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Abstract 

We describe here a protocol for cleaning diatoms when time is short and the amount of 

sample is very limited. Essentially, the method consists of drying material onto coverslips and 

cleaning it directly in situ using nitric acid (or hydrogen peroxide), which is evaporated to 

dryness. After washing twice or a few times with deionized water, the coverslips are ready for 

mounting in resin for light microscopy as usual, or attachment to stubs for scanning electron 

microscopy. Besides speed, the method has the advantage that it often preserves some 

frustules intact or leaves their different elements (and stages of valve formation) closely 

associated with each other. Examples where the method is especially advantageous are to 

clean small aliquots of cultures for identification or to act as vouchers, or to explore diversity 

of the most abundant species in natural material (e.g. periphyton). It is less suitable for counts 

in ecological or palaeoecological studies. We tabulate the many other cleaning methods to 

provide context for the new method described here. 

 

Keywords: cleaning procedure, diatoms, digestion, nitric acid cleaning, peroxide cleaning, 

preparation methods. 

  



 

3 
 

Introduction 

Perception of the importance of diatoms has grown for various reasons, including the 

realization that they are major players in the global carbon cycle, their almost unique capacity 

to transform dissolved silicate into patterned silica structures, and the insights their remains 

give about present and past environments. Increasingly, species are being brought into culture 

for genomic and transcriptomic studies, to investigate phylogenetic relationships and 

population genetics, to study cellular and life history processes, and to provide material for 

experimentation and surveys of secondary metabolite production. For all of these, accurate 

identification and vouchering are necessary for results to be interpreted in relation to other 

findings and made repeatable. 

To identify diatoms it is necessary to clean material so that the details of the valve and 

frustules are clearly visible during study under either the light microscope (LM) or the scanning 

electron microscope (SEM). Diatom cleaning methods vary (Table 1) but most work by 

removing organic material through chemical oxidation, often by H2O2 or concentrated acid 

(e.g. HNO3 or H2SO4). These methods have different pros and cons, but in our experience 

almost all of them require substantial amounts of material (sample and reagents) and take 

many person-hours to obtain clean material ready for mounting in LM preparations or on SEM 

stubs, because of the oxidization itself and then the successive rinsings with deionized water. 

These two aspects – time and sample quantity – are often a problem when dealing with 

cultures because i) we need to know what is isolated as soon as possible in order to decide 

whether the culture is worth keeping or studying; and, ii) some studies, e.g. to construct 

metabarcoding reference databases (Kelly et al. 2018, Rimet et al. 2018, and unpublished) and 

population genetic studies (e.g. Vanormelingen et al. 2015), require very large numbers of 

clones to be grown and vouchered. 

We describe here a fast cleaning method suitable for very small amounts of material, 

which uses very small volumes of oxidizing reagents (ca 1–2 ml per preparation) and requires a 

minimum of expensive equipment and consumables (e.g. no centrifuge or filtration devices). 

The method works best when the material contains a high proportion of diatoms and does not 

contain much sediment; it can be applied to both freshwater and marine material, though for 

the latter there needs to be a pre-wash to remove salt. The oxidizing agents tested here are 

HNO3 and H2O2 but any other agent may be suitable provided it does not contain dissolved 

salts. We have been using this method for about 10 years (e.g. Mann et al. 2011, Kahlert et al. 

2019). The inspiration for it came from Prof. Dr. H.A. von Stosch (e.g. von Stosch 1982), who 
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heated material with perchloric acid on coverslips to clean and disrupt perizonia, and from 

Prof. Dr. Aloisie Poulíčková, who was already cleaning material on coverslips with H2O2 during 

the early 2000s. 

 

Material and Methods 

Equipment and consumables 

 Coverslips, which should preferably be circular, since this makes it easier to add sufficient 

acid or water without spillage. We use Ø 18 mm coverslips for LM preparations and Ø 13 

mm coverslips for SEM. 

 Two glass Pasteur pipettes and bulbs (one for acid, one for deionized water). 

 Two 100–150 ml beakers, one for nitric acid (the rapid method uses very little acid; 

probably only 10–20 ml will be needed to produce 10 LM preparations), one for deionized 

water. 

