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Highlights 21 

 High variability is observed in growth models of 12 Pinna nobilis populations. 22 

 Three general growth models are proposed for distinct environments. 23 

 The models could be used to plan conservation strategies for P. nobilis. 24 

 Populations surviving the die-off in paralic environments show low longevity. 25 

 Oldest fan mussels were observed in marine protected areas. 26 

 27 

Abstract 28 

The present work, which is the first comparative study of the growth of the fan mussel 29 

Pinna nobilis in the western Mediterranean, encompasses 12 populations of this species 30 

living in different environments in France and Spain. Two hundred nine shells were 31 

processed and used to obtain growth records from the posterior adductor muscle scar. 32 

Size-at-age data were fitted to the Von Bertalanffy growth model. Considerable variability 33 

in growth parameters and age was detected among the populations. The results show 34 

that the only two fan mussel populations remaining in Spain, which live in an estuary and 35 

a coastal lagoon, occupy habitats that are optimal for fast growth, but individuals show 36 

low longevity, complicating the long-term conservation of the species. Multivariate 37 



analyses groups the populations into three groups (SO, EO and LG), and a general 38 

model is proposed for each group; the model can be used as an approximation to 39 

calculate the ages of individuals living in similar environments. 40 
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 45 

1. INTRODUCTION 46 

 47 

Age and growth are key features in population demography and relate the trophic and 48 

demographic aspects of a system (Margalef, 1998). Within this context, growth is also a 49 

tool that can be used to estimate age based on its relationship to measurable dimensions 50 

of the studied organism. Differences in size, age and growth among bivalve populations 51 

can be related to the environmental characteristics of their habitats, such as 52 

hydrodynamic conditions and seagrass cover (Garcia-March et al., 2007b; Hendriks et 53 

al., 2011; Irlandi, 1996), food availability and quality (Blicher et al., 2010; Fréchette and 54 

Bourget, 1985; Ortmann and Grieshaber, 2003; Wong and Cheung, 2001), population 55 

density (van Erkom Schurink and Griffiths, 1993), temperature (Blicher et al., 2010; 56 

Schwartzmann et al., 2011) and grain size (De la Huz et al., 2002) among other possible 57 

factors. Demographic features have been successfully used to estimate the best habitats 58 

for the reintroduction or protection of endangered species (Fariñas‐Franco et al., 2016).  59 

Extensive demographic studies of the fan mussel Pinna nobilis that include 60 

measurement of age and growth have rarely been conducted because age and growth 61 

estimations were costly and/or unreliable until recently (Basso et al., 2015). The 62 

methodology proposed by Garcia-March et al. (2011), which uses the growth records of 63 

the posterior adductor muscle scar (PAMS) observed in radial sections of the shell, 64 

enabled the development of more precise and less costly age and growth estimations of 65 

this species (Kersting and Garcia-March, 2017). For years, the fan mussel has been 66 

considered an endangered Mediterranean endemic species, and it is included in the 67 

‘Habitats Directive’ and in the ANNEX II of the Barcelona Convention. A recent mass 68 

mortality event (MME) that resulted in almost 100% mortality of the species along the 69 

Spanish Mediterranean coasts (Vázquez-Luis et al., 2017) (García-March et al., in 70 

revision) resulted in its reclassification to “endangered with extinction” in Spain (Orden 71 

TEC/596/2019, Ministerio para la transición Ecológica, 8 April, 2019). This MME was 72 

very likely caused by a recently discovered parasitic protozoan, Haplosporidium pinnae 73 

(Catanese et al., 2018), although Carella et al. (2019) also found a Mycobacterium in 74 

samples of diseased fan mussels that may have contributed to the die-off. The mortality 75 



is presently spreading through the Mediterranean with lethal consequences 76 

(Katsanevakis et al., 2019; Panarese et al., 2019), leaving the species in a critical 77 

situation; only isolated populations remaining unaffected in specific reservoirs such as 78 

coastal marine lagoons and deltas remain unaffected (García-March et al., in revision). 79 

P. nobilis is the largest Mediterranean bivalve mollusk, reaching a size of up to 120 cm 80 

(Vicente, 1990; Zavodnik, 1991). It has a long life span that can exceed 45 years 81 

(Rouanet et al., 2015). Furthermore, it displays the fastest shell growth rate reported for 82 

any bivalve (Richardson et al., 2004). This growth is especially noticeable during the first 83 

months of life (Hendriks et al., 2012; Kersting and Garcia-March, 2017). Shell growth in 84 

this species is highly variable among populations (Richardson et al., 1999) and within 85 

the same population living at different depths (Garcia-March et al., 2007a). 86 

Oceanographic differences among sites (e.g., depth, temperature, hydrodynamics and 87 

food availability) may have a great influence on the species’ growth rate (Garcia-March 88 

et al., 2007a; Garcia-March et al., 2007b; Hendriks et al., 2011; Katsanevakis, 2007). An 89 

understanding of the age and growth parameters of fan mussel populations inhabiting 90 

different conditions and their relationship to environmental variables such as 91 

hydrodynamics will improve the quality of demographic studies and the implementation 92 

of protection measures (Basso et al., 2015; Garcia-March et al., 2011; Richardson et al., 93 

