provided by Document...

Mitsuo Gen Kuinam J. Kim Xiaoxia Huang Yabe Hiroshi *Editors*

Industrial Engineering, Management Science and Applications 2015

Lecture Notes in Electrical Engineering

Volume 349

Board of Series editors

Leopoldo Angrisani, Napoli, Italy Marco Arteaga, Coyoacán, México Samarjit Chakraborty, München, Germany Jiming Chen, Hangzhou, P.R. China Tan Kay Chen, Singapore, Singapore Rüdiger Dillmann, Karlsruhe, Germany Haibin Duan, Beijing, China Gianluigi Ferrari, Parma, Italy Manuel Ferre, Madrid, Spain Sandra Hirche, München, Germany Faryar Jabbari, Irvine, USA Janusz Kacprzyk, Warsaw, Poland Alaa Khamis, New Cairo City, Egypt Torsten Kroeger, Stanford, USA Tan Cher Ming, Singapore, Singapore Wolfgang Minker, Ulm, Germany Pradeep Misra, Dayton, USA Sebastian Möller, Berlin, Germany Subhas Mukhopadyay, Palmerston, New Zealand Cun-Zheng Ning, Tempe, USA Toyoaki Nishida, Sakyo-ku, Japan Bijaya Ketan Panigrahi, New Delhi, India Federica Pascucci, Roma, Italy Tariq Samad, Minneapolis, USA Gan Woon Seng, Nanyang Avenue, Singapore Germano Veiga, Porto, Portugal Haitao Wu, Beijing, China Junjie James Zhang, Charlotte, USA

Mitsuo Gen · Kuinam J. Kim Xiaoxia Huang · Yabe Hiroshi Editors

Industrial Engineering, Management Science and Applications 2015

Editors
Mitsuo Gen
Tokyo University of Science
Tokyo
Japan

Kuinam J. Kim
Department of Convergence Security
Inst. of Creative Advanced Tech.,
Sci. and Engg.
Kyonggi University
Suwon-si
Korea

Xiaoxia Huang
University of Science and Technology
Beijing (USTB)
Beijing
China

Yabe Hiroshi Tokyo University of Science Tokyo Japan

ISSN 1876-1100 ISSN 1876-1119 (electronic) Lecture Notes in Electrical Engineering ISBN 978-3-662-47199-9 ISBN 978-3-662-47200-2 (eBook) DOI 10.1007/978-3-662-47200-2

Library of Congress Control Number: 2015938793

Springer Heidelberg New York Dordrecht London

© Springer-Verlag Berlin Heidelberg 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media (www.springer.com)

Preface

This LNEE volume contains the papers presented at the International Conference on Industrial Engineering, Management Science and Applications (ICIMSA2015) which was held in Tokyo, Japan on May 26-28, 2015.

ICIMSA2015 received over 350 paper submissions from various countries. After a rigorous peer-review process, 114 full-length papers were accepted for presentation at the conference. This is intended for maintaining the high standards of the conference proceedings.

The conference is intended to bring together the researchers and technologists working in different aspects of Industrial Engineering, Management Science and Applications. In addition to the contributed papers, internationally known experts from several countries were invited to deliver Keynote speeches at ICIMSA2015.

Much of the credit of the success of the conference is due to the topic coordinators who have devoted their expertise and experience in promoting and in general coordination of the activities for the organization and operation of the conference. The coordinators of various session topics have devoted a considerable time and energy in soliciting papers from relevant researchers for presentation at the conference. The Session Chairs of the different session played important role in conducting the proceedings of the session in a timely and efficient manner.

On behalf of the Organizing Committee, we would like to thank Springer LNEE for publishing the proceedings of ICIMSA2015. We also would like to express our sincere and grateful thanks to our Program Committee and Reviewers for providing extra help in the review process. The quality of a refereed volume depends mainly on the expertise and dedication of the reviewers.

Our sincere thanks to the Institute of Creative Advanced Technology, Engineering and Science (iCatse) for designing the conference web page and also spending countless days in preparing the final conference program in time for printing. We would also like to thank the ICIMSA2015 Secretariat and Staff for arranging a large number of the

VI Preface

invitation letters and assisting in the various stages of the editorial work. Finally we would like to thank our organization committee for their several months of hard work in sorting out manuscripts from our authors.

We look forward to seeing all of you next year at ICIMSA2016 in Korea.

Mitsuo Gen
Fuzzy Logic Systems Institute and Tokyo University of Science, Japan
Xiaoxia Huang
University of Science and Technology Beijing, China
Kuinam J. Kim
Kyonggi University, Republic of Korea
Yabe Hiroshi
Tokyo University of Science, Japan

Organizing Committee

General Chairs

Mitsuo Gen Fuzzy Logic Systems Institute and Tokyo

University of Science, Japan

Xiaoxia Huang University of Science and Technology Beijing,

China

Kuinam J. Kim Institute of Creative Advanced Technologies,

Science and Engineering, Republic of Korea

Yabe Hiroshi Tokyo University of Science, Japan

Steering Committee

Nikolai Joukov Chair of IEEE CS STCOS, USA
Borko Furht Florida Atlantic University, USA
Bezalel Gavish Southern Methodist University, USA
Kin Fun Li University of Victoria, Canada

