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Abstract 25 
 26 

In captive grey mullet (Mugil cephalus) juveniles, the weaning stage overlaps the period where there are 27 

changes in the ontogeny of digestive enzymes as the fry transit from carnivory to omnivory. The aim of this 28 

study was to evaluate growth, survival, weight distribution and the activity of pancreatic and brush border 29 

digestive enzymes when fry are fed a carnivorous, herbivorous or omnivorous weaning diet.  30 

 31 

Fifteen 17-L aquaria in a flow through system with 40 ‰, UV treated, temperature (24.5 ± 0.5 ºC) controlled  32 

seawater were stocked with eighty-five 23 dph grey mullet larvae per aquarium. This allowed the testing of 33 

three weaning dietary treatments, differing in their protein and carbohydrate content, in 5 replicate aquaria per 34 

treatment from 24-53 dph. Diet 1 was the dried macroalgal species Ulva lactuca and was designated as a low 35 

protein:high carbohydrate herbivorous diet. Diet 2 was a commercial microencapsulated starter feed 36 

designated as a high protein:low carbohydrate carnivorous diet. Diet 3 was a 1:1 w/w mixture of diets 1 and 37 

diet 2 representing an omnivorous feeding regime.  38 

 39 

The average final weight of the omnivorous feeding fish was significantly (P < 0.05) higher (203.9 ± 10.0 mg 40 

dry weight, dw) than their carnivorous (163.3 ± 7.1 mg dw) and herbivorous feeding (111.8 ± 14.0  mg dw) 41 

cohorts.The population of fish fed the herbivorous diet demonstrated a significantly (P = 0.02) higher 42 

percentage of smaller fish (<100 mg) than the omnivorous and carnivorous feeding fish. In contrast, there was 43 

a markedly (P = 0.008 and P = 0.001) higher percentage of larger (200-400 mg) fish from the carnivorous and 44 

omnivorous treatments, respectively, than fish fed the herbivorous diet. Pancreatic α-amylase, alkaline 45 

protease and tripsin activity significantly rose when dietary carbohydrate increased, whereas chymotrypsin 46 

and lipase activities were independent of the type of diet (P > 0.05). The activity levels of brush border alkaline 47 

phosphatase and intracellular leucine alanine peptidase were similar in grey mullet fry fed the carnivorous and 48 

omnivorous diets, but were higher than those in fish fed the herbivorous diet (P < 0.05). The intestinal 49 

maturation index exhibited the highest and lowest values in mullet fry fed the carnivorous and herbivorous 50 

diets, respectively, whereas those from the omnivorous group showed intermediate values (P = 0.03). This 51 

study broadly suggests that aquaculture feeds for juvenile grey mullet should be designed for omnivorous 52 

feeding habits.  53 

 54 
  55 
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 56 
1. Introduction 57 

 58 

Grey mullet (Teleostei, Mugilidae) larvae, similarly to all marine cultured teleost larvae, are strict carnivores 59 

feeding mainly on zooplankton such as rotifers and Artemia nauplii and metanauplii in commercial hatcheries. 60 

However, when mullet larvae metamorphose into juveniles, coinciding with their onshore migration, they 61 

begin to change their mode of feeding from a carnivorous to an herbivorous/omnivorous diet as they begin to 62 

search out lesser saline environments with higher primary productivity of micro- and macroalgae (Oren, 1981). 63 

This contrasts to most marine aquaculture fish species cultured worldwide, such as the gilthead sea bream 64 

(Sparus aurata), the European sea bass (Dicentrarchus labrax) and meagre (Argyrosomus regius), which 65 

remain carnivorous throughout their life and consume a high protein, low carbohydrate diet. 66 

 67 

Koven et al. (2019) demonstrated that in captivity the juvenile mullet’s digestive tract reached full maturation 68 

at ca. 61 days post hatching (dph) when fish were 142.4 ± 10.7 mg (wet weight; ww) and reared at ca. 25 °C. 69 

At this stage, there is increasing production of pancreatic α-amylase, where at 79 dph (809.8 ± 10.7 mg ww) 70 

has reached 5.3 times the level found in 40 dph fish (36.3 ± 2.9 mg ww). At the same time, alkaline protease 71 

activity is maintained as the fry adapt to a higher carbohydrate and lower protein diet. It is widely accepted 72 

that α-amylase activity is higher in herbivorous and omnivorous fish compared to carnivores (Hidalgo et al. 73 

1999; Solovyev et al., 2015, 2016) and its change in activity has been suggested to occur when there is trophic 74 

shift from carnivory to herbivory/omnivory (Koven et al., 2019). Moreover, this age and size parallels the 75 

developmental stage that juveniles are migrating to lower salinity estuaries and river mouths (Gisbert et al., 76 

1995; Cardona et al., 1996). This change in digestive capacity would allow grey mullet fry to further exploit 77 

estuarine and coastal areas rich in microalgae (Zemke-White and Clements, 1999) and macroalgae (Horn, 78 

1989), as well as benthic organisms living in these waters (Oren, 1981). The subsequent increase in α-amylase 79 

activity enables grey mullet fry to properly digest the starch contained in the above-mentioned trophic 80 

resources (Gisbert et al., 2016).   81 

 82 

On the other hand, the consumption of more plant and less animal protein might also lead to a taurine 83 

deficiency as macroalgae generally are taurine deficient, except for some red algae, compared to animal 84 

sources (McCluster et al. 2014).  Taurine (2-aminoethane sulfonic acid) is a β-amino acid that plays vital roles 85 

in bile salt conjugation (Kim et al., 2007), osmoregulation, membrane stabilization (Huxtable, 1992), 86 

modulation of neurotransmitters (El Idrissi and Trenkner, 2004), heart and muscular systems (Salze and Davis, 87 

