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Abstract 

Local agri-environmental schemes, including hedgerows, flowering strips, organic management, and a 
landscape rich in semi-natural habitat patches, are assumed to enhance the presence of beneficial 
arthropods and their contribution to biological control in fruit crops. We studied the influence of local 
factors (orchard management and adjacent habitats) and oflandscape composition on the abundance and 
community composition of predatory arthropods in apple orchards in three European countries. To 
elucidate how local and landscape factors influence natural enemy effectiveness in apple production 
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systems, we calculated community energy use as a proxy for the communities’ predation potential based 
on biomass and metabolic rates of predatory arthropods. Predator communities were assessed by 
standardised beating samples taken from apple trees in 86 orchards in Germany, Spain and Sweden. 
Orchard management included integrated production (IP; i.e. the reduced and targeted application of 
synthetic agrochemicals), and organic management practices in all three countries. Predator communities 
differed between management types and countries. Several groups, including beetles (Coleoptera), 
predatory bugs (Heteroptera), flies (Diptera) and spiders (Araneae) benefited from organic management 
depending on country. Woody habitat and IP supported harvestmen (Opiliones). In both IP and organic 
orchards we detected aversive influences of a high-quality surrounding landscape on some predator 
groups: for example, high covers of woody habitat reduced earwig abundances in German orchards but 
enhanced their abundance in Sweden, and high natural plant species richness tended to reduce predatory 
bug abundance in Sweden and IP orchards in Spain. We conclude that predatory arthropod communities 
and influences of local and landscape factors are strongly shaped by orchard management, and that the 
influence of management differs between countries. Our results indicate that organic management 
improves the living conditions for effective predator communities. 
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1. Introduction 

Sustainable agricultural practices and enhanced habitat conservation at local and landscape scales are 
considered key solutions to stop the accelerating degradation of ecosystem services (IPBES, 2018). 
Biological Sustainable agricultural practices and enhanced habitat conservation control of agricultural 
pests is a prominent example of nature’s contribution to human welfare. Favourable local and landscape 
factors can enhance predator communities and biological control (Bengtsson et al., 2005; Bianchi et al., 
2006; Tschumi et al., 2016). In taking responsibility for sustainable land use and ecosystem services, we 
need to identify the effects of factors that explain the variability in arthropod communities and their 
potential services at different spatial scales, from climatic region, to landscape, to the orchard itself and 
its immediate local surroundings. 

The country scale comprises several factors beyond macroclimate and biogeographic species pools. These 
include national policies on pesticides, differences in landscape habitat loss, identity of common crops, 
and availability of public advisory services. At the landscape scale, natural enemies benefit from a high 
proportion of semi-natural habitats (Chaplin-Kramer and Kremen, 2012; but see Hawro et al., 2015; 
Tscharntke et al., 2005). However, landscape effects on natural enemies also depend on taxon-specific 
mobility and dispersal capacity (Galle et al., 2018; Schweiger et al., 2005). For spiders, habitat diversity 
and landscape composition are major determinants of occurrence at the landscape scale (Schweiger et 
al., 2005). In contrast, less mobile predatory arthropods such as earwigs remain mostly unaffected by the 
proportion of crop vs. non-crop cover in the landscape (Happe et al., 2018). Landscape simplification as 
reflected by a high proportion of intensive agricultural cover reduces biological pest control (Rusch et al., 
2016; Tscharntke et al., 2016). Consequently, a reduced proportion of intensive agricultural land and a 
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high landscape complexity are often regarded as of special relevance to enhance biological control 
(Jonsson et al., 2015). For example, in landscapes dominated by cultivated land, biological control of 
aphids in different annual crop systems can be reduced by 46% when compared with more 
heterogeneous landscapes (Rusch et al., 2016). 

Besides country and landscape effects, local factors such as adjacent habitat and orchard management 
influence natural enemies. At both landscape and local scales, the European Union subsidises agri-en- 
vironmental schemes to enhance the ecological value of agro-ecosystems (Batary et al., 2015). These 
schemes differ between countries and can, for example, protect diverse types of agro-ecosystems and 
cultural landscapes, support organic farmers, and enhance local habitat quality for natural enemies (e.g. 
in case of beetle banks and flower strips) (Batary et al., 2015; Ekroos et al., 2014). Semi-natural woody 
habitats such as hedgerows or traditional orchards may shelter overwintering predatory arthropods such 
as coccinellid beetles and spiders (Elliott et al., 2002; Mestre et al., 2018). Improvement of local habitat 
quality in the orchard surroundings, for example by hedgerow restoration, can promote beneficial insects 
and natural pest control (Miñarro and Prida, 2013; Morandin et al., 2016). These habitats are more 
beneficial for predators than for pests and support predatory arthropods in fruit crops by enhancing 
habitat connectivity (Bailey et al., 2010). In addition to woody habitats, herbaceous plants may improve 
living conditions for natural enemies and the delivery of ecosystem services (Lichtenberg et al., 2017; 
Norris and Kogan, 2005). Flower-rich boundaries of crop orchards are particularly important for natural 
enemies that depend on pollen or nectar, which provide sugars and amino acids, for at least one part of 
their life cycle. These floral resources are essential for hoverflies, lacewings, hymenopteran parasitoids 
and omnivorous bugs such as anthocorids (Gurr et al., 2017; Wackers and van Rijn, 2012). Herbal 
boundaries can also enhance the trait diversity of spiders, which may increase the biological control 
potential of spider communities (Galle et al., 2018). 