Publicity Chairs

Dan (Dong-Seong) Kim University of Canterbury, New Zealand

Workshop Chairs

Kuinam J. Kim Kyonggi University, Republic of Korea

Donghwi Lee University of Colorado, USA

Financial Chairs

Kyoungho Choi Institute of Creative Advanced Technologies,

Science and Engineering, Republic of Korea

Program Chairs

Adel Hejaaji Engineering Services Management Limited

[ESM LTD] ESSEX, UK

Organizers and Supporters

Institute of Creative Advanced Technologies, Science and Engineering (iCatse)

Chinese Management Science Society (CMSS)

Korean Industry Security Forum (KISF)

Korea Information Assurance Society (KIAS)

Kyonggi University

University of Science and Technology Beijing

Tokyo University of Science

River Publishers

Program Committee

Chil-Chyuan Kuo Ming Chi University of Technology, Taiwan

Suksan Prombanpong King Mongkut's University of Technology

Thonburi, Thailand

Ramayah Thurasamy Universiti Sains Malaysia, Malaysia Siana Halim Petra Christian University, Indonesia

Yves De Smet Université Libre de Bruxelles, Belgium

Marco Aiello University of Groningen, The Netherlands
Catalina Lucía Alberto Universidad Nacional de Córdoba, Argentina
Llewellyn C.M. TANG University of Nottingham Ningbo China, China

M. Birasnav New York Institute of Technology, USA

Enslin Johannes van Rooyen Tshwane University of Technology, South Africa

Supachart Iamratanakul Kasetsart University, Thailand

Luciana Hazin Alencar Universidade Federal de Pernambuco, Brazil

Jui-Sheng Chou National Taiwan University of Science and

Technology, Taiwan

Shimpei Matsumoto Hiroshima Institute of Technology, Japan

Ahm Shamsuzzoha University of Vaasa, Finland Minghai Jiao Northeastern University, China

Masaharu Tsujimoto Tokyo Institute of Technology, Japan

Ahm shamsuzzoha Seren OZMEHMET TASAN Yoshinobu Tamura António Grilo

Fabrizio Maria Maggi
V. Cruz Machado
Md Mamun Habib
Kittisak Jermsittiparsert
Adel Hejaaji

Ulrich Reimer

Hardeep Singh Fatemeh Almasi

Yiliu Liu

Ryo HARUNA Ilias Santouridis

Purit Thanakijkasem

Chun-Cheng Lin Michel ALDANONDO Jinho Lee Mojahid F. Saeed Osman

Wasawat Nakkiew

Somlak Wannarumon
KIELAROVA
Jaekyung Yang
Suprakash Gupta
Alejandro Escudero-Santana
RIKA AMPUH HADIGUNA
Andreas Dewald
Kit Fai Pun
Abdol S. SOOFI
El-Houssaine AGHEZZAF
Chompoonoot Kasemset
Ana Paula Ferreira Barroso
Virgínia Helena Arimateia
de Campos Machado

Antonio Ruiz Molina

Sultan Qaboos University, Oman
Dokuz Eylul University, Turkey
Yamaguchi University, Japan
Faculdade de Ciências e Tecnologia da
Universidade Nova de Lisboa, Portugal
University of Tartu, Estonia
Universidade Nova de Lisboa, Portugal
Universiti Utara Malaysia, Malaysia
Rangsit University, Thailand
Engineering Services Management Limited
[ESM LTD] ESSEX, UK

[ESM LTD] ESSEX, UK
University of applied sciences St. Gallen,

Switzerland
Ferozepur College of Engg & Technology, India

Amirkabir University of Technology (Tehran polytechnic), Iran Norwegian University of Science and Technology, Norway

Kanazawa Gakuin University, Japan Technological Educational Institute (TEI) of Thessaly, Greece

King Mongkut's University of Technology Thonburi, Thailand

National Chiao Tung University, Taiwan Toulouse University - Mines Albi -, France Korea Naval Academy, Republic of Korea King Fahd University of Petroleum and Minerals, Saudi Arabia

Advanced Manufacturing Technology Research Center (AMTech), Chiang Mai University, Thailand

Naresuan University, Thailand

Chonbuk National University, Republic of Korea Indian Institute of Technology (B H U), India Universidad de Sevilla, Spain Andalas University, Indonesia University of Erlangen, Germany The University of the West Indies, West Indies University of Wisconsin-Platteville, USA Ghent University, Belgium Chiang Mai University, Thailand Universidade Nova de Lisboa, Portugal Universidade Nova de Lisboa, Portugal

University of Malaga, Spain

Contents

An AEC Perspective	1
Key Performance Indicators for Sustainable Campus Assessment:	11
Elita Amrina, Febriza Imansuri	
Minimum Partial Encryption for JPEG/JPEG2000 Medical Image Protection	19
The Optimal Hedging Strategy for Commodity Processors in Supply Chain	27
Application of MFCA and Dynamic Programming in Operations Improvement: A Case Study	35
Value Analysis of Coco Board for Production Sustainability	45
Effect of Temperature on the Colour and TSS Removal of Batik Dye Wastes in an Integrated Biological and Filtration Treatment System	55
A Multi-agent Approach for Production Management	65
Design of Experiment for Predicting Residual Stresses in Gas Tungsten Arc Welding Process	77

