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Abstract 10 

Given the increasing spread of toxic marine microalgae around the world, rapid, simple and low-cost detection 11 

tools are essential to protect human health and ecosystems. Herein, an electrochemical biosensor for the 12 

detection of Ostreopsis cf. ovata, a benthic microalgae known to produce palytoxins (PlTXs), is described. The 13 

detection strategy involves isothermal recombinase polymerase amplification (RPA) of the target using tailed 14 

primers and a sandwich hybridisation assay on maleimide-coated magnetic beads immobilised on electrode 15 

arrays. The biosensor attained a limit of detection of 9 pg/µL of O. cf. ovata DNA (which corresponds to  640 16 

cells/L), with no interferences from two non-target Ostreopsis species (O. cf. siamensis and O. fattorussoi). The 17 

biosensor was applied to the analysis of planktonic and benthic environmental samples. Electrochemical O. cf. 18 

ovata DNA quantifications demonstrated an excellent correlation with other molecular methods and allowed 19 

the construction of a predictive regression model to estimate O. cf. ovata cell abundances. The performance 20 

of the biosensor demonstrates its potential implementation as an early warning tool in marine monitoring 21 

programs. 22 

Keywords: marine microalgae; Ostreopsis cf. ovata; recombinase polymerase amplification (RPA); maleimide-23 

coated magnetic bead (MB); electrochemical biosensor.  24 
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Highlights: 25 

 First electrochemical biosensor for the detection of Ostreopsis cf. ovata 26 

 The biosensor combines isothermal amplification with magnetic beads as supports 27 

 The application of the biosensor to environmental samples is successfully proved 28 

 Excellent correlation with other molecular techniques and light microscopy 29 

 A rapid, simple and inexpensive alternative tool for marine monitoring is provided 30 

Graphical abstract:  31 

  32 
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1. Introduction 33 

Harmful algal blooms (HABs) include Ostreopsis species, a benthic microalgae known to produce palytoxin 34 

(PlTX)-like compounds. While initially reported in tropical and subtropical regions, Ostreopsis spp. have been 35 

reported in more temperate regions such as the Mediterranean Sea (Mangialajo et al., 2011; Rhodes, 2011). 36 

In this area, periodic summer blooms have been increasing during the last decade, where different Ostreopsis 37 

species (O. cf. ovata, O. cf. siamensis and O. fattorussoi) have been described (Accoroni et al., 2016; Penna et 38 

al., 2005), with O. cf. ovata being both the most toxic and the most widely distributed (Ciminiello et al., 2010). 39 

Proliferations of O. cf. ovata have been involved in respiratory and skin distress in bathers, as well as in mass 40 

mortalities of invertebrates (Berdalet et al., 2017; Mangialajo et al., 2011; Vila et al., 2016). Additionally, PlTX-41 

like compounds have been found in seafood (Aligizaki et al., 2008; Amzil et al., 2012), thus representing a 42 

potential risk to consumers. 43 

HABs are natural phenomena that, realistically, cannot be eliminated. Nevertheless, monitoring programs can 44 

significantly contribute to prevent and mitigate their impacts. In this sense, Ostreopsis spp. monitoring is 45 

implemented in countries that regularly experience their negative effects, and is commonly performed using 46 

light microscopy (Giussani et al., 2017; Vassalli et al., 2018). However, this method is time consuming and 47 

based on morphology, which hampers correct microalgae identification, especially among Ostreopsis species. 48 

Emerging molecular methods have demonstrated to provide faster and more accurate identification and 49 

quantification of HABs than microscopy. PCR and quantitative PCR (qPCR) have been extensively applied to 50 

several toxic microalgae and, specifically for Ostreopsis species, qPCR/PCR assays have been described for O. 51 

cf. ovata (Battocchi et al., 2010; Casabianca et al., 2014; Perini et al., 2011), O. cf. siamensis (Battocchi et al., 52 

2010; Casabianca et al., 2013) and O. fattorussoi (Vassalli et al., 2018). Although qPCR is a good strategy for 53 

the detection of HAB species, alternative user-friendly and in-situ molecular methods able to provide even 54 

shorter analysis times and lower cost are highly desired. 55 

Biosensors could address the needs of monitoring programs and, among them, electrochemical biosensors 56 

stand out for several reasons: high sensitivity, short analysis times, simple and inexpensive instrumentation, 57 

ease of handling, and compatibility with microfluidic systems and miniaturisation (Ronkainen et al., 2010). The 58 

combination of these outstanding properties with the inherent nucleic acid specificity positions 59 

electrochemical nucleic acid biosensors as attractive candidates for microalgae monitoring. However, there 60 

are very few reports detailing electrochemical nucleic acid biosensors for microalgae detection. Such 61 

biosensors commonly take advantage of a sandwich hybridisation format, where the target ribosomal RNA 62 