Another factor acting at the local scale is organic management. It increases the abundance, diversity, and 
service of natural enemies in various perennial and annual crop systems (Lichtenberg et al., 2017; 
Muneret et al., 2018; Todd et al., 2011). However, its positive effect on the abundance of predatory 
arthropods, e.g. of spiders, differs between landscapes (Bengtsson et al., 2005). The interaction of 
landscape and local management is well predicted by the intermediate landscape complexity hypothesis, 
which states that organic management is more beneficial at low and intermediate levels of landscape 
complexity, but less effective in highly-intensified and in natural landscapes (Tscharntke et al., 2012). 
Similarly, the impact of local habitat on the occurrence of natural enemies in orchards strongly depends 
on management (Lefebvre et al., 2016), but studies on interactions between management, adjacent 
habitat, and landscape factors on natural enemy communities are still rare (Garda et al., 2018; Martin et 
al., 2016). Comprehensive studies including these factors and their interactions are needed to develop 
agricultural practices and policies to promote effective and sustainable biological control across Europe. 

In the production of apple, the most important European fruit crop (Eurostat, 2017), maintaining 
biological control is particularly important. Biological control by predatory arthropods in apple orchards 
has a high economic value as it may substantially reduce insecticide applications (Cross et al., 2015). 
Predators such as birds, earwigs, lacewings, bugs, coccinellids, syrphids and spiders have been identified 
as important biocontrol agents in apple orchards (Porcel et al., 2018; Simon et al., 2010; Solomon et al., 
2000). They contribute crucially to the regulation of severe apple pests such as the rosy apple aphid Dys- 
aphis plantaginea Passerini, the woolly apple aphid Eriosoma lanigerum Hausmann, and tortricid moths 
including the codling moth Cydia pomonella L. (Solomon et al., 2000). Hence, enhancement of these 
natural enemies can lower the level of pest pressure and decrease fruit damage (Cahenzli et al., 2017; 
Letourneau and Bothwell, 2008). Indirect positive effects from increased natural enemy abundance can 
even partly compensate for lower yield in organic apple orchards compared to integrated production (IP) 
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orchards (Samnegard et al., 2018). 

Here, we assess the effects of orchard management and features of adjacent habitats (local factors) as 
well as the effects of landscape composition (proportion of fruit orchard cover) and diversity (landscape 
factors) on predatory arthropods in the major apple production regions of three European countries 
(Spain, Germany, Sweden). Our aim is to identify favourable local and landscape factors to support 
predatory arthropods and to enhance their predation potential. We assess abundance of predatory 
arthropods in the study orchards and calculate their energy use by integrating predator body mass as a 
trait- based measure for predation potential (Perovic et al., 2018). Energy use has been suggested as a 
proxy for prey consumption by predators and may serve as a currency for assessing ecosystem 
functioning (Brose et al., 2008; Hines et al., 2015). 

We test the following hypotheses: (1) The composition of predatory arthropod communities differs 
between countries and management types (organic vs. IP). (2) Responses to agricultural management and 
to local and landscape factors are taxon-specific: (a) most predatory arthropods (except earwigs) benefit 
from reduced orchard cover at the landscape scale and from enhanced landscape diversity; (b) a high 
cover of local, orchard-adjacent woody habitats as well as organic management support predatory 
arthropods but organic management may be more effective at intermediate levels of orchard cover; (c) 
abundance of flower-visiting predatory arthropods (e.g. bugs, lacewings and hoverflies) is higher in 
orchards with high local plant species richness. (3) Effects of local agri- environmental schemes and 
landscape factors differ between management types; they are more effective in supporting predatory 
arthropods in IP than in organic orchards. (4) Organic management, high quality local habitats, a reduced 
orchard cover at the landscape scale and increased landscape diversity enhance the overall biological 
control potential of predator communities, measured as community energy use. 

 

2. Material and methods 

2.1 Predator communities 

Predator communities were surveyed in 2015 in 86 apple orchards in Spain, Germany and Sweden. 
Orchard management included integrated production (IP) and organic management (ORG). Survey 
orchards were located in northeast Spain (Catalonia, hereafter ‘SP’; 14 IP and 14 ORG), southwest 
Germany (lake Constance region, Baden- Wurttemberg, hereafter ‘GE’; 15 IP and 15 ORG), and south 
Sweden (Skane, hereafter ‘SW’; 14 IP and 14 ORG) (Fig. 1; see Table A1 for orchard characteristics). The 
minimum distance between orchards of different management types was 1 km in SP, 2 km in GE, and 0.3 
km in SW. We conducted beating sampling on one branch of each of 24 randomly selected trees per 
orchard along one (SP and SW) or two (GE) transects. Branches were selected to occur at a standardized 
height of 1.2-1.5m, and sampling targeted a branch section conforming to the diagonal width of the 
beating tray (0.60 m). Transects measured 40 m and started at the edge of the orchard. To cover different 
exposures, we sampled branches on both sides of each transect. We took samples when fruitlets were 
starting to grow (10-40% of final fruit size; SP: May 19 - June 2; GE: June 15-22; SW: June 3-9) between 9 
a.m. and 5 pm. Arthropods were sorted from vegetation material and stored in 70% ethanol for 
quantification and identification under the stereo microscope. Predator abundance was calculated as the 
total number of predatory arthropods collected per orchard. 