 Ceramic hotplate in a fume cabinet (the ceramic nature of the hotplate is important, 

because of steps 4–6). 

 Paper towel folded x3 to give thickness (for absorbing water drained off coverslips as 

below); numbers 1 to x written on it depending on the number of samples (i.e. coverslips) 

to be prepared (see step 10 for the reason). 

 Extra paper towel (if marine samples need to be pre-treated to remove marine salts) 

 Fine forceps, preferably with curved ends. 

 Oxidizing agent: nitric acid (60–70% HNO3) or hydrogen peroxide (ca 35% H2O2). 

 Deionized water. 

 

Protocol 

1. Using a pipette, take a small volume of the sample or culture and place it on a clean, dry 

cover slip. The volume of sample to be taken depends on the size of the coverslip. For 

example, for a circular Ø 18 mm coverslip, 0.5 ml is an appropriate volume to work with, 

and c. 0.3 ml for Ø 13 mm coverslips. The amount of material in the sample should 

correspond to the final density required in the LM or SEM preparation since all the 

preparation and processing will occur on the coverslip itself; the amount should not be so 

high that large clumps or swathes of cells are present. 

2. Leave the coverslips to dry undisturbed (e.g. overnight) and avoid dust contamination. 
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3. Once the coverslips are fully dry, place them on a ceramic hotplate in a fume cabinet with 

the diatoms uppermost, using fine forceps (NB. To minimize cross-contamination, clean 

the forceps between different coverslips). Leave enough room between coverslips to avoid 

the possibility of splashing material from one to another (e.g. space between the 

coverslips on the hot plate about 3 or 4 times the diameter of the coverslips) and to make 

manipulation easier. Record which coverslips (i.e. which samples) are placed where on the 

hotplate. 

4. Heat to approximately 90°C (the hotplate can be preheated to reduce processing time). 

5. Add the oxidizing agent (65–70% HNO3 or 35% H2O2, previously placed in a beaker) from a 

Pasteur pipette to give a domed meniscus, taking care not to overflow onto the hotplate 

(though if it does, it’s not a disaster: a ceramic hotplate will not be damaged by the 

concentrated hot oxidizing agents, which will simply evaporate away. The problem with 

overflow is that the coverslip may stick to the hotplate and then need to be gently prised 

off, and also that a little of the material will probably be lost). 

6. Allow the acid to evaporate (it should take 10–15 min; if shorter, the temperature of the 

plate should be reduced), but just before the coverslip dries, add more nitric acid to give a 

domed meniscus, as before. 

7. Repeat steps 5 and 6 as necessary: there should be no coloured residue – any visible 

residue (the diatoms) should be white or grey. 

8. After the second or final acid treatment, allow all the acid to evaporate. 

9. If the treatment has been successful, the coverslip should now bear cleaned diatoms , with 

virtually all organic material oxidized away and only small amounts of salts left from the 

original water and from decomposition of the diatoms (or other material); these will be 

removed in the next steps by washing with deionized water.  

10. Transfer the coverslips to the paper towel with forceps, taking care to place them with the 

diatoms uppermost in known positions and record the positions; space them at intervals of 

at least c. 3–4 coverslip diameters. 

11. Add deionized water carefully from a Pasteur pipette to give a fully domed meniscus 

covering the whole of the coverslip. Try to avoid spillage, but if it happens (it frequently 

does happen, even when taking lots of care), move the coverslip a little and try again: it is 

important that the coverslip is exposed to a reasonably high volume of water, to dissolve 

the residual salts. 

12. After 10 min, drain the coverslip by tilting it to c. 80° to the horizontal, then make it 

horizontal again and repeat step 11. Depending on the sample, further washes may be 

given, though each one may dislodge a few more frustules. 
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13. Drain and fully air-dry the coverslip. Drying can be accelerated either by placing the 

coverslips back on a hotplate, or placing under a heat lamp. 

14. Mount the coverslip in Naphrax diatom mountant for LM or attach to stub for SEM 

examination. Before this is done, it might be good to look at the coverslip under a 

microscope. With experience, one can estimate from this whether the cleaning has been 

effective or whether another nitric acid treatment might be worthwhile. To inspect the 

coverslip with a microscope, transfer it carefully to a microscope slide, with the diatoms 

facing up, and examine it with dry lenses. This needs care, since the coverslip will easily 

slide off the slide if not carried very carefully. 

