to the	
2013	14 (14,3%)	sustained	increase in the hospital	
2014	24 (24,5%)	adm	issions until 2015	
2015	31 (31,6%)			
2016	11 (11,2%)			

^a 15 patients transferred to the hospital of local residency were excluded

Table 3. Clinical characterization of DNI in pediatric patients admitted, according to DNI subtype, from 2011-2015						
Type of DNI	Patients, No.	Side	Age	HLS	HLS>5d	Antibiotics during hospitalization
	(%) (n=98)	(n=98)	(n=98)	(n=85*)	(n=85*)	(n=85*)
			_			AC+ Clindamycin- 50
Peritonsillar Abscess	72 49/	Left-42	Left-42 Right-27 12,43 ±4,91 Bilateral-2	4,43 ± 1,22	49 (15,5%)	Clarithromycin + Clindamycin- 1
	(12,470)	Right-27				AC- 3
	(11-71)	Bilateral-2				Ceftriaxone + Clindamycin- 3
						Ceftriaxone + Metronidazole- 1
Paranharyngoal	7.1%	Left-2		1 20 +		$\Delta C + Clindamycin-3$
	(n-7)	Right-5	10,80±5,02	4,20 ±	1 (20%)	Ceftriavone + Clindamycin - 2
ADSCESS		Bilateral- 0		0,84		
Retronharvngeal	4 1%	Left-2	\frown	5 25+		AC + Clindamycin- 2
Abscess	(n-4)	Right-1	6,00±2,83	1 71	3 (75%)	Ceftriaxone + Clindamycin- 1
ADSCESS	(11-4)	Bilateral-1		1,71		Clindamycin- 1
Peritonsillar	15 3%	Left-8		3 80+		AC + Clindamycin- 14
celullitis	(n=15)	Right-6	10,43±4,47	_ 2 51	1 (6,7%)	$\Delta C = 1$
	(11-13)	Bilateral- 1		- 2,51		
Retropharyngeal	1%	Right				AC + Clindamycin
celullitis	(n=1)	MgHt				
p- value	p<0.05	p>0,05	p>0,05	p<0.05	p<0.05	

^a 15 patients transferred to the hospital of local residency were excluded

Table 4. Clinical features of pediatric patients admitted for DNI, from 2011-2015 (n=98)		
History of previous DNI		
No	86 (87,6%)	
Yes	12(12,4%) (Peritonsillar celullitis-2; Peritonsillar Abscess – 10)	
Side of previous DNI (n=12) (in relation to actual episode)		
Ipsilateral	11 (91,67%)	
Contralateral	1 (8,33%)	
History of Recurrent Tonsilitis		
Yes	31 (35,2%)	
Comorbidities		
Yes	9 (9,3%)	
No	89 (90,7%)	
Pre-hospital antibiotherapy treatment (n=94)		
Yes	51 (54,3%)	
No	43 (45,7%)	
Pre-hospital antibioterapy treatment (n=44)		
Amoxicilin	1 (1,2%)	
AC	20 (23,5%)	
Clarithromycin	1(1,2%)	
Penicilin	14 (16,5%)	
Ceftriaxone	1 (1,2%)	
Azithromycin	2 (5,56%)	
cefaclor	1 (1,2%)	
Various	4 (11,11%)	

Table 5. Clinical features of pediatric patients admitted for DNI, from 2011-2015 (n=98)

CT scan at the admission		
Yes	34 (34,7%)	
No	64 (65,3%)	
Dimension of Abscess in CT scan (mm) (n=18)	10 17(+ 8 15)	
(greater axis)	13,47(± 0,43)	
Incision and drainage (n=81) ^b		
Yes	72(88,9%)	
Drainage in the operative room (n=81) ^b		
Yes	20(24,7%)	
Antibiotics during hospitalization (n=85) ^a		
AC	4 (5,7%)	
Clarithromycin + Clindamycin	1 (1,4%)	
AC + Clindamycin	58 (82,9%)	
Ceftriaxone + Clindamycin	6 (8,6%)	
Ceftriaxone + Metronidazole	1 (1,4%)	

^a 15 patients transfered to the hospital of local residency were excluded

^b Patients with peritonsillar cellulitis were excluded

RESULTS- COMPLICATIONS

Only **2 patients** developed **complications** during hospital stay.

A 4-year-old boy, admitted for a peritonsillar abscess for conservative treatment, initiated dyspnea with stridor in the first day in the ward and a quinsy tonsillectomy was performed.

Hospital

Braga

One patient was readmitted due to persistence of a peritonsillar abscess; It was the case of a 11-year-old boy, submitted to incision and drainage of the abscess, followed by 4days inpatient treatment with amoxicillinclavulanate plus clindamycin with clinical improvement. He was readmitted 6 days after, due to worsening of the symtoms and completed a 5-day-treatment with ceftriaxone plus metronidazole, with complete resolution.

