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Abstract
Background T1- and T2-W MR sequences used for obtain-
ing diagnostic information and morphometric measure-
ments in the neonatal brain are frequently acquired using
different imaging protocols. Optimizing one protocol for
obtaining both kinds of information is valuable.
Objective To determine whether high-resolution T1- and
T2-W volumetric sequences optimized for preterm brain
imaging could provide both diagnostic and morphometric
value.
Materials and methods Thirty preterm neonates born
between 24 and 32 weeks’ gestational age were scanned
during the first 2 weeks after birth. T1- and T2-W high-
resolution sequences were optimized in terms of signal-to-

noise ratio, contrast-to-noise ratio and scan time and
compared to conventional spin-echo-based sequences.
Results No differences were found between conventional
and high-resolution T1-W sequences for diagnostic confi-
dence, image quality and motion artifacts. A preference for
conventional over high-resolution T2-W sequences for
image quality was observed. High-resolution T1 images
provided better delineation of thalamic myelination and the
superior temporal sulcus. No differences were found for
detection of myelination and sulcation using conventional
and high-resolution T2-W images.
Conclusion High-resolution T1- and T2-W volumetric sequen-
ces can be used in clinical MRI in the very preterm brain to
provide both diagnostic and morphometric information.
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Introduction

MRI has become the modality of choice for investigating
normal brain maturation as well as neonatal brain injury
and developmental neurological disorders because of the
modality’s superior soft-tissue contrast, good spatial
resolution and various physical parameters that can be
used as contrast mechanisms [1–12]. The development of
MR-compatible incubators and dedicated neonatal imag-
ing coils has further enabled safe and fast acquisition of
high-resolution anatomical and functional imaging of the
neonatal brain with greater signal-to-noise ratio (SNR)
[12]. However, image contrast and signal intensity changes
occurring during the first year of life necessitate careful
optimization of the experimental parameters used in
neonatal MRI [13–18]. In neonates, image contrast is
inverted relative to adults [19–22], as relaxation times of
white matter (WM) are longer than those of gray matter
(GM) [15, 23]. Decreases in brain water content, neuronal
and synaptic development and increases in the concentra-
tion of macromolecules associated with myelin cause T1
and T2 relaxation times to decrease significantly during
the first 2 years [1, 2, 5, 8, 18]. As optimal TRs and TEs
used for T1- and T2-W sequences are based on the values
of T1 and T2, appropriate values for adults and even
2-year-olds might not be suitable for neonates [13, 15, 18].
Therefore, both SNR and GM-WM contrast in neonates
should be optimized according to age-appropriate relaxa-
tion times. Although cerebral T1 and T2 relaxation mea-
surements have been reported at various field strengths
(1.0–3.0 T) for neonates born at term and for preterm
infants at term [15, 23–28], little has been reported on
these values in the preterm brain at birth [24, 28, 29],
with no reports at 1.5 T.

T1-W and T2-W images are used routinely for monitor-
ing development and identifying pathologies in the
neonatal brain [2, 4–14, 18]. These images are also used
for segmentation and quantitative morphometric measure-
ments in the developing brain [14, 17, 30–37]. Frequently,
however, sequences used for clinical diagnosis and
morphometric measurements are acquired using different
imaging protocols and experimental settings. While
clinical scanning often involves spin-echo (SE) T1-W
and T2-W sequences, having limited spatial resolution in
one of the imaging directions [6, 9–11, 18], isotropic
high-resolution imaging is increasingly used for morpho-
metric studies [7, 11, 31, 34]. Developing appropriate
sequences is almost always a trade-off between increas-

ing scan time to improve scan quality and risking image
degradation caused by patient movement. Limited scan
time and the potential for motion artifacts are major
issues in neonatal imaging, especially when the patients
are not sedated. In today’s clinical research there is a
growing need to obtain diagnostic information as well as
morphometric data. The purpose of this study was to
optimize the experimental parameters of T1-W and T2-W
high-resolution (isotropic) volumetric sequences used in
very preterm neonates (younger than 32 weeks’ gestation),
and compare these to conventionally used SE sequences
in terms of SNR, contrast-to-noise ratio (CNR), diagnostic
confidence, image quality and motion artifacts to deter-
mine whether high-resolution T1-W and T2-W volumetric
sequences can provide both diagnostic and morphometric
value. T1 and T2 relaxation times of the very preterm brain
are provided.