 

2.2 Landscape composition and diversity 

We assessed landscape categories (Fig. 1) based on official digital maps for SP and GE (Carreras and 
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Diego, 2009; LGL, 2016; SIOSE, 2015), and spatial land-use data from the Swedish Board of Agriculture 
(Integrated Administrative Control System, IACS) for SW. The Geographic Information Systems and 
Remote Sensing software used were ArcView 10.3.1 and MiraMon. Landscape analysis targeted cover (%) 
of orchards (excluding orchard meadows), grassland, arable land and forest (Table A1) within a 1 km 
radius around the centre of each transect. To avoid collinearity, we used % orchard cover as a measure of 
landscape composition. A high proportion of fruit orchard cover can be seen as a measure for 
homogeneous landscape composition and as a proxy for high land-use intensity in the studied apple 
production regions (Samnegard et al., 2018). Additionally, to quantify landscape diversity, we calculated 

the Shannon diversity index, 𝑆𝐻𝐷𝐼 = − ∑ 𝑝𝑖 𝑙𝑛 𝑝𝑖
𝑅
𝑖=1  where pi is the proportion of landscape patches 

belonging to the ith type of land cover (Shannon, 1948). The SHDI is recommended for landscape analyses 
in an ecological context (Nagendra, 2002). Landscape categories used to calculate SHDI were % cover of 
orchards, grassland, arable land, forest, semi-natural habitat (e.g. orchard meadows, woody habitats), 
sealed land, water bodies and ‘other cover types’ within a 1 km radius. 

 

2.3 Local habitat quality 

Hedgerows, forest edges and other woody elements, including orchard meadows, were considered 
relevant semi-natural woody habitats at the local scale (Fig. 1). We calculated the cover (m2) of these 
woody structures within a radius of 20 m from the first tree (orchard edge) of the survey transects (Table 
A1). Local habitat quality and availability of floral resources was estimated by plant species richness in 
habitats adjacent to orchards (Fig. 1). We conducted vegetation surveys within a radius of 20 m from the 
first tree of the survey transects (orchard edge), during apple bloom. We assessed overall species richness 
of plants in the herb and shrub-layer using six quadrats of 1 m2 per orchard in GE and SW. In SP, plant 
species richness was assessed in three quadrats of 1 m2 per habitat type (e.g. abandoned field, em-
bankment, forest edge, grassy pathway, and hedgerow) and orchard. To account for differences in the 
number of quadrats per orchard in SP, we used sample-based rarefaction (Gotelli and Colwell, 2001). 

 

2.4 Orchard management 

All apple growers conducted standard pesticide treatments using air-assisted sprayers, following label 
recommendations and advice from local plant protection consultants. IP growers applied synthetic in-
secticides, fungicides and fertilizers following IOBC guidelines (Malavolta and Cross, 2009). ORG orchards 
were certified under European and national legislation (Council Regulation (EC) No 834/2007). ORG 
growers used natural plant extracts, microorganisms, viruses, mating disruption, and fungicides based on 
sulphur, copper and lime sulphur for pest and disease control (Table A2). ORG growers tilled tree rows 
instead of applying herbicides and used only organic fertilizers. Management intensity within categories 
IP and ORG differed between countries because national regulations restrict the use of some active 
compounds, e.g. Azadirachtin, Pyrethrine, Pirimor or Phosmet (Table A2). Growers can adjust 
management intensity within the range of national regulations but we did not get access to data on 
treatments for all orchards. Some extensive orchards in SW and two orchards in SP were uncertified but 
were considered organic because they were managed as under organic guidelines, with no chemical 
inputs. 

 

2.5 Energy use of the predator community 

Metabolic rate, i.e. the amount of energy expended by an organism at rest, has been identified as a key 
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trait of arthropods in responding to the environment, affecting biological control services at local and 
landscape scales (Moretti et al., 2017; Perovic et al., 2018). The energy use of the local predator 
community integrates each species abundance and body mass and can, to some extent, be used as a 
proxy of predation potential because individual metabolic rates determine consumption rates according 
to the metabolic theory of ecology (Brown et al., 2004). The community energy use of the local predator 
community is frequently used in the context of food webs (Brose et al., 2008; Thompson et al., 2012). 
Here, we apply it as an indicator for predation potential. It was calculated for each orchard based on dry 
body mass and abundance of collected specimens of each predator species (Table A3) using a metabolic 
model (Ehnes et al., 2011):  

ln 𝐶 = ∑ [(ln 𝑖𝑠 + 𝑎𝑠 ln 𝑀𝑠 − 𝐸𝑠 (
1

𝑘𝑇
)) ×  𝐴𝑠]

𝑆

𝑠=1

 

where C = predator community energy use (J h-1), Ms = dry mass (g) of species s, k = Boltzmann’s constant 
(8.62 x 10-5 eV K-1), T = average local summer temperature in Kelvin and As = total abundance of species s. 
Intercepts is, allometric exponents as and activation energies Es (eV) are taxon-specific and differ for 
arachnids and insects (see Table 2 in Ehnes et al., 2011). The community energy use is thus summed 
across all S species and multiplied by their respective abundance. 