2004). 94 

The present work represents the first comparative study of 12 fan mussel statistical 95 

populations (referred to hereinafter as populations) (Ludwig and Reynolds, 1988) living 96 

under various environmental conditions and located in protected and unprotected areas 97 

of the western Mediterranean (France and Spain). The relationship between growth 98 

parameters estimated using the method of Garcia-March et al. (2011) and the animals’ 99 

habitat conditions is evaluated on the basis of differences in the site (lagoon, estuary or 100 

open sea), depth (shallow or deep) and hydrodynamic regime (sheltered and exposed) 101 

of the habitat. The protection status of the marine areas (protected or unprotected) was 102 

also considered. The results of this study will permit a better understanding of fan mussel 103 

ecology in relation to environmental factors such as wave exposure, especially 104 

considering that the IPCC (2018) panel predicts that increased weather extremes will 105 

occur in the future. The results will also help in the planning of effective restocking 106 

actions, the evaluation of the resilience of remaining populations and the creation of new 107 

marine protected areas specifically designed for the recovery of P. nobilis populations.   108 

 109 

2. MATERIAL AND METHODS 110 



 111 

2.1.  Shell collections and study 112 

 113 

The study was conducted using 12 populations of P. nobilis shells from the Spanish and 114 

French coasts (western Mediterranean) (¡Error! No se encuentra el origen de la 115 

referencia.); the shells had been stored in various laboratories. The empty shells were 116 

gathered from locations that were subject to different hydrodynamic and environmental 117 

conditions and various levels of governmental protection (5 of the locations have 118 

protected status), although all of the locations are presently included in the Natura2000 119 

Network.  120 

A total of 209 shells were used for growth parameter calculations. When possible, 20 121 

shells, including shells that represented the entire size range available, were chosen 122 

from each population for analysis. However, some collections included many small 123 

individuals less than 3 years old; shells from these individuals were not used in the 124 

growth parameter calculations. Therefore, the final sample size ranged from 8 to 21 125 

shells per population (126 

).  127 

Populations 1 (Freus, N = 16) and 2 (Gandulf, N = 16) were obtained at the Marine 128 

Protected Area of Cabrera National Park (Balearic Islands) from exposed and sheltered 129 

sites, respectively, within Posidonia oceanica meadows and at a depth range of 5-10 m. 130 

Population 3 (Tabarca, N = 20) was obtained from the Tabarca Island Marine Protected 131 

Area, the first Marine Protected Area of Fishery Interest (RMIP) of Spain, created in 132 

1986. The shells were sampled in a P. oceanica meadow located on the western part of 133 

the island in a site sheltered from main storms at 5-10 m depth within the P. oceanica 134 

meadow. Population 4 (Port-Cros, N = 20) was obtained from Port-Cros National Park 135 

(northwestern Mediterranean, Var, France), one of the oldest marine national parks in 136 

the Mediterranean Sea, created in 1963. Beginning in 1969, a monitoring program was 137 

initiated in the "Champ de La Palud" with the main purpose of controlling the evolution 138 

of fan mussels in this area (Vicente et al., 1980). Empty shells were sampled in this area; 139 

most were obtained from a dead matte of P. oceanica between 15 and 25 m in depth. 140 

The shells of population 5 (Olla, N = 19) were obtained at the southwest portion of a 141 

small islet in the ‘Parque Natural Marítimo Terrestre Serra Gelada’ near the town of Altea 142 

(Alicante, Spain) in a P. oceanica meadow in an exposed area at 5-10 m depth. 143 

Population 6 (Mar Menor, N = 17) was obtained from the Mar Menor hyperhaline coastal 144 

lagoon (Murcia, Spain), which is included in the RAMSAR Convention. It is one of the 145 

largest Mediterranean coastal lagoons. The maximum depth of the lagoon is 7 m; the 146 

empty shells were collected at 2-6 m depth from a muddy bed covered by Caulerpa 147 

prolifera. Shells of Population 7 (Moraira, N = 21) were obtained from a bay that is 148 



oriented southwards, delimited by the capes of Moraira and Ifach (Alicante, Spain) and 149 

exposed to southerly waves (Garcia-March et al. 2007). The shells were sampled within 150 

a dense P. oceanica meadow at 5-7 m depth. Population 8 (Racó, N = 18) was obtained 151 

at Calpe (Alicante, Spain) on the western side of the “Peñón de Ifach” at 5-10 m depth 152 

in a P. oceanica meadow sheltered from the main waves by the crag. Population 9 (Diana 153 

lagoon, N = 14) was obtained from the east coast of Corsica (France). Diana lagoon is 154 

the deepest of the Corse lagoons (11 m depth); however, the densest P. nobilis 155 

populations, from which the empty shells were sampled, occur in Cymodocea nodosa 156 

meadows at a depth of 0.5-1 m (De Gaulejac and Vicente, 1990). Shells from Population 157 