Materials and methods

Patients

The study included 30 preterm neonates showing a range of
pathologies born between 24 to 32 weeks’ gestational age
(median 29.00 weeks) and scanned between 26 to 34 weeks’
postmenstrual age (median 30.57 weeks). The median birth
weight of the neonates was 1,246 g (range 728–2,070 g).
All were scanned within the first 2 weeks after birth. None
had evidence of a genetic, metabolic or viral infection
disorder. All neonates but two were scanned without
sedation. These children are part of a broader cohort of a
prospective 4-year neuroimaging study approved by the
hospital’s research ethics board. Informed, written consent
was given by the neonates’ parents.

MR acquisition

MR scans were performed on a 1.5-T Signa Excite HD
scanner (GE Medical Systems, Milwaukee, WI, USA)
using an MR-compatible incubator and neonatal head coil
(AIR Inc., Cleveland, OH, USA). MRI protocol and the
associated MR parameters, scan times, SNR and CNR are
summarized in Table 1. Conventional clinical sequences
will be referred to throughout the paper as clinical
sequences whereas high-resolution sequences will be
referred to as research sequences. For the research T1-W
sequence, T1 values of 1,700 ms for WM and 1,200 ms for
GM were used based on data from previous term literature
[15] in order to estimate the appropriate TR/flip angle (FA)
combination. A TR/FA combination of 23 ms/19o yielded
the shortest scan time for 1-mm3 resolution T1-W volume
with an SNR of 22.1 and CNR of -6.4. A T2 value of

Pediatr Radiol (2011) 41:702–710 703



200 ms was estimated for determining the TE for the
research T2 sequence [15]. Therefore, using TR of
4,000 ms, TEs of 145, 158 and 200 ms were tested. All
TEs produced images having a comparable SNR of about
28 and CNR of about 13; thus to achieve the shortest scan
time possible for 1 mm3 resolution a TE of 145 ms was
chosen. Both SNR and CNR were calculated considering
the Rayleigh distribution for noise in image regions with no
NMR signal [38]:

SNR ¼ SWM

sM 0:655=
ð1Þ

CNR ¼ SWM � SGM
sM 0:655=

ð2Þ

where SWM represents the mean signal intensity in regions
of interest (ROIs) drawn in the frontal, periventricular and
posterior WM (SNR and CNR represent an average of three
separate measurements in three patients), SGM represents
the mean signal intensity in the frontal cortical GM and σM

is the standard deviation of the background signal of the
magnitude image.

Quantitative T1 (qT1) and T2 (qT2) maps were obtained
for six and four neonates, respectively, using the relaxom-
etry protocol provided in Table 1. The inclusion criteria for
these cases included germinal matrix hemorrhage (GMH)
grade I, small ischemic focus and no abnormalities at all.
T1 parametric maps were produced using a linear least
squares solution according to the methodology presented by
Cheng and Wright [39]. For accurate flip angle calculation,
a rapid B1

+ mapping sequence was employed. T2 maps
were obtained by fitting the four data points into a mono-
exponential function at each voxel using a non-linear least
squares fit. Mean T1 and T2 values were calculated from
manually bilaterally drawn ROIs in the frontal WM,
periventricular WM, posterior WM, frontal cortical GM
and posterior cortical GM (selected at the level of the lateral
ventricles), and manually segmented structures of the basal
ganglia and thalami.

Radiological assessment

Four neuroradiologists experienced in neonatal imaging
independently evaluated each of the clinical and research
sequences separately. Radiologists evaluated the clinical
images for all neonates and then rated the research images.
Raters completed a questionnaire noting detected lesions by
type and rating the sequences using a five-level Likert scale
for diagnostic confidence, image quality and presence of
motion artifacts. In addition, the presence of selected
myelination (dorsal brainstem, thalami and cerebellar
peduncles) and sulcation (insular, central, parieto-occipital,T
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superior temporal and calcarine sulcus) milestones on both
clinical and research images were evaluated using a binary
scale where 0 meant not present and 1 meant present.