(Diercks-Horn et al., 2011; Metfies et al., 2005) or DNA is sandwiched between an immobilised capture probe 63 

and a labelled reporter probe. When targeting DNA, an amplification step is required prior to the 64 

electrochemical detection. In this respect, a biosensor combining PCR amplification and electrochemical 65 
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detection was reported for microalgae detection (LaGier et al., 2007). However, PCR methodology relies on 66 

thermal cycling, which hinders its implementation in miniaturised devices for in-situ testing. 67 

Methods to isothermally amplify DNA have become increasingly popular due to the benefits of reducing 68 

instrumental requirements and power consumption, thus being more suitable for in-situ analysis. Among 69 

isothermal amplification methods, nucleic acid sequence-based amplification (NASBA) (Casper et al., 2004; 70 

Loukas et al., 2017), loop-mediated isothermal amplification (LAMP) (Huang et al., 2017; Zhang et al., 2014), 71 

rolling circle amplification (RCA) (Chen et al., 2015; Liu et al., 2019) and recombinase polymerase amplification 72 

(RPA) (Toldrà et al., 2019; Toldrà et al., 2018) have been applied to microalgae detection. RPA is particularly 73 

attractive due to its simplicity, high sensitivity, rapid amplification (20-30 min), easy primer design as well as 74 

its operation at low and constant temperature (37-42 °C) (Lobato and O'Sullivan, 2018). To date, isothermal 75 

amplification techniques have been successfully coupled with different detection techniques, including lateral 76 

flow, fluorescence, turbidity and colorimetric readout. However, the combination of isothermal amplification 77 

techniques with an electrochemical biosensor for the detection has never been reported for microalgae. 78 

In our previous work, the combination of RPA with tailed primers for the colorimetric detection of O. cf ovata 79 

was described (Toldrà et al., 2019). Tailed primers consist of a single-stranded DNA (ssDNA) sequence (tail) 80 

that is added to the species-specific primer using a C3 spacer, which prevents the formation of phosphodiester 81 

bonds and further elongation, resulting in a double-stranded DNA (dsDNA) product flanked with ssDNA tails. 82 

This facilitates the subsequent detection through a sandwich-type format assay using complementary 83 

oligonucleotide probes: a thiolated capture probe and a labelled reporter probe. In this work, with the aim to 84 

moving towards miniaturised and compact devices, we report an electrochemical biosensor for the detection 85 

of O. cf. ovata that exploits RPA, tailed primers and maleimide-activated magnetic beads (MBs). 86 

Oligocomplexes consisting of the RPA amplicon hybridised to a capture probe-functionalised MBs were 87 

immobilised on a screen-printed carbon electrode array by magnetic capture and the resulting reduction 88 

current was measured by amperometry (Fig. 1). A colorimetric approach was tested to demonstrate the 89 

feasibility of the strategy prior to the biosensor development. The attainable LOD was determined using O. cf. 90 

ovata genomic DNA and the specificity of the biosensor was evaluated using non-target Ostreopsis species (O. 91 

cf. siamensis and O. fattorussoi). Additionally, the reusability of the electrodes and the stability of the capture 92 

probe-functionalised MBs was studied. The biosensor was applied to the analysis of environmental samples, 93 

and O. cf. ovata quantifications were compared with those obtained by qPCR, RPA-ELONA and light 94 

microscopy.  95 
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2. Materials and Methods 96 

2.1. Reagents 97 

The TwistAmp Basic kit containing all enzymes and reagents necessary for the DNA amplification was obtained 98 

from TwistDx Ltd. (Cambridge, UK). Custom DNA oligonucleotides were purchased from Biomers (Ulm, 99 

Germany). PureCube maleimide-activated MagBeads (25 µm in diameter) were supplied by Cube Biotech 100 

(Monheim, Germany). Tween-20, 3,3’,5,5’-tetramethylbenzidine (TMB) liquid substrate, 6-mercapto-1-101 

hexanol, skimmed milk powder, bovine serum albumin (BSA) and all other reagents were acquired from Sigma-102 

Aldrich (Tres Cantos, Spain). 103 

2.2. Equipment 104 

Disruption of microalgae cells for subsequent DNA extraction was carried out using a BeadBeater-8 (BioSpec, 105 

Bartlesville, USA). RPA reactions were performed in a Nexus Gradient Thermal Cycler (Eppendorf Ibérica, San 106 