If desired, material can be stored dry after step 2, e.g. in a box or slide tray, analogous to the 

storage of material on mica by nineteenth century diatomists (e.g. Wetzel & Williams 2018). 

 

Pre-treatment for saline samples 

Marine, brackish and hypersaline samples need to be pre-washed to remove most of the salts 

because these will otherwise prevent adhesion of the cells to the coverslips in step 2, so that 

all cells would eventually be washed away.  

a) Put the sample or aliquot of culture into a vial and fix the diatoms with ethanol (final 

concentration circa 30%). This will fix cells and promote their sedimentation and also begin 

to dilute the salts. 

b) After allowing the cells to sediment (e.g. overnight) gently remove the supernatant 

without disturbing the suspension at the bottom, and add deionized water with a Pasteur 

pipette.  

c) Allow to sediment and repeat step b, and then add deionized water if the sample contains 

lots of diatoms.  

d) Sample is now ready to enter the main protocol at step 1. 

This preliminary washing should also be done with freshwater samples if they have been fixed 

with a reagent containing dissolved solids (e.g. Lugol’s iodine). 

 

Testing (Figs 1-14) 

To demonstrate the method for this paper, we used four samples: three marine clones (IRTA-

CC-1, IRTA-CC-2, and IRTA-CC-3: Figs 1, 7–10) and a natural sample from riu Algars, Catalonia, 
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Spain (freshwater) (Figs 11–14). Previously, the method has been used to prepare vouchers of 

freshwater clones or to study vegetative cell and auxospore structure (Mann et al. 2011; 

Vanormelingen et al. 2013, 2015; Kelly et al. 2018; Mann & Poulíčková 2019) but without 

including a full explanation of the protocol. Material related to some of these studies is also 

included here (Figs 2–6). 

We asked two staff with different levels of experience in traditional diatom cleaning 

methods (none and some) to execute the protocol in order to evaluate its description and 

performance. 

The adequacy of cleaning was assessed by LM and SEM. LM observations of 18-mm 

diameter cover-slip preparations (mounted in Naphrax: Brunel Micoscopes, Chippenham, UK) 

were made using a Zeiss Axio Imager M2 with a Plan-Apochromat ×100 objective (nominal 

numerical aperture: 1.4) and differential interference contrast optics; photographs were taken 

using an Axiocam HRc digital camera and processed using Adobe Photoshop. For SEM, 13-mm 

cover-slip preparations were fixed to aluminium stubs and sputtered with platinum for 70–80 s 

at 5 nm min–1 (at 25 mA) using an Emitech K575X coater. They were observed using a LEO 

Supra 55 SEM at 5 kV and 4–5 mm working distance. 

 

Results 

Samples prepared by the rapid cleaning method are illustrated in Figs 1–7 (LM) and 8–14 

(SEM). HNO3 produced cleaner valves and frustules than H2O2, usually without destroying fine 

structures (e.g. the hymenes: Fig. 12 shows hymenes with pores less than 10 nm in diameter in 

Brachysira Kützing), though some evidence of erosion was seen in a few specimens (Figs 8, 9). 

It is not known whether these were frustules that had begun to dissolve after death of the cell. 

Preparations made following the protocol and using HNO3 were just as good for identifying 

species as the more traditional methods listed in Table 1. The results with H2O2 were more 

disappointing and inconsistent: some organic and or inorganic matter was removed but not all 

(Figs 3, 9), making it difficult to identify all the valves and frustules in a sample. This was not a 

major problem when dealing with monocultures, except that it took longer to locate well-

cleaned specimens, but it was a disadvantage when studying natural samples. 

In the natural sample from riu Algars many frustules remained intact (Figs 13, 14) and 

allowed determination of girdle structure. In the most successful preparations (predominantly 

HNO3-treated) of clones or natural material, forming valves were often observed alongside 
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fully formed valves and girdle bands (Fig. 10). The raphe and pseudo-raphe valves of 

monoraphid diatoms were often side-by-side in preparations (e.g. Fig. 5), as a result of single 

frustules being split and spread flat by the oxidative treatment but not scattered far apart. 