Hands-on Industrial Process Modelling Using the MATLAB System Identification Toolbox	85
Abubakar Sadiq Bappah Model Based Design of Finger Exoskeleton for Post Stroke Rehabilitation Using a Slotted Link Cam with Lead Screw Mechanism	95
Quantile Estimation Using a Combination of Stratified Sampling and Control Variates	105
A Simulation-Based Analysis for Inter Release Problem in Airport Baggage Handling Systems James T. Lin, Irene Liou, Chun-Chih Chiu	115
A New Two-Phase Approach for Petri Net Based Modeling of Scheduling Problems	125
Simulation and Analysis of Impulse Faults in Power Transformer	135
The Online Study Design for Different Study Location Environment, Using ICT and Social Methodology Tool	143
Telematics Technology Development Forecasting: The Patent Analysis and Technology Life Cycle Perspective	149
Empirical Study of Collaborative Learning Knowledge Management System for Thai Students	159
Factors for Enterprise Resource Planning System Selection to Support Information Management of Manufacturers	165
Low Level of Licensing Activities by Universities in Japan	173
Analysing Industry Clustering to Develop Competitive Advantage for Wualai Silver Handicraft	181

University-Industry Linkages (UILs) and Research Collaborations: Case of Thailand's National Research Universities (NRUs)	189
Factors Affecting the Use of Information Technology for Collaboration among Government, Educational and Tourism Small Business Sectors Kannika Daungcharone	199
How Managerial Capabilities of Entrepreneur Leverage Innovative Capability of SMEs: A Perspective of TIM	207
Definition of Complex Hurst and Fractional Analysis for Stock Market Fluctuation	215
Water Cycle and Artificial Bee Colony Based Algorithms for Optimal Order Allocation Problem with Mixed Quantity Discount Scheme	229
The Management of Assessment and Allocation of Marshalling Yards and Designation Their Catchment Areas	241
Improving Vehicle Routing Decision for Travel Agency in Chonburi, Thailand	251
Differential Evolution Algorithm for Storage Location Assignment Problem	259
Master Production Scheduling for the Production Planning in the Pharmaceutical Industry	267
A Hybrid Genetic Algorithm for Simultaneous Scheduling of Machines and AGVs in FMS	277
Collaborative Agents Supporting Tactical Planning Activities – An Industrial Application	287
Minimizing Makespan Using Node Based Coincidence Algorithm in the Permutation Flowshop Scheduling Problem	303

An Inventory System of Packaging Materials: Case Study at PT. Djambi Waras Jujuhan	313
A Pattern In Formgiving Design: Giving Priority To a Principle Solution in Industrial Design Situation	331
Simulation of Logistic Operations	341
Contracting Decisions in Project Management – An Outline of the Decision Support System	347
Factory Logistics Improvement Projects: Case Northern Thailand	357
Enhancing Project Funding Decision Quality	363
Software Project Team Selection Based on Enterprise Social Networks	375
Study on the Agriculture Information Cloud Architecture and Application	385
Enhanced Value Stream Mapping: Potentials and Feasibility of IT Support through Manufacturing Execution Systems	393
Automatic Oil Palm Detection and Identification from Multi-scale Clustering and Normalized Cross Correlation	403
A Comparison Approach for Accuracy Feature of Requirements Prioritization Models	411
A Novel Approach on Operation and Maintenance Guideline Using Semantic Processing and Clustering	419

Rutting Load Equivalency Factors of Heavy Vehicles Operating in the Sothern Part of Malaysian Peninsula	429
Enhancing Virtual Manipulatives for After-School Tutoring in the Subtraction Unit	439
Implementing an Information System Development Simulation in an Industrial Engineering Class: A Case Study	451
Exploring the ISO 14001 Environmental Management System (EMS) towards SMEs Organizational Performance: Case Study of Southern Malaysia Furniture Manufacturers A.H. Nor Aziati, Ng Seow Chian, Abdul Talib Bon, Y. Ngadiman, M.F. Ahmad	459
Happy Workers Work Happy? The Perspective of Frontline Service Workers	473
Analyzing Cargo Loss Severity of Electronics Products with Decision Tree	477
A Comparison of Inventory Management between Decentralized and Centralized Distribution Networks with Backorder	485
A Study on Hong Kong Rice Supply Chain Risk Management with Value Chain Analysis	491
The Role of Product Development to Drive Product Success: An Updated Review and Meta-Analysis	501
Management Practices of Thai Silk Product	511
Fuzzy Multi-objective Supplier Selection Problem: Possibilistic Programming Approach Dicky Fatrias, Ahmad Syafruddin Indrapriyatna, Difana Meilani	521
Value Adding and Improving Factors of Thai Long Steel Supply Chain for ASEAN Economic Community	531

Analysis of Causal Competitive Factors of Thai Iron and Steel Supply Chain by DEMATEL Method	541
Combining Balanced Scorecard and Data Envelopment Analysis to Design Performance Measurement for Supply Chain Actor and Regulator: A Case Study in Innovative Product in Indonesia	551
A Study of Consumers' Post Consumption Behaviour for Mobile Phone in Indonesia	563
Green Supply Chain Assessment to Operations Improvement for Can Packaging Industry	575
Selection of Digital Marketing Channels: Application of Modern Portfolio Theory Tomás Frausto-da-Silva, António Grilo, Virgílio Cruz-Machado	585
The Effect of Stockout Cause and Brand Equity on Consumer Preference in Online Retailing	599
Development of a Remote Controlled Mobile Robot for Toy Application Using RF Module in PIC Microcontroller	609
Generalized Space Fourier Transform Method for the Analysis of Electrical Machines Ankita Dwivedi, S.K. Singh, R.K. Srivastava	617
Product Attribute Analysis for Customer Involvement in Value Creation	629
Influence of Gender of Customers on Service Quality	639
The Service Quality of Indonesia's Logistics Service Provider in Preparation for ASEAN Economic Community	647