To parameterize the model, we measured dry mass (mg) of one adult female (if available and sex could be 
identified; otherwise dry mass of an adult male, or an unidentified adult was used) of each species. The 
individual was dried until mass constancy was reached (at least 48 h at 45 °C). Juvenile stages and 
morphospecies (species that could not be identified to species level but were morphologically distinct) 
were assigned a taxon-specific average dry mass (and metabolic rate) value (for example, unidentified 
coccinellid larvae would be assigned the average coccinellid dry mass; Table A3). To calculate the average 
of summer temperature in each region, we used the minimum and maximum average of the June mean 
daily temperature, based on data from the last 30 years (WMO, 2018) for WMO-listed cities closest to the 
study area: Lleida (SP; 22.3 °C), Girona (SP; 20.5 °C), Freiburg (GE; 18.0 °C) and Malmo (SW; 15.5 °C). 

 

2.6 Statistical analysis 

All statistical analyses were conducted using R version 3.3.2 (R Core Team, 2016). We first checked for 
effects of country (SP, GE and SW) and management (IP vs. ORG) on the predator community composition 
using the ‘vegan’ package (Oksanen et al., 2016). We applied the ‘adonis’ function to conduct a 
permutational multivariate analysis of variance (Anderson, 2001; Oksanen et al., 2016) based on Bray-
Curtis dissimilarities, which were calculated from the relative abundance (proportion at orchard level) of 
each taxon. To test for homogeneity of multivariate dispersion (variance), we applied the ‘betadisper’ 
function (Anderson, 2006). Subsequently, we calculated indicator values of taxa (IndVal; the product of 
the relative frequency and relative average abundance in clusters) for each management type in each 
country separately (Dufrene and Legendre, 1997) using the ‘indval’ function of the ‘labdsv’ package 
(Roberts, 2016). 

Nonmetric multidimensional scaling (NMDS) ordination plots visualised differences in community 
composition across management types and countries. For SP, we excluded one IP orchard from multi-
variate analysis because no predatory arthropods were found. We added arrows to indicate the grouping 
of predator taxa (predictors) using the ‘vegan’ function ‘envfit’ at P ≤ 0.001 with 10,000 permutations. 
Some orchards had the same proportion value and overlapped in the ordination and therefore not all 
included orchards are displayed. 
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To assess management effects on the abundance of each predator group (spiders, beetles, earwigs, 
predatory flies, predatory bugs, lacewings, and harvestmen) between countries, we used generalised 
linear models (GLM) with Poisson distribution; accounting for overdispersion by using a quasi-GLM or 
negative binomial distribution when necessary. We included ‘country’ and ‘management’ as categorical 
predictors, allowing for first order interactions. Variability accounted for (% deviance explained = null 
deviance - residual deviance / null deviance) is presented to show the goodness of fit of the model. 
Whenever a variable with multiple levels was significant in the GLM, we applied post-hoc tests (Table A4) 
using the ‘glht’ function for multiple comparisons of means (simultaneous tests for general linear 
hypotheses) with Tukey contrasts. 

We used GLMs to analyse the effects of local and landscape factors on predator abundance for each 
predator group in each country separately. We included management (IP vs. ORG), and the continuous 
variables local woody habitat cover, local plant species richness, % cover of fruit orchards and landscape 
diversity (SHDI). We allowed first level interactions among management and other predictors. Given the 
expected quadratic response of management effect to landscape cover predicted by the intermediate 
landscape complexity hypothesis (Tscharntke et al., 2012), we additionally allowed for an interaction of 
management with the second order term of the two landscape variables, % cover of fruit orchards and 
SHDI. Subsequently, we excluded terms that were non-significant (P > 0.05) based on a stepwise 
backwards procedure to avoid model over-parameterisation. 

We applied GLMs with Poisson distribution. In cases of overdispersion or heteroscedasticity of residuals 
between predictor levels, we either fitted GLMs with a negative binomial error distribution or generalised 
linear mixed-effects models (GLMM) (lme4 package; Bates et al., 2015) with Poisson distribution including 
orchard identity as an observation- level random effect (Harrison, 2014). In case of zero inflation, we used 
the AD model builder of the ‘glmmADMB’ package (Skaug et al., 2016). 

To test the effect of local and landscape factors on community energy use (J h-1), we applied linear 
models. Energy use was log-transformed, adding a value corresponding to half the value of the smallest 
amount of energy use in the case of zero energy use. We calculated rarefied plant species richness for SP 
using the function ‘rarefy’ in the ‘vegan’ package (Oksanen et al., 2016). We tested for collinearity be-
tween predictors by calculating variance inflation factors (VIF; Naimi et al., 2014). When we detected 
collinearity (VIF > 3) after scaling, strongly correlated variables or their interactions were dropped (Zuur et 
al., 2010). We checked distributions and Spearman rank correlations between all relevant response 
variables as well as local and landscape variables (Figs. A4-6). Normality and homoscedasticity of residuals 
were checked by visual inspection using the ‘DHARMa’ package (Hartig, 2017) for all but zero-inflated 
models (not implemented in the ‘DHARMa’ package). Finally, we used the car package (Fox and Weisberg, 
2011) to conduct likelihood ratio tests to establish the significance of the main factors in all GLMs, 
GLMMs and linear models. Fig. 2 and figures in the appendix were visualized using the ‘ggplot2’ package 
(Wickham, 2016). 