The first trials of marine material (IRTA clones 1–3) revealed to us that without the pre-

wash most of the frustules were lost at steps 10–12, probably because salt prevented firm 

attachment of the cells to the coverslips. 

 

Discussion 

We found that HNO3 produces cleaner frustules than H2O2. This advantage of HNO3 has already 

been pointed out by F.E. Round (see personal communication to Nagy 2011 p. 8), although the 

reasons for any such advantage are unclear and our survey of more than 150 papers published 

in Phytotaxa between 2010 and 2018 (available from the authors on request) showed that 

H2O2-cleaning can often be highly effective, without loss of fine structure (e.g. Tudesque et al. 

2016). Unfortunately, there seem to have been no systematic investigations of the 

effectiveness of different preparation techniques. In some cases where fine structures have 

been lost, this may be because of the preservative used before or after cleaning, rather than 

the cleaning method itself.  

HNO3 and H2O2 were the oxidizing agents tested here but the method will probably 

work with other oxidizing agents (e.g. H2SO4, HClO4) that do not crystallize at steps 2 and 5 

(salts like K2Cr2O7, KMnO4, or KClO3 will not evaporate when the coverslips are dried). HNO3 is 

not a particularly strong oxidizing agent, compared to several of the chemicals and mixtures 

listed in Table 1 [see for example 

https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)], but it has the 

advantage that it is also effective in solubilizing inorganic components, because all common 

nitrates are soluble. 

The advantages of the method described here are speed and the small amounts of 

sample, chemicals and equipment necessary. In our experience, once samples have been dried 

onto coverslips, the whole process can be completed and slides made within c. 2–3 h, half of 

which is unsupervised while the cleaned material is air-drying. It is a practical method when 

large numbers of clones need to be processed to provide vouchers and for sampling and 

characterizing the same clones many times during their life cycle. It is also very useful when 

the identity of a clone needs to be established as soon as possible after isolation, as well as 

https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)


 

9 
 

when the sample is sparse and/or precious, such as when working with type material or the 

gut contents of small grazers. The method is also particularly suitable for living motile diatoms, 

which will colonize and attach themselves to coverslips, obviating the need for steps 1 and 2 of 

the protocol. 

Our method is not meant as a replacement for all the methods used previously (Table 

1). For example, it is not suitable when many slides are needed from a particular sample, and it 

is not very good for counting diatoms in ecological or palaeoecological studies. This is because 

very small subsamples may not be representative of the whole sample and because it is likely 

that diatoms will not be homogeneously distributed on the coverslip, e.g. as a result of 

extracellular polysaccharides or unequal drying during the oxidation steps. On the other hand, 

the fact the cells are not redistributed evenly during specimen preparation can be an 

advantage if one is interested in studying e.g. auxosporulation, since mother cells and 

auxospores often remain associated and perizonia often remain partially or fully intact (e.g. 

Mann et al. 2011). Very few of the traditional methods give this possibility (see Table 1). 

Furthermore, even though many frustules are dissociated during cleaning, the valves 

and girdle bands often remain closely associated, so that there is opportunity to determine the 

morphology and arrangement of the bands. In the case of monoraphid or other heterovalvar 

diatoms, the fact that the two valves of a frustule are often located close together after 

cleaning could be a major advantage for identifying species, especially in natural samples.  

With use of this rapid cleaning method, it is common to find delicate early stages in 

morphogenesis (cf. Fig. 10), which can easily be lost with methods that depend on filtration or 

sedimentation during washing of bulk-cleaned samples to remove excess oxidant and 

breakdown products. As might be expected, forming valves are more common in material 

from actively growing populations. 