2015) as well as retinal development and function (Militante and Lombardini, 2002), which all contribute to 88 

growth. 89 

 90 

Interestingly, the fish in this study were grown from larvae to juveniles in the 40 ‰ sea water of the Red Sea, 91 

where they are commonly found and suggests that the tropic shift from carnivory to herbivory/omnivory is 92 
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genetically determined and not triggered by salinity change when fish are migrating to lower saline estuaries. 93 

Nevertheless, although mullet can grow and are found in marine environments worldwide, their growth rate is 94 

enhanced in lower salinity environments (De Silva and Perera, 1976). 95 

 96 

Currently, captive grey mullet juveniles reared at ca. 25 ºC under the present Israel Oceanographic and 97 

Limnological Research (IOLR) protocol are weaned from live food onto a dry manufactured diet from 24 to 98 

37 dph, and then exclusively fed this diet from 38 dph onwards, which is earlier than the putative gut maturation 99 

age found at ca 61 dph (Koven et al. 2019). As this weaning stage appears to overlap with the beginning of 100 

the transition period where the mullet fry changes their mode of feeding, the question then arises if an effective 101 

weaning diet should be herbivorous, carnivorous or omnivorous in nature. Consequently, the aim of  this study 102 

was to evaluate the performance of juvenile grey mullet, in terms of growth, survival, weight distribution and 103 

the activity of digestive enzymes when fry were fed a carnivorous, herbivorous or omnivorous diet.  104 

 105 

 106 

2. Materials and methods 107 

 108 

2.1 Experimental design 109 

Fifteen 17-L aquaria in a flow through system with 40 ‰, UV treated, temperature (24.5 ± 0.5 ºC) controlled 110 

ambient seawater (7  aquarium exchanges per day) were stocked with eighty-five 23 dph grey mullet larvae 111 

per aquarium. This allowed the testing of three weaning dietary treatments, differing in their protein and 112 

carbohydrate content, in 5 replicate aquaria per treatment. Diet 1 was comprised of only the dried and ground 113 

macroalgal species Ulva lactuca, which is produced at the IOLR in Eilat, Israel (29.5% ± 0.0 crude protein, 114 

11.7% ± 0.2 carbohydrate) and was designated as a low protein:high carbohydrate diet (LP-HC). Diet 2 was a 115 

commercial microencapsulated starter diet CaviarTM (Bernaqua, Belgium; 58.2% ± 0.2  crude protein, 2.3% ± 116 

0.3 carbohydrate), where the protein fraction is comprised of marine animal sources such as krill, fish and 117 

squid, that are considerably high in taurine (Spitz et al., 2003). This dietary treatment was designated as a high 118 

protein:low carbohydrate diet (HP-LC). Diet 3 (HP-LC:LP-HC) was a 1:1 w/w mixture of diet 1 (LP-HC) and 119 

diet 2 (HP-LC) resulting in  43.8% ± 0.1 crude protein, 7.0% ± 0.1 carbohydrate and represented an omnivorous 120 

feeding regime. The aquaria were monitored daily for oxygen saturation (95% or 6.2 mg L-1) and frequently 121 

for ammonia levels, which were below detectable levels. 122 

 123 

2.2 Diet analyses 124 

The weaning diets were analyzed for protein, lipid, carbohydrate and ash levels (Table 1). The average 125 

protein: energy ratios (P:E) from 3 replicates of the different diets were calculated assuming that energy 126 

values of carbohydrate and protein was 4 kcal g-1 and lipid was 9 kcal g-1 and are included in Table 1.  127 

Crude protein was measured using the Kjeldahl technique (Kirk, 1950), while crude lipid was determined 128 
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after total lipid was chloroform-methanol extracted (Folch et al., 1957) from the diet and then dried under 129 

vacuum before being gravimetrically weighed. Ash was calculated from the weight loss after incineration of 130 

the samples for 24 h at 550 C in a muffle furnace while carbohydrate was analysed according to Masuko et 131 

al. (2005). In Table 2, the amino acid concentrations (% of total amino acids) of the diets 1, 2 and 3 are 132 

shown. Ulva lactuca analysis (Diet 1) was carried out at a certified pharmaceutical laboratory, Aminolab 133 

(Ness-Ziona, Israel) whereas the amino acid composition of weaning diet 2 (Caviar™) was provided by 134 

Bernaqua, Belgium. As diet 3 comprised a 1:1 (w/w) mixture of diets 1 and 2, the amino acid composition of 135 

this diet (g amino acid 100 g-1 protein)  was presented as the calculated averages of the consituent amino 136 

acids of diets 1 and 2. 137 

 138 

The rearing protocol and schedule for supplementing algae (Nannochloropsis oculata) to the aquaria and the 139 

frequency and type of food (rotifers, Artemia and dietary treatments) offered to grey mullet larvae and juveniles 140 

is described in Table 3. All fish were weaned from the zooplankton diet based on rotifers (Brachionus 141 

rotundiformis) and Artemia spp. to the experimental diets from 24-38 dph (Table 1). Then, fish from 39 to 53 142 

dph were hand fed to satiation 1-5 times daily only their respective experimental dietary treatments. At the end 143 

of the experimental period, all fish were counted and individually weighed and samples for digestive enzyme 144 

analyses were freeze-dried and shipped to IRTA (Spain). 145 

 146 

2.3 Taurine and amino acid analyses 147 

Freeze dried diet samples of 2–5 mg for Varian 325–410 HPLC (Agilent Technologies, California, USA) 148 

taurine analysis were prepared by adding 3 ml of 6 M HCL and 0.5% phenol. The samples were flushed with 149 

nitrogen and placed in a heating block for 24 h at 108–110 °C. After cooling samples to room temperature and 150 

filtering (0.45 μm; cellulose nitrate), 0.5 ml carbonate buffer (pH 9), 0.5 ml DMSO (dimethyl sulfoxide) and 151 

0.1 ml DNFB (1-fluoro-2,4 dinitrobenzene) were added and the samples mixed well followed by heating for 152 