Statistical analysis

Paired t-tests were conducted to determine whether there
were significant differences between relaxation times
measured in the right and left hemispheres for each
anatomical region. The Kolmogorov-Smirnov (K-S) test
was used to determine whether the distributions of the
combined rating results for the clinical and research
sequences were significantly different. Combined ratings
were calculated by summing individual rater scores on a
case-by-case basis for each metric and counting the number
of cases for each result. K-S tests were performed for rating
diagnostic confidence, image quality and motion artifacts as
well as for the results of myelination and sulcation. Inter-
rater agreement for diagnostic confidence, image quality
and motion artifacts was evaluated using the Cronbach
alpha, where alpha>0.7 was considered to indicate high
agreement among the four raters. Inter-rater agreement for
myelination and sulcation was evaluated by computing a
free-marginal kappa, where к>0.7 was considered highly
reliable. Statistical analyses were performed using R (www.
r-project.org) and SPSS (SPSS Inc., Chicago, IL, USA).

Results

Figure 1 shows clinical and research T1-W and T2-W
representative axial images, corresponding to the chosen
sequences presented in Table 1, of a preterm neonate born
at 29 weeks and scanned at 30.57 weeks. Figure 2 displays
qT1 and qT2 maps at the level of the basal ganglia of a
preterm neonate born at 28 weeks, scanned at 29 weeks.
Table 2 presents the mean relaxation times measured in
seven anatomical regions. Statistical analysis showed no
significant differences between measurements taken at the
left and right hemispheres for both T1 and T2 values.
Therefore, left and right values were averaged. Also, as
averaged rather than regional relaxation times are used for
sequence optimization, averaged relaxation times were
calculated for the WM and GM.

Clinical and research T1 sequences demonstrated similar
combined rating distributions (P>0.05) for diagnostic
confidence, image quality and motion artifacts (Fig. 3,
Table 3). A trend preferring research T1 for diagnostic
confidence (Fig. 3, P=0.11) and a slight trend favoring
clinical T1 for image quality and motion artifacts were
observed. All three measures demonstrated high inter-rater
agreement (Cronbach alpha=0.71–0.87) for both clinical
and research sequences, with the exception of diagnostic
confidence for research T1 (Cronbach alpha=0.58). Re-

Fig. 1 Clinical and research T1-W and T2-W representative images in the axial plane of a neonate born at 29 weeks and scanned at 30.57 weeks:
(a) clinical T1, (b) research T1, (c) clinical T2 (PROPELLER), (d) research T2

Fig. 2 T1 (a) and T2 (b) maps
at the level of the basal ganglia
of an infant born at 28 weeks,
scanned at 29 weeks, shows no
abnormalities on conventional
MRI
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search T1 provided significantly better detection for
thalamic myelination (Fig. 4) while similar rating distribu-
tions were found for the dorsal brainstem and cerebellar
peduncles. Nevertheless, a trend toward better detection of
myelination in the latter on research T1 is seen in Fig. 4.
High inter-rater agreement was established for dorsal
brainstem in both clinical and research T1 sequences (к=
0.89 and 0.93, respectively). However, only fair (к≤0.40)
and moderate (0.40<к≤0.60) agreement between raters was

found for clinical and research T1 sequences, respectively,
for the thalami and cerebellar peduncles. For sulcation,
research T1 provided significantly better detection of the
superior temporal sulcus (Fig. 5); a trend toward better
detection of the calcarine sulcus was observed (Fig. 5).
Otherwise, no significant differences were found between
clinical and research T1 for sulcus detection in the preterm
brain. Inter-rater agreement was high (к>0.7) for all five
sulci identified on research T1 and the insular, central and
parieto-occipital sulci on clinical T1. Moderate agreement
was found for the superior temporal and calcarine sulci on
clinical T1 (к=0.49 and 0.61, respectively), indicating
better detection and improved consistency between raters
when using research T1.