Sebastián de los Reyes, Spain). A NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Madrid, Spain) 107 

was used to quantitatively and qualitatively check extracted genomic DNA. Colorimetric measurements were 108 

performed with a Microplate Reader KC4 (BIO-TEK Instruments, Inc., Winooski, USA) using Gen5 software to 109 

collect data. Arrays of eight screen-printed electrodes (DRP-8x110) and a magnetic support (DRP-MAGNET8X) 110 

were provided by Dropsens S.L. (Oviedo, Spain), and consist of 8 carbon working electrodes (2.5 mm in 111 

diameter), each with its own carbon counter electrode and Ag/AgCl reference electrode. Electrochemical 112 

measurements were performed using an 8-channel multiplexer PalmSens potentiostat (PalmSens BV, Houten, 113 

The Netherlands) controlled by PalmSens PC software. A MagneSphere Technology Magnetic Separation Stand 114 

(Promega Corporation, Madison, USA) was used for the magnetic separations. 115 

2.3. Ostreopsis cultures and environmental samples 116 

The present study employed genomic DNA extracted from: a) Ostreopsis cultures to perform the calibration 117 

curves and specificity tests, and b) environmental samples to evaluate the applicability of the method. Strains 118 

of O. cf. ovata (IRTA-SMM-16-133, MH790463), O. cf. siamensis (IRTA-SMM-16-84, MH790464) and O. 119 

fattorussoi (IRTA-SMM-16-135: MH790465) were selected: O. cf. ovata as a positive control and O. cf. 120 

siamensis and O. fattorussoi as negative controls. Additionally, 16 environmental samples (9 planktonic and 7 121 

benthic samples) (Table S1) were collected in August 2017 at 9 stations along the Catalan coast (NW 122 

Mediterranean Sea) and counted as described in Toldrà et al., 2019. Pellets from both Ostreopsis cultures and 123 

50 mL-environmental samples were prepared by centrifugation (4500 rpm, 25 min) and stored at -20 °C. 124 

Subsequent extraction of genomic DNA was carried out using a bead-beating system and the 125 
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phenol/chloroform/isoamylalcohol method. Extracted DNA samples (50 µL) were quantified using a NanoDrop 126 

and stored at -20 °C until RPA reaction. 127 

2.4. RPA reaction 128 

The primers used in this study include: one forward primer specific for Ostreopsis genus and one reverse 129 

primer specific for O. cf. ovata. Primers amplified a fragment of 148 bp of the ITS1-5.8S ribosomal DNA gene 130 

and were modified with oligonucleotide tails. Primers and probe sequences are listed in Table S2. RPA reaction 131 

was performed at 37 °C for 30 min. Briefly, the RPA mixture was prepared by mixing 2.4 µL of 10 µM tailed 132 

primers, 14.75 µL of rehydration buffer, 22.95 µL of molecular biology-grade water and 5 µL of genomic DNA 133 

extracted from: a) cultures of O. cf. ovata for the calibration curves (4-fold serial dilutions: from 10 to 0.002 134 

ng/µL); b) cultures of O. cf. siamensis and O. fattorussoi for the the specificity study (1 ng/µL); and c) 135 

environmental samples. 1/2 of lyophilised pellet was then added and the reaction was finally triggered by 136 

addition of 2.5 µL of 480 mM magnesium acetate to a final volume of 50 µL. Positive controls and blanks (NTC 137 

= no template control) were always included.  138 

2.5. Colorimetric and electrochemical detections 139 

Magnetic oligocomplexes were prepared as follows: 1) 10 µL of maleimide-activated magnetic beads were 140 

transferred to a tube; 2) 100 µL of of 500 nM thiolated capture probe in binding buffer (100 mM phosphate, 141 

150 mM NaCl, pH 7.4) were added; 3) 100 µL of 100 µM 6-mercapto-1-hexanol in binding buffer were added 142 

to block any non-functionalised maleimide groups; 4) 100 µL of 5% w/v skimmed milk in binding buffer were 143 

added to avoid non-specific adsorption and, finally, conjugates were re-suspended in 10 µL of washing buffer. 144 

When the amounts of MB varied, volumes were adjusted proportionally. Once the capture probe-MB 145 

conjugates were prepared: 5) 4.5 µL of conjugate were added to a new tube and placed on a magnetic stand 146 

to remove the supernatant; 6) 45 µL of RPA product and 45 µL of binding buffer were incubated; 7) 90 µL of 147 

10 nM HRP-labelled reporter probe in 1% w/v BSA-washing buffer were added and 8) finally, conjugates were 148 

re-suspended in 45 µL of washing buffer. All steps were performed with agitation for 30 min at room 149 

temperature, except for the capture probe conjugation step, which was incubated at 4 °C overnight. After 150 

each step, conjugates were rinsed three times with 100 mM potassium phosphate, 150 mM NaCl, 0.05% v/v 151 

Tween-20, pH 7.4, by placing the tube on the magnetic separation stand and removing the washing buffer. 152 