15 min at 40 °C then cooled for 10 min. To the samples were added 6.5 ml of 0.01 M of buffered phosphate, 153 

vortexed for 30 s and then left to stand for 5 min. The samples were then transferred to HPLC vials and injected 154 

(10 μl) into an Acclaim ™120 C18 (5 μm, 4.6 × 150 mm) HPLC column (Thermo Scientific, USA). Column 155 

flow rate was 1.5 ml min−1 where specific ratios of buffer phosphate 0.01 M (pH 6) and acetonitrile (90;10, 156 

10:90, 10:90, 90:10, 90:10) were introduced into the column at different times (0, 10, 11, 11.01, 18 min), 157 

respectively. 158 

 159 

2. 4 Digestive enzyme activities 160 

For quantifying the activity of the pancreatic (trypsin, chymotrypsin, total alkaline proteases, α-amylase and 161 

bile salt-activated lipase) and intestinal enzymes (alkaline phosphatase, maltase and leucine-alanine peptidase), 162 

lyophilized samples were homogenized (Ultra-Turrax T25 basic, IKA©-Werke, Germany) in 5 volumes (v/w) 163 

of mannitol (50 mM mannitol, 2 mM Tris-HCl buffer; pH = 7.0), centrifuged at 3,300 x g for 3 min at 4 ºC 164 
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and the supernatant removed for enzyme quantification and kept at -80 ºC until further analysis. After 165 

homogenization, 1 mL of the supernatant was pipetted and stored at -20 ºC for cytosolic enzyme (leucine–166 

alanine peptidase) quantification. The rest of the homogenate was used for brush border purification according 167 

to Gisbert et al. (2018).  168 

 169 

Quantification of digestive enzyme activities for pancreatic and intestinal enzymes were conducted as 170 

previously described in Gisbert et al. (2009). In brief, trypsin activity was assayed at 25 ºC using BAPNA 171 

(N-α-benzoyl-DL-arginine p-nitroanilide) as substrate. One unit of trypsin per mL (U) was defined as 1 μmol 172 

BAPNA hydrolyzed min-1 mL-1 of enzyme extract at λ = 407 nm (Holm et al., 1988). Chymotrypsin activity 173 

was quantified at 25 ºC using BTEE (benzoyl tyrosine ethyl ester) as substrate and its activity (U) 174 

corresponded to the μmol BTEE hydrolyzed min-1 mL-1 of enzyme extract at λ = 256 nm (Worthington, 175 

1991). Total alkaline protease activity was measured according to García-Careño and Haard (1993). This 176 

method uses azocasein (0.5%) as substrate in Tris-HCl 50 nmol l-1 (pH 9) at room temperature for 10 min. 177 

Reaction was stopped with 20% TCA (trichloroacetic acid) and Samples were centrifuged at 10,000 x g for 5 178 

min and absorbance of the supernatant was measured at λ = 366 nm. 179 

 180 

Alpha-amylase activity was determined according to Métais and Bieth (1968) using 0.3% soluble starch as 181 

substrate. Its activity (U) was defined as the mg of starch hydrolyzed during 3 min mL-1 of tissue 182 

homogenate at 25 ºC at λ = 580 nm. Bile salt-activated lipase activity was assayed for 30 min at 30 ºC using 183 

p-nitrophenyl myristate as substrate. The reaction was stopped with a mixture of acetone: n-heptane (5:2), 184 

the extract centrifuged (2 min at 6,080 x g and 4 ºC) and the absorbance of the supernatant read at λ = 405 185 

nm. Bile salt-activated lipase activity (U mL-1) was defined as the μmol of substrate hydrolyzed min-1 mL-1 186 

of enzyme extract (Iijima et al., 1998).  187 

 188 

Regarding intestinal digestive enzymes, alkaline phosphatase was quantified at 25 ºC using 4-nitrophenyl 189 

phosphate (PNPP) as substrate. One unit (U) was defined as 1 μmol of pNP released min-1 mL-1 of brush 190 

border homogenate at λ = 407 nm (Bessey et al., 1946). Maltase activity was determined using d (+) -191 

maltose as substrate in 100 mM sodium maleate buffer (pH = 6.0) (Dahkqvist, 1970). One unit of maltase 192 

(U) was defined as μmol of glucose liberated per min per ml of homogenate at λ = 420 nm.The assay of the 193 

cytosolic peptidase, leucine–alanine peptidase was performed on intestinal homogenates applying the 194 

method described by Nicholson and Kim (1975) that utilized L-alanine as substrate in 50 mM Tris-HCl 195 

buffer (pH = 8.0). One unit of enzyme activity (U) was defined as 1 nmol of the hydrolyzed substrate min-1 196 

mL-1 of tissue homogenate at 25 ºC and at λ = 530 nm. The index of intestinal maturation was calculated as 197 

the ratio of the brush border enzyme alkaline phosphatase and the cytosolic enzyme leucine-alanine 198 

peptidase, as previously described by Cahu and Zambonino (1995). 199 

 200 
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 201 

Soluble protein of crude enzyme extracts was quantified by means of the Bradford’s method (Bradford, 1976) 202 

using bovine serum albumin as standard. All the assays were made in triplicate (methodological replicates) 203 

from each pool of larvae (biological replicate) and absorbance read using a spectrophotometer (TecanTM 204 

Infinite M200, Switzerland). Data on enzyme activity are presented in specific activity units (U mg protein-1).  205 

 206 

2.3  Statistics 207 

Statistical analyses were carried out using GraphPad Prism version 5.00 for Windows (GraphPad Software, 208 

San Diego California USA, www.graphpad.com). All data are presented as mean ± standard error of the mean 209 

(SEM).   Outliers were identified by calculation of the Z value using the Grubbs test (Rousseeuw and Leroy 210 

2003) and removed if calculated Z value was higher than tabulated value. Data values (percentage data were 211 

first arcsine-transformed) analyzed by one-way ANOVA and Barlett’s test for equal variances. If significance 212 