10 (Embiez, N = 8) were obtained from the Le Brusc lagoon located at the southern end 158 

of the Embiez archipelago. This shallow lagoon is sheltered from the open sea by a P. 159 

oceanica barrier reef (Trigos et al., 2014). The sampling site was covered by a disperse 160 

P. oceanica meadow and has a maximum depth of 1.5 m. Population 11 (Balearia, N = 161 

21) groups individuals from various areas around the Balearic Islands located at 20 m 162 

depth. Population 12 (Alfacs, N = 20) was obtained from an estuarine bay in the southern 163 

part of the Ebro Delta (Cataluña, Spain). This area features dispersed patches of 164 

Caulerpa prolifera and Cymodocea nodosa, and the empty shells were sampled at 165 

depths between 0.2 and 1.2 m. 166 

With respect to their environmental characteristics, the sampled populations came from 167 

shallow areas in the open sea that are mainly protected from hydrodynamics that are 168 

harmful to fan mussels (Gandulf, Raco, and Tabarca), from areas sufficiently deep to be 169 

unaffected by hydrodynamics harmful to fan mussels (Port-Cros and Balearia), from 170 

shallow areas in the open sea that are exposed to hydrodynamics harmful to fan mussels 171 

(Olla, Moraira and Freus), from coastal marine lagoons (Embiez, Diana and Mar Menor), 172 

and from estuaries (Alfacs). 173 

 174 

2.2. Shell processing 175 

 176 

The shells were treated according to the methodology described by Garcia-March et al. 177 

(2011). The dorsal nacre lobe of one valve of each shell was embedded in epoxy resin 178 

and cut into 3 to 5 8-cm-long dorsal-to-ventral sections (the portion of the shell lost in the 179 

cut was ca. 0.4 mm). Each section was cut radially across the PAMS. One side of the 180 

cross-section was polished to 1200 grit and mounted on a glass slide, and a thin sheet 181 

(ca. 300 µm) was cut using a precision sectioning saw (Buehler Isomet low-speed saw). 182 

The free surface of the slide was polished down to 1200 grit (Garcia-March et al., 2011). 183 

The thin sheets produced in this way allow microstructural analysis of growth records 184 

using a magnifying binocular lens and optical microscopy (Garcia-March and Marquez-185 

Aliaga, 2007). 186 



To estimate growth parameters, the positions of the PAMS was related to the total size 187 

of the shell (Ht) using linear regression analysis. Based on the good linear relationship 188 

between Ht and the length of the dorsal nacre lobe (DNL), an equation was fitted to the 189 

data for each population (Garcia-March and Marquez-Aliaga, 2007; Garcia-March et al., 190 

2011; Richardson et al., 1999; Vicente et al., 1980). The sizes of the individuals when 191 

each growth record was deposited were also calculated. 192 

As typically occurs with fan mussels, the calcite layer is incomplete in the anterior part of 193 

the shell, especially in adult specimens. For this reason, some of the oldest annual 194 

increments may be missing (Garcia-March et al., 2011). Given that the calcite width at 195 

each annual increment is a function of the number of years over which calcite was 196 

deposited (Garcia-March and Marquez-Aliaga, 2007), the number of missing records 197 

could be obtained by comparing the calcite widths in the 3 or 4 oldest records for all 198 

individuals within a population. 199 

 200 

2.3. Growth model 201 

 202 

Size-at-age data were fitted to the Von-Bertalanffy growth function using the non-linear 203 

mixed effects model (Vigliola and Meekan, 2009) considering L as random and t0 and 204 

k as fixed (Garcia-March et al., 2011). This method fits any nonlinear model to 205 

longitudinal data with great flexibility in modeling the within-group correlations that are 206 

often present in such data (Vigliola and Meekan, 2009). 207 

Non-parametric multidimensional scaling (MDS) was used as the ordination method for 208 

exploring affinities among populations according to maximum age, Max_Ht (maximum 209 

individual size in the population), L and K. The similarity matrix, which was calculated 210 

by the Bray–Curtis index based on square-root transformed data, was used to construct 211 

bivariate MDS plots. The multivariate analysis was carried out using the PRIMER v.5 212 

package (Clarke and Gorley, 2001). 213 

The Z-test (Clogg et al., 1995) was used to determine the significance of the differences 214 

in the parameters L and K among the groups, applying the Bonferroni correction (𝛂 = 215 