For the colorimetric approach (to evaluate the feasibility of the strategy): 9) 10 µL of the magnetic 153 

oligocomplex suspension (equivalent to 10 µL of RPA product) were placed into a new tube and the 154 

supernatant was removed; 10) 125 µL of TMB/H2O2 were incubated for 3 min; 11) tubes were placed on a 155 

magnetic separator stand and 100 µL were collected to read the absorbance at 620 nm.  156 
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For the electrochemical biosensor: 9) 10 µL of the magnetic oligocomplex suspension were placed on each 157 

working electrode of the 8-electrode array with a magnetic support on the reverse side; the magnetic 158 

oligocomplex was captured, and the supernatant was removed; 10) 10 µL of TMB/H2O2 were added and 159 

incubated for 3 min; 11) the reduction current was measured by amperometry after applying -0.2 V vs Ag/AgCl  160 

for 4 s.  161 

For the regeneration of the electrodes, the magnet was removed and the 8-electrode arrays were rinsed with 162 

distilled water and air-dried. Fresh magnetic oligocomplexes were placed on the electrodes and the current 163 

was again recorded. The process was repeated consecutively 10 times. To evaluate the storage stability, the 164 

capture probe-coated MBs were prepared as described above, washed and aliquots were kept at 4 and -20 °C. 165 

Electrochemical signals were measured at day 0 (reference value) and at 7 and 17 days. Magnetic 166 

oligicompmexed were obtained using 1 ng/µL of O. cf. ovata genomic DNA in the RPA to both test the 167 

reusability of electrodes and the stability storage of the MBs. 168 

2.6. Data analysis 169 

Colorimetric and electrochemical calibration curves were fitted to the sigmoidal logistic four-parameter 170 

equation: 171 

ݕ = 	 ଴ݕ + 	
ܽ

1 + 	 ቀ ଴ݔݔ
ቁ
௕ 172 

where a and y0 are the asymptotic maximum and minimum values, respectively, x0 is the genomic 173 

concentration (x) at the inflection point and b is the slope at the inflection point. The LOD was defined as the 174 

blank plus three times its standard deviation (SD). All measurements were performed in triplicate. Curve 175 

fittings were performed with SigmaPlot 12.0 (Systat Software Inc., California, USA). 176 

Quantifications of 50-mL environmental samples obtained by the two approaches were expressed as ng/µL of 177 

O. cf. ovata in 50 µL of extracted DNA. Quantifications determined with the MB-based electrochemical 178 

biosensor were compared with those obtained by the MB-based colorimetric method, as well as with those 179 

obtained by RPA-ELONA and qPCR (Toldrà et al., 2019). Correlations were then analysed using Pearson’s 180 

correlation coefficient (r). To assess the relationship between electrochemical results and light microscopy cell 181 

abundances, a quadratic polynomial regression model was developed for both benthic (cells/g fwm) and 182 

planktonic (cells/L) samples. The correlation between predicted cell abundances from the electrochemical 183 

tests and measured cell abundances from light microscopy counts was evaluated using Pearson’s correlation 184 

coefficient (r). IBM SPSS Statistics 23.0 (IBM Corp., New York, USA) was used for statistical analyses. 185 
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3. Results and discussion 186 

3.1. Colorimetric assay 187 

To demonstrate the feasibility of the strategy, the system was primarily tested using colorimetric detection. 188 

After the sandwich-type assay on MBs, the analytical signal is proportional to the amount of HRP-labelled 189 

reporter probe and, consequently, to the RPA amplicon concentration. In the colorimetric approach, the 190 

enzymatic reaction between the HRP-labelled reporter probe and the enzymatic substrate (TMB/H2O2) was 191 

performed in solution and the absorbance of the resulting product was measured.  192 

The colorimetric calibration curve using different concentrations of O. cf. ovata genomic DNA was fitted to the 193 

sigmoidal logistic four-parameter equation (R2 = 0.998) (Fig. 2a). Relative standard deviations (RSD) were 194 

below 14% (n=3), which indicated good assay reproducibility. An LOD of 10 pg/µL was attained, which 195 

corresponds to 100 pg/sample (considering 50-mL samples and taking into account the DNA extraction, RPA 196 

and detection protocols). Taking into account the amount of DNA per O. cf. ovata cell (Toldrà et al., 2019), the 197 

LOD corresponds to 800 cells/L. 198 

3.2. Electrochemical biosensor 199 

Once the strategy had been successfully demonstrated using the colorimetric assay, the resulting magnetic 200 

oligocomplexes were integrated on an 8-electrode array to develop the biosensor. The enzymatic reaction 201 

between the HRP-labelled reporter probe and the enzymatic substrate (TMB/H2O2) was carried out on the 202 

electrode surface, and the TMB reduction current was subsequently measured using amperometry. 203 