(P < 0.05) was found after ANOVA analysis while Barlett’s test was not significant (P > 0.05), then testing 213 

differences between groups was carried out by Newman-Keuls Multiple Comparison test. In cases where 214 

ANOVA and Barlett’s test were both significant (P <  0.05), then the non-parametric Kruskal Wallis Test was 215 

applied followed by Dunn’s multiple Comparison test to determine significant (P <  0.05) differences among 216 

treatments.  217 

 218 

2.4 Ethics statement  219 

 220 

All animal experimental procedures were conducted in compliance with the Guidelines of the European Union 221 

Council (86/609/EU) for the use of laboratory animals. 222 

 223 

 224 

3. Results  225 

Table 1 shows that all three diets were significantly (P<0.05) different from each other in protein, lipid, 226 

carbohydrate and ash content. The P:E ratio of the herbivorous diet 1 (LP-HC) was significantly higher (.629 227 

± .014) than the carnivorous and omnivorous diets 2 (.554 ± .002) and 3 (.577 ± .004), respectively. 228 

 and 3.  The dispensable amino acid concentrations in Table 2 shows that in U. lactuca, glutamic acid (17.92 229 

g per 100 g protein) and aspartic acid (11.22 g per 100 g protein) were the most highly represented amino acids 230 

and were at greater levels than these amino acids in Caviar ™ (14.18 and 9.38 g 100 g-1  protein), respectively. 231 

In contrast, the non-dispensable amino acids methionine and lysine were lower in U. lactuca (1.89 and 4.6 g 232 

100 g-1 protein, respectively) compared to Caviar ™ (3.54 and 9.03 g 100 g-1 protein, respectively) (Table2). 233 

In contrast, the non-dispensable arginine in U. lactuca was approximately double the concentration of this 234 

amino acid in Caviar ™ (12.12 and 6.04 g 100 g-1 protein, respectively) (Table 2) Fig. 1 shows the dietary 235 

taurine levels in the LP-HC (0.37%), HP-LC:LP-HC (1.04%) and HP-LC (1.40%) treatments. There was a 236 

http://www.graphpad.com/
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significant (ANOVA; P =.002) difference in taurine level between the treatments, according to the level of 237 

animal-based protein in the diet, that can be described as HP-LC > HP-LC:LP-HC > LP-HC. At the end of the 238 

study, Fig. 2a demonstrated differences in total length (TL) between grey mullet fry fed the carnivorous and 239 

omnivorous dietary regimes with regard to the herbivorous diet (P = 0.002). In particular, grey mullet fry fed 240 

the HP-LC and LP-HC:HP-LC diets were longer  (2.50 ± 0.03 and 2.66 ± 0.05 cm, respectively) than those 241 

fed the LP-HC diet (2.22 ± 0.10 cm). Final body weights of grey mullet fry fed the different diets are shown 242 

in Fig. 2b.The average final weight of the omnivorous feeding fish (LP-HC:HP-LC) was significantly (P < 243 

0.05) higher (203.9 ± 10.0 mg dry weight, dw) than their carnivorous (HP-LC) feeding (163.3 ± 7.1 mg dw) 244 

and herbivorous (LP-HC) feeding (111.8 ± 14.0  mg dw) cohorts. In addition, the carnivorous feeding fish 245 

were markedly (P < 0.05) heavier than the herbivorous ones. Although there was a large size distribution range 246 

in each of the treatments, there was no observed cannibalism and no significant dietary effect on the percent 247 

of final survival (Fig. 3a; P > 0.05), which meant that the significantly (P = 0.002) higher biomass in the 248 

omnivorous (LP-HC:HP-LC) feeding group was due to the dietary treatment and was not affected by survival 249 

(Fig. 3b). Nevertheless, there was a significant dietary effect on the pattern of weight distribution at the end 250 

of the experiment (Fig. 4; P < 0.05). The population of fish fed the herbivorous (LP-HC) diet demonstrated a 251 

significantly (P = 0.02) higher percentage of smaller fish (<100 mg) than the omnivorous (LP-HC:HP-LC) 252 

feeding fish, whereas there was no treatment effect on the size group of 100-200 mg . In contrast, there was a 253 

significantly (P = 0.008 and P = 0.001) higher percentage of 201-300 and 301-400 mg fish from the 254 

carnivorous (HP-LC) and omnivorous (LP-HC:HP-LC) treatments, respectively, than the cohort feeding on 255 

the herbivorous (LP-HC) diet. Only in the omnivorous treatment, were the largest individuals (500 mg) found 256 

(P = 0.001) (Fig. 4). 257 

 258 

The activities of pancreatic digestive enzymes showed a dietary-modulated response. α-amylase activity 259 

significantly increased when dietary carbohydrate from the green macroalga U. lactuca was introduced into 260 

the diet (Fig. 5; P > 0.05). Surprisingly, the proteolytic enzymes; alkaline protease and trypsin also increased 261 

significantly (P < 0.05) as dietary carbohydrate rose, whereas chymotrypsin activity was independent of the 262 

type of diet and composition (P > 0.05). Bile salt-activated lipase showed a non-significant (P > 0.05) increase 263 

with the increased inclusion of dietary carbohydrates. 264 

 265 

The activity of brush border membrane enzymes such as alkaline phosphatase and maltase, as well as that of 266 

the cytosolic enzyme leucine alananine peptidase are shown in Fig. 6a, b, c, respectively. In addition, the ratio 267 

between alkaline phosphatase and leucine alanine peptidase (AP/LAP), which evaluates the level of gut 268 

maturity or intestinal maturation index (IMI), is shown in Fig. 6d. The activity levels of alkaline phosphatase 269 

and leucine alanine peptidase were similar in grey mullet fry fed the HP-LC and LP-HC:HP-LC diets, but were 270 

higher than those recorded in fish fed the LP:HC diet (P < 0.05). However, there were no differences in maltase 271 