 

3. Results 

We sampled 1509 predatory arthropods in 86 orchards. The arthropods were identified as belonging to 
91 species in 77 genera. Additional 17 morphospecies belonged to unidentified genera (resulting in 108 
species in total; Fig. A1, Table A3). The predators belonged to seven arthropod groups: spiders (Araneae, 
40 spp.), beetles (Coleoptera, 24 spp.), earwigs (Dermaptera, 2 spp.), predatory flies (Diptera, 28 spp.), 
predatory bugs (Heteroptera, 9 spp.), lacewings (Neuroptera, 3 spp.), and harvestmen (Opiliones, 2 spp.). 
Overall, predator abundance was higher in ORG than in IP orchards (Table A3). Orchards in GE showed 
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higher predator abundances than in SP and SW (Table 1, Fig. 2). Specifically, in SP, we found less than half 
as many predatory arthropods than in GE or SW (Table 1, Fig. 2). Spiders were abundant in all countries, 
with Araniella opisthographa Kulczynski being the most abundant species and Philodromus Walckenaer 
being the most abundant genus. Other frequent taxa were bugs, mainly anthocorids and mirids, beetles, 
mainly cantharids, adult and larval coccinellids, and predatory dipterans, mainly dolichopodids, empidids, 
hybotids and larval syrphids. In SP, we found more Forficula pubescens Gene earwigs than F. auricularia L, 
but earwigs were generally rare in the samples. In GE and SW all earwigs were F. auricularia (Table A3). In 
GE, earwigs and predatory bugs comprised a large proportion of the predator community (Fig. 2). 
Dipterans were more abundant in SW than in the other countries (Table 1). Lacewings and harvestmen 
had low abundances in most orchards (Fig. 2, Table 1). As expected, there were strong positive 
correlations between abundance and predator community energy use in each country (SP: ρ = 0.86, P < 
0.001; GE: ρ = 0.54, P = 0.002; SW: ρ = 0.71, P < 0.01). 

 

3.1 Predator responses to management in different countries 

The interaction between country and management was significant for all predators (summed up over all 
groups) and for four out of seven predator groups (Fig. 2, Table A4). Depending on the country, the 
predator community composition differed between ORG and IP orchards (ADONIS: pseudo-F5,79 = 2.51, P 
= 0.018, R2 = 0.32, Fig. 3). Dispersion among groups (multivariate spread) was homogeneous (beta- 
dispersion: pseudo-F5,79 = 1.78, P = 0.126). The analysis of indicator values for orchard management in 
each country revealed only one indicator taxon for IP orchards in SW: Opiliones: 0.5 (9), Padj = 0.027; 
IndVal with frequency in parentheses. For ORG orchards, several indicator taxa were observed: three in 
SP (Coleoptera: 0.7 (14), Padj = 0.018; Araneae: 0.6 (23), Padj = 0.047, Dermaptera: 0.5 (8), Padj = 0.026), one 
in GE (Heteroptera: 0.7 (22), Padj = 0.015), two in SW (Coleoptera: 0.7 (21), Padj = 0.060; Diptera: 0.7 (23), 
Padj = 0.060)). 

 

3.2 Country-specific responses to local and landscape factors 

Effects of local and landscape factors differed between countries and predatory arthropod groups (Table 
1). We observed no consistent response of predatory arthropod groups to either of the tested local and 
landscape factors or to interactions between management and other factors across all three countries. In 
SP, high orchard cover at the landscape scale was associated with predator abundance in IP but not in 
ORG orchards, where predator abundance was constantly high (Fig. A2). Landscape diversity did not 
explain variability in predator abundance in any of the countries. We did not find a management-
dependent peak in predator abundances at intermediate levels of orchard cover or intermediate 
landscape diversity. Local woody habitat cover influenced only two predator groups, earwigs and 
harvestmen. It enhanced harvestmen abundances in GE but showed contrasting effects on earwig 
abundances in different countries. It was associated with high earwig abundance in SW but with reduced 
abundance in GE (Table 1). In SP, woody habitat cover was very low (Table A1) and did not influence 
predator abundances. Local plant species richness (Table A5) in adjacent habitats reduced the abundance 
of predatory bugs in Spanish IP orchards (SP: P = 0.010, Table 1; Fig. A2). The effect of plant species 
richness was similar but not statistically significant for Heteroptera in Swedish IP and ORG orchards (P = 
0.070; Table 1). The analysis of local and landscape factors confirmed the sensitivity of predatory 
arthropods to orchard management (as already suggested by indicator values) for all predator groups 
except for beetles in SP (Table 1). However, most predator groups were influenced in only one or two 
countries, and the effects of management were not consistent (Table 1). In SP, the positive influence of 
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ORG management on predator groups was reflected in predator community energy use. However, effects 
of management on energy use were not always similar to effects on abundance. Energy use was generally 
less sensitive than abundance (Table 1). 