The electrochemical calibration curve achieved with the biosensor (R2 = 0.998) is shown in Fig. 2b. The LOD 204 

attained with the electrochemical biosensor was 9 pg/µL (90 pg/sample, 640 cells/L), very similar to the one 205 

achieved in the colorimetric approach and below the alarm thresholds established for Ostreopsis abundances. 206 

In addition, the RSD of the biosensor was below 8.4% (n=3), demonstrating the high reproducibility of the 207 

measurements. Surprisingly, high electrochemical signals (3000 nA of NTC-subtracted maximum current 208 

intensity, Fig. 2b) were obtained when the magnetic oligocomplexes were anchored on the electrode surface, 209 

whereas lower current intensities (1000 nA, data not shown) were recorded when performing the enzymatic 210 

reaction in suspension and transferring the resulting oxidised TMB product (without MBs) to the electrodes. 211 

To understand this difference in the signal, the electrochemical behaviour of bare MBs on the electrode 212 

surface was studied using cyclic voltammetry. As reported by other authors (Baldrich et al., 2011), the 213 

presence of MBs on the electrode showed a decrease in electron transfer (demonstrated by higher peak-to 214 

peak separation, lower peak currents, and lower charge) when compared to bare electrodes (Fig. S1). As a 215 

consequence, the higher intensities registered with the biosensor are not due to the intrinsic properties of the 216 
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MBs but could be explained by the confinement of the oligocomplexes on the electrodes, which brings the 217 

generation of oxidised TMB be closer to the transducer surface and its electrochemical detection less diffusion-218 

dependent. 219 

The LODs provided by the MB-based colorimetric and electrochemical approaches are similar to those 220 

reported for the colorimetric RPA-ELONA, where the sandwich assay is performed on maleimide plates instead 221 

of on MBs. It is important to highlight that the methods described herein use approximately 5-fold less RPA 222 

product as compared with the RPA-ELONA. If instead of using 10 µL of oligocomplex, the whole amount from 223 

the RPA reaction was used (45 µL), amplified signals and improved LODs could be obtained. Although 224 

compared to qPCR  the LOD of the biosensor is almost 10-fold higher, the biosensor enables quantifications of 225 

O. cf. ovata DNA below the current alarm thresholds. Moreover, it allows measurements to be performed in 226 

a rapid and simple manner, paving the way towards its integration in a compact device and its true application 227 

in the field, something more difficult to envisage with qPCR or colorimetric assays. 228 

3.3. Specificity study 229 

The final objective of the work is to apply the electrochemical biosensor to the analysis of environmental 230 

samples. During the DNA extraction protocol of environmental samples, not only target DNA is extracted, but 231 

also DNA from all organisms present in the sample. Consequently, it is necessary to ensure that the presence 232 

of non-target microalgae species will not interfere in the biosensor performance causing false positive results. 233 

With this aim, the specificity of the electrochemical biosensor for O. cf. ovata was evaluated using non-target 234 

Ostreopsis species present in the Mediterranean (O. cf. siamensis and O. fattorussoi, which are taxonomically 235 

close to O. cf. ovata) and comparing the current intensities with those obtained in the absence of target DNA 236 

(NTC). No significant responses were obtained from the non-target Ostreopsis species (Fig. S2), indicating the 237 

high specificity of the biosensor, which derives from the specificity of both the primers and the assay 238 

configuration. Detection of O. cf. ovata without interferences from other taxonomically similar Ostreopsis 239 

species present in the Mediterranean suggests therefore that the method is species-specific and should not 240 

detect any other microalgae genus. 241 

3.4. Electrode array regeneration 242 

Screen-printed carbon electrodes are extensively used due to their low cost. Despite being originally designed 243 

for single use, the possibility to re-use them and consequently reduce the biosensor cost was investigated. In 244 

our strategy, oligonucleotides are not directly immobilised on the electrode surface as in most DNA-based 245 

biosensors, but on MBs. The use of a magnetic field for immobilisation facilitates detachment of the magnetic 246 

oligocomplexes from the electrode surface by simple magnet separation and subsequent facile removal of the 247 

oligocomplexes from the electrode surface. Additionally, since all steps (immobilisation, blocking and 248 
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hybridisation), with the exception of electrochemical transduction are performed in solution, electrode fouling 249 

is not likely to occur. With this purpose in mind, the possibility of electrode re-utilisation was evaluated.  250 