activity among dietary treatments (P > 0.05). In the gut maturation index, the highest and lowest values were 272 
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found in grey mullet fry fed the HP:LC and LP:HC diets, respectively, whereas those from the LP-HC:HP-LC 273 

group showed intermediate values (P = 0.03).  274 

 275 

4. Discussion 276 

Optimizing weaning protocols and diets in cultured fish are key elements for improving larviculture practices, 277 

especially for new aquaculture species. The current study suggested that an omnivorous weaning diet for grey 278 

mullet juveniles resulted in markedly better growth and a higher percentage of the population skewed to larger 279 

fish compared to cohorts feeding on strictly herbivorous or carnivorous feeds. Importantly, the larger 280 

individuals from the omnivorous diet were not the result of reduced survival in this treatment, which can lead 281 

to improved weight gain in fish due to reduced competition for space and resources (Sahoo et al. 2004), as 282 

survival rates were relatively high (53-63.2%) in all dietary treatments. This suggests that differences in growth 283 

performances among treatments may be attributed to dietary regimes.  284 

 285 

It is important to point out that the fish from this study were sampled at 58 dph, which is slightly prior to the 286 

putative gut maturation age (ca. 61 dph; 142.4 ± 10.7 mg ww) reported in a previous study conducted under 287 

similar rearing conditions by our team, and considerably before the reported peak in α-amylase activity that 288 

occurs at  ≥ 79 dph (809.8 ± 10.7 mg ww) (Koven et al., 2019). Consequently, it could be argued that the 289 

requirement for animal protein is a carry-over from larval carnivory and that juvenile mullet would eventually 290 

become more herbivorous, due to the increasing amylase production. This means that  juveniles would require 291 

higher levels of plant-based grow-out diets containing high levels of starch. On the other hand, we contend 292 

that omnivory at this stage more likely describes the permanent trophic status in mullets from juveniles to 293 

adults. The ability to effectively digest both protein and carbohydrates provides distinct advantages and 294 

reduces trophic competition in estuarine and coastal areas where this species inhabits (Cardona, 2001). Indeed, 295 

the advantage of the dietary inclusion of animal protein is that it represents a more balanced essential amino 296 

acid profile (Pereira and Oliva-Teles, 2003). The non-dispensable amino acids; methionine  and lysine in the 297 

carnivorous diet 2 were 3.54 and 9.03 (g 100 g-1 protein) , respectively, compared to 1.89 and 4.6 (g 100 g-1 298 

protein), respectively, in the herbivorous U. lactuca diet 1. Lysine and methionine are often the first limiting 299 

amino acids in protein synthesis (Nunes et al., 2014) and are generally higher in animal than plant protein 300 

(Refstie and Storebakken, 2001). Moreover, an in vitro study showed (Berge et al., 2004) that the uptake of 301 

low concentrations of methionine from the digestive tract was inhibited by the other amino acids present in 302 

the incubation medium. This would exacerbate further the efficient use of the lower levels of dietary plant-303 

based methionine for protein sythesis. In support of the importance of methionine and lysine in the weaning 304 

diet of juvenile grey mullet, Jana et al. (2012) reported successfully replacing fishmeal in a grey mullet diet 305 

with processed full-fat soybean, in terms of growth and digestibility, provided that the diet was supplemented 306 

with lysine and methionine. Nevertheless, in our study the omnivorous diet 3 gave the best juvenile mullet  307 
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growth suggesting that its  moderate methionine and lysine levels (2.72 and 6.82 g 100 g-1 protein, 308 

respectively) were sufficient for protein synthesis. 309 

 310 

Another potential advantage of animal protein is that includes the amino sulfonic acid taurine, which is 311 

lacking in plant-based proteins such as U. lactuca (Tabarsa et al.2012; Pallaoro et al. 2016).  Taurine has 312 

been shown to promote fish growth in a number of species such as juvenile yellowtail (Seriola 313 

quinqueradiata; Takagi et al., 2008), bluefin (Thunnus thynnus; Yokoyama et al., 2001), skipjack 314 

(Katsuwonus pelamis; Yokoyama et al., 2001), Japanese flounder (Paralichthys olivaceus; Kim et al., 2005) 315 

and red sea bream (Pagrus major; Matsunari et al., 2008). Taurine was reported to be a limiting factor  when 316 

replacing fish protein with plant-based meals in a range of species such as grouper (Epinephelus aeneus; 317 

Koven et al., 2016), juvenile cobia (Rachycentron canadum; Lunger et al., 2007) and common dentex 318 

(Dentex dentex; Chatzifotis et al., 2008).    At first glance, this would suggest that feeding the HP-LC diet, 319 

with the highest taurine level (1.4% dw diet), should result in the fastest growing fish. However, the 320 

omnivorous diet (HP-LC: LP-HC) promoted the best growth, with only a moderate taurine level (1.0 % dw 321 

diet) suggesting that this nutrient was not a major player in promoting weigh gain in this study.  322 

 323 

In fact, the superior performance of the omnivorous diet may be due to a more favorable protein :carbohydrate 324 

and lipid ratio which spares protein the most effectively, leading to enhanced protein synthesis and growth. 325 

The constituent amino acids of dietary protein will initially be catabolized for maintenance energy and then 326 

directed to growth until the fish’s anabolic requirements have been met (Phillips 1972). However, excessive 327 

levels of protein in the diet will be catabolized to produce energy (Wilson, 1984), which is undesirable as this 328 

is a costly dietary component (Cho and Kaushik 1985). Lipid and carbohydrate are geneerally excellent and 329 

relatively cheap energy alternatives that can spare the catabolism of amino acids, which will then be mobilized 330 

for protein synthesis, provided that dietary protein is not given in excess (Cho and Kaushik 1985). This is 331 

because deaminated amino acids are the preferred energy substrate over lipids and carbohydrates (Stone, 332 

2003), which would reduce any protein sparing effect. The relatively low protein level in the herbivorous LP-333 

