# Prevalence of cancer and its impact on prognosis of acute coronary syndrome population 

Glória Abreu, Pedro Azevedo, Carina Arantes, Catarina Quina-Rodrigues, Sara Fonseca, Juliana Martins, Catarina Vieira, Miguel Álvares Pereira, Jorge Marques

Hospital de Braga, Braga, Portugal

## BACKGROUND

- Cancer and cardiovascular disease are the two most prevalent diseases around the world. ${ }^{1}$
- Coronary artery disease is frequently encountered in cancer patients. It may predate the development of cancer or result from treatment of cancer itself. ${ }^{2}$
- The treatment options available for this population are based on those studied in general population. ${ }^{3}$
- Few studies have been focused on the relationship between malignancy and acute coronary syndromes (ACS).



## Purpose

We aimed to evaluate the incidence of malignancy in an acute coronary syndrome population and its impact on outcome.

1- Fuster V, Voute J. MDGs: chronic diseases are not on the agenda. Lancet. 2005;366:1512-1514.
3 - Yusuf SW, Daraban N , Abbasi N et al.Treatment and outcomes of acute coronary syndrome in the cancer population. Clin Cardiol. 2012;35(7):443-50. doi: 10.1002/clc.22007


## METHODS

| 1486 patients admitted |
| :---: | :---: |
| with ACS from |
| Jan 2012 - December 2014 |

$>28 \%$ cancer diagnosis < 1 year
$>28 \%$ cancer diagnosis < 1 year
$>90 \%$ had solid tumors
$>90 \%$ had solid tumors
$>10.3 \%$ had metastasis
$>10.3 \%$ had metastasis
> $24.1 \%$ were treated with
> $24.1 \%$ were treated with
chemotherapy
chemotherapy
$>\mathbf{2 2 . 9} \%$ were treated with
$>\mathbf{2 2 . 9} \%$ were treated with
radiotherapy
radiotherapy

- For each group we compared clinical features and adverse events.
- Primary endpoint was the occurrence of death at 1 year; follow-up was completed in $98 \%$ of patients.


## RESULTS

## - Baseline Patients' Characteristics on Admission

| Variables | Group 1 | Group 2 | $\boldsymbol{P}$ |
| :--- | :---: | :---: | ---: |
| Age (years) | $69 \pm 11$ | $63 \pm 13$ | $\mathbf{0 . 0 0 1}$ |
| Women (\%) | 20.7 | 21.7 | 0.8 |
| Cardiovascular Risk Factors |  |  |  |
| Hypertension (\%) <br> Diabetes (\%) | 65.5 | 62.9 | 0.78 |
| Dyslipidaemia (\%) <br> Smoking (\%) | 46.6 | 57.6 | 0.105 |
| Previous smoker (\%) | 22.4 | 31.9 | 0.15 |
| Previous Vascular Disease | 36.2 | 20.0 | $\mathbf{0 . 0 5}$ |
| Myocardial Infarction (\%) | 20.7 | 14.5 | 0.18 |
| Angina (\%) | 19.0 | 15.5 | 0.46 |
| PTCA (\%) | 8.6 | 10.0 | 1.0 |
| CABG (\%) | 6.9 | 4.4 | 0.33 |
| Stroke (\%) | 15.5 | 7.4 | $\mathbf{0 . 0 3 8}$ |
| Peripheral artery disease | 12.1 | 4.1 | $\mathbf{0 . 0 1 2}$ |
| (\%) |  |  |  |

- Clinical Presentation


| Variables | Group 1 | Group 2 | $\boldsymbol{P}$ |
| :--- | :---: | :---: | ---: |
| Anaemia (\%) | 46.6 | 23 | $<\mathbf{0 . 0 0}$ |
| 1 |  |  |  |
| Renal insufficiency <br> (eGFR<60 ml/min) (\%) | 42.1 | 24.3 | $\mathbf{0 . 0 0 4}$ |
| Killip class > 1 (\%) | 19 | 12.9 | 0.17 |
| LVEF < 50\% (\%) | 75.9 | 55.7 | $\mathbf{0 . 0 0 2}$ |
| Severe coronary <br> artery disease (\%) | 32.1 | 27.1 | 0.45 |

## RESULTS

- In hospital medical treatment and procedures

| Variables | Group 1 | Group 2 | $\boldsymbol{P}$ |
| :--- | :---: | :---: | ---: |
| Revascularization (\%) | 79.3 | 86.8 | NS |
| PTCA in 2 |  |  |  |
| CAB time (\%) | 1.8 | 10.3 | NS |
| Medical Treatment | 19 | 12.9 | $\mathbf{0 . 0 3 7}$ |
| Aspirin (\%) |  |  |  |
| Clopidogrel (\%) | 94.8 | 99.3 | NS |
| Beta blockers (\%) | 86.2 | 98.9 | 0.035 |
| ACE inhibitors (\%) | 94.8 | 89.1 | NS |
| Statins (\%) | 100 | 92.4 | NS |
| Diuretics (\%) | 27.6 | 98.4 | NS |
| Inotropic (\%) | 3.4 | 19.2 | $\mathbf{0 . 0 0 8}$ |

- Revascularization options in cancer population



## RESULTS

- In-hospital adverse events

| Variables | Group 1 | Group 2 | $\boldsymbol{P}$ |
| :--- | :---: | :---: | ---: |
| Blood transfusion (\%) | 4.0 | 1.6 | 0.207 |
| Acute heart failure (\%) | 41.4 | 26.5 | $\mathbf{0 . 0 1 6}$ |
| Reinfarction (\%) | 1.7 | 2.2 | 0.78 |
| Post-infarction angina (\%) | 12.1 | 5.1 | $\mathbf{0 . 0 1 6}$ |
| New onset atrial fibrillation (\%) | 6.9 | 2.8 | $<\mathbf{0 . 0 0 1}$ |
| In-hospital mortality (\%) | 3.4 | 2.4 | 0.65 |

- One-year mortality events analysis



## RESULTS

- Cox Regression - independent predictors of all causes long term mortality

| Variables | OR | $95 \% \mathrm{Cl}$ |  | $\boldsymbol{P}$ |
| :--- | :---: | :---: | :---: | :---: |
|  |  | inferior | superior |  |
| Age $>60$ years old | 1.03 | 1.00 | 1,06 | $\mathbf{0 . 0 4 7}$ |
| eGRF $<60 \mathrm{ml} / \mathrm{min}$ | 2.98 | 1.52 | 5.86 | $<0.001$ |
| Left ventricle function $>50 \%$ | 0.28 | 0.13 | 0.59 | $\mathbf{0 . 0 0 1}$ |
| Acute heart failure | 3.72 | 2.05 | 6.77 | $<0.001$ |
| Active cancer | 2.45 | 1.33 | 4.49 | $\mathbf{0 . 0 0 4}$ |

## CONCLUSION



Kaplan Meyer Survival Curves

- In our population the incidence of cancer was $3.9 \%$. This population were older and had more comorbidities.
- The medical treatment used in cancer population was, in general, the same used in cohort without cancer, but a high percentage of patients received a more conservative approach.
- Patients with cancer had long term worse prognosis. After adjusting for confounders, the presence of malignancy reveals as one of the independent predictors of mortality.