0.0083). The groups were also compared with the population studied by Garcia-March 216 

et al. (2011) in Moraira Bay, which was located in the same area as one of the 217 

populations in the present study but at a different depth range (11-13 m depth).  218 

The size differences among groups of different ages were tested by applying Tukey’s 219 

honestly significant differences (HDS) test to the data for size-at-age obtained previously 220 

(see 2.2. Shell processing). The ages compared ranged from 2 years (the first age for 221 

which data were available for most individuals) to 11 years (when only SO and EO could 222 

be compared). From age 7 onwards, there were insufficient data from LG for comparison 223 



(only SO, EO and Alfacs could be compared), and from age 11 onwards there were 224 

insufficient data from Alfacs (only SO and EO could be compared). 225 

 226 

3. Results 227 

 228 

A remarkable variability in age and growth parameters was observed (¡Error! No se 229 

encuentra el origen de la referencia.). The maximum age of empty shells ranged from 230 

6 years in the Embiez lagoon to 38 years in Port-Cros. The maximum shell length 231 

measured (Max_Ht) ranged from 44.7 cm in Freus to 79.1 cm in Balearia. In the Von-232 

Bertalanffy growth function, parameter K, the speed at which the asymptotic size is 233 

reached, varied between 0.15 in Port-Cros and 0.37 in Mar Menor Lagoon, while L 234 

varied between 39.5 cm in Olla and 75.0 cm in Alfacs. The data for each population are 235 

presented in 236 

. 237 

Multivariate analyses revealed 4 groups within the studied populations with a 95% of 238 

similarity (Figure 3): 1) Sheltered Open-sea SO (Gandulf, Raco, Tabarca, Balearia 239 

and Port-Cros); 2) Exposed Open-sea EO (Olla, Moraira and Freus); 3) Lagoons LG 240 

(Embiez, Diana and Mar Menor), located in coastal marine lagoons; and 4) Alfacs, 241 

located in an estuary. 242 

Except for the Alfacs group, which included only one population, a general model was 243 

calculated for the groups identified by the multivariate analysis (SO, EO and LG; Figure 244 

4 and Table 1): SO (N = 113) with K = 0.17 and L = 63.1 cm (Eq. 1); LG (N = 39) with 245 

K = 0.30 and L = 56.5 cm (Eq. 2); and EO (N = 56) with K = 0.23 and L = 43.0 cm 246 

(Eq. 3). The standardized residuals in relation to size for each of the groups showed no 247 

relevant trends and few outliers; most of the data fell within 2 standard deviations of the 248 

mean (SO = 94.1%, EO= 95.3%, LG= 94.8%, and Alfacs= 92.62%), indicating good fit 249 

of the models (Figure 5). 250 

 251 

 252 

The two-sided p-values for the Z-test results (Table 2) showed significant differences in 253 

L between SO-EO, SO-Alfacs, SO-Mor, EO-LG, EO-Alfacs, EO-Mor, LG-Alfacs and 254 

Alfacs-Mor and significant differences in K between SO-EO, SO-LG, EO-Alfacs, EO-Mor, 255 

LG-Alfacs and LG-Mor. 256 



Tukey’s HDS found significant differences among the groups through the years. EO 257 

shows significant differences for all groups and all years except Alfacs at age 2. LG 258 

shows significant differences from SO in all years, and SO and Alfacs show significant 259 

differences from ages 5 to 10. The results of Tukey’s HDS analysis are presented in 260 

Table 3.  261 

 262 

4. Discussion 263 

 264 

The present work constitutes the first comparative growth study of the endangered species 265 

P. nobilis in 12 different locations in the western Mediterranean. Considerable variability in 266 

growth and longevity due to environmental conditions and protection status was detected. 267 

Multivariate analysis grouped the populations into four different groups, each of which 268 

shares common environmental characteristics. The groups are: 1) Sheltered and Shallow 269 

Open-sea SO (Gandulf, Raco, Tabarca, Balearia and Port-Cros populations), located in 270 

shallow and deep areas in the open sea but mainly protected from hydrodynamics that are 271 

harmful to fan mussels; 2) Exposed open-sea EO (Olla, Moraira and Freus populations), 272 

located in shallow areas in the open sea and exposed to hydrodynamics harmful to fan 273 

mussels; 3) Lagoons LG (Embiez, Diana and Mar Menor populations), located in coastal 274 

marine lagoons; and 4) Alfacs, separated from the other groups and the only population 275 

inhabiting an estuary. 276 

Three general growth models were established based on multivariate analysis. Although 277 

calculation of specific models for each population would be advisable, in the absence of 278 

specific population models, the general models proposed here could be used as a 279 

reference for other P. nobilis populations living in similar habitats. Estuaries such as 280 