Effects on Physical and Mechanical Properties of Thermochemical Treated Kenaf (Hibiscus Cannabinus) Fibres Composite Board	657
Design Process Using Lean Six Sigma to Reduce the Receiving Discrepancy Report of ACE Logistics Jervie Bersamin, Roselyn Drio, Ariane Lanel Lacibal, Camille Manalastas, Sheily Mendoza, Ghil Michael Danico Orallo, Carl Timmothy Tan	665
A Study on Carbon Emission Effects of Foreign Direct Investment in Secondary Industry of Shandong Province	675
An Evaluation Performance of Log Periodic Dipole Antenna Based on the Parameter of Flux Density of the Solar Radio Burst Event Z.S. Hamidi, N.N.M. Shariff	685
Attitude and Opinion of Bicycle-Helmet Signal	693
Real Time Customer Satisfaction Index	701
FLC-Based Indoor Air Quality Assessment for ASHRAE Standard Conformance	711
Artificial Intelligent System to Stop Bots from Playing Online Games	719
Multi-lane Detection Based on Original Omni-Directional Images	727
A Framework for Text Classification Using Intuitionistic Fuzzy Sets	737
An Adaptive Incremental Fuzzy TSK Controller Combined with Evolutionary Optimization	747
Ground Grid Integrity Testing Using Matlab Fuzzy Logic Toolbox	759
Filtering as a Tool of Diversity in Ensemble of Classifiers	767

Mining High Utility Patterns in Different Time Periods	779
Content Based Image Retrieval Using Fuzzy Texton and Shearlet	
Transform	791
Assessing Lean Implementation	803
Concealing of $Al_2(SO_4)_3$ Stain by Spray Coating Process	813
Developing Interfaces Based on Services to the Cloud Manufacturing:	001
Plug and Produce Eduardo Cardoso Moraes, Herman Augusto Lepikson, Armando Walter Colombo	821
Optimization of Teflon Spraying Process for Non-stick Coating	
Application	833
Multidimensional Process Analytical System for Manufacturing Management	841
The Design of Machine Cluster for Loading and Unloading Slider in the Hard Disk Drive Manufacturing	849
A Study of Downloading Game Applications	859
Explicating the Trends of China's Logistics Services for Electronic	
Commerce	871
Measuring Customer Relationship Marketing Outcomes in the Greek Banking Sector	881
Analysis of Websites of Top Global Logistics Providers by a Trust Building Framework	891
An Empirical-Based Construction of the Multi-purpose Process Reference Model for Hospital Supply Chain	901

C	Contents	XIX
Smartphone Based Healthcare Platform and Challenges		913
Operating Rooms Decision Optimization Integrating Surgery Plant and Nurse Rostering	_	919
Linking Hospital Supply Chain Processes and Performance to Iden Key Performance Indicator	-	927
Kansei's Physiological Measurement in Small-Medium Sized Enterp Using Profile of Mood States and Heart Rate	· 	939
Investigation of Customer and Technical Requirements for Designin an Ergonomics Notebook Soft Case Using Quality Function Deploys (QFD) Approach	ment	949
Demographic Characteristics in Correlation with Household Electricity Use		959
Central Composite Design for the Experiments with Replicate Run at Factorial and Axial Points		969
A Software Trustworthiness Measure Based on the Decompositions of Trustworthy Attributes and Its Validation		981
Review Relationship TPM as Mediator between TQM and Busines Performance M.F. Ahmad, A.H. Nor Aziati, Abdul Talib Bon, Y. Ngadiman, Shiau Wei		991
Theoretical Review of Critical Factors that Impact on Global Human Resource Practices: Case on Multinational Companies in Emerging Economies Muhammad Mehmood Aslam, Syed Shaheer Hassan Rizvi, Asif Hameed	g 	997
Ranking Measures for Sustaining Quality Excellence Practices: An Empirical Investigation		1009
Software Reliability Analysis Considering the Fault Detection Trenfor Big Data on Cloud Computing		1021

Effect of Vibration Transmissibility on Fatigue Lifetime of Electronic Devices	31
Liu Yang, Ying Chen, Zenghui Yuan, Liqun Chen	
Reliability Importance of the Channels in Safety Instrumented Systems	11
Fatigue Damage Ratios for Heavy Vehicles Operating in the Southern Part of Malaysian Peninsula	55
Process Reliability Modeling Based on Nonlinear Correlation Analysis	55
Identification of Public Awareness in Preventive Maintenance for Personal Automobile	73
A Novel Analysis of Clinical Data and Image Processing Algorithms in Detection of Cervical Cancer	€1
Author Index) 9

Key Performance Indicators for Sustainable Campus Assessment: A Case of Andalas University

Elita Amrina* and Febriza Imansuri

Department of Industrial Engineering, Andalas University, Padang, Indonesia elita@ft.unand.ac.id, febrizaimansuri14@gmail.com

Abstract. Sustainable campus has became an important issue amongst universities around the world. Universities can generate a significant impacts to environment due to the high usage of energy, extensive transportation, massive waste, high consumption of materials, and extensive development of buildings and facilities. Thus, there is a need to assess the sustainable campus performance. This paper proposes a set of key performance indicators (KPIs) for sustainable campus assessment consisting of six categories divided into a total of 35 indicators. Analytical Hierarchy Process (AHP) method is applied to determine the importance weight of the KPIs. The results indicated the most important category for the sustainable campus assessment is education with an importance weight of 0.2665, while energy and climate change is regarded as the least important category. It is hoped the proposed KPIs can assist the universities to achieve the higher performance in sustainable campus.

