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European Aedes caspius mosquitoes are 
experimentally unable to transmit Zika virus
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Abstract 

Background:  Aedes caspius (Pallas, 1771) is a floodwater mosquito species widely distributed in the Western Palae‑
arctic. As an anthropophilic species, its role as an arbovirus vector may be the key for understanding the transmission 
cycle of certain diseases in Europe such as Zika virus (ZIKV). Concerning vector competence for ZIKV, studies related to 
Ae. caspius are still scarce. ZIKV is an arbovirus that has provoked a widespread epidemic in the Pacific region (2007–
2013) and in the Americas (2015–2016). ZIKV is associated with serious neurological injuries (e.g. microcephaly) and 
Guillain-Barré syndrome. Due to the ZIKV epidemics in the American continent, some viraemic travellers coming from 
endemic countries have been reported in Europe. More knowledge is therefore required to define the susceptibility 
of autochthonous mosquito species such as Ae. caspius for ZIKV in order to improve arbovirus surveillance and control 
programmes. In the present study, the vector competence of a European population of Ae. caspius was evaluated for 
two ZIKV lineages, the Suriname ZIKV strain (Asian lineage) and the MR766 ZIKV strain (African I lineage). Females were 
tested at 7, 14 and 21 days post-exposure (dpe) to infectious blood meals. An Ae. aegypti PAEA strain was used as a 
positive control.

Results:  Aedes caspius presented low susceptibility to ZIKV infection and the virus was only detected by RT-qPCR 
in body samples. Low viral loads were detected for the MR766 strain at 7 dpe and for the Suriname strain at 14 and 
21 dpe. Aedes caspius was unable to produce a disseminated infection and virus transmission at any of the tested time 
points. Using Ae. aegypti PAEA strain, infection, dissemination and transmission rates were calculated for the Suriname 
ZIKV strain (Asian lineage) at each time point. For the MR766 ZIKV strain (African I lineage), while only infection rates 
were estimated at each time point, no dissemination or transmission were detected in either species.

Conclusions:  The results of the present study reveal that the tested Ae. caspius population has a strong midgut 
escape barrier that limits the dissemination or transmission of the virus. As such, it seems unlikely that European Ae. 
caspius mosquitoes could be involved in ZIKV transmission if ZIKV was introduced into Europe. This information may 
help in designing a better strategy to European surveillance and control programmes for ZIKV.
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Background
Aedes caspius (Pallas, 1771) is a floodwater mosquito 
species widely distributed in the Western Palaearctic 
[1]. This mosquito species is tolerant to varying levels 
of salinity in larval breeding places [2] and so is present 
in different habitats, including coastlands, irrigation 
channels, swamps and rice fields. Aedes caspius is an 
anthropophilic species and a crepuscular feeder and is 
known to bite during the day and night [3]. These mos-
quitoes usually feed aggressively on humans and animals, 
both indoors and outdoors [4]. Thus its role as an arbovi-
rus vector may be the key for the knowledge of transmis-
sion cycle of certain diseases in Europe, especially given 
its anthropophilic behavior. The vector competence of 
some Ae. caspius populations exposed to different arbo-
viruses has been tested in previous studies. Aedes caspius 
populations from the Camargue (France) were experi-
mentally found to be potential vectors of arboviruses 
such as chikungunya virus (CHIKV) [5] and Rift Val-
ley fever phlebovirus (RVFV) [6]. However, Ae. caspius 
from Camargue and from Andalusia (Spain) were unable 
to transmit West Nile virus (WNV) [7] and Zika virus 
(ZIKV) [8], respectively.

The ZIKV is an arthropod-borne virus belonging to the 
genus Flavivirus (family Flaviviridae). The virus is pri-
marily transmitted in a zoonotic cycle between mosqui-
toes and non-human primates in Africa, although sexual 
[9] and perinatal [10] ZIKV transmission have also been 
confirmed in humans. The virus has been associated with 
severe clinical manifestations and congenital malforma-
tions including microcephaly [11] and Guillain-Barré 
syndrome [12]. ZIKV was isolated for the first time from 
a rhesus macaque monkey in the Zika forest (Uganda) in 
1947 [13]. The virus was subsequently found in Asia in 
the 1960s. In 2007 there was an outbreak of ZIKV in Yap 
Island, Micronesia [14], which spread to Pacific islands 
in 2013 [15] before reaching Latin America in 2015 [16]. 
Nowadays, all isolated ZIKVs are grouped into three line-
ages: Asian; African I; and West African II [17, 18]. ZIKV 
has been isolated from numerous African mosquito spe-
cies in field [19] but Aedes aegypti is considered to be 
the main vector of ZIKV in urban areas [20]. In addi-
tion, several Aedes species from all continents have been 
observed to transmit the virus experimentally: e.g. Aedes 
vittatus, Aedes vexans [20], Aedes polynesiensis [21] and 
Ae. albopictus [22–26].