 

4. Discussion 

4.1. Predator responses to management in different countries 

We expected the responses of the predator communities to apple management to be consistent across 
Europe. Instead, predator communities showed country-specific differences in their sensitivity to 
management. Total predator abundance differed between management types only in Spain (SP) 
(significantly) and Germany (GE) (marginally significant), with higher abundances in ORG. This finding can 
be partly explained by country-specific differences in management intensity in both management types 
(IP and ORG), such as the restricted use of several insecticides in Sweden (SW) for both management 
types. However, lack of pesticide data at the orchard level in SW limits our understanding of management 
intensity in this region (Table A2). Alternatively, some of the different responses of the regional predator 
communities to management may be explained by latitudinal differences. These differences may for 
example influence predator and prey faunas, tree cultivar, and predominant land-cover types and local 
habitats (Mody et al., 2017; Nyffeler and Sunderland, 2003). 

 

However, predator community responses to management at the country scale can be better understood 
when considering specific taxonomic groups (Fig. 2). It has been proven that predators such as lacewings, 
coleopterans, earwigs, and bugs are sensitive to insecticides applied in apple orchards (Fountain and 
Harris, 2015; Mills et al., 2016). Sub-lethal effects of both organic and synthetic pesticides on predatory 
bugs and other predatory arthropods are well known (Biondi et al., 2012; Desneux et al., 2007; Muller, 
2018). Porcel et al. (2018) reported enhanced natural enemy abundance (and increased biological control 
of aphids) in organic apple orchards compared to conventional apple orchards; predatory bugs, which 
played a key role in regulating the growth of aphid colonies, were the group that benefited most from 
organic management. Our results support these findings and point to at least three differences in 
insecticide application between countries (Table A2). (1) ORG management reduced abundances of 
earwigs and harvestmen in SW and had marginally significant negative effects on predatory flies in GE. 
The only commonly applied ORG-insecticide in SW known for side effects on earwigs was Pyrethrine 
(Peusens and Gobin, 2008). Products based on this active ingredient were not permitted in SP and only 
rarely applied in GE. The application of neem (Azadirachta indica) products as ORG insecticides in GE and 
SP but not in SW may partly explain patterns of dipteran abundance. Azadirachtin, a component of neem 
oil that repels feeding and inhibits moulting, can harm dipterans, especially those in their larval stages 
(Schmutterer, 1997; Spollen and Isman, 1996). (2) Focusing on IP orchards, we found lower predator 
abundances for spiders and earwigs in SP that can be explained as side effects of synthetic insecticides. IP 
growers in SP (exclusively) applied several insecticides containing the active compounds Chlorpyrifos or 
Deltamethrin, both known for their harmful side effects on spiders (Marko et al., 2009; Pekar and Benes, 
2008), and Phosmet, which belongs to the group of organophosphates, known for their harmful side 
effects on earwigs (Malagnoux et al., 2015a; Peusens and Gobin, 2008). (3) Regular application of 
Pirimicarb and Thiaclo- prid in IP may explain a positive effect of ORG on bugs in GE (van de Veire et al., 
2002; van de Veire and Tiny, 2003). 

However, the absence of spray information at the orchard level limits our capacity to link agrochemical 
applications to predator abundance. In addition, soil management in the tree row (herbicide application 
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in IP; mulching and mechanical weed control or tillage in ORG) can affect epigeic predators and earwigs 
(Miñarro et al., 2009; Moerkens et al., 2012). The non-consistent response of earwigs to management in 
SW and SP may have been triggered by differences in regional management and in species composition. 
In SP, we found two earwig species, whereas only one species was present in SW (and GE). The two 
species found in SP markedly differed in their sensitivity to management: Forficula auricularia was 
common in both IP and ORG orchards, whereas F. pubescens was much less abundant in IP orchards 
(Happe et al., 2018). On the other hand, earwigs’ sensitivity to tillage during hibernation and below-
ground brood care may explain lower F. auricularia abundances in ORG orchards in SW (Moerkens et al., 
2012). When interpreting abundance patterns of predatory arthropods, it should be considered that 
species richness and regional species composition differed not only for earwigs but also for other focal 
groups such as predatory flies and spiders (Fig. A1, Table A3). In addition to the toxic effects of pesticides, 
differences between ORG and IP may be partly explained by the higher pest densities in ORG orchards, 
which may support larger predator populations (Samnegard et al., 2018). 

 

4.2 Country-specific responses to local and landscape factors 

Intensive orchard management may alter or even counteract other local factors as well as landscape 
factors (Tscharntke et al., 2016), and landscape features may alter the effectiveness of local habitat and 
organic management in supporting biological control (Jonsson et al., 2015; Tscharntke et al., 2012). In this 
study, orchard management directly influenced the abundance of six out of seven predatory arthropod 
groups (sometimes in opposite directions, Table 1). Yet, interactions between management and local or 
landscape factors were only evident in two cases. Firstly, plant species richness was associated with low 
predatory bug abundance in IP but not in ORG, indicating that effects of local habitat are management-
dependent. Secondly, ORG management enhanced predator abundance only at low levels of orchard 
cover in Spanish landscapes. The intermediate landscape complexity hypothesis highlights the 
effectiveness of ORG management to support biodiversity at intermediate cover levels of semi-natural 
habitats and non-crop areas, which provide arthropod biodiversity to crops through spillover effects 
(Batary et al., 2010; Tscharntke et al., 2012). High levels of orchard cover at landscape scale reduced the 
availability and accessibility of semi-natural habitats. This may be of special relevance in IP orchards, 
where predatory arthropods are subjected to greater hazards. A peak in predator abundance in ORG 
orchards at intermediate levels of landscape diversity or orchard cover was not evident. 