HC diet may not have provided sufficient amounts of indispensable amino acids for optimal protein synthesis, 334 

due to the reduced protein quality and digestibility of plant sources (Neighbors and Horn, 1991; Miles and 335 

Chapman, 2015). All these factors would have contributed to a lower performing diet.   336 

 337 

In support of this, the herbivorous diet exhibited a significantly higher  P:E ratio than the similar P:E ratios of 338 

the carnivorous and omnivorous diets, which is an indicator of reduced protein efficiency. However, despite 339 

the similar P:E ratios, body lengths and weight distributions of the carnivorous and omnivorous diets, the 340 

omnivorous diet consuming fish grew significantly better thant the other treatments. The advantage of the 341 

omnivorous diet may have been due to its higher levels of carbohydrate being a superior protein-sparing 342 

substrate than lipid, which may have accumulated in the fish. In addition, the higher α-amylase than bile salt-343 
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activated lipase activity found in the digestive tract of the mullet broadly hints that carbohydrates may be 344 

preferred over lipids as a protein sparing substrate.  Diets containing excess non-protein energy substrates, 345 

such as lipid, can reduce fish intake, produce fatty fish and interfere with the utilization of other nutrients (Ali 346 

and Al-Asgah, 2001; Hemre et al., 2002).  Taking this one step further, it is conceivable  that the low 347 

carbohydrate and high lipid content of the carnivorous diet would not efficiently spare   the catabolism of any  348 

of the high protein in this diet, which would lead to decreased growth.  349 

 350 

Having said all of the above, there is a cautionary note here that although the dietary treatments are 351 

representative of herbivorous, carnivorous and omnivorous diets, micronutrients not taken into account would 352 

also vary among the udy and have some impact on the results. Nevertheless, the authors believe that dietary 353 

type is the dominant factor influencing fish perfomance in this study. 354 

 355 

Different studies on several freshwater omnivorous species like Nile tilapia, Oreochromis nilotiucs (Siddiqui 356 

et al., 1988) and common carp, Cyprinus carpio (Ogino and Saito, 1970; Hasan et al., 1997) indicated that a 357 

optimum dietary protein level of about 40%  was found for these species which largely approximates the 358 

dietary protein level  of 43.8% found in the omnivorous diet. The ability to utilize elevated dietary protein 359 

levels was alluded to in a recent grey mullet study (Koven et al. 2019). These authors suggested that the 360 

capability to breakdown proteins may be enhanced in 79 dph juvenile grey mullet as both enterocyte-based 361 

intracellular digestion, indicated by leucine-alanine peptidase (LAP) activity, as well as brush border 362 

membrane digestion, where alkaline phosphatase (AP) is an absorption marker, increased from that age 363 

onwards. This expanded protein digestion capability may serve to compensate for the lack of acid proteases in 364 

grey mullet and resulted in more effective protein digestion. This capability is somewhat at odds with the 365 

prevailing wisdom in marine carnivorous fish species, where intracellular protein digestion decreases while 366 

brush border membrane enzymes increases as gut maturation proceeds (Cahu and Zambonino Infante, 1995; 367 

Zambonino Infante and Cahu 1999).  368 

 369 

Fish have shown some plasticity in their digestive enzyme production in response to diet, as the metabolic 370 

expense of producing larger than necessary amounts of digestive enzymes would be wasted, if their substrates 371 

are at low levels (German et al., 2014).  Intuitively, this means that digestive enzyme activities will vary 372 

according to dietary composition (German et al., 2014). Thus, herbivorous fish species generally exhibit higher 373 

α-amylase activities in order to digest the storage carbohydrates (starch) of macroalgae, which can reach as 374 

high as 50% of their dry mass (Horn, 1989). In contrast, carnivorous fishes frequently show greater proteolytic 375 

enzyme activities in order to digest high dietary 40-55% protein levels (Hasan, 2001). The activity of α-376 

amylase in an herbivorous species such as Barbus sharpeyi was higher than the omnivorous species Cyprinus 377 

carpio where both were greater than the carnivorous Aspius vorax (Al-Tameemi et al., 2010). However, when 378 

there is a trophic shift during fish ontogeny from larval carnivore to juvenile herbivore or omnivore, there will 379 
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be a subsequent exposure to profound changes in food composition, where enzyme activity will be substrate 380 

and/or developmentally modulated. The ontogeny of α-amylase activity in grey mullet juveniles was reported 381 

to be largely genetically based (Koven et al. 2019). This assumption was reinforced by similar high α-amylase 382 

activities found in grey mullet fry that were weaned onto starch poor diets that were rich in fishmeal or with a 383 

high level of fish meal substitution by plant carbohydrate containing meals (Zouiten et al., 2008; Gisbert et al., 384 

2016). In the present study, the activity of α-amylase significantly increased with the inclusion of dietary 385 

carbohydrates from macroalgae  (U. lactuca), but not in a dose dependent manner. This is demonstrated since  386 

LP-HC  and  HP-LC:LP-HC diets, although differing in their carbohydrate content (11.7 and 7.0%, 387 

respectively), demonstrated  similar α-amylase activities. This reinforces our hypothesis that the production of 388 

α-amylase is  modulated by available substrate but mainly influenced by larval developmental stage (Koven 389 

et al., 2019).  390 

 391 

The effects of the weaning dietary treatments on proteolytic enzymes showed an increase in total alkaline 392 

proteases and trypsin activities in weaned grey mullet juveniles fed the omnivorous (HP-LC: LP-HC) and 393 

herbivorous (LP-HC) diets in comparison to those individuals fed the high protein and low carbohydrate 394 

carnivorous (HP-LC) diet.  Initially, this seems counter intuitive as proteolytic activities are generally 395 

correlated to increasingly higher dietary protein and not carbohydrate levels as was reported in Tambaqui, 396 

Colossoma macropomum (de Almeida et al., 2006). Trypsin activity was positively correlated to soluble 397 

protein content in Brycon guatemalensis during the switch from insectivorous to frugivorous feeding habits 398 