Table 6. Laboratorial and culture analysis of pediatric patients admitted for DNI, from 2011-2015

Laboratorial measurements at admission	
Leucocyte count (x10 ⁹ cells/L) (n=58)	15,3 (±4,3)
Neutrophil count (x10 ⁹ cells/L) (n=57)	11,6 (±4,4)
C reactive protein (mg/dL) (n=40)	71,4 (±49,2)
Microbiology analysis of DNI (n=26)	
Monomicrobial infections	15 (61,5%)
Polymicrobial infections	11 (38,5%)
Microbiology analysis of DNI (n=26) ^c	
Streptococcus pyogenes	7
Streptococcus mitis	7
Staphylococcus aureus	3
Streptococcus gordonii	2
Streptococcus spp	1
Streptococcus intermedius	2
Streptococcus anginosus	3
Streptococcus constellatus	4
Aerococcus spp	1
Streptococcus Paransanguinis	1
Anaerobic Bacteria	
Fusobacterium	3
Veilonella	2
Prevotella melaninogenica	3
Peptostreptococcus asaccharolyticus	3
Clostridium clostridioforme	1

^c The total percentage is superior to 100% due to polymicrobial infections

RESULTS- Hospital Length of Stay (HLS)

^a 15 patients transferred to another hospital were excluded

Comparison of the length of stay in the Hospital among groups

The HLS was positively associated with the occurrence of complications during the hospital stay (p<0,05). All the patients that presented complications also displayed a HLS>5d. (Z(U)=2,00; p=0,015).

Hospital Braga

RESULTS- Hospital Length of Stay (HLS)

Relationship between the Hospital Length of Stay and the Dimension of the Abscess in the CT scan

Hospital

Braga

The HLS has fair-moderate positive CORRELATION with the DIMENSION OF THE ABSCESS IN THE CT scan at the admission (r= 0,52, p<0,05, n=16)

NOTE:

There were **no differences** in the LHS between the patients submitted to **drainage of abscess** and the patients submitted to **medical treatment** alone (p>,0,05).

RESULTS- DIMENSION OF THE ABSCESS

The group with **RECURRENT TONSILLITIS** presented larger abscesses in the CT scan (p<0,05).

The **GROUP SUBMITTED TO DRAINAGE** of abscess at the admission presented larger abscesses in the CT at admission (p<0,05).

Hospital

Braga

•There were no differences between DNI subtypes (p>0,05)

•As expected, age of the patient at presentation was statistically significantly lower in the group patients **submitted to drainage** of the abscess in the **operative room** (Z(U)=94,0; p<0,001)

20-Age of the patient at presentation (years) 15-10-5-No Yes

Drainage in the operative room

Comparison of the age of the patient among groups

RESULTS- REGRESSION ANALYSIS

For the purpose of this study, **NO significant regression models** were obtained where

Hospital

Braga

- ✓ Type of DNI
- ✓Age
- ✓ Gender
- ✓ Time since the beginning of symptoms until admission
- ✓ Dimension of the abscess in CT scan (mm) (greater axis)
- ✓ Performance of incision and drainage
- were predictive variables for
 - ✓ Occurrence of complications after admission
 - ✓ Hospital length of stay

DISCUSSION

•Few studies exist specifically addressing the INCIDENCE OF DNI in the pediatric population.

•A decrease in the incidence has been previously observed

(improvements in antibiotics + better access to healthcare system)

•Although recent reports have documented an INCREASE in this incidence.

•This study revealed a **SUSTAINED INCREASE** in the hospital admissions due to DNI in the pediatric age, **since 2011**

•Since 2012 a **specific protocol** for in-patient treatment of peritonsillar abscess has been instituted >>leading to greater admissions of these cases.

DISCUSSION

Braga

There is NO ESTABLISHED GOLDSTANDARD treatment of DNI regarding :

>> indications of surgical intervention, empirical choice and duration of antibiotic therapy.

IN OUR HOSPITAL:

>>Needle aspiration is performed in all patients in order to diagnose the DNI and followed, if positive for purulent exsudate, by INCISION and DRAINAGE procedures.

- >> intravenous Amoxicillin clavulanate + clindamycin is our initial empiric antibiotic therapy of choice
- >> Association of corticosteroids is the rule

>> 5 days is the optimal duration of treatment (although earlier discharge is common)

The INCISION and DRAINAGE approach is also commonly applied in the United Kingdom and Taiwan for peritonsillar abscess.

•Mehanna HM, Bahnasawi LA, White A. National audit of the management of peritonsillar abscess. Postgrad Med J 2002;78:545–548 •Wang YP, Wang MC, Lin HC, Chou P. The impact of prior tonsillitis and treatment modality on the recurrence of peritonsillar abscess: a nationwide cohort study.PLoS One.2014; 9(10): e109887.