At the local scale, woody habitat had mixed effects on predator abundances. High local woody habitat 
coverage enhanced earwig abundance in SW (but reduced it in GE), and harvestmen abundance in GE. In 
the context of augmenting biological control, woody habitat quality has often been characterised in terms 
of woody plant species richness, cover and connectivity (Dainese et al., 2016; Malagnoux et al., 2015b). 
For example, linyphid spiders have been reported to use continuous unbroken hedgerows with a high 
diversity of woody species as source habitats, spilling over to neighbouring crops (Garratt et al., 2017). 
Differences in quality of woody structures may have driven the contrasting responses of earwigs and 
harvestmen to woody elements in the three countries. On the other hand, plant species richness did not 
alter earwig or harvestmen abundances in either country (Table 1). It may be that regional differences in 
the response of the two groups were triggered by spillover constrained by the density of prey in the 
woody habitat. Results for harvestmen (and lacewings) should be interpreted cautiously because the 
number of individuals was low (Table 1). 

Other studies have provided evidence that enhancing local plant diversity by establishing flower strips 
improves living conditions for beneficial arthropods (Batary et al., 2015; Letourneau et al., 2011; 
Lichtenberg et al., 2017). A high local flower richness is especially important for natural enemies in 
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orchards that lack woody habitats in the vicinity (Saunders and Luck, 2018). Contrary to these findings, we 
observed negative influences of plant species richness on predatory bugs in SW (marginally significant), 
and no effects on the other groups. Some particularly prominent bugs in apple orchards (e.g. anthocorids, 
Table A3) use floral nectar and pollen as a food resource (Wackers and van Rijn, 2012). However, plant 
species richness did reduce rather than enhance bug abundance and the response of bugs to plant 
species richness was inconsistent among countries. The presence and flower cover of a few favoured 
plant species may be more relevant than total plant species richness (Wackers and van Rijn, 2012). On the 
other hand, bugs could be more attracted by flower-rich adjacent habitats than by intensively managed IP 
orchards. Results for orchards in SP could support this explanation: In SP high plant species richness was 
associated with low bug abundance in IP but not in ORG orchards (Fig. A2). Management intensity may 
reduce the attractiveness of the orchard as a habitat, especially if food resources for beneficial 
arthropods are affected. For instance, insecticide applications can diminish prey insects, and weed control 
may reduce plant species richness and flower cover (Cross et al., 2015; Miñarro, 2012; Simon et al., 2010). 
In this case, high-quality adjacent habitats, such as sown flower strips, can potentially provide a suitable if 
not a better environment for a wide range of herbivores. As a result, natural enemies may not disperse 
from the adjacent habitat into the crop (Holland et al., 2016; Tscharntke et al., 2016). This could also 
explain the lower earwig abundance in orchards with enhanced woody habitat cover in GE (Happe et al., 
2018). 

Effects of local and landscape factors on overall predation potential (measured as energy use) mainly 
resembled the response of the largest and most abundant taxon in each country. Such large, abundant 
predatory arthropods (e.g. spiders in SP and earwigs in GE) are likely to contribute strongly to biological 
control of their specific prey taxa. In general, community energy use was less sensitive than abundance to 
local and landscape factors, reflecting body mass distribution (Fig. A3). The effectiveness of predators is 
well predicted by mean predator body size with larger predators showing higher per capita consumption 
rates (Emmerson and Raffaelli, 2004; Rusch et al., 2016). Positive influence of higher abundance and 
biomass on biological control is necessarily constrained in cold climates by energetic demand (Londono et 
al., 2015; Schneider et al., 2012). Energy use may therefore be more relevant than abundance and 
biomass to describe the biological control potential of predator communities along a geographical 
gradient with large climatic differences. 

 

5. Conclusion 

Our results suggest that management plays an important role in shaping communities of predatory 
arthropods in orchards across Europe. ORG management enhanced abundance of some predator groups 
depending on country but only a few generalist predator groups benefited from high quality local habitat. 
Landscape composition and interactions of orchard management with local and landscape factors 
seemed to be less relevant for predators than local management and habitat quality. Predation potential 
(energy use by the predator community) can be enhanced by ORG management but it remains largely 
unaffected by local and landscape factors. We conclude that conservation measures and agri-
environmental schemes to foster effective predator communities in apple orchards need to be well 
adapted to the target region. They should take the taxonomic identity of predatory arthropods and 
region-specific management intensity into account. The local knowledge of growers and their advisers on 
specific site conditions and requirements from ecosystem services may be the key to more targeted and 
dynamic management strategies. 
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Table 1. Effects of local and landscape factors1 on (A) abundance of seven predatory arthropod groups and on (B) energy use 
of the predator community in apple orchards in Spain (SP), Germany (GE) and Sweden (SW); for each predator group, total 
abundance across sites for each country (number of individuals in all orchards) and the number of orchards in which the 
predator group was recorded (in parentheses) are indicated in bold. Effects on (B) total energy use by the predator community 
in bold as well. Orchard cover (%) was assessed at landscape scale (within 1 km), orchard management (IP vs. organic), plant 

species richness and woody habitat cover (m2) at local scale (within 20 m). χ 2 - and P-values2 are given for reduced models 
(stepwise-backward selection) with estimates ± S.E. in parentheses. ‘NA’ indicates that no analysis was possible, ‘n.s.’ that no 
significant effect was found. 