Delta del Ebro could be grouped in a different general growth model; however, because 281 

Alfacs was the only population sampled from an estuarine environment, further research 282 

that includes more populations living in deltaic environments should be conducted to 283 

support its singularity as a model. 284 

EO populations show lower growth rates and L than other populations. According to 285 

Deudero et al. (2015); Garcia-March et al. (2007b), the effects of intermittent high 286 

hydrodynamics or continuous moderate hydrodynamics could increase mortality and 287 

limit growth by causing stress and shell breakage. Moreover, Garcia-March et al. (2016) 288 

studied the in situ gaping activity of fan mussels and found that bimodal currents such 289 

as those generated by waves cause greater disturbance to P. nobilis individuals than 290 

unimodal currents such as tides, even at lower water speeds. The effect of these forces 291 

decreases with increasing depth and with the presence of Posidonia oceanica and is 292 

influenced by seabed topography (Garcia-March et al., 2007b; Hendriks et al., 2011). 293 



Therefore, it is hypothesized that the maximum size of EO populations may be 294 

constrained by hydrodynamics, while SO and LG populations may grow to larger sizes 295 

because they are typically sheltered from detrimental hydrodynamics.  296 

Environmental conditions tend to be more stable in deep areas. Although shallow areas 297 

are protected from hydrodynamics, they are more prone to anthropogenic impacts and 298 

climatic extremes. Therefore, it seemed reasonable to expect that deep populations in 299 

different areas of the western Mediterranean Sea would have more similarities in their 300 

growth parameters than more closely situated populations living in shallower sheltered 301 

areas. However, the populations within the SO group show similar growth patterns 302 

despite living at different depths. This supports the idea that, effectively, in the open sea, 303 

hydrodynamics may be a determinant of fan mussel growth, constraining shell size in 304 

populations that inhabit exposed sites. When the effect of hydrodynamics on fan mussels 305 

is low due because the populations are sheltered or are situated at greater depth, other 306 

environmental factors would exert a similar effect on the species independently of 307 

location. 308 

In this regard, the population studied by Garcia-March et al. (2007a) in Moraira (Alicante, 309 

Spain), which is located at a depth of 11-13 m, shows a growth model with L higher 310 

than that of the EO population but lower than that of the SO population and k lower than 311 

that of the EO population but similar to that of the SO population. This population could 312 

be in a situation intermediate between those of the deep (20 m) and exposed populations 313 

and may be partially affected by hydrodynamics. On the other hand, L and growth rate 314 

appear to be independent of the legal protection of the area, considering that the 315 

multivariate analysis groups populations independently of such protection and no 316 

differences are found between protected and unprotected populations.  317 

The Alfacs and LG populations inhabit confined waters. These populations are notable 318 

for their higher growth rate from 5 to 9 years of age and L (Alfacs) and their higher 319 

growth rate from 2 to 7 years of age (LG) compared to the other populations studied 320 

(¡Error! No se encuentra el origen de la referencia.). The specific conditions that exist 321 

in these paralic environments could be responsible for these extremes. Higher food 322 

availability compared with open sea, could explain this discrepancy as has been 323 

demonstrated for growth and survival differences of P. nobilis living in eutrophic versus 324 

oligotrophic environments (Alomar et al., 2015). Ebro Delta waters are nutrient-enriched 325 

by inputs from agricultural irrigation (Falco et al., 2010; Mañosa et al., 2001; Prado, 2018; 326 

Sierra et al., 2002). The same occurs for coastal lagoons, which are also affected by the 327 

increase in the population in coastal areas and by agriculture and industry. These 328 

impacts, in conjunction with environmental conditions such as low water circulation and 329 

long water residence, make these areas more susceptible to nutrient enrichment 330 

(Kennish and Paerl, 2010). This situation has been remarkable during recent years in 331 



Mar Menor lagoon, which has undergone some eutrophication (Garcia-Ayllon, 2018; 332 

Pérez-Ruzafa et al., 2005b; Velasco et al., 2006). The reason that L for the Alfacs 333 

population is 18.5 cm larger than the value predicted by the general growth model for LG 334 

is unknown. The salinity regimes of paralic environments show higher fluctuations than 335 

those of open sea environments due to their environmental characteristics (Kennish and 336 

Paerl, 2010). These fluctuations, however, are not mirrored by the growth trends 337 

observed in the fan mussel populations living within these areas. Salinity in Alfacs is 338 

usually lower than that in the open sea due to precipitation and discharge of irrigation 339 

channels (Solé et al., 2009). Mar Menor is a hyperhaline lagoon that can reach salinity 340 

levels of up to 51 psu (Pérez-Ruzafa et al., 2005a). The Diana and Embiez lagoons show 341 

lower salinity levels than Mar Menor but often oscillate below and above open-sea levels 342 

following the wet and dry seasons (Burgeot et al., 1996; De Gaulejac and Vicente, 1990; 343 