In this study, **NO life-threatening complications** were observed.

DISCUSSION

LIMITATIONS

•Retrospective design

•Small sample size

•Reflects the experience of single medical center

•Empirical antimicrobial coverage may have affected microbiologic findings

No cost-benefit analysis (CT performance, antibiotics choice)

ADVANTAGES

- •Analysis of current management of pediatric DNI
- •Evaluation of the efficacy of a specific protocol
- •Low morbidity and rate of recurrence

CONCLUSION

•Prompt recognition and initiation of therapy is important to **avoid serious complications**.

•Surgical incision and drainage followed by intravenous antibiotic and steroids proved

to be successfull with low morbidity related to surgical approach.

- •However, in selected cases, **medical therapy** may be an **alternative** to surgical management in uncomplicated DNI.
- •Future research is crucial to determine appropriate guidelines to select the best
- therapeutic approach considering clinical, radiologic and laboratorial findings.

BIBLIOGRAFIA

Hospital Braga

1. UngKanont K, YelloonRF, WeissmanJL, CasselbrantML, Gonzalez-ValdepenaH, BluestoneCD. Head and neck space infections in infants and children. Otolaryngol. Head Neck Surg. 112 (March (3)), 1995 375-382.

2. Baldassari CM, Howell R, Amorn M, Budacki R, Choi S, Pena M. Complications in pediatric deep neck space abscesses. Otolaryngol. Head Neck Surg. 2001; 144: 592-595.

3.Baldassari CM, Howell R, Amorn M, Budacki R, Choi S, Pena M. Complications in pediatric deep neck space abscesses. Otolaryngol. Head Neck Surg. 2001; 144: 592-595.

4.Reynolds SC, . Chow AW. Life-Threatening Infections of the Peripharyngeal and Deep Fascial Spaces of the Head and Neck.Infectious Disease Clinics. 2007; 21:2, 557–576

5. Powel J, WilsonJA. An evidence-based review of peritonsillar abscess. Clin Otolaryngology, 2012; 37: 136-145.

6. Khayr W, Taepke J. Management of peritonsillar abscess: needle aspiration versus incision and drainage versus tonsillectomy. Am J Ther, 2005; 12: 344-350.

7. Mehanna HM, Al-Bahnasawi L, White A. National Audit of the management of peritonsillar abscess. Postgrad Med J; 2002; 78:545-548

8.Powel J, WilsonJA. An evidence-based review of peritonsillar abscess. Clin Otolaryngology, 2012; 37: 136-145.

9.Khayr W, Taepke J. Management of peritonsillar abscess: needle aspiration versus incision and drainage versus tonsillectomy. Am J Ther, 2005; 12: 344-350.

10.Novis SJ et al.Pediatric deep space neck infections in U.S. children, 2000–2009. International Journal of PediatricOtorhinolaryngology, 2014; Volume 78, Issue 5, 832 – 836

11.Cabrera CE¹, Deutsch ES, Eppes S, Lawless S, Cook S, O'Reilly RC, Reilly JS. Increased incidence of head and neck abscesses in children. Otolaryngol Head Neck Surg. 2007 Feb;136(2):176-81.

12. Osborn TM, Assael LA, Bell RB.Deep Space Neck Infection: Principles of Surgical Management. Oral and Maxillofacial Surgery Clinics of North America. The Neck. Volume 20, Issue 3, August 2008, Pages 353–365.

13. Wang YP, Wang MC, Lin HC, Chou P. The impact of prior tonsillitis and treatment modality on the recurrence of peritonsillar abscess: a nationwide cohort study. PLoS One. 2014; 9(10): e109887.

14. Mehanna HM, Bahnasawi LA, White A. National audit of the management of peritonsillar abscess. Postgrad Med J 2002;78:545–548

Lamkin RH, Portt J. An outpatient medical treatment protocol for peritonsillar abscess. Ear Nose Throat J 2006, 85:658-60.

15. Al Yaghchi C, Cruise A, Kapoor K, Singh A. Harcourt J. Out-patient management of patients with peritonsillar abscess. Clin Otolaryngolo 2008; 33: 52-5.
16. Brook I¹. Microbiology and management of peritonsillar, retropharyngeal, and parapharyngeal abscesses. J Oral Maxillofac Surg. 2004 Dec;62(12):1545-50.

17. Page C1, Biet A, Zaatar R, Strunski V. Parapharyngeal abscess: diagnosis and treatment. Eur Arch Otorhinolaryngol. 2008 Jun;265(6):681-6.

THANK YOU • GRACIAS • OBRIGADA

Ana Sousa Menezes, Sara Pereira, Miguel Breda, Diana Silva, Joana Guimarães, Luís Dias

Serviço de Otorrinolaringologia e Cirurgia Cérvico-Facial

Hospital de Braga Sete Fontes - São Victor 4710-243 Braga

www.hospitaldebraga.pt