(Drewe et al., 2004), while Zambonino-Infante et al. (1997) found that the activity of pancreatic alkaline 399 

proteases was linked to the level of non-hydrolysed protein in the digesta in European sea bass (Dicentrarchus 400 

labrax). The correlation between protease activity and the higher carbohydrate in weaning diets in the present 401 

study  may be attributed to a greater need of proteolytic activity to digest less available proteins from the 402 

macroalga U. lactuca. In fact, our results, on closer scrutiny may not be at odds afterall with the notion 403 

correlating substrate and enzyme activity. In other words, the increased α-amylase activity from the high levels 404 

of carbohydrate may have exposed more protein substrate leading to increased proteolytic activity, as a non-405 

negligible fraction of macroalgal protein and carbohydrate compounds are in the form of glycoproteins.  On 406 

the other hand, Azaza et al. (2008) found that increasing levels of Ulva spp. meal were less available to the 407 

omnivorous Oreochromis niloticus, possibly resulting from the dietary content of indigestible fiber that 408 

prestented a physical barrier to enzyme activity (Potty, 1996). Nevertheless, starch can be highly represented 409 

component in Ulva spp. (Prabhu et al. 2019) and it is conceivable that the activity of α-amylase in the digestive 410 

tract of tilapia may not be high enough to expose increased protein substrate. In contrast, Gisbert et al. (2016) 411 

showed that the activity of alkaline proteases did not increase in grey mullet larvae weaned on to compound 412 

diets having different levels of plant-protein sources (a blend of corn gluten, wheat gluten, soy bean meal and 413 

soy protein concentrate). This may have been due to the higher digestibilities of raw materials used in these 414 

feed formulations. Nonetheless, the higher protease activity in the herbivorous weaning diet to maximize 415 
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protein digestion did not compensate for the overall low level of dietary protein in this treatment, which likely 416 

led to poor growth. Chymotrypsin activity, the other serine protease analyzed in our study, was unlike trypsin 417 

activity, in that it was independent of weaning dietary treatment. This was unexpected as this protease is 418 

activated by trypsin and therefore should show similar enzymatic activity (Rungruangsak-Torrissen et al., 419 

2006). On the other hand, these results agreed with those reported by Rungruangsak-Torrissen et al. (2006) 420 

who similarly found that trypsin and chymotripsin activities were not correlated under normal developmental 421 

and nutritional conditions.     422 

 423 

Although dietary lipid levels significantly differed from each other among the weaning treatments, bile salt-424 

activated lipase activity appeared to be statistically independent from experimental diets. On the other hand, 425 

the patterns of lipase and amylase activities  (Fig. 5a and e )  look strikingly similar. This may suggest, similarly 426 

to alkaline protease, that the higher amylase activity in the digestive tract of mullet fed the Ulva diet was 427 

revealing more lipid substrate and therefore initiating more lipolytic activity, although not markedly.  428 

 429 

The activity of the intestinal enzymes of the brush border membrane (BBM) and cytosolic enzyme activities 430 

indicated that fish fed the U. lactuca herbivorous (LP-HC) diet exhibited delayed gut maturation and mucosal 431 

absorptaat oddsion. This was revealed by the  IMI computed from the ratio of BBM and cytosolic intestinal 432 

enzymes (AP/LAP and MAL/LAP) described by Zambonino-Infante et al. (1997). A protracted maturation of 433 

the gut would be a contributing factor to the observed sub-optimal growth performance in fish feeding on this 434 

diet. This would also lead to the prevalence of smaller fish in the population compared to their omnivorous 435 

feeding cohorts. It has been previously reported that gut maturation may be accelerated by dietary 436 

supplementation of protein hydrolysates, particularly di- and tripeptides (Zambonino-Infante et al., 1997). As 437 

the weaning diet CaviarTM included in the HP-LC and HP-LC:LP-HC diets contained 2% dw yeast hydrolysate, 438 

the gut maturation may have been hastened in mullet juveniles feeding on these weaning diets. In fact, yeast 439 

hydrolysate was found to be superior or equally effective as fish hydrolysate in improving gut nutrient 440 

absorption in Sparus aurata (Fronte et al., 2019). This was supported by Gisbert et al. (2012) who also worked 441 

on the larvae and juveniles of this species and reported that microdiets containing either yeast or pig blood 442 

hydrolysate showed a lower incidence of skeletal deformities and enhanced maturation of enterocytes 443 

compared with microdiets containing fish protein hydrolysates.  444 

 445 

When comparing the activity of both glucosidases, the pancreatic α-amylase and brush border maltase, we 446 

found that the activity of maltase was ca. 100 times higher than α-amylase in mullet juveniles. Generally, data 447 

from different enzymes are not directly comparable due to the use of different substrates and analytical 448 

methods. However, in this case, α-amylase and maltase are comparable, since both methods are based on the 449 

molecules of glucose released by the action of these two enzymes. Consequently, the results reveal the 450 

important role of maltase in the digestion of starch-type carbohydrates, where pancreatic α-amylase would 451 
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participate in the first stages of starch digestion, while its hydrolysis products (disaccharides such as maltose) 452 

are finally digested by maltase in the brush border of enterocytes. These results are consistent with those 453 

reported by Quezada-Calvillo et al. (2007) who found that the α-amylase contributed less than 15% to starch 454 

digestion in in vitro studies with human enterocytes. Taken together, our findings recommend the 455 

quantification of both enzymes when assessing the carbohydrate digestive capacities of fish larvae and 456 

juveniles.  Interestingly, the activity of BBM maltase was independent of dietary treatment.  This was 457 

unexpected since it is widely believed that α-amylase activity is a function of dietary carbohydrate content in 458 

herbivores and omnivores, where increased levels would provide a higher number of available disaccharide 459 

substrates and consequently promote maltase activity. (Gisbert et al., 2016).  Interestingly, a study on rabbits 460 

found that maltase activity was similarly not affected by the level of dietary starch (Debray et al., 2003), 461 

whereas the opposite results were found in mice (Bustamante et al., 1986).  462 

 463 

In conclusion, the results from this study on growth performance and digestive physiology broadly suggest 464 

that aquaculture feeds for grey mullet developing juveniles should be designed for omnivorous feeding habits 465 

where feeds should include moderate levels of proteins, as well as considerable amounts of starch or other low 466 

cost amylolytic energetic compounds. 467 

 468 
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Table 1. Proximate composition and protein: energy ratio (P:E) of the weaning diets LP-HC, HP-LC and 

HP-LC:LP-HC. Dietary component values (%), after arcsin transformation, within diets having different 

letters were significantly (P < 0.05) different.  