Several of the advantages of our method are shared with the two ‘dry’ methods listed 

in Table 1. We have used the muffle-furnace ourselves (e.g. Mann 1988) and, apart from the 

capital cost of a good quality muffle furnace (one with accurate control over ramping and the 

final temperature), it is certainly easy and fairly fast. The dry methods also keep cells in the 

same positions they occupied when dried onto the coverslip, so that, for example, auxospores 

and gametangia remain together. In our experience, the disadvantages of the dry methods are 

that all frustules remain complete, inorganic components of cells (e.g. polyphosphate deposits) 

are not extracted (this must also be true of the low temperature plasma method of Watanabe 

et al. 2010), distortion and breakage are more frequent, and LM mountant (Naphrax) seems to 
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penetrate less easily into frustules, many of which therefore contain air bubbles. In addition, 

coverslips sometimes warp at c. 560°C, unless they are in contact with a flat support over their 

whole area. These properties can reduce the quality and usefulness of preparations. 

Photographs of cells prepared by the furnace method were given by Riznyk (1973) and can be 

compared with our figures. 

Finally, we would note that no cleaning method is perfect. The need for pre-treatment 

of marine samples before the oxidation and washing is probably the weakest aspect of our 

approach, since it adds to the time before material can be examined. One way around this for 

cultures of marine or brackish diatoms that adhere to solid substrata (because of raphe-

associated movement or through production of stalks or pads) is to place sterile coverslips in 

the culture vessel to become colonized. These can then be removed with cells attached and 

drained of almost all saline medium before drying and further treatment. The approach 

mentioned above for living motile diatoms also permits marine (or brackish) material to be 

processed without pre-treatment, again because coverslips can be drained of seawater 

without loss of many cells before entering the cleaning procedure at step 2 (or 3). 
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Figure captions 

Figures 1–7. Valves prepared for light microscopy by the rapid cleaning method (all except Fig. 3 were 

prepared using nitric acid), differential interference contrast optics. The voucher slides are held in the Royal 

Botanic Garden Edinburgh (E). Fig. 1. Halamphora (Cleve) Levkov sp. valve with associated girdle bands, 

clone IRTA CC-2 (slide E6097). Fig. 2. Sellaphora pausariae Mann & Poulíčková, clone SEL703B (slide E4201). 

Fig. 3. Sellaphora pausariae, clone Sel515B (slide E5208), prepared using hydrogen peroxide; note the 

extraneous undigested material, which does not in this case prevent identification but is unattractive. Fig. 

4. Ulnaria acus (Kützing) Aboal, UK barcode clone 0024 (slide BC0024). Fig. 5. Achnanthidium minutissimum 

(Kützing) Czarnecki species complex, UK barcode clone 0208 (slide BC0208). Fig. 6. Pinnularia grunowii 

Krammer, UK barcode clone 0057 (slide BC0057). Fig. 7. Tabularia (Kützing) D.M. Williams & Round sp., 

clone IRTA CC-3 (slide E6098). Scale bars = 10 µm (for all except Fig. 4, see the bar in Fig. 1). 

 

Figures 8–14. Frustules and valves prepared for SEM by the rapid cleaning method. All except Fig. 9 were 

prepared using nitric acid; Halamphora (Figs 8, 9) was washed beforehand to remove salt. Figs 8, 9. 

Halamphora sp. frustules, clone IRTA-CC-2. Note the poorer cleaning with hydrogen peroxide (Fig. 9; cf. Fig. 

3). Fig. 10. Nitzschia inconspicua Grunow species complex, clone IRTA-CC-1. Here, as often occurs with the 

rapid cleaning method, disassembled frustule elements have remained in close association, in this case 

including an early stage in valve formation (arrow) and separated girdle bands. Figs 11–14. Frustules and 

valves in a natural periphyton sample from riu Algars, Catalonia. Fig. 11. Interphase frustule of Cyclotella 

Kützing sp. showing the inequality of the epitheca (top, with four girdle bands) and hypotheca (bottom, two 

bands). Figs 12–14. Brachysira sp: hymenate pore occlusions with c. 7-nm diameter pores (Fig. 12), 

complete frustule in valve view (Fig. 13), and frustule end in girdle view (Fig. 14), showing the structure of 

the epicingulum, shown to consist of six open bands (bands 1–4 are numbered, and the open end of band 5 

is indicated by an arrow). Scale bars = 2 µm (Figs 8–11, 13), 500 nm (Fig. 14), and 100 nm (Fig. 12). 