For T2-W images, combined rating results (Fig. 3) and
K-S test (Table 3) demonstrated a clear preference for
clinical over research sequences for image quality (P=
0.006), while similar combined rating distributions were
found for diagnostic confidence and motion artifacts.
Ratings for image quality and motion artifacts showed high
inter-rater agreement (Cronbach alpha=0.76–0.86) for both
sequences, while fair agreement between raters (Cronbach
alpha=0.37 and 0.33, respectively) was found for diagnos-
tic confidence. We found no significant difference in
detection of myelination between clinical and research T2

Table 2 T1 and T2 relaxation times at various anatomical regions at
WM and GM areas in the very preterm brain

Anatomical region T1 (ms)a (n=6) T2 (ms)a (n=4)

Frontal WM 2,863±99 216±7

Periventricular WM 2,839±55 230±4

Posterior WM 3,045±139 255±4

WM—average 2,916±65 234±7

Frontal cortical GM 2,064±52 153±4

Posterior cortical GM 1,975±37 157±4

Basal ganglia 2,196±41 167±5

Thalami 2,162±43 158±2

GM—average 2,100±50 159±3

a Values are given as mean±standard error

Fig. 3 Histogram of the number of cases for each combined rating
result calculated by the sum of scores given by the four raters for each
case using a five-level Likert scale for diagnostic confidence, image

quality and motion artifacts comparing clinical and research (a-c) T1-
and (d-f) T2-W sequences. * = Significant different combined rating
distributions (P=0.006)
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sequences; inter-rater agreement was high for both, in all
anatomical regions examined (к=0.82–1.00). Similarly, no
significant differences between sequences were found for
the detection of sulci. Inter-rater agreement was very high
for both clinical and research sequences for all sulci
observed (к≥0.86) except in the case of the superior
temporal sulcus, which produced a kappa of 0.64 for
clinical T2, indicating agreement was improved through
the use of the research T2 (к=0.86). Separating the data
into groups according to radiological findings (normal
and non-specific basal ganglia hyperintensity vs. WM
injury, GMH I and intraventricular hemorrhage grade II)
yielded the same pattern of results for both T1 and T2,
as no significant differences were found between clinical
and research sequences.

Discussion

Recently there has been an increasing use of T1-W and T2-
W images for brain segmentation in preterm and term
neonates [30–37]. Moreover, acquiring volumetric sequen-
ces allows for retrospective analyses on the neonates
scanned, by having a standardized data set for comparison
with future MR studies on the same child. Practical
considerations such as minimizing scan time, a lower
CNR and the need for confident diagnostic evaluation
might hinder the use of high-resolution sequences in
clinical settings. Acquisition of conventional and high-
resolution T1-W and T2-W sequences to obtain both
diagnostic and morphometric information is demanding in
time and redundant. Therefore, we compared these two
approaches to determine whether high-resolution T1-W and
T2-W images could provide both these values in the very
preterm brain.

To properly assess this question, we optimized MR
parameters for the high-resolution (research) sequences to
balance image resolution, scan time and SNR. As no data
were found for preterm neonates scanned at birth at 1.5 T,
the experimental parameters optimized for the research T1
and T2 sequences seen in Table 1 relied on values estimated
from the term neonate literature [15, 23, 25]. In parallel, T1
and T2 values were acquired. Comparing these estimates to
the measured values in Table 2, relaxation times of the very
preterm brain are, as expected, higher than healthy term
neonates scanned at the same field strength. Considering
the need to preserve reasonable scan time, these measure-
ments were still consistent with the estimated T1 values
used for calculating the TR/FA combination and the TE
used in the research T1 and T2 sequences, respectively.
Clinical T1 sequences took about 4 min and resulted in a
similar SNR and CNR as an optimized turbo SE T1
sequence described in the literature with a similar resolutionT
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[15]. The 1-mm3 resolution research T1 sequence was
obtained with a smaller but adequate SNR and CNR in
5 min 39 s, similar to an optimized volumetric T1-W
sequence described in a recent paper having a lower
through-plane resolution of 1.5 mm [18]. Clinical T2
sequences were acquired in both the sagittal and axial planes
in a total scan time of 3 min 41 s and high SNR and CNR.
Axial clinical T2 scans were obtained using the PROPELLER
sequence, which was designed to reduce in-plane rotation and
translation head motion and has proved to yield high-quality
images with low through-plane resolution in very short scan
times [40]. The 1-mm3 resolution research T2 sequence was
obtained in 4 min 16 s with a significantly smaller but still
adequate SNR and CNR compared to PROPELLER, as seen
in Table 1 and Fig. 1. Image quality of clinical protocols
might vary among institutions and MRI vendors. Neverthe-
less, the current research T1 and T2 sequences have
demonstrated the trade-off between higher resolution and
reduced SNR without a significant increase in scan time
compared to the chosen clinical protocol, while still
maintaining sufficient image quality for diagnostic purposes.