Due to the ZIKV epidemics in the American continent, 
some viraemic travellers coming from endemic coun-
tries have been reported in Europe [27], especially dur-
ing the summer months [28], raising important alarms 
for human health. In this context, more in-depth knowl-
edge is required about the susceptibility of autochtho-
nous mosquito species such as Ae. caspius for ZIKV to 

improve arbovirus surveillance and control programmes. 
For this reason, in the present study we evaluated the 
vector competence of an Ae. caspius mosquito popula-
tion from El Prat de Llobregat (Catalonia, Spain) for two 
ZIKV lineages, Suriname (Asian lineage) and MR766 
(African I lineage) to measure its potential role in ZIKV 
transmission.

Methods
Mosquito rearing
Aedes caspius larvae were collected from El Prat de Llo-
bregat (Catalonia, Spain) in October 2017. Larvae were 
reared in trays containing dechlorinated water supple-
mented with fish food (Goldfish, Tetra GmbH, Melle, 
Germany) until the adult stage. Emerging adults were 
maintained at 26/22  °C (day/night) to simulate summer 
environmental conditions at the latitude where the mos-
quitoes were captured, a relative humidity of 80% and a 
light/dark photocycle of 14:10 h. Mosquitoes were fed ad 
libitum with 10% sucrose solution. The F0 generation was 
used for experimental infection. An Ae. aegypti PAEA 
strain, from Paea (Tahiti, French Polynesia), colonized 
since 1994, was reared in the same conditions and used 
as a positive control of ZIKV vector.

Virus production and titration
Suriname and African MR766 ZIKV strains provided 
by the European EVAg project were used in the present 
work. The Suriname ZIKV strain (EVAg no. 011V-01621; 
Asian lineage) was isolated from a placental material of a 
patient in Netherlands in 2016 who came from Suriname 
during the ZIKV epidemic [29] and the African MR766 
ZIKV strain (African I lineage) was isolated from a rhe-
sus monkey (Macaca mulatta) in 1947 in Uganda [13]. 
These strains were propagated and titrated to obtain the 
50% tissue culture infective dose per ml (TCID50/ml) in 
African green monkey kidney (VERO) cells.

Experimental infection of mosquitoes
Forty-eight hours before exposure of mosquitoes to the 
infectious blood meal, the 10% sucrose solution was 
removed to increase mosquito appetite. Totals of 480 
Ae. caspius and 275 Ae. aegypti females (7–10 days old) 
were exposed to infectious blood at 7 log10 TCDI50/ml of 
both Suriname and MR766 strains and 20 females of each 
species were exposed to non-infectious blood. For blood-
meal preparation, rabbit blood was washed and mixed 
with adenosine 5’-triphosphate (ATP) (5 × 10−3  M) 
(Sigma-Aldrich, St. Louis, MO, USA) and virus (infec-
tious) or cell culture medium (DMEM) (non-infectious). 
Females were exposed to a Hemotek® artificial feed-
ing system (Discovery Workshop, Accrington, UK) at 
37.5 ± 0.5  °C for 30 min. After exposure, females were 
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anesthetized with CO2. Fully engorged females were 
selected and maintained in groups of ten in cardboard 
cages (Watkins & Doncaster, Leominster, UK) under the 
same rearing environmental conditions. Throughout the 
experiment, the mosquitoes were maintained with per-
manent access to 10% sucrose solution in cotton pledges. 
After a period of 7, 14 and 21 days post-exposure (dpe) 
to infectious blood, females were anesthetized with CO2, 
legs and wings were dissected and saliva was extracted 
using the capillary technique as previously described 
[30]. The number of mosquitoes tested at each time 
point is summarized in Table 1. Body, leg and wing sam-
ples were stored in 0.5 ml of Dulbecco’s modified Eagle’s 
medium (DMEM) (Lonza Group AG, Basel, Switzerland) 
and the saliva samples in 0.190 ml of DMEM at − 80 °C 
until ZIKV detection. Infection (IR), disseminated infec-
tion (DIR) and transmission rates (TR) were estimated to 
evaluate the vector competence [31]. The IR represents 
virus replication in the midgut epithelial cells. The DIR 
shows that the virus was able to cross the midgut barrier 
and reach the hemocoel. The TR shows that the virus was 
able to cross the salivary glands barrier. We also meas-
ured the transmission efficiency (TE), which refers to the 
rate of mosquitoes with infectious saliva among the total 
mosquitoes assayed. The experimental infection was per-
formed at IRTA, CReSA BLS3 facilities.