Keywords: Analytic hierarchy process, key performance indicators, performance, sustainable campus, university.

1 Introduction

Nowadays, campus sustainability has become an increasingly issue of global concern for university policy makers and planners as a result of the realization of the impacts the activities and operations of universities have on the environment [1]. Like manufacturing, an university can also generate a significant impact to environment. It might becaused of the high usage of energy, extensive transportation, massive waste, high consumption of materials, and extensive development of buildings and facilities [2]. Increasing concerns to sustainability have forced universities to consider sustainability into their strategies and activities.

A sustainable university defined as a higher educational institution, as a whole or as a part, that addresses, involves and promotes, on a regional or global level, the minimization of negative environmental, economic, societal, and helth effects generated in the use of their resources in order to fulfill its functions of teaching, research, outreach and partnership, and stewarship in ways to help society make the

^{*} Corresponding author.

transition to sustainable lifestyle [3]. According to the definition, sustainable campus must address the integration all the three aspects of sustainability of environmental, economic, and social in a better balance. University has several activities and complex operations which potentially generate significant environmental impacts. Sustainability must affects every sphere of a university, from the classrooms and laboratories, to housing, transportation and other services, and to the entire campus [1]. Therefore, assessing the sustainable campus has become a necessity.

In this study, a literature review was carried out in an attempt to identify key performance indicators (KPIs) used to assess the sustainable campus. One of the most commonly used indicators for the sustainable campus assessment is referred to the UI Greenmetric World University Ranking consisting of six categories and a total of 33 indicators [4]. It is a world university ranking for universities to assess and compare campus sustainability efforts [4]. The UI Greenmetric World University Ranking is the first attempt to make a global ranking of universities' sustainable behavior [5]. This paper proposes a set of Key Performance Indicators (KPIs) to assess the sustainable campus. The Analytical Hierarchy Process (AHP) methodology is applied to weighting the KPIs. It is believed that the proposed KPIs can aid universities to improve their sustainable campus performance.

2 Methodology

The methodology has two main stages. First, the key performance indicators (KPIs) for sustainable campus assessment were identified and derived from the literature. The KPIs were then validated to a case of university. Second, the importance weight of the KPIs is determined using Analytic Hierarchy Process (AHP) methodology.

Analytic Hierarchy Process (AHP) first introduced by Thomas L. Saaty in 1971 has become one of the most widely used methods for multiple criteria decision making (MCDM) problems. It is a decision approach designed to aid in making the solution of complex multiple criteria problems to a number of application domains [6]. It has been known as an essential tool for both practitioner and academics to conduct researches in decisions making and examining management theories [7]. AHP as a problem solving method is flexible and systematic that can represent the elements of a complex problem [8].

AHP method has several benefits [7]. First, it helps to decompose an unstructured problem into a rational decision hierarchy. Second, it can elicit more information from the experts or decision makers by employing the pair-wise comparison of individual groups of elements. Third, it sets the computations to assign weights to the elements. Fourth, it uses the consistency measure to validate the consistency of the rating from the experts and decision makers.

3 Identification of KPIs

This study starts with the development of key performance indicators (KPIs) for sustainable campus assessment through the literature review. The KPIs have been mostly adopted from the UI Greenmetric World University Ranking [4]. Besides, the

KPIs were also taken from the Alshuwaikhat and Abubakar's campus sustainability framework [1], sustainable UKM programme's framework [9], University of Nottingham's campus sustainability indicators [10], and University of Connecticut's campus sustainability indicators [11]. All the six categories and 33 of a total 35 indicators of the proposed KPIs are identified and derived from the UI Greenmetric World University Ranking. Another two indicators of category of the energy and climate change were taken from the other literatures. As a result, the KPIs of sustainable campus assessment consist of six categories divided into a total of 35 indicators were identified as shown in Table 1.

Table 1. The KPIs of sustainable campus assessment

Categories	Indicators						
1. Setting and Infrastructure	1. Open space area/total area						
	2. Open space area/total people						
	3. Area on campus covered in forested vegetation						
	4. Area on campus covered in planted vegetation						
	5. Non-retentive surfaces/total area						
	6. Sustainability budget/total university budget						
2. Energy and Climate Change	7. Energy efficient appliances usage						
	8. Renewable energy usage policy						
	9. Total electricity use/total people						
	10. Energy conservation program						
	11. Green Building						
	12. Climate change adaptation and mitigation program						
	13. Greenhouse gas emission reduction policy						
3. Waste							
	 16. Recycling program for university waste 17. Toxic waste recycling 18. Organic waste teatment (garbage) 19. Inorganic waste teatment (rubbish) 20. Sewerage disposal 21. Policy to reduce the use of paper and plastic on can 22. Water conservation program 						
	14. Smooking area policy on campus 15. Sustainable food program on campus 16. Recycling program for university waste 17. Toxic waste recycling 18. Organic waste teatment (garbage) 19. Inorganic waste teatment (rubbish) 20. Sewerage disposal 21. Policy to reduce the use of paper and plastic on can 22. Water conservation program 23. Piped water 24. Total cars entering/total people 25. Total bicycles/total people						
4. Water	20. Sewerage disposal21. Policy to reduce the use of paper and plastic on campus22. Water conservation program23. Piped water						
5. Transportation							
1	19. Inorganic waste teatment (rubbish) 20. Sewerage disposal 21. Policy to reduce the use of paper and plastic on campus 22. Water conservation program 23. Piped water 24. Total cars entering/total people 25. Total bicycles/total people						
	 18. Organic waste teatment (garbage) 19. Inorganic waste teatment (rubbish) 20. Sewerage disposal 21. Policy to reduce the use of paper and plastic on camputed 22. Water conservation program 23. Piped water 24. Total cars entering/total people 25. Total bicycles/total people 26. Transportation policy on limiting vehicles on camputed 						
	27. Transportation policy on limiting parking space						
	28. Campus buses						
	29. Bicycle and pedestrian policy						
6. Education	30. Sustainability courses / total courses						
	31. Sustainability research funding/total research funding						
	32. Sustainability publications						
	33. Sustainability events						
	34. Sustainability organizations (student)						
	35. Sustainability website						

