

Modified shock index - a strong predictor of outcome among patients presenting ST-segment elevation myocardial infarction

Glória Abreu, Carlos Braga, Carina Arantes, Juliana Martins, Catarina Quina-Rodrigues, Catarina Vieira, Pedro Azevedo, Miguel Álvares Pereira, Jorge Marques.

Cardiology Department, Hospital de Braga, Braga, Portugal

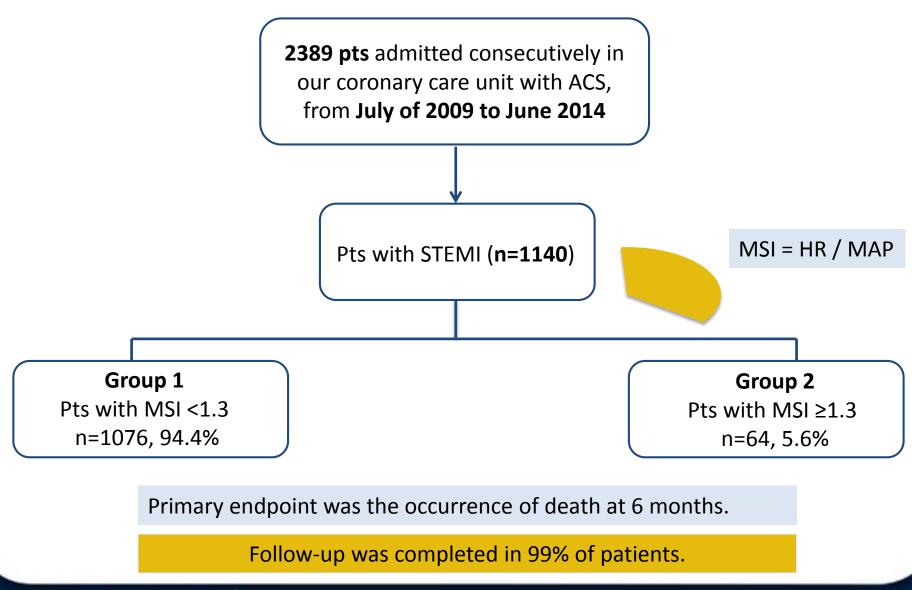
BACKGROUND

- Cardiogenic shock (CS) remains the most common cause of death in ST-elevation myocardial infarction (STEMI) patients.¹
- → Although the increasing use of primary percutaneous coronary intervention (PPCI) in STelevation myocardial infarction (STEMI) patients has contributed to reduce the incidence of
 CS, it still occurs in 5–8% with approximately 50% mortality.²
- → In GUSTO trial, CS developed an average 12 h after enrolment into the study in STEMI patients who were not considered to have CS at the time of initial assessment.³
- ← Early identification of subclinical shock prevent the development of cardiogenic shock, allowing a more assertive strategy and approach.
- → The modified shock index (MAP) ratio of heart rate to mean arterial pressure on admission has been shown in small studies to have a predictive value of mortality in medical and trauma emergency patients. A value equal or superior to 1.3 was associated to higher admissions on intensive unit care or death. To our Knowledge it was not tested in STEMI patients.

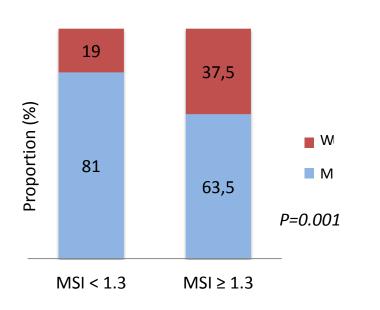
⁴⁻ Liu YC1, Liu JH, Fang ZA et al. Modified shock index and mortality rate of emergency patients. World J Emerg Med. 2012;3(2):114-7.

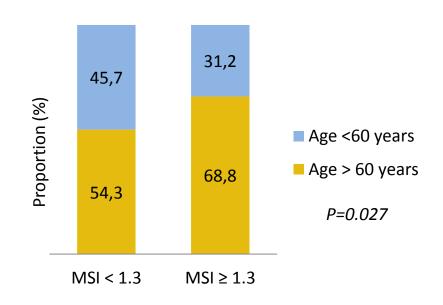
¹⁻Giannuzzi P, Imparato A, Temporelli PL, de Vito F, Silva PL, Scapellato F, Giordano A. Doppler-derived mitral deceleration time of early filling as a strong predictor of pulmonary capillary wedge pressure in postinfarction patients with left ventricular systolic dysfunction. *J Am Coll Cardiol*. 1994;23:1630 –1637.

²⁻ Reynolds HR and Hochman JS. Cardiogenic shock: Current concepts and improving outcomes. Circulation 2008; 117: 686–697.