Following the first electrochemical measurement, the magnet was removed and the electrodes were washed 251 

with distilled water to remove the magnetic oligocomplexes. Subsequent cycles of magnetic 252 

immobilisation/electrochemical measurement/cleaning resulted in responses close to 100 % (Fig. 3), 253 

indicating not only that the magnetic oligocomplexes had been effectively removed from the electrodes, but 254 

also that the electrodes had not suffered any damage. As expected, these results clearly demonstrate the re-255 

usability of the electrodes for at least 10 consecutive measurements. 256 

3.5. Stability of the functionalised MBs 257 

To investigate the possibility of shortening the protocol time, the storage stability of capture probe-258 

functionalised MBs at 4 and -20 °C was tested over 17 days. Electrochemical signals were constant at both 259 

temperatures, demonstrating the real-time stability of the MBs with immobilized capture probes up to at least 260 

17 days (Fig. S3). Additionally, such stability can be used to predict shelf life of DNA-coated MBs using the Q 261 

Rule method (Anderson and Scott, 1991) according to the equation: 262 

(݁݉݅ݐ)	ݕݐ݈ܾ݅݅ܽݐݏ	݀݁ݐܿ݅݀݁ݎ݌ = 	
(݁݉݅ݐ)	ݕݐ݈ܾ݅݅ܽݐݏ	݈ܽ݁ݎ

(ܳ10)௡  263 

where n is the temperature change divided by 10, and the value of Q10 is typically set at 2, 3, or 4, which 264 

correspond to reasonable activation energies. In this work, taking into account that the functionalized MBs 265 

are stable for at least 17 days, an n value of 2.4 and a conservative Q10 value of 2, the predicted stability of 266 

the product at -20 °C is at least 3 months. This long-term stability of functionalised MBs significantly reduces 267 

the assay time, as large amount of MBs can be prepared on the same day and stored until use. 268 

3.6. Analysis of environmental samples 269 

To demonstrate the applicability of the electrochemical biosensor, 16 environmental samples collected along 270 

the Catalan coast were analysed. Sampling was performed in the summer period, when sea temperature 271 

exceeds 24 °C and Ostreopsis proliferates, and included 4 locations (Table S1) where Ostreopsis blooms have 272 

previously been reported: 2 locations in the south of the Catalan coast (Carnicer et al., 2015) and 2 locations 273 

in the north of the Catalan coast (Vila et al., 2001). Specifically for the latter, Ostreopsis blooms have been 274 

periodically associated with respiratory problems and skin irritations in humans. Environmental samples 275 

included 9 seawater samples (planktonic samples) and 7 macroalgae samples (benthic samples). Although 276 

Ostreopsis is a benthic genus that grow attached to macroalgae, Ostreopsis cells can be easily re-suspended in 277 

the water column by mechanical action or hydrodynamic processes (Giussani et al., 2017). Consequently, 278 

monitoring Ostreopsis cell abundances in water and on macroalgae is essential. 279 
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Ostreopsis cf. ovata DNA quantifications provided using the electrochemical biosensor were compared with 280 

those provided by the colorimetric method, and previous results obtained by RPA-ELONA and qPCR (Table 1). 281 

The samples contained a wide range of O. cf. ovata DNA concentrations, from undetected to 85.57 ng/µL. 282 

From a qualitative point of view, most samples that provided negative results using the electrochemical 283 

biosensor also gave negative results using other techniques, with the only exception being samples 1 and 13, 284 

which were deemed positive using the more sensitive method of qPCR. As shown in Fig. 4, excellent 285 

correlations were obtained when quantitatively comparing results of the techniques using RPA, both between 286 

the electrochemical and colorimetric approaches (Pearson’s r = 0.998; P < 0.001) and between the 287 

electrochemical biosensor and RPA-ELONA (r = 0.999; P < 0.001). Similarly, good agreement was achieved 288 

when comparing quantifications provided by the electrochemical biosensor and qPCR (r = 0.993; P < 0.001). 289 

In order to evaluate the relationship between O. cf. ovata DNA quantification using the electrochemical 290 

biosensor and light microscopy cell abundances, a quadratic polynomial regression model was constructed. 291 

Although cells counted by light microscopy include all Ostreopsis species, they were identified as O. cf. ovata 292 

after species-specific analysis using molecular methods. Additionally, environmental samples contained a 293 

broad range of other microalgae genera at high abundances (Toldrà et al., 2019). When constructing the 294 

model, samples that resulted negative for both electrochemistry and light microscopy (samples 15 and 16) 295 

were not included, nor sample 1, which was considered as an outlier. The regression model was used to predict 296 

cell abundances in the environmental samples from the biosensor DNA quantifications. The relationship 297 

between the model-predicted and observed cell abundances was highly significant for both planktonic 298 