Clinical vs. research high-resolution T1-W and T2-W
sequences

Clinical and research T1 sequences demonstrated similar
performances. There was, however, a trend suggesting
higher diagnostic confidence using research T1 and higher
image quality and less motion artifacts for clinical T1.
These combined subjective results fit the inherent physical
advantages and disadvantages of volumetric gradient echo
(GRE) sequences like research T1. Compared to 2-D
sequences, volumetric GRE sequences can be acquired
with higher resolution for a given SNR and scan time but
are more vulnerable to field inhomogeneities, susceptibility
and motion artifacts [41]. Because degraded through-plane
resolution is less perceptible than degraded in-plane
resolution, 2-D imaging protocols are typically designed
with higher SNR and CNR at the cost of greater slice
thickness. Greater SNR likely explains the preference
observed for clinical over research T2 sequences for image
quality. Nevertheless, the current analysis indicates no
preference between clinical and research sequences for

Fig. 5 Histograms of the total score among raters for positive findings
(number of raters) indicating the presence of the (a) superior temporal,
and (b) calcarine sulcus on clinical and research T1-W images. * =

Significant better detection of the superior temporal sulcus was
observed on research T1 sequences (P=0.03)

Fig. 4 Histograms of the total
score among raters for positive
findings (number of raters) con-
firming myelination detection
on clinical and research T1-W
images in the (a) thalami and (b)
cerebellar peduncles. * = Tha-
lamic myelination was signifi-
cantly better detected on
research T1 sequences (P=0.02)
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extracting diagnostic information. This is likely because
clinical sequences have more SNR than necessary to make
a diagnosis, while the research sequences effectively
convert the excess SNR and in-plane resolution into
through-plane resolution, resulting in a detailed image.
Although separating the data according to radiological
finding did not yield different results, all four raters noted
better detection of small pathologies such as punctate white
matter lesions on research T1 images while research T2
images were found to be useful for detecting small
hemorrhages. These findings are in agreement with recent
papers proposing the use of volumetric T1-W images for
clinical evaluation [12, 18].

Our results show that high-resolution T1-W volumetric
imaging shows improved myelination detection compared
to conventional T1 sequences. No difference in myelination
detection, however, was found among the T2 sequences.
Interestingly, improved consistency, suggesting greater
confidence, was demonstrated for T2 compared to T1
sequences. The results on the thalamus, particularly, are
concordant with previous findings for SE-based sequences
of the neonatal brain showing better detection of myelina-
tion in GM structures on T2-W images, while superior
myelination detection in WM structures was observed on
T1-W images [4, 6]. In contrast, in this study, myelination
in WM structures was also detected with greater confidence
on T2 images. Better detection and improved consistency
was found for both superior temporal and calcarine sulci
when using research T1 sequences. This could be explained
by increased through-plane resolution yielding greater
confidence detection, particularly for the case of small
structures, as long as sufficient SNR is preserved [2, 4].

Conclusion

In this study, no significant differences were found between
clinical and research T1 sequences in terms of diagnostic
confidence, image quality and motion artifacts. Research
T1 provided better delineation of thalamic myelination and
better detection of the superior temporal and calcarine sulci.
A clear preference was observed for clinical over research
T2 for image quality. Greater confidence was demonstrated
for superior temporal sulcus detection with the research
sequences. We suggest that high-resolution T1-W and T2-W
volumetric sequences be used for clinical MRI in the very
preterm brain to provide both diagnostic and morphometric
value and therefore replace currently used conventional
imaging sequences.
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