Diet composition Diet 1 

LP-HC 
Diet 2 

HP-LC 

Diet 3 

HP-LC: LP-HC 

Protein 29.5a ± 0.0 58.2b ± 0.2 43.8c ± 0.1 

Lipid 2.5a ± 0.0 19.8b ± 0.0 11.2c ± 0.2 

Carbohydrate  11.7a ± 0.2 2.3b ± 0.3 7.0c ± 0.1 

Ash 29.9a ± 0.3                           11.1b ± 0.0 20.5c ± 0.1 

P:E .629a ± .014 .554b ± .002 .577b ± .004 

 

Table 2. The amino acid composition (g 100 g-1  protein) of  weaning diets 1, 2 and 3 (LP-HC, HP-LC 

and HP-LC:LP-HC, respectively). 
 

Diet 11 Diet 22 Diet 33 

AMINO ACIDS Ulva  (LP-HC) Caviar™ (HP-LC) HP-LC:LP-HC 

(1:1) 

Aspartic acid 11.22 9.38 10.30 

Serine 4.59 4.58 4.59 

Glutamic acid 17.92 14.18 16.05 

Proline 3.98 5.49 4.74 

Glycine 6.55 6.11 6.33 

Alanine 8.16 7.25 7.71 

Tyrosine 3.60 3.64 3.62 

Threonine* 4.71 4.91 4.81 

Valine* 5.36 5.63 5.50 

Methionine* 1.89 3.54 2.72 

Isoleucine* 3.8 5.03 4.42 

Leucine* 6.09 8.69 7.39 

Phenylalanine* 4.41 4.2 4.31 

Histidine* 1 1.99 1.50 

Lysine* 4.6 9.03 6.82 

Arginine* 12.12 6.04 9.08 

*Non-dispensable amino acids. 

1Shpigel et al., 2018, 2Bernaqua, Hagelberg 3, B-2250 Olen, Belgium.3Calculated average between diets 1 

and 2. 

 



 

 

Table 3. Time table for supplementing algae (Nannochloropsis oculata) to the aquaria and the frequency 

and type of food (rotifers, Artemia, dry dietary treatments) offered to grey mullet larvae and juveniles.  

Age  

(dph) 

Rotifers 

10 mL-1 

Artemia 

1.5  mL-1 

Dietary   

treatments 

Size (µm) Nannochloropsis oculata 

23 x2 day x2 day 0 - 4 x 106 cells ml-1 

24-25 x2 day x2 day x1 day 50-100 4 x 106 cells ml-1 

26-33 0 x2 day x2 day 100-200 4 x 106 cells ml-1 

34-37 0 x2 day x3 day 200-300 0 

38-53 0 0 x5 day 200-500 0 
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Figure 1 The percent (%) taurine DW diet in the LP-HC, HP-LC and HP-LC:LP-HC diets. Bar 

values having a different letter were significantly (different (ANOVA, P = 0.004; n=3). 

 



LP-HC HP-LC HP-LC:LP-HC
0.0

0.5

1.0

1.5

2.0

2.5

3.0
b

b
a

(a)

Treatments

A
v
g

 t
o
ta

l 
le

n
g

th
 (

c
m

)

LP-HC HP-LC HP-LC:LP-HC
0

50

100

150

200

250

300

a

b

c

(b)

Treatments

A
v
g

 f
is

h
 D

W
 (

m
g

)

 

Figure 2. The effect of LP-HC, HP-LC and HP-LC:LP-HC  diets on (a) total fish length (TL) and (b) 

dry weight (DW) at the end of the experiment.  Values having different letters were significantly different 

(ANOVA, P < 0.05, n=5).  
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Figure 3. The effect of LP-HC, HP-LC and HP-LC:LP-HC diets on (a) survival and (b) tank biomass 

at the end of the experiment.  Values having different letters were significantly different (ANOVA, P < 

0.05, n=5).  
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Figure 4. The effect of herbivorous, omnivorous and and carnivorous weaning diets (LP-HC, HP-LC and 

HP-LC:LP-HC, respectively) on weight distribution (mg). Values having different letters were 

significantly different (ANOVA, P < 0.05, n=5).  All Percent values were arcsine transformed before 

analysis. 
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Figure 5. The effect of herbivorous, omnivorous and and carnivorous weaning diets (LP-HC, HP-LC 

and HP-LC:LP-HC, respectively) on the pancreatic enzymes (a) amylase, (b) alkaline protease, (c) 

chymotrypsin, (d) trypsin and (e) bile salt-acivated lipase. Enzyme values (U/mg protein) having different 

letters were significantly different (ANOVA, P < 0.05, n=5).  
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Figure 6. The effect of herbivorous, omnivorous and and carnivorous weaning diets (LP-HC, HP-LC 

and HP-LC:LP-HC, respectively) on the brush border enzymes (a) alkaline phosphatase (AP) and (b) 

maltase and the cytosolic enzyme (c) leucine aminopeptidase (LAP) as well as (d) the intestinal maturation 

index (IMI) determined by AP/LAP ratio. Enzyme and index values having different letters were 

significantly different (ANOVA, P < 0.05, n=5).  