(Pearson’s r = 0.932; P < 0.01) and benthic (Pearson’s r = 0.975; P = 0.001) samples (Fig. 5). This result indicates 299 

that it is possible to correctly estimate O. cf. ovata cell concentrations from the developed biosensor in a range 300 

below the alarm thresholds proposed for Ostreopsis cells (10000-30000 cells/L and 100000 cells/g fwm for 301 

planktonic and benthic samples, respectively (Giussani et al., 2017; Vassalli et al., 2018)). Additionally, this 302 

excellent correlation demonstrates the high specificity of the method, detecting O. cf. ovata without 303 

interferences from other microalgae species present in the samples, even at much higher cell abundances. 304 

4. Conclusions 305 

In this work, the combination of the isothermal RPA technique using tailed primers with MBs as immobilisation 306 

supports for the electrochemical detection of O. cf. ovata is described. Firstly, the use of RPA allows the 307 

amplification of O. cf. ovata DNA without the need for thermal cycling, thus reducing power requirements. 308 

Secondly, the use of tailed primers allows the detection of the amplified RPA product via a sandwich 309 

hybridisation configuration. Finally, the use of maleimide-coated MBs as supports improves the assay kinetics 310 

and enables reutilisation of the electrodes. Additionally, the stability of the capture probe immobilization 311 

provides ready-to-use MBs, shortening the assay time.  312 
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Given the excellent analytical performance in terms of sensitivity, specificity, storage stability and good 313 

correlation with other molecular methods as well as light microscopy, the implementation of this biosensor as 314 

a quantitative and/or screening tool in routine microalgae monitoring programs is feasible. Additionally, it 315 

offers great potential for subsequent integration in miniaturised devices, bringing it closer to in-field 316 

deployment. This work thus constitutes a breakthrough in the development of rapid, simple, cost-effective 317 

and easy-to-use analysis tools for the detection of toxic marine microalgae.  318 
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Table 1 O. cf. ovata DNA quantifications (ng/µL) of 16 environmental samples (planktonic and benthic) provided by the electrochemical MB-based biosensor 

and the colorimetric MB-based assay (mean  SD, n = 3). Quantifications obtained by RPA-ELONA and qPCR are shown (Toldrà et al., 2019). 

nd: not detected 
  

Sample number 
O. cf. ovata DNA (ng/µL) 

Electrochemical  Colorimetric RPA-ELONA qPCR 

Sample 1 nd nd nd 0.010 ± 0.002 

Sample 2 85.573 ± 8.968 50.516 ± 1.870 63.721 ± 11.896 78.781 ± 6.367 

Sample 3 nd nd nd nd 

Sample 4 nd nd nd nd 

Sample 5 0.086 ± 0.008 0.081 ± 0.011 0.083 ± 0.033 0.063 ± 0.021 

Sample 6 1.299 ± 0.420 1.045 ± 0.218 1.369 ± 0.185 2.748 ± 0.248 

Sample 7 0.132 ± 0.037 0.110 ± 0.006 0.149 ± 0.069 0.098 ± 0.016 

Sample 8 0.039 ± 0.005 0.031 ± 0.008 0.025 ± 0.011 0.019 ± 0.001 

Sample 9 0.047 ± 0.016 0.082 ± 0.040 0.064 ± 0.024 0.056 ± 0.022 

Sample 10 0.102 ± 0.031 0.071 ± 0.002 0.082 ± 0.016 0.083 ± 0.021 

Sample 11 0.035 ± 0.015 0.038 ± 0.012 0.020 ± 0.005 0.022 ± 5E-05 

Sample 12 0.132 ± 0.033 0.185 ± 0.045 0.139 ± 0.042 0.250 ± 0.009 

Sample 13 nd nd nd 0.005 ± 2E-04 

Sample 14 4.403 ± 1.042 2.686 ± 0.321 4.220 ± 0.855 3.918 ± 0.257 

Sample 15 nd nd nd nd 

Sample 16 nd nd nd nd 
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Figure 1 Schematic illustration of the electrochemical biosensor.  
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Figure 2 Calibration curves obtained using different concentrations of O. cf. ovata genomic DNA: (a) colorimetric assay and (b) electrochemical biosensor. 

Error bars are the standard deviation of the mean, n = 3. 
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Figure 3 Electrochemical responses of the electrochemical biosensor after 10 cycles of magnetic immobilisation/electrochemical measurement/cleaning. 

Error bars are the standard deviation of the mean, n = 3.  
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Figure 4 Correlation between O. cf. ovata DNA quantifications provided by the electrochemical biosensor and those obtained by the colorimetric assay, RPA-

ELONA and qPCR in all examined environmental samples.  
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Figure 5 Relationship between predicted cell abundances provided by the regression model and those counted by light microscopy in: (a) planktonic samples 

(cells/L) and (b) benthic samples (cells/g fwm). Pearson’s correlation coefficient is shown. 
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Table S1. Environmental samples collected in August 2017 along the Catalan cost. Location and geographical coordinates of the sampling stations as well as 
Ostreopsis spp. abundances obtained by light microscopy for planktonic (cells/L) and benthic (cells/g fwm) samples are shown. Data obtained from (*). 

nd: not detected 

(*) Toldrà A, Alcaraz C, Andree KB, Fernández-Tejedor M, Diogène J, Katakis I, et al. Colorimetric DNA-based assay for the specific detection and quantification of Ostreopsis 
cf. ovata and Ostreopsis cf. siamensis in the marine environment. Harmful Algae 2019; 84: 27-35.  