  SP (N=28) 
 

GE (N=30)  SW (N=28) 

      
(A) Abundance      
All predatory arthropods 224 (27)a  755 (30)b  530 (28)a 

Management 
χ2 = 16.07 
(1.25±0.31) 
P < 0.001 *** 

 
χ2 = 3.27 
(0.37±0.20) 
P = 0.070 

 n.s. 

Orchard cover (%)1 
χ2 = 3.17 
(0.43±0.23) 
P = 0.075 

 n.s.  n.s. 

Management × orchard cover (%)1 
χ2 = 7.08 
(-0.84±0.31) 
P = 0.008 ** 

 n.s.  n.s. 

      

Araneae 89 (23)a  201 (30)a  261 (28)a 

Management 
χ2 = 10.69 
(1.11±0.35) 
P = 0.001 ** 

 n.s.  n.s. 

      

Coleoptera 58 (14)c, d  13 (7) c  55 (21)a 

Management n.s.  n.s.  χ2 = 9.52 
(1.17±0.39) 
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P = 0.002 ** 

      
Dermaptera 21 (8)a  290 (26)a  36 (14)c 

Management 
χ2 = 11.72 
(3.00±1.12) 
P < 0.001 ***  

n.s  
χ2 = 6.89 
(-2.08±0.79) 
P = 0.009 ** 

Woody habitat cover1 n.s.  
χ2 = 9.73 
(-0.003±0.001) 
P = 0.002 ** 

 
χ2 = 4.87 
(1.00±0.45) 
P = 0.027 * 

      
Diptera 6 (2)c  15 (13)c  136 (23)b 

Management n.s. 

 

χ2 = 3.00 
(-1.01±0.58) 
P = 0.083 

 
χ2 = 3.93 
(0.92±0.46) 
P = 0.047 * 

      
Heteroptera 43 (15)b  213 (22)a  9 (7)c 

Management 
χ2 = 7.54 
(2.83±0.87) 
P = 0.006 **  

χ2 = 11.8 
(1.63±0.46) 
P < 0.001 *** 

 n.s. 

Plant species richness1 
χ2 = 13.20 
(-2.18±0.60) 
P < 0.001 ***  

n.s.  
χ2 = 3.27 
(-0.90±0.50) 
P = 0.070 

Management × plant species 
richness1 

χ2 = 6.66 
(1.76±0.68) 
P = 0.010 **  

n.s.  n.s. 

      
Neuroptera 6 (4)c  9 (7)c  15(10)c 
      
Opiliones 1 (1)  14 (9)c  18 (9)c 

Management NA  n.s.  
χ2 = 6.05 
(-2.76±1.12) 
P = 0.014 * 

Woody habitat cover1 NA  
χ2 = 3.94 
(0.78±0.39) 
P = 0.047 * 

 n.s. 

      

(B) Energy use 9.83 J h-1  55.1 J h-1  17.9 J h-1 

Management 
F1,26 = 23.95 
(1.59±0.33) 
P = <0.001***  

n.s.  n.s. 

Woody habitat cover1 n.s. 

 

F1,28 = 3.08 
(-0.002±0) 
P = 0.09 

 n.s. 

 

1continuous variables were scaled to decrease VIF below 3; 2ANOVA type III; aGLM: negative binomial with log-link; bGLMM: 
poisson with log-link and observation level random effect in case of overdispersion; czero-inflation models glmmADMB with 
observation level random effect in case of overdispersion; dpositive effect of plant species richness on Coleoptera in Spain (χ 

2 = 24.99 (+), P < 0.001) if outlier is included (orchard E7: 33 years old). 
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Fig. 1. Scales considered in this study: (A) country: Spain (SP), Germany (GE) and Sweden (SW); (B) landscape: composition 
and diversity within a 1 km radius around the orchard; (C) local scale: includes (C1) local habitat quality, i.e. (a) semi-natural 
woody habitat cover and (b) plant species richness, and (C2) orchard management (integrated production vs. organic 
management). 

 

 

 

 

Fig. 2. Abundance (number of individuals per 24 trees per orchard) of seven predator taxa in apple orchards in Spain (SP), 
Germany (GE) and Sweden (SW). Effects of country (C) and management (M; integrated production ‘IP’ vs. organic ‘ORG’) on 
the abundance of each taxon are indicated within each plot (see Table A4 for summary statistics and post-hoc tests). Empty 
circles indicate outliers. 
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Fig. 3. Ordination of predatory arthropod communities in apple orchards in Spain (SP), Germany (GE) and Sweden (SW) for 
two management types: in¬tegrated production (IP) and organic management (ORG). Grouping of taxa (arrows) along the 
two first axes of the NMDS (stress = 16.8%, 20 procrustes). Arrow length indicates the strength of predictors (taxa) fitted 
onto the ordi¬nation for P ≤ 0.001. 

 

 

 