³⁻Hasdai D, Holmes DRJ, Califf RM, et al. Cardiogenic shock complicating acute myocardial infarction: Predictors of death. GUSTO investigators. Global Utilization of Streptokinase and Tissue-Plasminogen Activator for Occluded Coronary Arteries Am Heart J 1999; 138: 21–31.

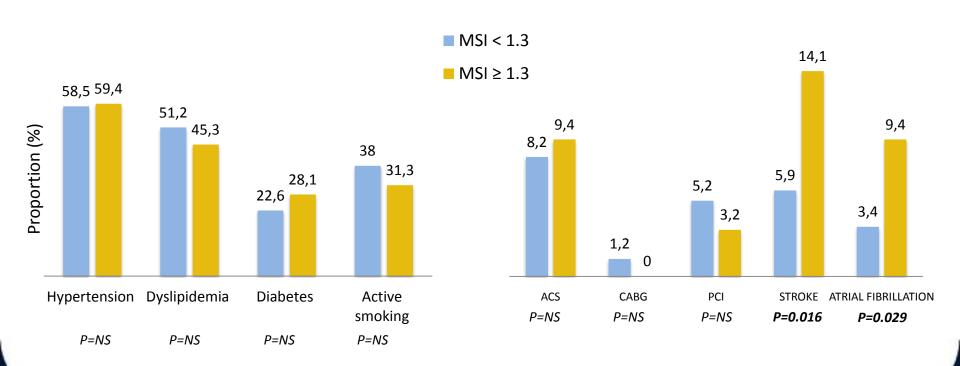
PURPOSE


To evaluate the modified shock index, as a predictor of in hospital and 6-month mortality among patients (pts) admitted with STEMI.


METHODS

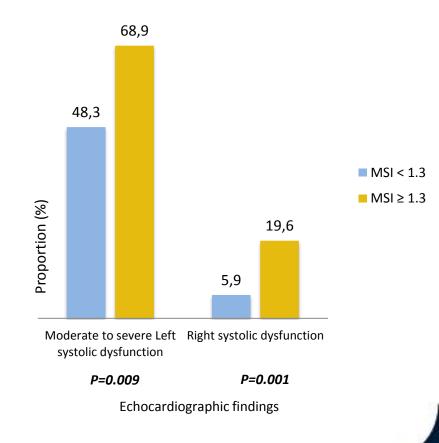
1. Baseline patients' characteristics on admission

a. Demographic characteristics



	MSI < 1.3	MSI ≥ 1.3	P value
Age (years)	62±14	67±14	0.003
BMI < 19 kg/m2 (%)	0.9	1.6	NS
BMI > 30 kg/m2 (%)	20.6	12.9	NS