Sample number Sample type Locality Station number Geographical coordinates Ostreopsis spp. cell abundances 

Sample 1 planktonic Palamós, La Fosca 1 N 41°51’20.71’’ E 3°8’32.01’’ 2840 

Sample 2 benthic Palamós, La Fosca 1 N 41°51’20.71’’ E 3°8’32.01’’ 60710 

Sample 3 planktonic Palamós, La Fosca 2 N 41°51’28.18’’ E 3°8’39.84’’ 360 

Sample 4 benthic Palamós, La Fosca 2 N 41°51’28.18’’ E 3°8’39.84’’ 210 

Sample 5 planktonic Sant Andreu de Llavaneres 3 N 41°33’7.69’’ E 2°29’31.66’’ 7600 

Sample 6 benthic Sant Andreu de Llavaneres 3 N 41°33’7.69’’ E 2°29’31.66’’ 32831 

Sample 7 planktonic Sant Andreu de Llavaneres 4 N 41°33’12.25’’ E 2°29’45.20’’ 6620 

Sample 8 planktonic Sant Andreu de Llavaneres 5 N 41°33’17.06’’ E 2°29’54.47’’ 600 

Sample 9 planktonic L’Ametlla de Mar 6 N 40°52’28.35’’ E 0°47’43.67’’ 1680 

Sample 10 benthic L’Ametlla de Mar 6 N 40°52’28.35’’ E 0°47’43.67’’ 667 

Sample 11 planktonic L’Ametlla de Mar 7 N 40°50’47.90’’ E 0°45’44.04’’ 480 

Sample 12 benthic L’Ametlla de Mar 7 N 40°50’47.90’’ E 0°45’44.04’’ 2071 

Sample 13 planktonic Les Cases d’Alcanar 8 N 40°32’1.00’’ E 0°31’7.24’’ 300 

Sample 14 benthic Les Cases d’Alcanar 8 N 40°32’1.00’’ E 0°31’7.24’’ 6015 

Sample 15 planktonic Les Cases d’Alcanar 9 N 40°33’15.71’’ E 0°31’58.71’’ nd 

Sample 16 benthic Les Cases d’Alcanar 9 N 40°33’15.71’’ E 0°31’58.71’’ nd 
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Table S2. List of primers (underlined) and probes and their respective modifications. 

 

 

 

 

 

 

 

 

 

 

  

Name Sequence (5’-3’) 

Forward O. cf. ovata primer with tail gtt ttc cca gtc acg ac-C3-aca atg ctc atg cca atg atg ctt gg 

Reverse Ostreopsis spp. primer with tail tgt aaa acg acg gcc agt-C3-gca wtt ggc tgc act ctt cat aty gt 

O. cf. ovata capture probe gtc gtg act ggg aaa act ttt ttt ttt ttt tt-C3-SH 

Reporter probe HRP-act ggc cgt cgt ttt aca 
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Fig. S1. Cyclic voltammograms (CVs) and analytical parameters obtained using a bare screen-printed electrode (green line) and a MB-modified screen-printed 
electrode (orange line). CVs were performed using 10 µL of 1 mM [Fe(CN)6]3-/4- (in 0.1 M phosphate buffer solution with 0.1 M KCl, pH 7.2.) at a scan rate of 
50 mV/s. 1 µL of malimide-activated MBs were used, which corresponds to 10 µL of oligocomplex. 

 

 

 Eox (V) Ered (V) ΔE (V) Height Eox (µA) Height Ered (µA) Charge Eox (µC) Charge Ered (µC) 

Bare electrode 0.221 0.093 0.128 3.103 -3.180 1.170 -1.142 

MB-modified electrode 0.291 -0.054 0.345 1.965 -1.752 0.928 0.920 
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Fig. S2. Electrochemical responses of the electrochemical biosensor using DNA from: O. cf. ovata (OO), O. cf. siamensis (OS), O. fattorussoi (OF) and no 
template control (NTC). Error bars are the mean standard deviation, n = 3. 
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Fig, S3, Electrochemical responses corresponding to the stability study of functionalized MBs stored at 4 °C (black bars) and at -20 °C (grey bars), respect to 
day 0 (white bar, reference value). Error bars are the standard deviation of the mean, n = 3. 
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