ZIKV detection
Virus detection from leg, wing and body samples was car-
ried out using 1/10 and 1/100 dilutions in 96-well plates 
containing a Vero cell monolayer. Saliva samples were 
titrated directly in 96-well plates in a Vero cell monolayer. 
Vero cells were maintained with DMEM supplemented 
with 2% FCS and 2% of penicillin/streptomycin/nysta-
tin (1000  U/ml, 10  mg/ml and 500  U/ml, respectively; 
Sigma-Aldrich) and incubated for seven days at 37 °C and 
5% CO2 until cytopathic effect observation.

Prior to viral RNA extraction, the samples were 
homogenized using a TissueLyser II (Qiagen GmbH, 

Hilden, Germany) at 30  Hz for 1  min. Viral RNA was 
extracted from the samples using NucleoSpin® RNA 
Virus (Macherey-Nagel, Düren, Germany) according 
to the manufacturer’s protocol. Zika RNA was detected 
by reverse-transcription quantitative PCR (RT-qPCR) 
using the primers ZIKA 1086 and ZIKA 1162c defined 
previously [32] and AgPath-ID™ One-Step RT-PCR 
reagents (Applied Biosystems, Foster City, CA, USA). 
The nucleic acids were detected with a Real-Time PCR 
7500 Fast System (Applied Biosystems) with the follow-
ing amplification protocol: 45  °C for 10 min; 95  °C for 
10 min; then 45 cycles at 95 °C for 15 s and at 60 °C for 
45  s. The RT-qPCR sensibility was 0.451 TCID50/reac-
tion for detection of MR766 and 0.035 TCID50/reaction 
for Suriname ZIKV strains.

Results
Feeding rates were 56% (280/500) and 77.45% (213/275) 
for Ae. caspius and Ae. aegypti, respectively.

For the Ae. caspius population, ZIKV was detected by 
RT-qPCR only in body samples for both virus strains 
used in the present study (Fig. 1). As detailed in Table 2, 
the infection rate (IR) in Ae. caspius for the Suriname 
ZIKV strain was 3.33% and 10% at 14 and 21 days post-
exposure (dpe), respectively. For the MR766 ZIKV 
strain, the IR was only 3.33% at 7 dpe. In addition, both 
ZIKV strains were unable to induce a disseminated 
infection and transmission in Ae. caspius.

In our positive control (Ae. aegypti PAEA strain), 
infection was detected at 7  dpe for both ZIKV strains 
tested by RT-qPCR and cytopathic effect while dissemi-
nation and transmission were only found for the Suri-
name ZIKV strain at 14 and 21 dpe (Table 1 and Fig. 1). 
The transmission efficiency (TE) of Ae. aegypti for the 
Suriname ZIKV strain based on the cytopathic effect 
in Vero cells was 15% (3/20) and 5% (1/20) at 14 and 
21 dpe, respectively.

Table 1  Summary of assays

Abbreviation: dpe, days post-exposure

Mosquito species 
tested

ZIKV strain tested Titer of ZIKV (TCID50/ml) No. of mosquitoes tested per time point