Rouanet et al., 2009). Taken together, the data suggest that environmental factors other 344 

than salinity may have more weight in determining the growth trends observed in the 345 

paralic environments. Additional studies of more fan mussel populations living in paralic 346 

environments should be conducted, however, before definitely ruling out the possibility 347 

that fan mussel growth is affected by salinity.  348 

Remarkable variation in survival and maximum age is also found among the studied 349 

populations. The EO, LG and Alfacs populations show the lowest maximum ages (17, 350 

12 and 15 years) of the studied individuals. In exposed areas, the effect of hydrodynamic 351 

conditions, as previously noted, could be responsible for lower survival, but 352 

hydrodynamic conditions are usually gentle in lagoon/estuarine environments. 353 

Furthermore, lagoon/estuarine populations are the only populations in which L is higher 354 

than Max_Ht; this could indicate that in these locations individuals die before reaching 355 

maximum size and/or that the posterior part of the shell has been broken and 356 

reconstructed, making it appear smaller in size. Shell breakage caused by intense boat 357 

traffic, which often hits the individuals and breaks their shells (Prado et al., 2014) could 358 

be an explanation for the condition of the Alfacs population, in which 19 of 20 shells 359 

showed conspicuous reconstruction marks. Multiple factors could be affecting the 360 

lifespans of lagoon/estuarine populations. 1) Compared to open-sea ecosystems, 361 

lagoon/estuarine ecosystems present more stressful extreme conditions (Cañedo-362 

Argüelles et al., 2018). During the winter and the rainy season, the temperature and 363 

salinity may approach the tolerance limit for the species. The same occurs during 364 

summer, when high temperatures and high salinity levels occur (except in the case of 365 

the Ebro Delta, where salinity decreases in summer due to agriculture discharges) and 366 

oxygen concentrations may reach dangerously low levels (Cataudella et al., 2015). 2) 367 

The presence of chemical contaminants produced by anthropogenic activities is also 368 

common in these environments (Kennish and Paerl, 2010), as reported for the Ebro 369 



estuary (Köck et al., 2010; Mañosa et al., 2001; Solé et al., 2000), Mar Menor (Cañedo-370 

Argüelles et al., 2018; Pérez-Ruzafa et al., 2000) and the Diana lagoon (Burgeot et al., 371 

1996; Galgani et al., 2006). 3) In some taxa, rapid growth and large body size appear to 372 

be related to shorter lifespan (Metcalfe and Monaghan, 2003), although this remains to 373 

be demonstrated for P. nobilis. Either separately or together, these factors could limit the 374 

life expectancy of fan mussel populations living in lagoon/estuarine environments. 375 

Accordingly, the general LG model should be used with caution. The oscillations that 376 

occur in coastal lagoons due to natural conditions and anthropogenic effects could 377 

induce stochastic variations in fan mussel growth. The same could be true for estuarine 378 

areas such as Alfacs. 379 

Anthropogenic effects go beyond contamination, and other threats such as anchoring, 380 

habitat loss and shell poaching have been proven to decimate fan mussel populations 381 

(Basso et al., 2015; Deudero et al., 2015; Hendriks et al., 2013; Katsanevakis et al., 382 

2011; Vázquez-Luis et al., 2015; Vázquez-Luis et al., 2014). Accordingly, it should be 383 

highlighted that the maximum ages detected, 38 and 34 years, were found in specimens 384 

obtained from the Port-Cros National Park, which was created in 1963. The other marine 385 

reserves, the National Marine Reserve of Tabarca and the Cabrera Archipelago 386 

Maritime-Terrestrial National Park, are relatively recent (they were created in 1986 and 387 

1991, respectively); these reserves hosted individuals 27 years old, similar to the age of 388 

the reserves at the time of shell sampling. The maximum ages of the sampled 389 

populations suggest a possible positive effect of the protection of marine areas on P. 390 

nobilis longevity, although additional studies should be conducted to conclusively 391 

determine the association of protection status with fan mussel longevity. 392 

The current situation of P. nobilis is critical. The recent MME affecting the species is 393 

devastating almost all fan mussel populations (Katsanevakis et al., 2019) (García-March 394 

et al., in revision). Only some populations living in confined waters such as lagoons and 395 

estuaries are surviving, and the reasons for this are unknown. Among the populations 396 

addressed in the present study, only the populations at Mar Menor, Alfacs (García-March 397 

et al., in revision), Embiez and Diana (Nardo Vicente, pers. com.) remain alive today, 398 

whereas the other populations have experienced 100% mortality (García-March et al., in 399 

revision). In the current situation, one strategy to ensure the future of the species would 400 

be captive breeding and artificial reintroduction of juveniles. Of the studied populations, 401 