The KPIs of sustainable campus assessment are then validated to a case of university located in Padang, West Sumatra, Indonesia. Established in 1956, Andalas University is the oldest university outside of Java Island, and the fourth oldest university in Indonesia. Currently, Andalas University has 15 faculies and about 25,000 students. In 2014, Andalas University has been accredited by National Accreditation Board for Higher Education with rank A (excellent). In term of sustainable campus, Andalas University has placed rank 146th and become ranked 8th of Indonesian universities in UI Greenmetric World University Ranking 2014.

A total of 5 members of green campus team from the university were consulted to validated the KPIs. The experts suggest that all categories and indicators of the KPIs are highly important. Thus, proposed as the KPIs to assess the sustainable campus.

4 Determining the Importance Weight of KPIs

Analytic Hierarchy Process (AHP) methodology was applied to determine the importance weight of the KPIs of sustainable campus assessment. The methodology consists of constructing the hierarchy, conducting the pairwise comparisons, constructing the pairwise comparisons matrix, computing the consistency ratio, and calculating the importance weight. Details are given as follows.

4.1 Constructing the Hierarchy

The proposed key performance indicators (KPIs) for sustainable campus assessment are then used in constructing a hierarchy. The three groups were defined and constructed in the hierarchy including goal, categories, and indicators. In the

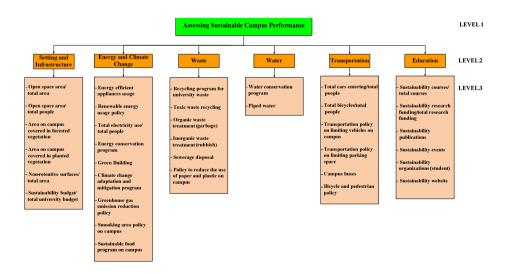


Fig. 1. The hierarchy structure of KPIs

hierarchy, assessing sustainable campus performance is set to be the goal. The next level consists of six categories of setting and infrastructure, energy and climate change, waste, water, transportation, and education. The third level consists of the indicators that described each of categories with a total of 35 indicators. The hierarchy is depicted in Fig. 1.

4.2 Conducting the Pairwise Comparisons

Once the hierarchy has been constructed, the importance weight of the KPIs should be calculated. A pairwise comparison questionnaire was then designed. A total of 30 experts from Andalas University were consulted to give their preferences on the KPIs. Those experts consist of dean and vice dean of each faculty in Andalas University. The pairwise comparisons were determined between categories, and indicators within each category of the KPIs. A Saaty' scale of 1 to 9 (1= equally, 3= moderate, 5= strong, 7= very strong, 9= extreme) was used to reflect these preferences. The consistency ratio (CR) was used to check the consistency of the pairwise comparisons for each expert. The CR values are less than 0.1 which means it matches the consistency test. If it is not yet consistent, the comparison has to be repeated again.

4.3 Constructing the Pairwise Comparisons Matrix

The preferences from the 30 experts were geometrically averaged and the pairwise comparisons matrices were then constructed. For example, the pairwise comparison matrix of the categories of sustainable campus assessment as below:

	Setting & inf rastructure Energy & c lim atechange Waste Water	1 0.836 1.412 1.397	Energy & clim atechange 1.196 1 1.456 1.928	Waste 0.708 0.687 1 1.212	Water 0.716 0.519 0.825 1	Transportation 0.746 1.041 1.198 1.775	Education 0.472 0.473 0.581 0.689	
	Water	1.397	1.928		1		0.689	
	Transportation Education	1.340 2.121	0.961 2.113	0.835 1.720	0.563 1.452	1 2.010	0.497	

All the diagonal elements of the matrix are equal to 1 as the elements are compared with themselves. The values of elements in the upper triangular matrix are obtained from the averaged preferences of pairwise comparisons and the reciprocals of these values are presented in the lower triangular matrix.

4.4 Computing the Consistency Ratio

The consistency ratio (CR) is used to check the consistency of pairwise comparisons and a value of less than 0.1 is acceptable [8]. The consistency test was performed to all the combined pairwise comparison matrixes. The results show that the consistency ratio (CR) values ranged from 0.0000 to 0.0081, which means that all the pairwise comparisons are consistent since the values are within the acceptable level recommended by Saaty [8]. It indicates that the experts have assigned their preferences consistently in determining the importance weights of the KPIs to assess sustainable campus performance.

4.5 Calculating the Importance Weight

The importance weight of KPIs are then calculated using the Expert Choice software. Table 2 presents a summary of the results of the importance weights of the KPIs of sustainable campus assessment. The importance weights show the importance value of one indicator over other indicators. In term of categories, education is the highest importance weight with a value of 0.2665. It is not suprisingly since the main function of an university in education field. Universities have responsibility in sustainable development to promote the sustainability culture to its students, staff, and community [2]. It followed by water with an importance weight of 0.2005. Clean water has become one of the main problems faced by any people in any place of the world. Universities with a high number students, staffs, and communities should be consider the need of clean water for their activities.