1. Baseline patients' characteristics on admission



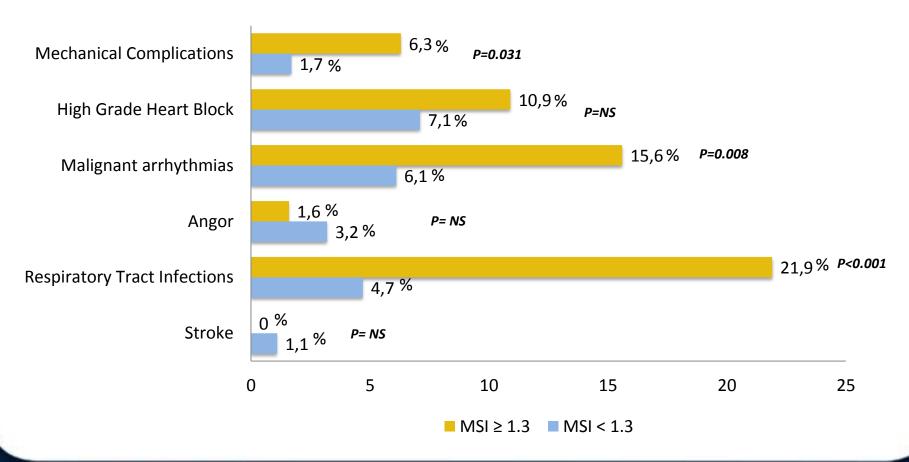
c. Previous Cardiovascular History

2. Clinical Presentation

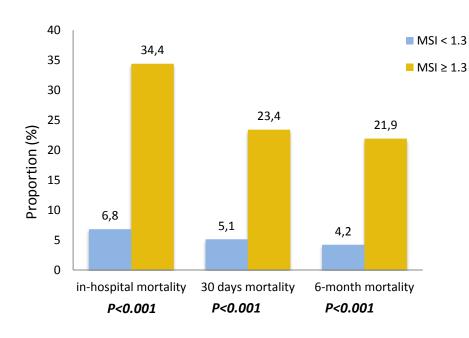
	MSI < 1.3	MSI ≥ 1.3	P value
SBP (mmHg)	129±27	93±19	<0.001
DBP (mmHg)	79±16	60±13	<0.001
MAP (mmHg)	96±18	71±14	<0.001
HR (BPM)	76±17	108±19	<0.001
Killip > 1 (%)	18.0	56.3	<0.001
Killip = 4 (%)	2.9	28.1	<0.001
Anaemia (%)	20.9	48.4	<0.001
Renal Insufficiency (%) eGFR<60 ml/min	21.8	42.6	<0.001
Left Main disease or 3 vessels disease (%)	16.3	31.3	0.005

3. In-hospital Treatment

a. Pharmacological Treatment


	MSI < 1.3	MSI ≥ 1.3	P value	
Aspirin (%)	99.1	99.8	NS	
Clopidogrel (%)	99.1	98.4	NS	
Beta Blockers (%)	86.7	62.5	<0.001	
IIb IIIa glicoprotein inhibitors (%)	20.4	29.7	0.08	
ACE-Inhibitors/RA blockers (%)	87.5	64.1	<0.001	
Diuretics	32.0	58.7	<0.001	
Statins (%)	98.7	91	0.001	
LMWH (%)	32.5	34.4	NS	
UFH (%)	72.7	78.1	NS	
Inotropics (%)	7.4	50	<0.001	

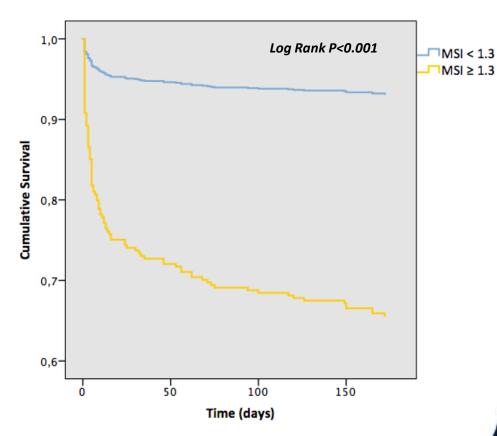
3. In-hospital Treatment


b. Procedures

	MSI < 1.3	MSI ≥ 1.3	P value
Revascularization (PPCI or CABG)	97.8	94.8	NS
Time door to balloon (h:min)	5	5h:15	NS
CABG	6.0	4.5	NS
Thrombolysis	1.1	0	NS
Non-invasive ventilation	2.5	21.7	<0.001
Mechanical ventilation	2.6	17.4	<0.001
Intra-aortic balloon pump	2.9	38.3	<0.001

4. In-hospital events

5. Mortality events


Univariated analysis

Variable	OR	95% CI		P value
Variable	OI.	Inferior	Superior	1 value
In-Hospital mortality	6.40	3.30	12.43	<0.001
30 days mortality	5.67	2.99	10.74	<0.001
6-month mortality	7.18	4.07	12.67	<0.001

6. Independent Predictors of Mortality

Independent Predictors of mortality, by $\operatorname{\mathsf{Cox}}$ Regression.

Variable OR	OR	95% CI		P value
00110010	O.K	Inferior	Superior	
Age	1.0 5	1.02	1.09	0.004
eGFR < 60 ml/min (CCG)	5.7 8	2.51	13.30	<0.001
KK > 1	1.7 6	1.001	3.07	0.05
LV systolic dysfunction	1.5 7	0.83	2.94	NS
Anaemia	1.2 6	0.43	4.00	NS
Gender	1.0 0	0.56	2.23	NS
MSI≥ 1.3	3.8 1	1.81	8.03	<0.001

Survival analysis by Kaplan-Meyer survival curves.

CONCLUSION

- ♦ STEMI patients with high heart rate and low MAP are at risk of developing cardiogenic shock and have a higher mortality.
- In our sample, MSI ≥ 1.3 was a strong predictor of in hospital and 6-month mortality among patients with STEMI.
- ♦ MSI is an easily accessible tool, which can be used to signalize more critical patients.
- ♦ It can be used to prevent iatrogenic CS by avoiding some therapies in the early management of high risk patients with relative hypotension and tachycardia.
- ♦ By signaling patients with worse prognosis, it can help us to monitor them more closely.
- ♦ A large scale study should be performed to validate and compare it with current existing validated indices.

Limitations of study:

- * This is a single centre, retrospective study with all potential drawbacks of such design including unadjusted data.
- * We only have information on all-cause mortality and not cardiovascular mortality.