Port-Cros, Gandulf and Tabarca appear to be the most optimal locations for P. nobilis 402 

reintroduction based on the sizes and ages reached by the individuals and the protection 403 

status of the sites. However, the lack of resistant individuals and the possible long-term 404 

presence of disease could make these areas unavailable for the reintroduction of fan 405 

mussels. This leaves lagoons and estuaries as the only hope for the short term survival 406 

of individuals under natural conditions and for the reintroduction of juveniles. The growth 407 



parameters of the populations living in these environments indicate that they may be 408 

good areas for the growth of the species during the first years of life, but populations 409 

living in lagoons and, to a lesser extent, in the Ebro Delta, appear to be unstable in the 410 

long term. The short lifespan of fan mussels in these environments suggests that these 411 

populations rely on abundant recruitment and that the survival of introduced individuals 412 

could be constrained in the long term. Furthermore, the instability of these ecosystems 413 

due to both natural and anthropogenic factors (Kennish and Paerl, 2010; Reizopoulou 414 

and Nicolaidou, 2007) could lead to sudden collapse of these populations. In the Mar 415 

Menor lagoon, eutrophication has been threatening the ecosystem for a long time, and 416 

it spiked during the summer of 2015 and the spring of 2016, resulting in the collapse of 417 

the lagoon (Garcia-Ayllon, 2018; Pérez-Ruzafa et al., 2019). Furthermore, natural 418 

resettlement of fan mussels in coastal lagoons or deltas recovered after a collapse would 419 

be impossible due to the lack of connectivity among populations unless manipulative 420 

reintroduction of fan mussels were undertaken (García-March et al., in revision). On the 421 

other hand, Callinectes sapidus, an invasive Mediterranean crab introduced from the 422 

Atlantic, is spreading throughout the Mediterranean, has been recently observed in Delta 423 

del Ebro (Fuentes et al., 2019), and has colonized Mar Menor for several years (Castejón 424 

and Guerao, 2013; Mancinelli et al., 2017). This voracious crustacean could also become 425 

a threat to P. nobilis juveniles in these reservoirs. Therefore, as also suggested by growth 426 

parameters and longevity, the survival of fan mussel populations living in these reservoirs 427 

could be endangered in the absence of connectivity with other populations. Urgent 428 

measures should be implemented to increase the long-term stability of these areas in 429 

the future and to preserve P. nobilis from extinction.   430 

The data obtained in the present study can also be used to predict the resilience of fan 431 

mussels in the context of climate change, which may produce a scenario of weather 432 

extremes and associated wave action in the Mediterranean Sea (IPCC, 2018). It is 433 

expected that the surviving populations in exposed areas will experience increasing 434 

hydrodynamic stress in the future, probably resulting in individuals dying younger and 435 

growing to lower sizes.  436 

Further research is necessary to expand the models to other environmental conditions 437 

and to adjust for the inherent morphological variations in P. nobilis shells. Shell shape 438 

appears to be related to the environmental conditions under which the individuals grow, 439 

and it could be used bidirectionally. On one hand, it might be possible to separate growth 440 

models within a population according to shell shape. It is hypothesized that more 441 

accurate growth rate and age estimations could be achieved in this way. On the other 442 

hand, the method could be used together with growth parameter estimations as an 443 

indicator of environmental conditions. 444 

 445 
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Figure 1: Locations of the populations used in the present study. 471 

Figure 2: Growth models of the 12 populations studied. K, speed at which the asymptotic size is 472 

reached; L, maximum size according to the model; ma, maximum age detected among the 473 

individuals studied in the population. 474 

Figure 3: Two-dimensional MDS plot for the 12 studied P. nobilis populations by exposure and 475 

protection based on square root transformed and Bray-Curtis similarity of maximum age, Max_Ht, 476 

L and K. Groups are based in a 95% of similarity: SO: Sheltered Open-sea, EO: Exposed Open-477 

sea, and LG: Lagoons. 478 

Figure 4: General growth models for the three classifications according to multivariate analysis 479 

results (Sheltered Open-sea -SO-; Exposed and Shallow Open-Sea -EO-; Lagoon -LG-; Alfacs, 480 

the only population inhabiting an estuary).  481 



Figure 5: Standardized residuals in relation to size for each of the groups resulting from 482 

multivariate analysis. 483 

 484 

 485 

 486 



Table 1: Data for each population: N (number of shells); Depth (m) (depth at which shells were collected); Location (open sea, lagoon or estuary); S/E (whether the 487 

area is sheltered from (S) or exposed to (E) hydrodynamics); P/U (whether the area has special protection status (P) or is unprotected (U)); Max age (maximum age 488 

detected population); Min age (minimum age detected in the population). Max Ht (maximum individual size in the population); Min Ht (minimum individual size in the 489 

population); k (the speed at which the asymptotic size is reached); k SE standard error; L (maximum theoretical size of the population); L SE standard error; t0 (the 490 

point in time when an individual has zero length. It has no biological meaning); T0 SE standard error; SO (Sheltered Open-sea); EO (Exposed Open-sea); and LG 491 