Table 2. The importance weights of KPIs

Categories	Weight	Indicators	Weight
Setting and	0.1234	Open space area/total area	0.0150
Infrastructure		Open space area/total people	0.0134
		3. Area on campus covered in forested vegetation	0.0237
		4. Area on campus covered in planted vegetation	0.0170
		5. Non-retentive surfaces/total area	0.0145
		6. Sustainability budget/total university budget	0.0392
Energy and	0.1156	7. Energy efficient appliances usage	0.0145
Climate Change		8. Renewable energy usage policy	0.0174
		9. Total electricity use/total people	0.0084
		Energy conservation program	0.0172
		11. Green Building	0.0157
		12. Climate change adaptation and mitigation program	0.0121
		13. Greenhouse gas emission reduction policy	0.0131
		14. Smooking area policy on campus	0.0081
		15. Sustainable food program on campus	0.0096
3. Waste	0.1630	16. Recycling program for university waste	0.0398
		17. Toxic waste recycling	0.0191
		18. Organic waste teatment (garbage)	0.0306
		19. Inorganic waste teatment (rubbish)	0.0284
		20. Sewerage disposal	0.0202
		21. Policy to reduce the use of paper and plastic on campus	0.0248
4. Water	0.2005	22. Water conservation program	0.1490
		23. Piped water	0.0510
5. Transportation	0.1309	24. Total cars entering/total people	0.0151
		25. Total bicycles/total people	0.0106
		26. Transportation policy on limiting vehicles on campus	0.0248
		27. Transportation policy on limiting parking space	0.0206
		28. Campus buses	0.0376
		29. Bicycle and pedestrian policy	0.0224
6. Education	0.2665	30. Sustainability courses / total courses	0.0299
		31. Sustainability research funding/total research funding	0.0272
		32. Sustainability publications	0.0510
		33. Sustainability events	0.0513
		34. Sustainability organizations (student)	0.0654
		35. Sustainability website	0.0422

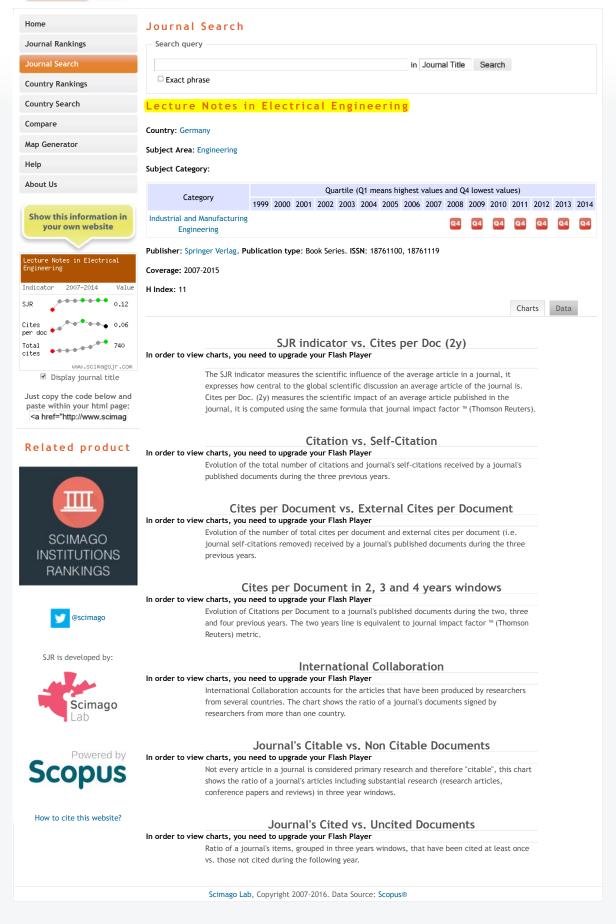
The third category is waste with an importance value of 0.1630. This category is most related to environmental. As mention earlier, universities generate massive waste as a result of their activities and operations. Waste management is needed to solve this problem and to promote sustainability in campus environment. The next categories are transportation with a value of 0.1309, setting and infrastructure (0.1234), and energy and climate change (0.1156).

In term of indicators, water conservation program (0.1490) is regarded to the most important indicator. This indicator is of water category which suggested as the second highest important category. It followed by sustainability organizations (students) with an importance value of 0.0654, sustainability events (0.0513), piped water (0.0510), and sustainability publications (0.0510). Those indicators are categorized in education, and water category of the KPIs. Of all the indicators of KPIs of sustainable campus assessment, smoking area policy on campus with an importance weight of 0.0081 is suggested as the least important indicators.