7 dpe 14 dpe 21 dpe Total

Ae. caspius Suriname 7 log10 TCID50/ml 30 30 30 90

MR766 7 log10 TCID50/ml 30 30 30 90

Negative control No virus – – 8 8

Ae. aegypti Suriname 7 log10 TCID50/ml 20 20 20 60

MR766 7 log10 TCID50/ml 20 20 19 59

Negative control No virus – – 11 11
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Discussion
The present study demonstrates that the assessed 
population of Ae. caspius from Catalonia was unable 
to transmit the Suriname and MR766 ZIKV strains, 
belonging to the Asian and African I phylogenetic lin-
eages, respectively. Our results indicate that the Ae. 
caspius population has a strong midgut escape bar-
rier (MEB) since at 7  dpe we found infected bodies of 
MR766 ZIKV strain by RT-qPCR as well as at 14 and 
21 dpe to the ZIKV Asian strain but neither the dissem-
inated infection nor the transmission were detected at 
any of the time points analyzed. These findings are in 
agreement with the hypothesis that the MEB can limit 
virus dissemination from the midgut to the hemocoel 
or secondary organs as reported for other arbovirus-
mosquito species combinations [33, 34]. As the viral 
load detected by RT-qPCR was low in infected bod-
ies (Fig. 1), we suggest that the virus is replicating at a 
very low level. Therefore, the virus would not be able to 
cross the MEB and disseminate through the mosquito 
hemocoel to reach the salivary glands making it unable 
to transmit the virus. In addition, these results are in 
accordance with a recent study in which another Ae. 
caspius population was assayed for a ZIKV strain of the 
Asian lineage (Puerto Rico, 2015) under constant envi-
ronmental conditions [8]. It should be noted that in our 
experiment, apart from testing a ZIKV strain of Asian 
lineage, we also assayed a ZIKV strain of the African I 
lineage (MR766) with cycled environmental conditions 
(26/22 °C day/night). Both studies indicate that despite 
the anthropophilic behavior of Ae. caspius, its role in 
the transmission of ZIKV seems unlikely.

Aedes aegypti from PAEA (French Polynesia), selected 
as a positive control, was able to transmit the Suriname 
strain (Asian lineage). Suriname ZIKV infection, dissemi-
nation and transmission were observed at 14 and 21 dpe. 
These results are in agreement with other experiments 
reported on Ae. aegypti vector competence for ZIKV [35, 
36]. However, the MR766 strain (African I lineage; the 
historical strain isolated in 1947 in Uganda [13]) was una-
ble to disseminate and be transmitted in this mosquito 
species. This ZIKV strain is an old strain that has suffered 
several passages in mice and cells from various laboratory 
sources that we assume may have influenced the vector 
competence assays in both assayed mosquito species. 
Furthermore, the inefficient dissemination and transmis-
sion in Ae. aegypti (PAEA strain) exposed to the MR766 
ZIKV strain were in agreement with previous results 
reported by Diagne et al. [37]. The differences observed 
between our results and other vector competence experi-
ments in which dissemination and transmission of the 
MR766 ZIKV strain were reported for Ae. aegypti [26, 
35, 36, 38, 39], could be explained by the genetic varia-
bility of Ae. aegypti populations as mentioned by Diagne 
et  al. [37]. Furthermore, it is known that temperature 
can influence vector competence as described for several 
mosquito species infected with other arboviruses (e.g. 
dengue virus (DENV), CHIKV [40] or WNV [41–43]). A 
recent study showed that temperature may directly affect 
vector competence for ZIKV rendering the Ae. aegypti 
population tested at low temperature (18  °C) unable 
to transmit the virus [44]. Therefore, the environmen-
tal conditions used in the present study could have also 
influenced our results; in earlier studies where higher 
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dissemination and transmission were observed in the Ae. 
aegypti-MR766 ZIKV pairing, the assays were performed 
at a temperature of 28 °C in contrast to the 26/22 °C (day/
night) used in our experiment (which we used to mimic 
summer environmental conditions in the area where the 
Ae. caspius population was captured).

Finally, with respect to the techniques used for virus 
detection in our vector competence assays, the RT-
qPCR results had a slightly better sensitivity than those 
obtained by cytopathic effect in all mosquito-virus pair-
ings. However, although RT-qPCR was more sensitive, 
the cytopathic effect caused by the virus allows better 
knowledge of its viability which is more useful for a bet-
ter estimation of the transmission efficiency of a mos-
quito population. Therefore, we strongly recommend 
that for the vector competence studies viable viruses in 
the saliva should be taken in to account to determine the 
transmission efficacy.

Conclusions
Given the high risk of ZIKV introduction in Europe 
via infected travelers coming from endemic areas, it is 
important to know if anthropophilic European mosquito 
populations are able to transmit this virus and sustain a 
ZIKV outbreak. Our results indicate that it is unlikely 
that Ae. caspius mosquitoes from Spain, particularly from 
Catalonia, could be involved in the transmission of ZIKV 
if it was introduced. Therefore, Ae. caspius is not a rel-
evant species to be monitored and controlled in case of 
ZIKV introduction. This is useful and crucial information 
for the health authorities with respect to the establish-
ment of efficient surveillance and vector control pro-
grammes for ZIKV. Moreover, our study highlights the 
importance of performing vector competence assays for 
each arbovirus-vector mosquito species in specific envi-
ronmental conditions to provide information for more 
accurate predictions of the risk of arbovirus transmission 
in a specific area.
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