(Lagoons). 492 

Population N Depth(m) Location S/E P/U 
Max age 
(years) 

Min age 
(years) 

Max Ht 
(cm) 

Min Ht 
(cm) 

k 
k  

SE 

L∞ 
(cm) 

L∞ 

SE 
t0 

t0 

SE 

Freus 16 5-10 Open sea E P 14 5 44.7 28.8 0.21 0.02 43.9 1.3 -0.57 0.23 

Gandulf 16 5-10 Open sea S P 27 5 65.6 38.5 0.19 0.01 62.4 1.5 -0.05 0.13 

Tabarca 20 5-10 Open sea S P 27 4 68.8 30.9 0.19 0.01 58.7 1.4 -0.40 0.12 

PortCros 19 10-25 Open sea S P 38 3 68.0 29.3 0.15 0.00 65.4 1.9 -0.95 0.12 

Olla 19 5-10 Open sea E P 11 4 51.5 18.7 0.29 0.02 39.9 1.9 0.24 0.13 

Mar 
Menor 

17 0-2 Lagoon S U 9 3 58.0 30.0 0.37 0.04 58.2 2.5 -0.06 0.13 

Moraira 21 5-7 Open sea E U 17 6 49.1 25.6 0.21 0.01 45.6 1.0 -0.88 0.12 

Raco 18 5-10 Open sea S U 21 4 68.2 20.9 0.24 0.01 60.7 1.7 0.12 0.10 

Diana 14 0-2 Lagoon S U 12 3 47.8 26.8 0.24 0.04 56.9 3.9 -0.04 0.21 

Embiez 8 0-2 Lagoon S U 6 4 54.3 26.3 0.30 0.05 56.0 4.5 0.28 0.12 

Balearia 21 20 Open sea S U 26 3 79.1 39.0 0.13 0.00 65.5 1.9 -1.78 0.16 



Alfaques 20 0-2 Estuary S U 15 5 59.8 42.8 0.18 0.01 75.0 2.6 -0.03 0.16 

SO 113 
        

0.17 0.00 63.1 0.8 -0.67 0.06 

EO 56 
        

0.23 0.01 43.0 0.8 -0.47 0.09 

LG 39 
        

0.30 0.03 56.5 2.3 -0.05 0.11 

 493 

 494 



Table 2: Z-test results for comparison of L∞ and k values among the groups established 495 

by multivariate analysis and Mor (the population studied by Garcia-March et al. (2011) in 496 

Moraira).  497 

 
L∞ 

 
SO EO LG Alfacs Mor 

SO 
 

*** 0.017 *** *** 

EO  
 

*** *** *** 

LG 
   

*** 0.765 

Alfacs 
    

*** 

 
k 

 
SO EO LG Alfacs Mor 

SO 
 

*** *** 0.5 0.146 

EO 
  

0.016 ** *** 

LG 
   

*** *** 

Alfacs 
    

0.244 

*** p value < 0.001; * p value < 0.01; * p value < 0.05 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 



Table 3: Results of Tukey’s honestly significant differences test among groups. From 512 

age 7 onwards, there were insufficient data from LG for comparison (only SO, EO and 513 

Alfacs could be compared), and from age 11 onwards there were insufficient data for 514 

Alfacs (only SO and EO could be compared).  515 

 2 years  7 years 

 SO EO LG Alfacs  SO EO LG Alfacs 

SO  ** * 0.936   *** — *** 

EO   *** 0.161    — *** 

LG    0.906     — 

 3 years  8 years 

SO  *** *** 0.463   *** — *** 

EO   *** ***    — *** 

LG    0.085     — 

 4 years  9 years 

SO  *** *** 0.072   *** — *** 

EO   *** ***    — * 

LG    0.398     — 

 5 years  10 years 

SO  *** *** **   *** — 0.078 

EO   *** ***    — *** 

LG    0.775     — 

 6 years  11 years° 

SO  *** *** ***   *** — — 

EO   *** ***    — — 

LG    0.977     — 

*** p value < 0.001; ** p value < 0.01; * p value < 0.05; — insufficient data for comparison. 516 

°SO and EO showed significant differences from ages 11 to 14, the last age in EO for 517 

which there were sufficient data for comparison. 518 

 519 



 520 
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