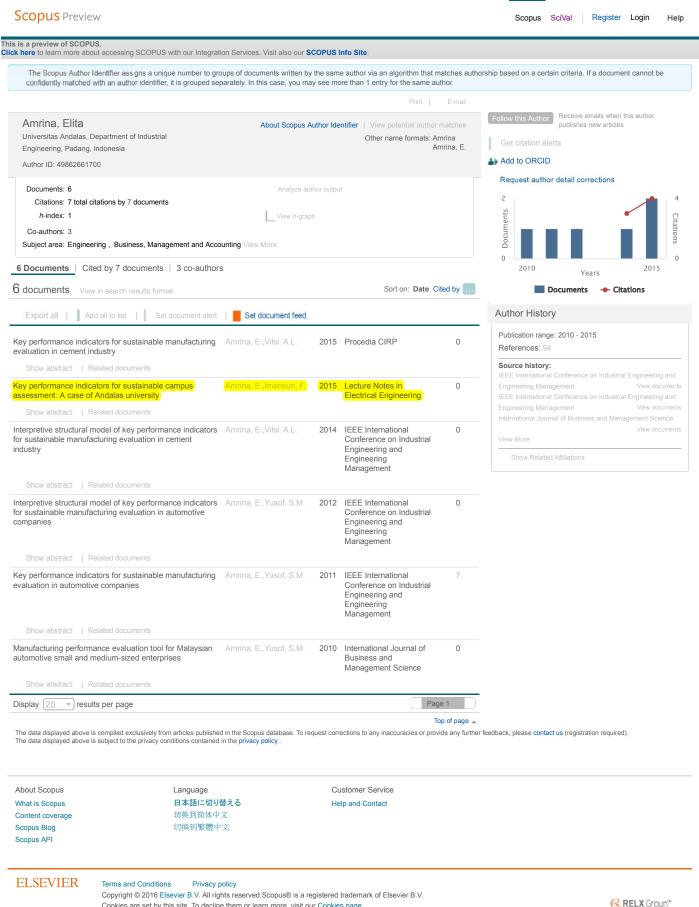
5 Conclusions

An university can generate a significant environmental impacts due to the high usage of energy, extensive transportation, massive waste, high consumption of materials, and extensive development of buildings and facilities. Thus, it is essential to assess the sustainable campus performance. This paper has developed a set of Key Performance Indicators (KPIs) for sustainable campus assessment. The KPIs are identified and derived from the literature and then validated to a case of university. Based on the results, six categories divided into a total of 35 indicators are proposed as the KPIs of sustainable campus assessment. The importance weight of the KPIs then determined using Analytic Hierarchy Process (AHP) methodology. First, the hierarchy structure is established based on the proposed KPIs of sustainable campus assessment. Next, the pairwise comparisons conducted to the policy makers from the case of university using Saaty's scale of 1-9. The pairwise comparisons matrix are then contructed and the consistency ratio (CR) is computed. Finally, the importance weights of the KPIs is calculated.

The results show the importance value of one indicator over other indicators. Category of education is regarded as the most important category of the KPIs, followed by water, and waste. In term of indicators, water conservation program is suggested to the highest important indicator, followed by sustainability organizations (students), sustainability events, piped water, and sustainability publications. It is hoped the KPIs can aid the policy makers and planners of university to achieve a higher performance in the context of sustainable campus. Future research will focus on developing a tool to assess sustainable campus performance.


Acknowledgments. The authors would like to thanks to Andalas University, Padang, Indonesia and Directorate General of Higher Education, Indonesia for research funding with scheme of Hibah Bersaing No: 52/H.16/HB/LPPM/2015.

References


- Alshuwaikhat, H.M., Abubakar, I.: An Integrated Approach to Achieving Campus Sustainability: Assessment of the Current Campus Environmental Management Practices. Journal of Cleaner Production 16, 1777–1785 (2008)
- Gunawan, T.E., Prayogo, D.N., Mardiono, L.: Eco-sustainable Campus Initiatives: A Web Content Analysis. In: Proceedings of the 3rd International Conference on Technology and Operations Management (2012)
- 3. Velazquez, L., Munguia, N., Platt, A., Taddei, J.: Sustainable University: What Can be the Matter? Journal of Cleaner Production 14, 810–819 (2006)
- Universitas Indonesia.: Guidelines of UI GreenMetric World University Ranking (2014), http://www.greenmetric.ui.ac.id
- 5. Grinsted, T.S.: Sustainable Universities from Declarations on Sustainability in Higher Education to National Law. Journal of Environmental Economics 2, 29–36 (2011)
- Saaty, T.L.: The Analytic Hierarchy and Analytic Network Measurement Processes: Application to Decisions Under Risk. European Journal of Pure and Applied Mathematics 1, 122–196 (2008)
- 7. Cheng, E.W.L., Li, H., Ho, D.C.K.: Analytic Hierarchy Process: A Defective Tool When Used Improperly. Measuring Business Excellence 6, 33–37 (2002)
- 8. Grinsted, T.S.: Sustainable Universities from Declarations on Sustainability in Higher Education to National Law. Journal of Environmental Economics 2, 29–36 (2011)
- Chan, F.T.S., Chan, H.K., Lau, H.C.W., Ip, R.W.L.: An AHP Approach in Benchmarking Logistics Performance of the Postal Industry. Benchmarking: An International Journal 13, 636–661 (2006)
- Fadzil, Z.F., Hashim, H.S., Che-Ani, A.I., Aziz, S.: Developing a Campus Sustainability Assessment Framework for the National University of Malaysia. Int. J. Environmental, Ecological, Geological and Mining Engineering 6(6), 44–48 (2012)
- 11. University of Nottingham.: Sustainability Report 2012-13 (2013), http://www.nottingham.ac.uk/sustainability
- 12. University of Connecticut.: Campus Sustainability Design Guidelines (2004), http://www.ecohusky.uconn.edu/pcc/sustainabledevelopment.html

EST MODUS IN REBUS

Horatio (Satire 1,1,106)

1 of 1 02/03/2016 12:30

Cookies are set by this site. To decline them or learn more, visit our Cookies page

13/02/2016 12:17 1 of 1